
Image Processing Toolbox™
Reference

R2021b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Image Processing Toolbox™ Reference
© COPYRIGHT 1993–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
August 1993 First printing Version 1
May 1997 Second printing Version 2
April 2001 Third printing Revised for Version 3.0
June 2001 Online only Revised for Version 3.1 (Release 12.1)
July 2002 Online only Revised for Version 3.2 (Release 13)
May 2003 Fourth printing Revised for Version 4.0 (Release 13.0.1)
September 2003 Online only Revised for Version 4.1 (Release 13.SP1)
June 2004 Online only Revised for Version 4.2 (Release 14)
August 2004 Online only Revised for Version 5.0 (Release 14+)
October 2004 Fifth printing Revised for Version 5.0.1 (Release 14SP1)
March 2005 Online only Revised for Version 5.0.2 (Release 14SP2)
September 2005 Online only Revised for Version 5.1 (Release 14SP3)
March 2006 Online only Revised for Version 5.2 (Release 2006a)
September 2006 Online only Revised for Version 5.3 (Release 2006b)
March 2007 Online only Revised for Version 5.4 (Release 2007a)
September 2007 Online only Revised for Version 6.0 (Release 2007b)
March 2008 Online only Revised for Version 6.1 (Release 2008a)
October 2008 Online only Revised for Version 6.2 (Release 2008b)
March 2009 Online only Revised for Version 6.3 (Release 2009a)
September 2009 Online only Revised for Version 6.4 (Release 2009b)
March 2010 Online only Revised for Version 7.0 (Release 2010a)
September 2010 Online only Revised for Version 7.1 (Release 2010b)
April 2011 Online only Revised for Version 7.2 (Release 2011a)
September 2011 Online only Revised for Version 7.3 (Release 2011b)
March 2012 Online only Revised for Version 8.0 (Release 2012a)
September 2012 Online only Revised for Version 8.1 (Release 2012b)
March 2013 Online only Revised for Version 8.2 (Release 2013a)
September 2013 Online only Revised for Version 8.3 (Release 2013b)
March 2014 Online only Revised for Version 9.0 (Release 2014a)
October 2014 Online only Revised for Version 9.1 (Release 2014b)
March 2015 Online only Revised for Version 9.2 (Release 2015a)
September 2015 Online only Revised for Version 9.3 (Release 2015b)
March 2016 Online only Revised for Version 9.4 (Release 2016a)
September 2016 Online only Revised for Version 9.5 (Release 2016b)
March 2017 Online only Revised for Version 10.0 (Release 2017a)
September 2017 Online only Revised for Version 10.1 (Release 2017b)
March 2018 Online only Revised for Version 10.2 (Release 2018a)
September 2018 Online only Revised for Version 10.3 (Release 2018b)
March 2019 Online only Revised for Version 10.4 (Release 2019a)
September 2019 Online only Revised for Version 11.0 (Release 2019b)
March 2020 Online only Revised for Version 11.1 (Release 2020a)
September 2020 Online only Revised for Version 11.2 (Release 2020b)
March 2021 Online only Revised for Version 11.3 (Release 2021a)
September 2021 Online only Revised for Version 11.4 (Release 2021b)

Functions
1

v

Contents

Functions

1

Color Thresholder
Threshold color image

Description
The Color Thresholder app lets you segment color images by thresholding the color channels based
on different color spaces. Using this app, you can create a binary segmentation mask for a color
image.

Color Thresholder supports segmentation in four color spaces. In each color space, the app displays
the image, the three color channels, and the color value of all pixels as points in a 3-D color space
plot. You can select the colors included in the mask by windowing the color channel values or by
drawing an ROI in the image or 3-D color space plot. For an example of using the app, see “Segment
Image and Create Mask Using Color Thresholder App”.

Color Space Color Channel Thresholding Controls
RGB

HSV

1 Functions

1-2

Color Space Color Channel Thresholding Controls
YCbCr

L*a*b*

 Color Thresholder

1-3

Open the Color Thresholder App
• MATLAB® Toolstrip: On the Apps tab, under Image Processing and Computer Vision, click the

Color Thresholder app icon.
• From the MATLAB command prompt, use the colorThresholder function with a syntax

described in “Programmatic Use” on page 1-4.

Examples
• “Segment Image and Create Mask Using Color Thresholder App”

Programmatic Use
colorThresholder opens Color Thresholder, which enables you to create a segmentation mask of
a color image based on the exploration of different color spaces.

colorThresholder(RGB) opens Color Thresholder, loading the image RGB into the app.

colorThresholder close closes all open instances of Color Thresholder.

See Also
Apps
Image Segmenter

1 Functions

1-4

Functions
imcontrast

Topics
“Segment Image and Create Mask Using Color Thresholder App”
“Understanding Color Spaces and Color Space Conversion”

Introduced in R2014a

 Color Thresholder

1-5

DICOM Browser
Explore collection of DICOM files

Description
The DICOM Browser app lets you explore the contents of collections of DICOM files. The app sorts
images by study and series. You can select a series and save it to the MATLAB workspace. The
DICOM Browser stores the data as a volume, with separate variables for a colormap and for spatial
details.

Open the DICOM Browser App
• MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer Vision, click the

DICOM Browser app icon.
• MATLAB command prompt: Enter dicomBrowser.

Examples

Explore by Folder Name

Open the DICOM Browser, displaying DICOM files from the sample image folder.

1 Functions

1-6

dicomBrowser(fullfile(matlabroot,'toolbox/images/imdata'))

Explore by DICOMDIR File

Open the DICOM Browser and explore a DICOM folder by using the DICOMDIR file.

dicomBrowser(fullfile(matlabroot,'toolbox/images/imdata/DICOMDIR'))

Programmatic Use
dicomBrowser opens the DICOM Browser app for exploring the contents of collections of DICOM
files.

dicomBrowser(DIR) opens the DICOM Browser app, displaying details about the files in the folder
DIR and its subfolders. DIR can contain a full path name, a relative path name to the file, or the name
of a file on the MATLAB search path.

dicomBrowser(DICOMDIR) opens the DICOM Browser app and gathers details from the DICOM
directory file, named DICOMDIR. A DICOM directory file is a special DICOM file that serves as a
directory to a collection of DICOM files stored on removable media, such as CD/DVD ROMs.
DICOMDIR can contain a full path name or a relative path name to the file. The name of this file is
DICOMDIR, with no file extension.

See Also
Functions
dicomanon | dicomdict | dicomdisp | dicominfo | dicomlookup | dicomwrite | dicomuid

Introduced in R2017b

 DICOM Browser

1-7

Image Batch Processor
Apply a function to multiple images

Description
The Image Batch Processor app lets you process a folder of images using a function you specify.
The function must have the following signature: out = fcn(in). The app creates an output folder
containing the processed images, using the same name and subfolder structure as the input folder.

Open the Image Batch Processor App
• MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer Vision, click the

Image Batch Processor app icon.
• MATLAB command prompt: Enter imageBatchProcessor.

Examples
• “Process Folder of Images Using Image Batch Processor App”

Programmatic Use
imageBatchProcessor opens the Image Batch Processor app, which enables you to process a folder
of images.

1 Functions

1-8

imageBatchProcessor close closes all open instances of the Image Batch Processor app.

See Also
Functions
imread | imwrite

Topics
“Process Folder of Images Using Image Batch Processor App”

Introduced in R2015a

 Image Batch Processor

1-9

Image Browser
Browse images using thumbnails

Description
The Image Browser app lets you view thumbnails of all the images in a particular folder or image
datastore. Once displayed in the app, you can select an image and open it in one of several Image
Processing Toolbox apps. You can save images displayed in the app to the MATLAB workspace as an
ImageDatastore object.

Open the Image Browser App
• MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer Vision, click the

Image Browser app icon.
• MATLAB command prompt: Enter imageBrowser.

Programmatic Use
imageBrowser opens the Image Browser app.

imageBrowser(folder) opens the Image Browser app with all images in the folder, folder,
loaded.

imageBrowser(imds) opens the Image Browser app with all images in the image datastore, imds,
loaded.

1 Functions

1-10

See Also
Apps
Image Batch Processor

Functions
imageDatastore

Topics
“View Thumbnails of Images in Folder or Datastore”
“Getting Started with Datastore”

Introduced in R2016b

 Image Browser

1-11

Image Segmenter
Segment an image by refining regions

Description
The Image Segmenter app lets you create a segmentation mask using automatic algorithms such as
flood fill, semi-automatic techniques such as graph cut, and manual techniques such as drawing ROIs.
You can also refine masks using morphology or an iterative approach such as active contours (also
called snakes). For more information about creating, refining, and exporting a segmentation mask,
see “Getting Started with Image Segmenter App”.

Open the Image Segmenter App
• MATLAB Toolstrip: Open the Apps tab, under Image Processing and Computer Vision, click

the Image Segmenter app icon.
• MATLAB command prompt: Enter imageSegmenter.

Examples
• “Segment Image Using Thresholding in Image Segmenter”
• “Segment Image By Drawing Regions Using Image Segmenter”
• “Segment Image Using Active Contours in Image Segmenter”
• “Segment Image Using Auto Cluster in Image Segmenter”
• “Segment Image Using Graph Cut in Image Segmenter”

1 Functions

1-12

• “Segment Image Using Find Circles in Image Segmenter”
• “Segment Image Using Local Graph Cut (Grabcut) in Image Segmenter”
• “Refine Segmentation Using Morphology in Image Segmenter”

Programmatic Use
imageSegmenter opens the Image Segmenter app, which enables you to create a segmentation
mask of an image by using active contours.

imageSegmenter(I) opens the Image Segmenter app, loading the image I into the app.

imageSegmenter close closes all open instances of the Image Segmenter app.

See Also
Functions
activecontour | imbinarize | grayconnected | lazysnapping | grabcut | imfindcircles

Topics
“Segment Image Using Thresholding in Image Segmenter”
“Segment Image By Drawing Regions Using Image Segmenter”
“Segment Image Using Active Contours in Image Segmenter”
“Segment Image Using Auto Cluster in Image Segmenter”
“Segment Image Using Graph Cut in Image Segmenter”
“Segment Image Using Find Circles in Image Segmenter”
“Segment Image Using Local Graph Cut (Grabcut) in Image Segmenter”
“Refine Segmentation Using Morphology in Image Segmenter”
“Getting Started with Image Segmenter App”

Introduced in R2014b

 Image Segmenter

1-13

Image Region Analyzer
Browse and filter connected components in an image

Description
The Image Region Analyzer app measures a set of properties for each connected component (also
called an object or region) in a binary image and displays this information in a table. You can also use
this app to create other binary images by filtering the image on region properties.

Open the Image Region Analyzer App
• MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer Vision, click the

Image Region Analyzer app icon.
• MATLAB command prompt: Enter imageRegionAnalyzer.

Examples
• “Calculate Properties of Image Regions Using Image Region Analyzer”
• “Filter Images on Properties Using Image Region Analyzer App”

Programmatic Use
imageRegionAnalyzer opens the Image Region Analyzer app, which enables you to create other
binary images and get information about the regions within binary images.

1 Functions

1-14

imageRegionAnalyzer(I) opens the Image Region Analyzer app, loading the image I into the app.

imageRegionAnalyzer close closes all open instances of the Image Region Analyzer app.

See Also
Functions
regionprops | bwpropfilt | bwareafilt

Topics
“Calculate Properties of Image Regions Using Image Region Analyzer”
“Filter Images on Properties Using Image Region Analyzer App”

Introduced in R2014b

 Image Region Analyzer

1-15

Image Viewer
View and explore images

Description
The Image Viewer app presents an integrated environment for displaying images and performing
common image processing tasks.

Image Viewer provides all the image display capabilities of imshow, which optimizes figure, axes,
and image object property settings for image display. Image Viewer also provides access to several
tools for navigating and exploring images, such as the Pixel Region tool, Image Information tool, and
the Adjust Contrast tool. To learn more about the available tools, see “Get Started with Image Viewer
App”.

Open the Image Viewer App
• MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer Vision, click the

Image Viewer app icon.
• MATLAB command prompt: Use the imtool function.

Examples
Display Different Types of Images

Display a color image from a file.

imtool('board.tif')

Display an indexed image.

1 Functions

1-16

[X,map] = imread('trees.tif');
imtool(X,map)

Display a grayscale image.

I = imread('cameraman.tif');
imtool(I)

Display a grayscale image, adjusting the display range.

h = imtool(I,[0 80]);
close(h)

Programmatic Use
imtool opens Image Viewer in an empty state.

• To load an from a file, select File > Open.
• To load an image stored as a variable in the workspace, select File > Import from Workspace.

imtool(I) opens Image Viewer and displays the grayscale, RGB, or binary image I. Specify I as
one of these values.

• An m-by-n numeric matrix representing a grayscale image. Image Viewer displays the image
using the default display range of the image data type.

• An m-by-n-by-3 numeric array representing an RGB image.
• An m-by-n logical matrix representing a binary image.

imtool(X,cmap) open Image Viewer and displays the indexed image X with colormap cmap.

• Specify X as an m-by-n matrix of data type single, double, uint8, or logical.
• Specify cmap as a c-by-3 numeric matrix containing the RGB values of c colors. cmap can be of

data type single, double, uint8, or uint16, or int16.

imtool(filename) opens Image Viewer and displays the image file with file name filename.
Specify filename as a character vector or string scalar.

imtool(___ ,'Colormap',cmap) displays the grayscale or binary image in Image Viewer using
the colormap cmap. Setting the colormap of an RGB image has no effect. Specify cmap as a c-by-3
numeric matrix with values in the range [0, 1], where c is the number of colors in the colormap. You
can also create a colormap matrix using a predefined colormap function, such as parula or jet.

For example, imtool(I,'Colormap',parula) displays grayscale image I using the parula
colormap.

imtool(___ ,'DisplayRange',dispRange) displays a grayscale or indexed image in Image
Viewer and scales the display range to the values in dispRange. Setting the display range of an RGB
or binary image has no effect. Specify dispRange as one of these values.

• 2-element vector of the form [low high] — Image Viewer displays pixels with the value low
(and any value less than low) as black. Image Viewer displays pixels with the value high (and any
value greater than high) as white. Pixel values within the display range are displayed as
intermediate shades of gray using the default number of gray levels.

 Image Viewer

1-17

For example, imtool(I,'DisplayRange',[15 140]) scales the display range of grayscale
image I of data type uint8 such that pixels less than or equal to 15 appear black and pixels
greater than or equal to 140 appear white.

• [] — Image Viewer sets the display range to [min(I(:)) max(I(:))]. The minimum value in
I is displayed as black, and the maximum value is displayed as white.

For example, imtool(I,'DisplayRange',[]) scales the display range of grayscale image I of
data type double such that pixels with the minimum value appear black and pixels with the
maximum value appear white.

imtool(___ ,'InitialMagnification',initMag) displays the image with initial magnification
initMag. Specify initMag as one of these values.

• "adaptive" — The entire image is visible on initial display. If the image is too large to display on
the screen, then Image Viewer displays the image at the largest magnification that fits on the
screen.

• "fit" — Image Viewer resizes the entire image to fit in the window.
• A positive number — Image Viewer resizes the entire image as a percentage of the original

image size. For example, if you specify 100, then Image Viewer displays the image at 100%
magnification (one screen pixel for each image pixel).

For example, imtool(I,'InitialMagnification',50) displays image I at 50% of the
original image dimensions.

Note When the image aspect ratio is such that less than one pixel would be displayed in either
dimension at the requested magnification, Image Viewer issues a warning and displays the image
at 100% magnification.

By default, the initial magnification is set to the value returned by
iptgetpref('ImtoolInitialMagnification'). To change the default initial magnification
behavior, see “Specify Default Display Behavior” on page 1-18.

imtool(___ ,'Interpolation',interp) specifies the interpolation technique interp used to
resize the image. Specify interp as "nearest" for nearest neighbor interpolation or "bilinear"
for bilinear interpolation. The default interpolation technique is "nearest".

For example, imtool(I,'Interpolation',"bilinear") resizes image I using bilinear
interpolation.

hfigure = imtool(___) returns hfigure, the figure object created by Image Viewer.

imtool close all closes all open instances of Image Viewer.

More About
Specify Default Display Behavior

You can specify the default display behavior of Image Viewer by using the Image Processing
Preferences dialog box. To access the dialog, select File > Preferences in the MATLAB desktop or
Image Viewer menu. You can also set preferences programmatically by using the iptsetpref
function.

1 Functions

1-18

Preference Description
'ImtoolInitialMagnification
'

Controls the initial magnification for image display. To override this
toolbox preference, specify the 'InitialMagnification' name-value
argument when you call the imtool function, as follows:

imtool(___,'InitialMagnification',initial_mag)

'ImtoolStartWithOverview' Controls whether the Overview tool opens automatically when you open
an image using Image Viewer. Possible values:

• true — Overview tool opens when you open an image.
• false — Overview tool does not open when you open an image. This

is the default behavior.

For more information about these preferences, see iptprefs.

Large Data Support

To view very large TIFF or NITF images that will not fit into memory, you can use rsetwrite to
create a reduced resolution dataset (R-Set) viewable in Image Viewer. R-Sets can also improve
performance of Image Viewer for large images that fit in memory.

The following tools can be used with an R-Set: Overview, Zoom, Pan, Image Information, and
Distance. Other tools, however, will not work with an R-Set. You cannot use the Pixel Region, Adjust
Contrast, Crop Image, and Window/Level tools. Please note that the Pixel Information tool displays
only the x and y coordinates of a pixel and not the associated intensity, index, or RGB values.

Tips
• If you want to set the display range when calling imtool, then the 'DisplayRange' name is

optional unless you specify the image using a file name. The syntax imtool(I,[low high]) is
equivalent to imtool(I,'DisplayRange',[low high]). However, you must specify the
'DisplayRange' argument when calling imtool with a file name, as in the syntax
imtool(filename,'DisplayRange',[low high]).

• Image Viewer does not close when you call the close all command. If you want to close
multiple instances of the Image Viewer app, use the syntax imtool close all or select Close
all from the Image Viewer File menu. You can close a specific Image Viewer specified by the
handle hfigure by using the command close(hfigure).

See Also
Apps
Video Viewer | Volume Viewer

Functions
imshow

Topics
“Get Started with Image Viewer App”
“Get Pixel Information in Image Viewer App”
“Measure Distance Between Pixels in Image Viewer App”
“Adjust Image Contrast in Image Viewer App”

 Image Viewer

1-19

“Crop Image Using Image Viewer App”

Introduced in R2014b

1 Functions

1-20

Registration Estimator
Register 2-D grayscale images

Description
The Registration Estimator app aligns 2-D grayscale images using automatic image registration.
Using this app, you can:

• Compare feature-based, intensity-based, and nonrigid registration techniques interactively
• Obtain the registered image and the geometric transformation

Feature-Based Techniques

Registration Estimator offers these registration techniques that use feature detection and
matching:

• BRISK
• FAST
• Harris
• KAZE
• MinEigen
• MSER
• ORB
• SURF

Intensity-Based Techniques

Registration Estimator offers three registration techniques that use intensity metric optimization:

• Monomodal intensity
• Multimodal intensity
• Phase correlation

For more details of the available techniques, see “Techniques Supported by Registration Estimator
App”.

 Registration Estimator

1-21

Open the Registration Estimator App
• MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer Vision, click the

Registration Estimator app icon.
• MATLAB command prompt: Enter registrationEstimator.

Examples
• “Register Images Using Registration Estimator App”

Programmatic Use
registrationEstimator opens the Registration Estimator app, which enables you to perform
intensity-based, feature-based, and nonrigid image registration.

registrationEstimator(moving,fixed) opens the Registration Estimator, loading the
grayscale images moving and fixed into the app.

registrationEstimator close closes all open instances of the Registration Estimator app.

See Also
Functions
imregister | imregtform | imregconfig | imregdemons | imwarp

1 Functions

1-22

Topics
“Register Images Using Registration Estimator App”
“Techniques Supported by Registration Estimator App”
“Approaches to Registering Images”

Introduced in R2017a

 Registration Estimator

1-23

Video Viewer
View videos and image sequences

Description
The Video Viewer app plays movies, videos, or image sequences. The app offers basic video playback
aids, including the ability to jump to a specific frame, to adjust the frame rate of the display, and to
play in forwards and reverse directions.

Using this app, you can adjust other aspects of the video display and explore video data in more
depth.

• Get information about frame size, color format, data type, and frame count.
• Change the colormap of grayscale and binary image sequences.
• Adjust the display range of grayscale image sequences.
• Open a Pixel Region tool that displays an extreme close-up view of a small region of pixels in the

target image.
• Export a frame to the Image Viewer app.
• View video signals in Simulink® models (requires Simulink). For more information, see “View

Video in Simulink” (Computer Vision Toolbox).

Video Viewer does not play audio tracks.

Open the Video Viewer App
• MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer Vision, click the

Video Viewer app icon.
• MATLAB command prompt: Enter implay.

Examples
Play Three Types of Videos

Animate a sequence of grayscale images at 10 frames per second.

1 Functions

1-24

load cellsequence
implay(cellsequence,10)

Visually explore a stack of grayscale MRI images.

load mristack
implay(mristack)

Play an AVI file.

implay('rhinos.avi')

Programmatic Use
implay opens the Video Viewer app in an empty state.

• To load a video from a file, select File > Open.
• To load an image sequence stored as a variable in the workspace, select File > Import from

Workspace.

implay(filename) opens the Video Viewer app and loads the content of the Audio Video
Interleaved (AVI) file with file name filename. Specify filename as a character vector or string
scalar. The AVI file determines the default frame rate.

implay(I) opens the Video Viewer app and displays the first frame in the multiframe image
sequence I. Specify I as one of these values:

• An m-by-n-by-k numeric or logical array representing a grayscale or binary image sequence of k
frames, respectively.

• An m-by-n-by-1-by-k numeric or logical array representing a grayscale or binary image sequence
of k frames, respectively.

• An m-by-n-by-3-by-k numeric array representing a truecolor (RGB) image sequence of k frames.
• A MATLAB movie structure. For more information, see immovie.

For numeric data, the preferred data type of I is uint8. The actual data type used to display pixels
may differ from the source data type.

The default frame rate is 20 frames per second. To change the frame rate, specify the second input
argument, fps.

implay(___ ,fps) also specifies the frame rate fps in frames per second. Specify fps as a positive
number.

More About
Change Colormap of Grayscale or Binary Image Sequence

Change the colormap of a grayscale or binary image sequence by selecting Tools > Colormap. You
cannot change the colormap of a truecolor (RGB) image sequence.

 Video Viewer

1-25

To change the colormap of a grayscale image sequence, select one of the seven built-in colormaps
listed in the table. For a binary image sequence, only the parula, jet, cool, and copper colormaps
modify the appearance of the images. Video Viewer does not support custom colormaps.

Colormap Name Color Scale
gray
parula
jet
hot
bone
cool
copper

Adjust Contrast of Grayscale Image Sequence

Adjust the contrast of a grayscale image sequence by selecting Tools > Colormap. You cannot
change the contrast of a binary or truecolor (RGB) image sequence.

Enable contrast adjustment by selecting Specify range of displayed pixel values. The range of
values depends on the data type of the image sequence. Specify the new minimum and maximum
values of the display range.

• Pixel values less than or equal to the minimum display range value display as black, or the first
value in the colormap for a nondefault colormap.

• Pixel values greater than or equal to the maximum display range value display as white, or the last
value in the colormap for a nondefault colormap.

• Intermediate pixel values map linearly to the intermediate grayscale values, or the intermediate
values in the colormap for a nondefault colormap.

Open Pixel Region Tool to Display Close-Up View

You can open a Pixel Region tool that displays an extreme close-up view of a small region of pixels in
the target image. Access this tool by selecting Tools > Pixel Region. For more information about
using the Pixel Region tool, see impixelregion.

See Also
Apps
Image Viewer

Functions
immovie | montage | movie | VideoWriter

Topics
“View Image Sequences in Video Viewer App”
“Work with Image Sequences as Multidimensional Arrays”
“Convert Multiframe Image to Movie”

Introduced in R2014b

1 Functions

1-26

Volume Segmenter
Segment 3-D grayscale or RGB volumetric images

Description
The app can be used to create and refine a binary or semantic segmentation mask for a 3-D grayscale
or an RGB image using automated, semi-automated, and manual techniques.

Open the Volume Segmenter App
• MATLAB Toolstrip: Open the Apps tab, under Image Processing and Computer Vision, click

the Volume Segmenter app icon.
• MATLAB command prompt: Enter volumeSegmenter.

Examples

Load Volume and Labeled Volume into the Volume Segmenter

1 Load a volume into the workspace.

load(fullfile(toolboxdir('images'),'imdata','BrainMRILabeled','images','vol_001.mat'));
2 Load the corresponding labeled volume into the workspace.

load(fullfile(toolboxdir('images'),'imdata','BrainMRILabeled','labels','label_001.mat'));
3 Open the Volume Segmenter specifying both the volume and the labeled volume.

volumeSegmenter(vol,label)

 Volume Segmenter

1-27

• “Create Binary Mask Using Volume Segmenter”
• “Create Semantic Segmentation Using Volume Segmenter”

Programmatic Use
volumeSegmenter opens a volume segmentation app.

volumeSegmenter(V) opens the Volume Segmenter app, loading the volume V into the app. Volume
V is a scalar valued m-by-n-by-p or m-by-n-by-p-by-3 image of class uint8, uint16, uint32, int8,
int16, int32, single, or double.

volumeSegmenter(V,L) opens the Volume Segmenter app, loading the volume V and the labeled
volume L into the app. The labeled volume L is a scalar valued m-by-n-by-p image of class logical,
categorical, uint8, uint16, uint32, int8, int16, int32, single, or double.

volumeSegmenter(___ ,'Show3DDisplay',TF) logical value that specifies whether the Volume
Segmenter includes a visualization of the 3-D volume in the app. The default value is true. However,
the default is false on platforms where 3-D display is not supported, such as, Linux platforms, or on
Windows platforms that use software versions of OpenGL.

See Also
Functions
Image Segmenter | Volume Viewer

Topics
“Create Binary Mask Using Volume Segmenter”
“Create Semantic Segmentation Using Volume Segmenter”

Introduced in R2020b

1 Functions

1-28

Volume Viewer
View volumetric data and labeled volumetric data

Description
The Volume Viewer app lets you view 3-D volumetric data and 3-D labeled volumetric data. Using
this app, you can view the data as a volume or as plane slices. You can also view the data as a
maximum intensity projection or an isosurface. Using the Rendering Editor component you can
manipulate opacity to see the structures in the volume that you want to see and make transparent
those structures in the volume that you do not want to see.

Open the Volume Viewer App
• MATLAB toolstrip: Open the Apps tab, under Image Processing and Computer Vision, click

the Volume Viewer app icon.
• MATLAB command prompt: Enter volumeViewer.

Examples

Load Labeled Volume into Volume Viewer

1 Load a labeled volume into the workspace.

load(fullfile(toolboxdir('images'),'imdata','BrainMRILabeled','labels','label_001.mat'));
2 Open the labeled volume in the Volume Viewer. Use the 'VolumeType' parameter to identify the

volume as a labeled volume.

 Volume Viewer

1-29

volumeViewer(label,'VolumeType','labels')

• “Explore 3-D Volumetric Data with Volume Viewer App”
• “Explore 3-D Labeled Volumetric Data with Volume Viewer App”

Programmatic Use
volumeViewer opens a volume visualization app.

volumeViewer(V) loads the intensity volume V into the app. V is a scalar-valued m-by-n-by-p image
of class logical, uint8, uint16, uint32, int8, int16, int32, single, or double.

volumeViewer(V,L) loads the intensity volume V and the labeled volume L into the Volume Viewer.
L is a scalar-valued m-by-n-by-p image of class categorical, uint8, uint16, uint32, int8,
int16, int32, single, or double

volumeViewer(___ ,'VolumeType',vtype) loads the volumetric data into the app, where
'VolumeType' defines the type of volume being loaded. vtype can be either 'Volume' or
'Labels'. If the volume is of class categorical, the default VolumeType is 'Labels'. For
volumes of any other class, the default VolumeType is 'Volume'. If you specify both an intensity
volume and a labeled volume, the Volume Viewer ignores this name-value pair

volumeViewer(___ ,'ScaleFactors',sfactors) loads the volumetric data into the app, where
'ScaleFactors' specifies the scale factors used to rescale volumes. 'ScaleFactors' is a 1-by-3
positive numeric array of the form [x y z], where the values are scale factors applied in the x, y,
and z directions. The default value is [1 1 1]. If 'VolumeType' is 'Labels', the Volume Viewer
ignores this name-value pair.

volumeViewer close closes all open Volume Viewer apps.

See Also
Functions
isosurface | slice | volshow | labelvolshow | sliceViewer | obliqueslice |
orthosliceViewer

Topics
“Explore 3-D Volumetric Data with Volume Viewer App”
“Explore 3-D Labeled Volumetric Data with Volume Viewer App”

Introduced in R2017a

1 Functions

1-30

activecontour
Segment image into foreground and background using active contours (snakes) region growing
technique

Syntax
BW = activecontour(A,mask)
BW = activecontour(A,mask,n)
BW = activecontour(A,mask,method)
BW = activecontour(A,mask,n,method)
BW = activecontour(___ ,Name,Value)

Description
The active contours technique, also called snakes, is an iterative region-growing image segmentation
algorithm. Using the active contour algorithm, you specify initial curves on an image and then use the
activecontour function to evolve the curves towards object boundaries.

BW = activecontour(A,mask) segments the image A into foreground (object) and background
regions using active contours.

The mask argument is a binary image that specifies the initial state of the active contour. The
boundaries of the object regions (white) in mask define the initial contour position used for contour
evolution to segment the image. The output image BW is a binary image where the foreground is
white (logical true) and the background is black (logical false).

To obtain faster and more accurate segmentation results, specify an initial contour position that is
close to the desired object boundaries.

BW = activecontour(A,mask,n) segments the image by evolving the contour for a maximum of n
iterations.

BW = activecontour(A,mask,method) specifies the active contour method used for
segmentation as either 'Chan-Vese' or 'edge'. For RGB images, the method must be 'Chan-
Vese'.

BW = activecontour(A,mask,n,method) segments the image by evolving the contour for a
maximum of n iterations using the specified method.

BW = activecontour(___ ,Name,Value) specifies name-value pair arguments that control
various aspects of the segmentation.

Examples

Segment Image Using Active Contours

Read and display a grayscale image.

 activecontour

1-31

I = imread('coins.png');
imshow(I)
title('Original Image')

Specify an initial contour surrounding the objects of interest. Display the contour.

mask = zeros(size(I));
mask(25:end-25,25:end-25) = 1;
imshow(mask)
title('Initial Contour Location')

1 Functions

1-32

Segment the image by using the activecontour function. By default, the function evolves the
segmentation through 100 iterations.

bw = activecontour(I,mask);

Display the result. After 100 iterations, objects are not fully segmented from the background because
the original contour is not close to the object boundaries.

imshow(bw)
title('Segmented Image, 100 Iterations')

 activecontour

1-33

To continue evolving the segmentation, increase the number of iterations. After 300 iterations,
objects are fully segmented from the background.

bw = activecontour(I,mask,300);
imshow(bw)
title('Segmented Image, 300 Iterations')

1 Functions

1-34

Segment Image Using Active Contours with Interactive Mask

Read and display a grayscale image.

I = imread('toyobjects.png');
imshow(I)

Draw an initial contour close to the object of interest by using the drawrectangle function. After
drawing the contour, create a mask by using the createMask function.

r = drawrectangle;

 activecontour

1-35

mask = createMask(r);

Segment the image using the 'edge' method and 200 iterations.

bw = activecontour(I,mask,200,'edge');

Display the final contour over the original image in red.

hold on;
visboundaries(bw,'Color','r');

1 Functions

1-36

Display the result of the segmentation over the original image. The object in the foreground has a
blue color.

figure
imshow(labeloverlay(I,bw));

 activecontour

1-37

Perform 3-D Segmentation Using 2-D Initial Seed Mask

Load 3-D volumetric image data, removing the singleton dimension.

D = load('mri.mat');
A = squeeze(D.D);

Create 2-D mask for initial seed points.

seedLevel = 10;
seed = A(:,:,seedLevel) > 75;
figure
imshow(seed)

1 Functions

1-38

Create an empty 3-D seed mask and put the seed points into it.

mask = zeros(size(A));
mask(:,:,seedLevel) = seed;

Perform the segmentation using active contours, specifying the seed mask.

bw = activecontour(A,mask,300);

Display the 3-D segmented image.

figure;
p = patch(isosurface(double(bw)));
p.FaceColor = 'red';
p.EdgeColor = 'none';
daspect([1 1 27/128]);
camlight;
lighting phong

 activecontour

1-39

Input Arguments
A — Image to be segmented
2-D numeric matrix | 3-D numeric array

Image to segmented, specified as a 2-D numeric matrix or 3-D numeric array.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

mask — Initial contour
binary image

Initial contour at which the evolution of the segmentation begins, specified as a binary image of the
same size as A. For 2-D and 3-D grayscale images, the size of mask must match the size of the image
A. For color and multi-channel images, mask must be a 2-D logical array where the first two
dimensions match the first two dimensions of the image A.

You can create a mask interactively by using ROI objects. For example, draw a polygonal ROI by using
the drawpolygon function, then create a mask from the ROI by using the createMask function.
Data Types: logical

n — Maximum number of iterations
100 (default) | positive integer

1 Functions

1-40

Maximum number of iterations to perform in evolution of the segmentation, specified as a positive
integer. activecontour stops the evolution of the active contour when it reaches the maximum
number of iterations. activecontour also stops the evolution if the contour position in the current
iteration is the same as the contour position in one of the most recent five iterations.

If the initial contour position (specified by mask) is far from the object boundaries, specify larger
values of n to achieve desired segmentation results.
Data Types: double

method — Active contour method
'Chan-Vese' (default) | 'edge'

Active contour method used for segmentation, specified as 'Chan-Vese' or 'edge'. The Chan-Vese
region-based energy model is described in [1] on page 1-42. The edge-based model, similar to
geodesic active contours, is described in [2] on page 1-42.

For RGB images, the method must be 'Chan-Vese'.
Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'SmoothFactor',1.5

SmoothFactor — Degree of smoothness
positive number

Degree of smoothness or regularity of the boundaries of the segmented regions, specified as the
comma-separated pair consisting of 'SmoothFactor' and a positive number. Higher values produce
smoother region boundaries but can also smooth out finer details. Lower values produce more
irregularities (less smoothing) in the region boundaries but allow finer details to be captured. The
default smoothness value is 0 for the 'Chan-Vese' method and 1 for the 'edge' method.
Example: 'SmoothFactor',1.5
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

ContractionBias — Tendency of the contour to grow outwards or shrink inwards
numeric scalar

Tendency of the contour to grow outwards or shrink inwards, specified as the comma-separated pair
consisting of 'ContractionBias' and a numeric scalar. Positive values bias the contour to shrink
inwards (contract). Negative values bias the contour to grow outwards (expand). This parameter does
not guarantee that the contour contracts or expands. It is possible that even with a positive value for
this parameter, the contour could actually expand. However, by specifying a bias, you slow the
expansion when compared to an unbiased contour. Typical values for this parameter are between -1
and 1. The default contraction bias is 0 for the 'Chan-Vese' method and 0.3 for the 'edge'
method.
Example: 'ContractionBias',0.4
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

 activecontour

1-41

Output Arguments
BW — Segmented image
binary image

Segmented image, returned as a binary image of the same size as the input image A. The foreground
is white (logical true) and the background is black (logical false).

Tips
• activecontour uses the boundaries of the regions in mask as the initial state of the contour

from where the evolution starts. Holes in the mask can cause unpredictable results. Use imfill
to fill any holes in the regions in mask.

• If a region touches the image borders, then activecontour removes a single-pixel layer from the
region, before further processing, so that the region does not touch the image border.

• To get faster and more accurate results, specify an initial contour position that is close to the
desired object boundaries, especially for the 'edge' method.

• For the 'edge' method, the active contour is naturally biased towards shrinking inwards
(collapsing). In the absence of any image gradient, the active contour shrinks on its own.
Conversely, with the 'Chan-Vese' method, where the contour is unbiased, the contour is free to
either shrink or expand based on the image features.

• To achieve an accurate segmentation with the 'edge' method, specify an initial contour that lies
outside the boundaries of the object. The active contour with the 'edge' method is biased to
shrink, by default.

• If object regions are of significantly different grayscale intensities, then the 'Chan-Vese' method
[1] might not segment all objects in the image. For example, if the image contains objects that are
brighter than the background and some that are darker, the 'Chan-Vese' method typically
segments out either the dark or the bright objects only.

Algorithms
activecontour uses the Sparse-Field level-set method, similar to the method described in [3], for
implementing active contour evolution.

References
[1] T. F. Chan, L. A. Vese, Active contours without edges. IEEE Transactions on Image Processing,

Volume 10, Issue 2, pp. 266-277, 2001.

[2] V. Caselles, R. Kimmel, G. Sapiro, Geodesic active contours. International Journal of Computer
Vision, Volume 22, Issue 1, pp. 61-79, 1997.

[3] R. T. Whitaker, A level-set approach to 3d reconstruction from range data. International Journal of
Computer Vision, Volume 29, Issue 3, pp. 203-231, 1998.

See Also
multithresh | poly2mask | roipoly | drawfreehand | drawellipse | drawpolygon | Image
Segmenter

1 Functions

1-42

Introduced in R2013a

 activecontour

1-43

adapthisteq
Contrast-limited adaptive histogram equalization (CLAHE)

Syntax
J = adapthisteq(I)
J = adapthisteq(I,Name,Value)

Description
J = adapthisteq(I) enhances the contrast of the grayscale image I by transforming the values
using contrast-limited adaptive histogram equalization (CLAHE) [1].

J = adapthisteq(I,Name,Value) uses name-value pairs to control aspects of the contrast
enhancement.

Examples

Apply Contrast-Limited Adaptive Histogram Equalization (CLAHE)

Apply CLAHE to an image and display the results.

I = imread('tire.tif');
J = adapthisteq(I,'clipLimit',0.02,'Distribution','rayleigh');
imshowpair(I,J,'montage');
title('Original Image (left) and Contrast Enhanced Image (right)')

1 Functions

1-44

Apply CLAHE to Indexed Color Image

Read the indexed color image into the workspace.

[X, MAP] = imread('shadow.tif');

Convert the indexed image into a truecolor (RGB) image, then convert the RGB image into the L*a*b*
color space.

RGB = ind2rgb(X,MAP);
LAB = rgb2lab(RGB);

Scale values to the range expected by the adapthisteq function, [0 1].

L = LAB(:,:,1)/100;

Perform CLAHE on the L channel. Scale the result to get back to the range used by the L*a*b* color
space.

L = adapthisteq(L,'NumTiles',[8 8],'ClipLimit',0.005);
LAB(:,:,1) = L*100;

Convert the resulting image back into the RGB color space.

J = lab2rgb(LAB);

Display the original image and the processed image.

figure
imshowpair(RGB,J,'montage')
title('Original (left) and Contrast Enhanced (right) Image')

Shadows in the enhanced image look darker and highlights look brighter. The overall contrast is
improved.

 adapthisteq

1-45

Input Arguments
I — Grayscale image
2-D numeric matrix

Grayscale image, specified as a 2-D numeric matrix.
Data Types: single | double | int16 | uint8 | uint16

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'NumTiles',[8 16] divides the image into 8 rows and 16 columns of tiles.

NumTiles — Number of tiles
[8,8] (default) | 2-element vector of positive integers

Number of rectangular contextual regions (tiles) into which adapthisteq divides the image,
specified as a 2-element vector of positive integers. With the original image divided into M rows and N
columns of tiles, the value of 'NumTiles' is [M N]. Both M and N must be at least 2. The total
number of tiles is equal to M*N. The optimal number of tiles depends on the type of the input image,
and it is best determined through experimentation.
Data Types: double

ClipLimit — Contrast enhancement limit
0.01 (default) | number in the range [0, 1]

Contrast enhancement limit, specified as a number in the range [0, 1]. Higher limits result in more
contrast.

'ClipLimit' is a contrast factor that prevents oversaturation of the image specifically in
homogeneous areas. These areas are characterized by a high peak in the histogram of the particular
image tile due to many pixels falling inside the same gray level range. Without the clip limit, the
adaptive histogram equalization technique could produce results that, in some cases, are worse than
the original image.
Data Types: double

NBins — Number of histogram bins used to build a contrast enhancing transformation
256 (default) | positive integer

Number of histogram bins used to build a contrast enhancing transformation, specified as a positive
integer. Higher values result in greater dynamic range at the cost of slower processing speed.
Data Types: double

Range — Range of output data
'full' (default) | 'original'

Range of the output image data, specified as one of these values.

1 Functions

1-46

Value Description
'full' Use the full range of the output class (such as [0 255] for

uint8).
'original' Limit the range to [min(I(:)) max(I(:))].

Data Types: char | string

Distribution — Desired histogram shape
'uniform' (default) | 'rayleigh' | 'exponential'

Desired histogram shape, specified as one of the following values:

Value Description
'uniform' Create a flat histogram.
'rayleigh' Create a bell-shaped histogram.
'exponential' Create a curved histogram.

'Distribution' specifies the distribution that adapthisteq uses as the basis for creating the
contrast transform function. The distribution you select should depend on the type of the input image.
For example, underwater imagery appears to look more natural when the Rayleigh distribution is
used.
Data Types: char | string

Alpha — Distribution parameter
0.4 (default) | nonnegative number

Distribution parameter, specified as a nonnegative number. 'Alpha' is only used when
'Distribution' is set to 'rayleigh' or 'exponential'.
Data Types: double

Output Arguments
J — Contrast enhanced image
2-D matrix

Contrast enhanced image, returned as a 2-D matrix of the same data type as the input image I.

Algorithms
CLAHE operates on small regions in the image, called tiles, rather than the entire image.
adapthisteq calculates the contrast transform function for each tile individually. Each tile's contrast
is enhanced, so that the histogram of the output region approximately matches the histogram
specified by the 'Distribution' value. The neighboring tiles are then combined using bilinear
interpolation to eliminate artificially induced boundaries. The contrast, especially in homogeneous
areas, can be limited to avoid amplifying any noise that might be present in the image.

 adapthisteq

1-47

References
[1] Zuiderveld, Karel. “Contrast Limited Adaptive Histograph Equalization.” Graphic Gems IV. San

Diego: Academic Press Professional, 1994. 474–485.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
histeq

Introduced before R2006a

1 Functions

1-48

adaptthresh
Adaptive image threshold using local first-order statistics

Syntax
T = adaptthresh(I)
T = adaptthresh(I,sensitivity)
T = adaptthresh(___ ,Name,Value)

Description
T = adaptthresh(I) computes a locally adaptive threshold for 2-D grayscale image or 3-D
grayscale volume I. The adaptthresh function chooses the threshold based on the local mean
intensity (first-order statistics) in the neighborhood of each pixel. The threshold T can be used with
the imbinarize function to convert the grayscale image to a binary image.

T = adaptthresh(I,sensitivity) computes a locally adaptive threshold with sensitivity factor
specified by sensitivity. sensitivity is a scalar in the range [0,1] that indicates sensitivity
towards thresholding more pixels as foreground.

T = adaptthresh(___ ,Name,Value) computes a locally adaptive threshold using name-value
pairs to control aspects of the thresholding.

Examples

Find Threshold and Segment Bright Rice Grains from Dark Background

Read image into the workspace.

I = imread('rice.png');

Use adaptthresh to determine threshold to use in binarization operation.

T = adaptthresh(I, 0.4);

Convert image to binary image, specifying the threshold value.

BW = imbinarize(I,T);

Display the original image with the binary version, side-by-side.

figure
imshowpair(I, BW, 'montage')

 adaptthresh

1-49

Find Threshold and Segment Dark Text from Bright Background

Read image into the workspace.

I = imread('printedtext.png');

Using adaptthresh compute adaptive threshold and display the local threshold image. This
represents an estimate of average background illumination.

T = adaptthresh(I,0.4,'ForegroundPolarity','dark');
figure
imshow(T)

1 Functions

1-50

Binarize image using locally adaptive threshold

BW = imbinarize(I,T);
figure
imshow(BW)

 adaptthresh

1-51

Calculate Threshold for 3-D Volume

Load 3-D volume into the workspace.

load mristack;
V = mristack;

Display the data.

figure
slice(double(V),size(V,2)/2,size(V,1)/2,size(V,3)/2)
colormap gray
shading interp

1 Functions

1-52

Calculate the threshold.

J = adaptthresh(V,'neigh',[3 3 3],'Fore','bright');

Display the threshold.

figure
slice(double(J),size(J,2)/2,size(J,1)/2,size(J,3)/2)
colormap gray
shading interp

 adaptthresh

1-53

Input Arguments
I — Grayscale image or volume
2-D numeric matrix | 3-D numeric array

Grayscale image or volume, specified as a 2-D numeric matrix or 3-D numeric array.

If the image contains Infs or NaNs, the behavior of adaptthresh is undefined. Propagation of Infs
or NaNs might not be localized to the neighborhood around Inf or NaN pixels.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

sensitivity — Determine which pixels get thresholded as foreground pixels
0.5 (default) | number in the range [0, 1]

Determine which pixels get thresholded as foreground pixels, specified as a number in the range [0,
1]. High sensitivity values lead to thresholding more pixels as foreground, at the risk of including
some background pixels.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

1 Functions

1-54

Example: T = adaptthresh(I,0.4,'ForegroundPolarity','dark');

NeighborhoodSize — Size of neighborhood used to compute local statistic around each
pixel
2*floor(size(I)/16)+1 (default) | positive odd integer | 2-element vector of positive odd integers

Size of neighborhood used to compute local statistic around each pixel, specified as a positive odd
integer or a 2-element vector of positive odd integers.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ForegroundPolarity — Determine which pixels are considered foreground pixels
'bright' (default) | 'dark'

Determine which pixels are considered foreground pixels, specified using one of the following:

Value Meaning
'bright' The foreground is brighter than the background.
'dark' The foreground is darker than the background

Data Types: char | string

Statistic — Statistic used to compute local threshold
'mean' (default) | 'median' | 'gaussian'

Statistic used to compute local threshold at each pixel, specified as one of the following:

Value Meaning
'mean' The local mean intensity in the neighborhood. This technique is also called

Bradley’s method [1].
'median' The local median in the neighborhood. Computation of this statistic can be slow.

Consider using a smaller neighborhood size to obtain faster results.
'gaussian' The Gaussian weighted mean in the neighborhood.

Data Types: char | string

Output Arguments
T — Normalized intensity values
numeric matrix | numeric array

Normalized intensity values, returned as a numeric matrix or numeric array of the same size as the
input image or volume, I. Values are normalized to the range [0, 1].
Data Types: double

References
[1] Bradley, D., G. Roth, "Adapting Thresholding Using the Integral Image," Journal of Graphics Tools.

Vol. 12, No. 2, 2007, pp.13–21.

 adaptthresh

1-55

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• adaptthresh supports the generation of C code (requires MATLAB Coder™). Note that if you
choose the generic MATLAB Host Computer target platform, adaptthresh generates code that
uses a precompiled, platform-specific shared library. Use of a shared library preserves
performance optimizations but limits the target platforms for which code can be generated. For
more information, see “Types of Code Generation Support in Image Processing Toolbox”.

• The ForegroundPolarity and Statistic arguments must be compile-time constants.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
imbinarize | otsuthresh | graythresh

Introduced in R2016a

1 Functions

1-56

addPix2PixHDLocalEnhancer
Add local enhancer network to pix2pixHD generator network

Syntax
netWithEnhancer = addPix2PixHDLocalEnhancer(net)
netWithEnhancer = addPix2PixHDLocalEnhancer(net,Name,Value)

Description
netWithEnhancer = addPix2PixHDLocalEnhancer(net) adds a local enhancer network to a
pix2pixHD generator network, net. For more information about the network architecture, see
“pix2pixHD Local Enhancer Network” on page 1-61.

This function requires Deep Learning Toolbox™.

netWithEnhancer = addPix2PixHDLocalEnhancer(net,Name,Value) controls aspects of the
local enhancer network creation using name-value arguments.

Examples

Add Local Enhancer to Pix2pixHD Generator Network

Specify the network input size for 32-channel data of size 512-by-1024.

inputSize = [512 1024 32];

Create a pix2pixHD global generator network.

pix2pixHD = pix2pixHDGlobalGenerator(inputSize)

pix2pixHD =
 dlnetwork with properties:

 Layers: [84x1 nnet.cnn.layer.Layer]
 Connections: [92x2 table]
 Learnables: [110x3 table]
 State: [0x3 table]
 InputNames: {'GlobalGenerator_inputLayer'}
 OutputNames: {'GlobalGenerator_fActivation'}
 Initialized: 1

Add a local enhancer network to the pix2pixHD network.

pix2pixHDEnhanced = addPix2PixHDLocalEnhancer(pix2pixHD)

pix2pixHDEnhanced =
 dlnetwork with properties:

 Layers: [113x1 nnet.cnn.layer.Layer]

 addPix2PixHDLocalEnhancer

1-57

 Connections: [124x2 table]
 Learnables: [146x3 table]
 State: [0x3 table]
 InputNames: {'LocalEnhancer_inputLayer' 'GlobalGenerator_inputLayer'}
 OutputNames: {'LocalEnhancer_fActivation'}
 Initialized: 1

Display the network with the local enhancer.

analyzeNetwork(pix2pixHDEnhanced)

Input Arguments
net — pix2pixHD generator network
dlnetwork object

Pix2pixHD generator network, specified as a dlnetwork object. You can create a pix2pixHD
generator network using the pix2pixHDGlobalGenerator function.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'FilterSizeInFirstAndLastBlocks',[5 7] adds a local enhancer whose first and
last convolution layers have a size of 5-by-7

FilterSizeInFirstAndLastBlocks — Filter size in first and last convolution layers
7 (default) | positive odd integer | 2-element vector of positive odd integers

Filter size in the first and last convolution layers of the local enhancer network, specified as a positive
odd integer or 2-element vector of positive odd integers of the form [height width]. When you specify
the filter size as a scalar, the filter has equal height and width.

FilterSizeInIntermediateBlocks — Filter size in intermediate convolution layers
3 (default) | 2-element vector of positive odd integers | positive odd integer

Filter size in intermediate convolution layers in the local enhancer network, specified as a positive
odd integer or 2-element vector of positive odd integers of the form [height width]. The intermediate
convolution layers are the convolution layers excluding the first and last convolution layer. When you
specify the filter size as a scalar, the filter has identical height and width. Typical values are between
3 and 7.

NumResidualBlocks — Number of residual blocks
3 (default) | positive integer

Number of residual blocks in the local enhancer network, specified as a positive integer. Each
residual block consists of a set of convolution, normalization and nonlinear layers with skip
connections between every block.

ConvolutionPaddingValue — Style of padding
"symmetric-exclude-edge" (default) | "symmetric-include-edge" | "replicate" | numeric
scalar

1 Functions

1-58

Style of padding used in the local enhancer network, specified as one of these values.

PaddingValue Description Example
Numeric scalar Pad with the specified numeric

value
3 1 4
1 5 9
2 6 5

2 2 2 2 2 2 2
2 2 2 2 2 2 2
2 2 3 1 4 2 2
2 2 1 5 9 2 2
2 2 2 6 5 2 2
2 2 2 2 2 2 2
2 2 2 2 2 2 2

'symmetric-include-edge' Pad using mirrored values of the
input, including the edge values

3 1 4
1 5 9
2 6 5

5 1 1 5 9 9 5
1 3 3 1 4 4 1
1 3 3 1 4 4 1
5 1 1 5 9 9 5
6 2 2 6 5 5 6
6 2 2 6 5 5 6
5 1 1 5 9 9 5

'symmetric-exclude-edge' Pad using mirrored values of the
input, excluding the edge values

3 1 4
1 5 9
2 6 5

5 6 2 6 5 6 2
9 5 1 5 9 5 1
4 1 3 1 4 1 3
9 5 1 5 9 5 1
5 6 2 6 5 6 2
9 5 1 5 9 5 1
4 1 3 1 4 1 3

'replicate' Pad using repeated border
elements of the input

3 1 4
1 5 9
2 6 5

3 3 3 1 4 4 4
3 3 3 1 4 4 4
3 3 3 1 4 4 4
1 1 1 5 9 9 9
2 2 2 6 5 5 5
2 2 2 6 5 5 5
2 2 2 6 5 5 5

UpsampleMethod — Method used to upsample activations
"transposedConv" (default) | "bilinearResize" | "pixelShuffle"

Method used to upsample activations in the local enhancer network, specified as one of these values:

• "transposedConv" — Use a transposedConv2dLayer with a stride of [2 2]
• "bilinearResize" — Use a convolution2dLayer with a stride of [1 1] followed by a

resize2dLayer with a scale of [2 2]
• "pixelShuffle" — Use a convolution2dLayer with a stride of [1 1] followed by a

depthToSpace2dLayer with a block size of [2 2]

Data Types: char | string

 addPix2PixHDLocalEnhancer

1-59

ConvolutionWeightsInitializer — Weight initialization used in convolution layers
"narrow-normal" (default) | "glorot" | "he" | function

Weight initialization used in convolution layers of the local enhancer network, specified as "glorot",
"he", "narrow-normal", or a function handle. For more information, see “Specify Custom Weight
Initialization Function” (Deep Learning Toolbox).

ActivationLayer — Activation function
"relu" (default) | "leakyRelu" | "elu" | layer object

Activation function to use in the local enhancer network, specified as one of these values. For more
information and a list of available layers, see “Activation Layers” (Deep Learning Toolbox).

• "relu" — Use a reluLayer
• "leakyRelu" — Use a leakyReluLayer with a scale factor of 0.2
• "elu" — Use an eluLayer
• A layer object

NormalizationLayer — Normalization operation
"instance" (default) | "none" | "batch" | layer object

Normalization operation to use after each convolution in the local enhancer network, specified as one
of these values. For more information and a list of available layers, see “Normalization, Dropout, and
Cropping Layers” (Deep Learning Toolbox).

• "instance" — Use an instanceNormalizationLayer
• "batch" — Use a batchNormalizationLayer
• "none" — Do not use a normalization layer
• A layer object

Dropout — Probability of dropout
0 (default) | number in the range [0, 1]

Probability of dropout in the local enhancer network, specified as a number in the range [0, 1]. If you
specify a value of 0, then the network does not include dropout layers. If you specify a value greater
than 0, then the network includes a dropoutLayer in each residual block.

NamePrefix — Prefix to all layer names
"LocalEnhancer_" (default) | string | character vector

Prefix to all layer names in the local enhancer network, specified as a string or character vector.
Data Types: char | string

Output Arguments
netWithEnhancer — pix2pixHD generator network with local enhancer
dlnetwork object

Pix2pixHD generator network with local enhancer, returned as a dlnetwork object.

1 Functions

1-60

More About
pix2pixHD Local Enhancer Network

The addPix2PixHDLocalEnhancer function performs these operations to add a local enhancer
network to a pix2pixHD global generator network. The default enhanced network follows the
architecture proposed by Wang et. al. “References” on page 1-63.

1 The local enhancer network has an initial block of layers that accepts images of size [2*H 2*W C],
where H is the height, W is the width, and C is the number of channels of the input to the global
generator network, net. When net has multiple image input layers, the input image size of the
local enhancer network is twice the input size with the maximum resolution.

2 After the initial block, the local enhancer network has a single downsampling block that
downsamples the data by a factor of two. Therefore, the output after downsampling has size [H
W 2*C].

3 The addPix2PixHDLocalEnhancer function trims the final block from the global generator
network. The function then adds the output of the last upsampling block in the global generator
network to the output of the downsampled data from the enhancer network using an
additionLayer.

4 The output of the addition then passes through NumResidualBlocks residual blocks from the
local enhancer.

5 The residual blocks are followed by a single upsampling block that upsamples data to size [2*H
2*W C].

6 The addPix2PixHDLocalEnhancer function adds a final block to the enhanced network. The
convolution layer has properties specified by the arguments of addPix2PixHDLocalEnhancer.
If the global generator network has a final activation layer, then the function adds the same type
of activation layer to the enhanced network.

The table describes the blocks of layers that comprise the local enhancer network.

Block Type Layers Diagram of Default Block
Initial block • An imageInputLayer that accepts

images of twice the size as
pix2pixHD global generator
network, net.

• A convolution2dLayer with a
stride of [1 1] and a filter size of
FilterSizeInFirstAndLastBlo
cks

• An optional normalization layer,
specified by the
NormalizationLayer name-value
argument.

• An activation layer specified by the
ActivationLayer name-value
argument.

 addPix2PixHDLocalEnhancer

1-61

Block Type Layers Diagram of Default Block
Downsampling
block

• A convolution2dLayer with a
stride of [2 2] to perform
downsampling. The convolution
layer has a filter size of
FilterSizeInIntermediateBlo
cks.

• An optional normalization layer,
specified by the
NormalizationLayer name-value
argument.

• An activation layer specified by the
ActivationLayer name-value
argument.

Residual block • A convolution2dLayer with a
stride of [1 1] and a filter size of
FilterSizeInIntermediateBlo
cks.

• An optional normalization layer,
specified by the
NormalizationLayer name-value
argument.

• An activation layer specified by the
ActivationLayer name-value
argument.

• An optional dropoutLayer. By
default, residual blocks omit a
dropout layer. Include a dropout
layer by specifying the Dropout
name-value argument as a value in
the range (0, 1].

• A second convolution2dLayer.
• An optional second normalization

layer.
• An additionLayer that provides a

skip connection between every
block.

1 Functions

1-62

Block Type Layers Diagram of Default Block
Upsampling block • An upsampling layer that upsamples

by a factor of 2 according to the
UpsampleMethod name-value
argument. The convolution layer
has a filter size of
FilterSizeInIntermediateBlo
cks.

• An optional normalization layer,
specified by the
NormalizationLayer name-value
argument.

• An activation layer specified by the
ActivationLayer name-value
argument.

Final block • A convolution2dLayer with a
stride of [1 1] and a filter size of
FilterSizeInFirstAndLastBlo
cks.

• An optional activation layer
according to the global generator
network, net.

References
[1] Wang, Ting-Chun, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. "High-

Resolution Image Synthesis and Semantic Manipulation with Conditional GANs." In 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8798–8807. Salt Lake
City, UT, USA: IEEE, 2018. https://doi.org/10.1109/CVPR.2018.00917.

See Also
pix2pixHDGlobalGenerator

Topics
“Get Started with GANs for Image-to-Image Translation”
“Create Modular Neural Networks”
“List of Deep Learning Layers” (Deep Learning Toolbox)

Introduced in R2021a

 addPix2PixHDLocalEnhancer

1-63

https://doi.org/10.1109/CVPR.2018.00917

affine2d
2-D affine geometric transformation

Description
An affine2d object stores information about a 2-D affine geometric transformation and enables
forward and inverse transformations.

Creation
You can create an affine2d object using the following methods:

• imregtform — Estimate a geometric transformation that maps a moving image to a fixed image
using similarity optimization.

• imregcorr — Estimate a geometric transformation that maps a moving image to a fixed image
using phase correlation.

• fitgeotrans — Estimate a geometric transformation that maps pairs of control points between
two images.

• randomAffine2d — Create a randomized 2-D affine transformation.
• The affine2d function described here.

Syntax
tform = affine2d
tform = affine2d(T)

Description

tform = affine2d creates an affine2d object with default property settings that correspond to
the identity transformation.

tform = affine2d(T) sets the property T as the specified valid affine transformation matrix.

Properties
T — Forward 2-D affine transformation
nonsingular 3-by-3 numeric matrix

Forward 2-D affine transformation, specified as a nonsingular 3-by-3 numeric matrix.

The matrix T uses the convention:

[x y 1] = [u v 1] * T

where T has the form:

1 Functions

1-64

 [a b 0;
 c d 0;
 e f 1];

The default of T is the identity transformation.
Data Types: double | single

Dimensionality — Dimensionality of geometric transformation
2

Dimensionality of the geometric transformation for both input and output points, specified as the
value 2.

Object Functions
invert Invert geometric transformation
isRigid Determine if transformation is rigid transformation
isSimilarity Determine if transformation is similarity transformation
isTranslation Determine if transformation is pure translation
outputLimits Find output spatial limits given input spatial limits
transformPointsForward Apply forward geometric transformation
transformPointsInverse Apply inverse geometric transformation

Examples

Define 2-D Affine Transformation from Transformation Matrix

Create an affine2d object that defines a 30 degree rotation in the counterclockwise direction
around the origin.

theta = 30;
tform = affine2d([...
 cosd(theta) sind(theta) 0;...
 -sind(theta) cosd(theta) 0; ...
 0 0 1])

tform =
 affine2d with properties:

 T: [3x3 double]
 Dimensionality: 2

Apply the forward geometric transformation to a point (10,0).

[x,y] = transformPointsForward(tform,10,0)

x = 8.6603

y = 5

Validate the transformation by plotting the original point (in blue) and the transformed point (in red).

plot(10,0,'bo',x,y,'ro')
axis([0 12 0 12])
axis square

 affine2d

1-65

Randomly Rotate Image

Read and display an image.

I = imread('kobi.png');
imshow(I)

1 Functions

1-66

Create an affine2d transformation object that rotates images. The randomAffine2d function picks
a rotation angle randomly from a continuous uniform distribution within the interval [35, 55] degrees.

tform1 = randomAffine2d('Rotation',[35 55]);

Rotate the image and display the result.

J = imwarp(I,tform1);
imshow(J)

 affine2d

1-67

The transformation object, tform1, rotates all images by the same amount. To rotate an image by a
different randomly selected amount, create a new affine2d transformation object.

tform2 = randomAffine2d('Rotation',[-10 10]);
J2 = imwarp(I,tform2);
imshow(J2)

1 Functions

1-68

Create Geometric Transformation for Image Alignment

This example shows how to create a geometric transformation that can be used to align two images.

Create a checkerboard image and rotate it to create a misaligned image.

I = checkerboard(40);
J = imrotate(I,30);
imshowpair(I,J,'montage')

 affine2d

1-69

Define some matching control points on the fixed image (the checkerboard) and moving image (the
rotated checkerboard). You can define points interactively using the Control Point Selection tool.

fixedPoints = [41 41; 281 161];
movingPoints = [56 175; 324 160];

Create a geometric transformation that can be used to align the two images, returned as an
affine2d geometric transformation object.

tform = fitgeotrans(movingPoints,fixedPoints,'NonreflectiveSimilarity')

tform =
 affine2d with properties:

 T: [3x3 double]
 Dimensionality: 2

Use the tform estimate to resample the rotated image to register it with the fixed image. The regions
of color (green and magenta) in the false color overlay image indicate error in the registration. This
error comes from a lack of precise correspondence in the control points.

Jregistered = imwarp(J,tform,'OutputView',imref2d(size(I)));
figure
imshowpair(I,Jregistered)

1 Functions

1-70

Recover angle and scale of the transformation by checking how a unit vector parallel to the x-axis is
rotated and stretched.

u = [0 1];
v = [0 0];
[x, y] = transformPointsForward(tform, u, v);
dx = x(2) - x(1);
dy = y(2) - y(1);
angle = (180/pi) * atan2(dy, dx)

angle = 29.7686

scale = 1 / sqrt(dx^2 + dy^2)

scale = 1.0003

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• affine2d supports the generation of C code (requires MATLAB Coder). For more information,
see “Code Generation for Image Processing”.

 affine2d

1-71

• When generating code, you can only specify singular objects—arrays of objects are not supported.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• When generating code, you can only specify singular objects—arrays of objects are not supported.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
Functions
imwarp | fitgeotrans | imregtform | imregister | imregcorr

Objects
affine3d | rigid2d | projective2d | geometricTransform2d |
LocalWeightedMeanTransformation2D | PiecewiseLinearTransformation2D |
PolynomialTransformation2D

Topics
“2-D and 3-D Geometric Transformation Process Overview”
“Matrix Representation of Geometric Transformations”

Introduced in R2013a

1 Functions

1-72

affine3d
3-D affine geometric transformation

Description
An affine3d object stores information about a 3-D affine geometric transformation and enables
forward and inverse transformations.

Creation
You can create an affine3d object using the following methods:

• imregtform — Estimates a geometric transformation that maps a moving image to a fixed image
using similarity optimization

• randomAffine3d — Creates a randomized 3-D affine transformation
• The affine3d function described here

Syntax
tform = affine3d
tform = affine3d(A)

Description

tform = affine3d creates an affine3d object with default property settings that correspond to
the identity transformation.

tform = affine3d(A) sets the property T with a valid affine transformation defined by nonsingular
matrix A.

Properties
T — Forward 3-D affine transformation
nonsingular 4-by-4 numeric matrix

Forward 3-D affine transformation, specified as a nonsingular 4-by-4 numeric matrix.

The matrix T uses the convention:

[x y z 1] = [u v w 1] * T

where T has the form:

 [a b c 0;
 d e f 0;
 g h i 0;
 j k l 1];

 affine3d

1-73

The default of T is the identity transformation.
Data Types: double | single

Dimensionality — Describes the dimensionality of the geometric transformation
3

Describes the dimensionality of the geometric transformation for both input and output points,
specified as the value 3.

Object Functions
invert Invert geometric transformation
isRigid Determine if transformation is rigid transformation
isSimilarity Determine if transformation is similarity transformation
isTranslation Determine if transformation is pure translation
outputLimits Find output spatial limits given input spatial limits
transformPointsForward Apply forward geometric transformation
transformPointsInverse Apply inverse geometric transformation

Examples

Define 3-D Affine Transformation Object for Anisotropic Scaling

Create an affine3d object that scales a 3-D image by a different factor in each dimension.

Sx = 1.2;
Sy = 1.6;
Sz = 2.4;
tform = affine3d([Sx 0 0 0; 0 Sy 0 0; 0 0 Sz 0; 0 0 0 1])

tform =
 affine3d with properties:

 T: [4x4 double]
 Dimensionality: 3

Load a 3-D volume into the workspace.

load('mri');
D = squeeze(D);

Apply the geometric transformation to the image using imwarp.

B = imwarp(D,tform);

Visualize an axial slice through the center of each volume to see the effect of scale translation. Note
that the center slice of the transformed volume has a different index than the center slice of the
original volume because of the scaling in the z-dimension.

figure
imshowpair(D(:,:,14),B(:,:,33),'montage');

1 Functions

1-74

The original image is on the left, and the transformed image is on the right. The transformed image is
scaled more in the vertical direction than in the horizontal direction, as expected since Sy is larger
than Sx.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• affine3d supports the generation of C code (requires MATLAB Coder). For more information,
see “Code Generation for Image Processing”.

• When generating code, you can only specify singular objects—arrays of objects are not supported.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
Functions
imwarp | imregtform | imregister

Objects
affine2d | rigid3d | geometricTransform3d

Topics
“2-D and 3-D Geometric Transformation Process Overview”

 affine3d

1-75

“Matrix Representation of Geometric Transformations”

Introduced in R2013a

1 Functions

1-76

affineOutputView
Create output view for warping images

Syntax
Rout = affineOutputView(sizeA,tform)
Rout = affineOutputView(sizeA,tform,'BoundsStyle',style)

Description
Rout = affineOutputView(sizeA,tform) takes the size of an input image, sizeA, and an affine
geometric transformation, tform, and returns a spatial referencing object, Rout. You can use this
object as input to imwarp to control the output limits and grid spacing of a warped image.

Rout = affineOutputView(sizeA,tform,'BoundsStyle',style) also specifies constraints
on the spatial limits of the output view, such as whether the output view should completely contain
the output image or whether the output view should match the input limits.

Examples

Warp Image Using Different Output View Styles

Read and display an image. To see the spatial extents of the image, make the axes visible.

A = imread('kobi.png');
iptsetpref('ImshowAxesVisible','on')
imshow(A)

 affineOutputView

1-77

Create a 2-D affine transformation. This example creates a randomized transformation that consists
of scale by a factor in the range [1.2, 2.4], rotation by an angle in the range [-45, 45] degrees, and
horizontal translation by a distance in the range [100, 200] pixels.

tform = randomAffine2d('Scale',[1.2,2.4],'XTranslation',[100 200],'Rotation',[-45,45]);

Create three different output views for the image and transformation.

centerOutput = affineOutputView(size(A),tform,'BoundsStyle','CenterOutput');
followOutput = affineOutputView(size(A),tform,'BoundsStyle','FollowOutput');
sameAsInput = affineOutputView(size(A),tform,'BoundsStyle','SameAsInput');

Apply the transformation to the input image using each of the different output view styles.

BCenterOutput = imwarp(A,tform,'OutputView',centerOutput);
BFollowOutput = imwarp(A,tform,'OutputView',followOutput);
BSameAsInput = imwarp(A,tform,'OutputView',sameAsInput);

Display the resulting images.

imshow(BCenterOutput)
title('CenterOutput Bounds Style');

1 Functions

1-78

imshow(BFollowOutput)
title('FollowOutput Bounds Style');

 affineOutputView

1-79

imshow(BSameAsInput)
title('SameAsInput Bounds Style');

1 Functions

1-80

iptsetpref('ImshowAxesVisible','off')

Input Arguments
sizeA — Input image size
2-element numeric vector | 3-element numeric vector

Input image size, specified as a 2-element numeric vector for 2-D image input or a 3-element numeric
vector for 3-D volumetric image input.

tform — Affine geometric transformation
affine2d object | affine3d object

Affine geometric transformation, specified as an affine2d or affine3d object.

style — Bounds style
'CenterOutput' (default) | 'FollowOutput' | 'SameAsInput'

Bounds style, specified as one of the following values.

 affineOutputView

1-81

Style Description
'CenterOutput' Center the view at the center of the image in

output space while allowing translation to move
the output image out of view.

'FollowOutput' Set the limits of the output view to completely
contain the output image.

'SameAsInput' Set the output limits to be the same as the input
limits.

Output Arguments
Rout — Spatial referencing
imref2d object | imref3d object

Spatial referencing, returned as an imref2d or imref3d object. Use Rout as the OutputView
argument of the imwarp function to specify the spatial referencing of the warped output.

Extended Capabilities
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
imwarp | randomAffine2d | randomAffine3d

Topics
“Define World Coordinate System of Image”

Introduced in R2019b

1 Functions

1-82

analyze75info
Read metadata from header file of Analyze 7.5 data set

Syntax
info = analyze75info(filename)
info = analyze75info(filename,'ByteOrder',byteOrder)

Description
info = analyze75info(filename) reads the header file of the Analyze 7.5 data set specified by
filename. The function returns info, a structure whose fields contain information about the data
set. Analyze 7.5 is a 3-D biomedical image visualization and analysis product developed by the
Biomedical Imaging Resource of the Mayo Clinic. An Analyze 7.5 data set is made of two files, a
header file and an image file. The files have the same name with different file extensions. The header
file has the file extension .hdr and the image file has the file extension .img.

info = analyze75info(filename,'ByteOrder',byteOrder) reads the Analyze 7.5 header file
with Big Endian or Little Endian byte ordering.

Examples

Get Information about an Analyze 7.5 Data Set

Get information about an Analyze 7.5 data set. An Analyze 7.5 data set is made up of two files: a
header file with the file extension .hdr and an image file with the file extension .img. You don't need
to specify a file extension when calling analyze75info.

info = analyze75info('brainMRI');

Get information about an Analyze 7.5 data set, this time specifying the byte ordering of the data set.
If you specify the wrong byte order, analyze75info attempts to read the file with the other
supported byte order.

info = analyze75info('brainMRI', 'ByteOrder', 'ieee-le');

Input Arguments
filename — Name of Analyze 7.5 data set
character vector | string

Name of Analyze 7.5 data set, specified as a string or character vector. You don’t need to specify a file
extension.
Example: info = analyze75info('brainMRI');
Data Types: char | string

 analyze75info

1-83

byteOrder — Endianness of data
character vector | string

Endianness of the data, specified as one of the strings or character vectors in the following table. If
the specified value results in a read error, analyze75info issues a warning message and attempts
to read the header file with the opposite ByteOrder format.

Value Meaning
'ieee-le' Byte ordering is Little Endian
'ieee-be' Byte ordering is Big Endian

Data Types: char | string

Output Arguments
info — Information about Analyze 7.5 data set
structure

Information about Analyze 7.5 data set, returned as a structure.

See Also
analyze75read

Introduced before R2006a

1 Functions

1-84

analyze75read
Read image data from image file of Analyze 7.5 data set

Syntax
X = analyze75read(filename)
X = analyze75read(info)

Description
X = analyze75read(filename) reads the image data from the image file of an Analyze 7.5 format
data set specified by the character vector filename. The function returns the image data in X.

Analyze 7.5 is a 3-D biomedical image visualization and analysis product developed by the Biomedical
Imaging Resource of the Mayo Clinic. An Analyze 7.5 data set is made of two files, a header file and
an image file. The files have the same name with different file extensions. The header file has the file
extension .hdr and the image file has the file extension .img.

Note By default, analyze75read returns image data in radiological orientation (LAS). For more
information, see “Read Image Data from Analyze 7.5 File” on page 1-85.

X = analyze75read(info) reads the image data from the image file specified in the metadata
structure info. info must be a valid metadata structure returned by the analyze75info function.

Examples

Read Image Data from Analyze 7.5 File

Read image data from an Analyze 7.5 file.

X = analyze75read('brainMRI');

View the data. First, because Analyze 7.5 format uses radiological orientation (LAS), flip the data for
correct image display in MATLAB.

X = flip(X);

Then, reshape the data to create an array that can be displayed using montage. Select frames 12 to
17.

Y = reshape(X(:,:,12:17),[size(X,1) size(X,2) 1 6]);
montage(Y);

 analyze75read

1-85

Read Image Data Using the Info Structure

Read image data from an Analyze 7.5 data set, using the structure returned by analyze75info to
specify the data set. First, use analyze75info to create the info structure.

info = analyze75info('brainMRI');

Call analyze75read to read image data from the data set, specifying the info structure returned by
analyze75info.

X = analyze75read(info);

Input Arguments
filename — Name of Analyze 7.5 data set
character vector

Name of Analyze 7.5 data set, specified as a character vector. You don’t need to specify a file
extension.
Example: info = analyze75info('brainMRI');

1 Functions

1-86

Data Types: char

info — Information about Analyze 7.5 data set
structure

Information about the Analyze 7.5 data set, specified as a structure returned by the analyze75info
function.
Data Types: struct

Output Arguments
X — Image data from Analyze 7.5 data set
array

Image data from Analyze 7.5 data set, returned as an array. X can be logical, uint8, int16,
int32, single, or double. analyze75read uses a data type for X that is consistent with the data
type specified in the data set header file. Complex and RGB data types are not supported. For single-
frame, grayscale images, X is an m-by-n array.

See Also
analyze75info

Introduced before R2006a

 analyze75read

1-87

applycform
Apply device-independent color space transformation

Syntax
B = applycform(A,C)

Description
B = applycform(A,C) converts the color values in A to the color space specified in the color
transformation structure C.

Examples

Convert sRGB to L*a*b* Color Space using Applycform

Read color image that uses the sRGB color space into the workspace.

rgb = imread('peppers.png');

Create a color transformation structure that defines an sRGB to L*a*b* conversion.

C = makecform('srgb2lab');

Perform the transformation by using the applycform function.

lab = applycform(rgb,C);

Input Arguments
A — Input color space
2-D numeric matrix | 3-D numeric array | string | character vector

Input color space, specified as one of the following:

• 2-D numeric matrix. applycform interprets each row as a color unless the color transformation
structure, C, contains a grayscale ICC profile. In that case, applycform interprets each pixel in A
as a color.

• 3-D numeric matrix. Each row-column location is interpreted as a color. size(A,3) is typically 1
or more, depending on the input color space.

• string or character vector. A is only a string or character vector if C is created with the following
syntax:

C = makecform('named', profile, space)

Data Types: double | uint8 | uint16 | char | string

C — Color transformation
structure

1 Functions

1-88

Color transformation, specified as a structure. The color transformation structure specifies various
parameters of the transformation. You can create a color transformation structure using makecform.

Output Arguments
B — Output color space
numeric array

Output color space, returned as a numeric array. The size of B depends on the dimensionality and size
of the input color space, A:

• When A is two-dimensional, B has the same number of rows and one or more columns, depending
on the output color space. (The ICC specification currently supports up to 15-channel device
spaces).

• When A is three-dimensional, B is the same number of rows and columns as A, and size(B,3) is
1 or more, depending on the output color space.

See Also
lab2double | lab2uint8 | lab2uint16 | makecform | whitepoint | xyz2double | xyz2uint16

Topics
“Understanding Color Spaces and Color Space Conversion”

Introduced before R2006a

 applycform

1-89

applylut
Neighborhood operations on binary images using lookup tables

Note applylut is not recommended. Use bwlookup instead.

Syntax
A = applylut(BW,lut)

Description
A = applylut(BW,lut) performs a 2-by-2 or 3-by-3 neighborhood operation on binary image BW by
using a lookup table, lut. The lookup table consists of the output values for all possible 2-by-2 or 3-
by-3 neighborhoods.

Examples

Perform Erosion Using a 2-by-2 Neighborhood

Create the LUT.

 lutfun = @(x)(sum(x(:))==4);
 lut = makelut(lutfun,2);

Read image into the workspace and then apply the LUT to the image. An output pixel is on only if all
four of the input pixel's neighborhood pixels are on .

 BW1 = imread('text.png');
 BW2 = applylut(BW1,lut);

Show the original image and the eroded image.

 figure, imshow(BW1);

1 Functions

1-90

 figure, imshow(BW2);

 applylut

1-91

Input Arguments
BW — Input image
2-D binary image

Input image, specified as a 2-D binary image. For numeric input, any nonzero pixels are considered to
be 1 (true).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

lut — Lookup table of output pixel values
16-element numeric vector | 512-element numeric vector

Lookup table of output pixel values, specified as a 16- or 512-element vector as returned by makelut.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Output Arguments
A — Output image
binary image | grayscale image

Output image, returned as a grayscale or binary image whose distribution of pixel values are
determined by the content of the lookup table, lut. The output image J is the same size as the input
image I.

• If all elements of lut are 0 or 1, then A has data type logical.
• If all elements of lut are integers between 0 and 255, then A has data type uint8.
• For all other cases, A has data type double.

Data Types: double | uint8 | logical

Algorithms
applylut performs a neighborhood operation on a binary image by producing a matrix of indices
into lut, and then replacing the indices with the actual values in lut. The specific algorithm used
depends on whether you use 2-by-2 or 3-by-3 neighborhoods.

2-by-2 Neighborhoods

For 2-by-2 neighborhoods, length(lut) is 16. There are four pixels in each neighborhood, and two
possible states for each pixel, so the total number of permutations is 24 = 16.

To produce the matrix of indices, applylut convolves the binary image BW with this matrix.

8 2
4 1

The resulting convolution contains integer values in the range [0, 15]. applylut uses the central
part of the convolution, of the same size as BW, and adds 1 to each value to shift the range to [1, 16].
The function then constructs A by replacing the values in the cells of the index matrix with the values
in lut that the indices point to.

1 Functions

1-92

3-by-3 Neighborhoods

For 3-by-3 neighborhoods, length(lut) is 512. There are nine pixels in each neighborhood, and two
possible states for each pixel, so the total number of permutations is 29 = 512.

To produce the matrix of indices, applylut convolves the binary image BW with this matrix.

256 32 4
128 16 2
 64 8 1

The resulting convolution contains integer values in the range [0, 511]. applylut uses the central
part of the convolution, of the same size as BW, and adds 1 to each value to shift the range to [1, 512].
It then constructs A by replacing the values in the cells of the index matrix with the values in lut that
the indices point to.

Compatibility Considerations
applylut is not recommended
Not recommended starting in R2012b

Starting in R2012b, use bwlookup to perform neighborhood operations on binary images using
lookup tables. For bwlookup, the data type of the returned image is the same as the data type of the
lookup table. bwlookup supports code generation. There are no plans to remove applylut at this
time.

To update your code, replace instances of applylut with bwlookup. You do not need to change the
input arguments.

See Also
makelut

Introduced before R2006a

 applylut

1-93

axes2pix
Convert axes coordinates to pixel coordinates

Syntax
pixelCoord = axes2pix(n,extent,axesCoord)

Description
pixelCoord = axes2pix(n,extent,axesCoord) converts an axes coordinate into an intrinsic
("pixel") coordinate.

Note The imref2d object has several methods that facilitate conversion between intrinsic
coordinates, world coordinates and array indices.

Examples

Convert Axes Coordinate into Intrinsic Coordinate

Display image.

h = imshow('pout.tif');

1 Functions

1-94

Get the size of the image.

[nrows,ncols] = size(get(h,'CData'));

Get the image XData and YData.

xdata = get(h,'XData')

xdata = 1×2

 1 240

ydata = get(h,'YData')

ydata = 1×2

 1 291

Convert an axes coordinate into an intrinsic coordinate for the x and y dimensions.

px = axes2pix(ncols,xdata,30)

px = 30

py = axes2pix(nrows,ydata,30)

py = 30

Convert Axes Coordinate to Intrinsic Coordinate with Nondefault XData and YData

Read an image and display it. Get the size of the image.

I = imread('pout.tif');
[nrows,ncols] = size(I)

nrows = 291

ncols = 240

Create a spatial referencing object for this image, with default property settings. By default, the
upper-left corner of the image has intrinsic coordinate (1,1).

RI = imref2d(size(I));
h = imshow(I,RI);

 axes2pix

1-95

xData = get(h,'XData')

xData = 1×2

 1 240

yData = get(h,'YData')

yData = 1×2

 1 291

For illustrative purposes, specify an arbitrary image extent in the x- and y-directions. This example
shifts the image up by 20 pixels and to the right by 400 pixels. The example also shifts the image to
the right by 100 pixels and compresses the image horizontally by a factor of 2.

xWorldLimits = 0.5*xData + 400;
yWorldLimits = yData - 20;
RA = imref2d(size(I),xWorldLimits,yWorldLimits);
imshow(I,RA)

1 Functions

1-96

Select a pixel, such as a pixel near the nose of the child. This pixel occurs around the axes coordinate
(x, y) = (450, 90) in the modified image.

Convert the axes coordinate to an intrinsic coordinate.

px = axes2pix(ncols,xWorldLimits,450)

px = 100

py = axes2pix(nrows,yWorldLimits,90)

py = 110

The intrinsic coordinate of the point is at (100, 110). This agrees with the location of the nose in the
original image.

Input Arguments
n — Number of image rows or columns
positive integer

Number of image rows or columns, specified as a positive integer. n is the number of image columns
for the x-coordinate, or the number of image rows for the y-coordinate.

extent — Image world extent
2-element numeric vector

Image world extent, specified as a 2-element numeric vector. extent is returned by
get(image_handle,'XData') or get(image_handle,'YData').

 axes2pix

1-97

axesCoord — Axes coordinates to convert
numeric vector

Axes coordinate to convert to intrinsic coordinates, specified as a numeric vector.

Output Arguments
pixelCoord — Intrinsic coordinates
numeric vector

Intrinsic coordinates, returned as a numeric vector.
Data Types: double

Tips
• axes2pix performs minimal checking on the validity of the n, axesCoord, or extent arguments.

For example, axes2pix can extrapolate from extent to return a negative coordinate. The
function calling axes2pix bears responsibility for error checking.

See Also
imref2d | impixelinfo | bwselect | impixel | improfile | roipoly

Topics
“Image Coordinate Systems”

Introduced before R2006a

1 Functions

1-98

bestblk
Determine optimal block size for block processing

Syntax
siz = bestblk([M N],k)
[m,n] = bestblk([M N],k)

Description
siz = bestblk([M N],k) returns the optimal block size for block processing of an M-by-N image.
The optimal block size minimizes the padding required along the outer partial blocks. k specifies the
maximum row and column dimensions for the block.

[m,n] = bestblk([M N],k) returns the row and column dimensions for the block in m and n,
respectively.

Examples

Determine Optimal Block Size
siz = bestblk([640 800],72)

siz = 1×2

 64 50

Input Arguments
[M N] — Image size
2-element vector of positive integers

Image size, specified as a 2-element vector of positive integers. M is the number of rows and N is the
number of columns in the image.
Data Types: double

k — Maximum number of block rows or columns
100 (default) | positive integer

Maximum number of block rows or columns, specified as a positive integer.
Data Types: double

Output Arguments
siz — Optimal block size
2-element numeric row vector

 bestblk

1-99

Optimal block size, returned as a 2-element numeric row vector. siz is equivalent to [m n].

m, n — Optimal number of block rows or columns
numeric scalar

Optimal number of block rows or columns, returned as a numeric scalar.

Algorithms
The algorithm for determining the optimal value of m from M and k is:

• If M is less than or equal to k, return M.
• If M is greater than k, consider all values between min(M/10,k/2) and k. Return the value that

minimizes the padding required.

The same algorithm is used to find the optimal value of n from N and k.

See Also
blockproc

Introduced before R2006a

1 Functions

1-100

bfscore
Contour matching score for image segmentation

Syntax
score = bfscore(prediction,groundTruth)
[score,precision,recall] = bfscore(prediction,groundTruth)
[___] = bfscore(prediction,groundTruth,threshold)

Description
score = bfscore(prediction,groundTruth) computes the BF (Boundary F1) contour matching
score between the predicted segmentation in prediction and the true segmentation in
groundTruth. prediction and groundTruth can be a pair of logical arrays for binary
segmentation, or a pair of label or categorical arrays for multiclass segmentation.

[score,precision,recall] = bfscore(prediction,groundTruth) also returns the
precision and recall values for the prediction image compared to the groundTruth image.

[___] = bfscore(prediction,groundTruth,threshold) computes the BF score using a
specified threshold as the distance error tolerance, to decide whether a boundary point has a match
or not.

Examples

Compute BF Score for Binary Segmentation

Read an image with an object to segment. Convert the image to grayscale, and display the result.

A = imread('hands1.jpg');
I = im2gray(A);
figure
imshow(I)
title('Original Image')

 bfscore

1-101

Use the active contours (snakes) method to segment the hand.

mask = false(size(I));
mask(25:end-25,25:end-25) = true;
BW = activecontour(I, mask, 300);

Read the ground truth segmentation.

BW_groundTruth = imread('hands1-mask.png');

Compute the BF score of the active contours segmentation against the ground truth.

similarity = bfscore(BW, BW_groundTruth);

Display the masks on top of each other. Colors indicate differences in the masks.

figure
imshowpair(BW, BW_groundTruth)
title(['BF Score = ' num2str(similarity)])

1 Functions

1-102

Compute BF Score for Multi-Region Segmentation

This example shows how to segment an image into multiple regions. The example then computes the
BF score for each region.

Read an image with several regions to segment.

RGB = imread('yellowlily.jpg');

Create scribbles for three regions that distinguish their typical color characteristics. The first region
classifies the yellow flower. The second region classifies the green stem and leaves. The last region
classifies the brown dirt in two separate patches of the image. Regions are specified by a 4-element
vector, whose elements indicate the x- and y-coordinate of the upper left corner of the ROI, the width
of the ROI, and the height of the ROI.

region1 = [350 700 425 120]; % [x y w h] format
BW1 = false(size(RGB,1),size(RGB,2));
BW1(region1(2):region1(2)+region1(4),region1(1):region1(1)+region1(3)) = true;

region2 = [800 1124 120 230];
BW2 = false(size(RGB,1),size(RGB,2));
BW2(region2(2):region2(2)+region2(4),region2(1):region2(1)+region2(3)) = true;

region3 = [20 1320 480 200; 1010 290 180 240];
BW3 = false(size(RGB,1),size(RGB,2));
BW3(region3(1,2):region3(1,2)+region3(1,4),region3(1,1):region3(1,1)+region3(1,3)) = true;
BW3(region3(2,2):region3(2,2)+region3(2,4),region3(2,1):region3(2,1)+region3(2,3)) = true;

Display the seed regions on top of the image.

 bfscore

1-103

figure
imshow(RGB)
hold on
visboundaries(BW1,'Color','r');
visboundaries(BW2,'Color','g');
visboundaries(BW3,'Color','b');
title('Seed regions')

1 Functions

1-104

Segment the image into three regions using geodesic distance-based color segmentation.

 bfscore

1-105

L = imseggeodesic(RGB,BW1,BW2,BW3,'AdaptiveChannelWeighting',true);

Load a ground truth segmentation of the image.

L_groundTruth = double(imread('yellowlily-segmented.png'));

Visually compare the segmentation results with the ground truth.

figure
imshowpair(label2rgb(L),label2rgb(L_groundTruth),'montage')
title('Comparison of Segmentation Results (Left) and Ground Truth (Right)')

Compute the BF score for each segmented region.

similarity = bfscore(L, L_groundTruth)

similarity = 3×1

 0.7992
 0.5333
 0.7466

The BF score is noticeably smaller for the second region. This result is consistent with the visual
comparison of the segmentation results, which erroneously classifies the dirt in the lower right
corner of the image as leaves.

1 Functions

1-106

Input Arguments
prediction — Predicted segmentation
2-D or 3-D logical, numeric, or categorical array

Predicted segmentation, specified as a 2-D or 3-D logical, numeric, or categorical array. If
prediction is a numeric array, then it represents a label array and must contain nonnegative
integers of data type double.
Data Types: logical | double | categorical

groundTruth — Ground truth segmentation
2-D or 3-D logical, numeric, or categorical array

Ground truth segmentation, specified as a 2-D or 3-D logical, numeric, or categorical array of the
same size and data type as prediction. If groundTruth is a numeric array, then it represents a
label array and must contain nonnegative integers of data type double.
Data Types: logical | double | categorical

threshold — Distance error tolerance threshold
positive scalar

Distance error tolerance threshold in pixels, specified as a positive scalar. The threshold determines
whether a boundary point has a match or not. If threshold is not specified, then the default value is
0.75% of the length of the image diagonal.
Example: 3
Data Types: double

Output Arguments
score — BF score
numeric scalar | numeric vector

BF score, returned as a numeric scalar or vector with values in the range [0, 1]. A score of 1 means
that the contours of objects in the corresponding class in prediction and groundTruth are a
perfect match. If the input arrays are:

• logical arrays, score is a scalar and represents the BF score of the foreground.
• label or categorical arrays, score is a vector. The first coefficient in score is the BF score for the
first foreground class, the second coefficient is the score for the second foreground class, and so
on.

precision — Precision
numeric scalar | numeric vector

Precision, returned as a numeric scalar or numeric vector with values in the range [0, 1]. Each
element indicates the precision of object contours in the corresponding foreground class.

Precision is the ratio of the number of points on the boundary of the predicted segmentation that are
close enough to the boundary of the ground truth segmentation to the length of the predicted
boundary. In other words, precision is the fraction of detections that are true positives rather than
false positives.

 bfscore

1-107

recall — Recall
numeric scalar | numeric vector

Recall, returned as a numeric scalar or numeric vector with values in the range [0, 1]. Each element
indicates the recall of object contours in the corresponding foreground class.

Recall is the ratio of the number of points on the boundary of the ground truth segmentation that are
close enough to the boundary of the predicted segmentation to the length of the ground truth
boundary. In other words, recall is the fraction of true positives that are detected rather than missed.

More About
BF (Boundary F1) Score

The BF score measures how close the predicted boundary of an object matches the ground truth
boundary.

The BF score is defined as the harmonic mean (F1-measure) of the precision and recall values
with a distance error tolerance to decide whether a point on the predicted boundary has a match on
the ground truth boundary or not.

score = 2 * precision * recall / (recall + precision)

References
[1] Csurka, G., D. Larlus, and F. Perronnin. "What is a good evaluation measure for semantic

segmentation?" Proceedings of the British Machine Vision Conference, 2013, pp. 32.1-32.11.

See Also
jaccard | dice

Introduced in R2017b

1 Functions

1-108

bigimage
Out-of-core processing of very large images

Note bigimage is not recommended. Use the blockedImage object instead. For more information,
see “Compatibility Considerations”.

Description
A bigimage object stores information about a large TIFF image file and the image data it contains. A
bigimage represents images as smaller blocks of data that can be independently loaded and
processed.

Use a bigimage object to visualize and process images that are too large to fit in memory, or when
processing the image requires more memory than is available. Additionally, the object can:

• Read, process, and display images at different multiple resolution levels (image pyramids).
• Read arbitrary regions of the image.
• Read, set, and write blocks of data.

For big images with multiple resolution levels, the lowest or coarsest resolution level is the level
where each pixel covers the largest area. The highest or finest resolution level is the level where each
pixel covers the smallest area.

Creation

Syntax
bigimg = bigimage(filename)
bigimg = bigimage(dirname)
bigimg = bigimage(varname)
bigimg = bigimage(spatialReferencing,channels,classUnderlying)
bigimg = bigimage(levelSizes,channels,classUnderlying)
bigimg = bigimage(___ ,'Classes',classes,'PixelLabelIDs',pixelLabelIDs)
bigimg = bigimage(___ ,Name,Value)

Description

bigimg = bigimage(filename) creates a bigimage object from the big image file with name
filename.

bigimg = bigimage(dirname) creates a bigimage object from a directory with name dirname
containing files with big image data.

bigimg = bigimage(varname) creates a bigimage object from the variable varname in the
workspace.

 bigimage

1-109

bigimg = bigimage(spatialReferencing,channels,classUnderlying) creates a writeable
bigimage object and sets the SpatialReferencing, Channels, and ClassUnderlying properties, without
initializing the image data.

bigimg = bigimage(levelSizes,channels,classUnderlying) creates a writeable bigimage
object and sets the LevelSizes, Channels, and ClassUnderlying properties, without initializing the
image data.

bigimg = bigimage(___ ,'Classes',classes,'PixelLabelIDs',pixelLabelIDs) creates
a bigimage object with categorical data. Specify class names using the Classes property and the
mapping of image pixel label values to categorical class names using the PixelLabelIDs property.

bigimg = bigimage(___ ,Name,Value) uses name-value pairs to set one or more of the
BlockSize, SpatialReferencing, UndefinedID, UnloadedValue properties. You can specify multiple
name-value pairs. Enclose each property name in quotes.

For example, bigimage(bigfile,'BlockSize',[256 256],'UnloadedValue',128) creates a
big image from file bigfile that has a block size of 256-by-256 pixels and a default pixel value of
128.

Input Arguments

filename — Name of big image file
character vector | string scalar

Name of the big image file, specified as a character vector or string scalar. Supported file formats are
TIFF and BigTIFF. This argument sets the DataSource property.

dirname — Name of big image directory
character vector

Name of the big image directory, specified as a character vector or string scalar. This argument sets
the DataSource property.

varname — Big image variable
numeric array

Big image variable in the workspace, specified as a numeric array of size m-by-n for a single-channel
image or m-by-n-by-c for an image with c color channels.

Properties
Image File Properties

DataSource — Location of data
character vector

Location of the data backing the big image, specified as a character vector. Supported file formats are
TIFF and BigTIFF.

If you create a bigimage object without specifying the name of a big image file, then the value of
DataSource is ''. If you create a bigimage object from a variable in the workspace, then the value
of DataSource is 'variable'.
Data Types: string

1 Functions

1-110

SourceDetails — Source metadata
struct

This property is read-only.

Source metadata, specified as a struct such as returned by imfinfo.

Image Data Properties

BlockSize — Block size
2-element row vector

Block size, specified as a 2-element row vector of positive integers of the form [numrows numcols].
The block size is the smallest unit of data that the bigimage object can read or write.
Data Types: double

Channels — Number of channels
positive integer

This property is read-only.

Number of color or multispectral channels, specified as a positive integer.
Data Types: double

Classes — Class names
string array | cell array of character vectors

Class names of categorical data, specified as a string array or cell array of character vectors.
Classes can contain duplicate names to map multiple pixel label IDs to the same categorical class.
Data Types: char | string

ClassUnderlying — Data type of image pixels
"double" | "single" | "uint8" | "uint16" | ...

This property is read-only.

Data type of image pixels, specified as one of the following strings.

"double" "uint8" "int8"
"single" "uint16" "int16"
"logical" "uint32" "int32"
"categorical"

Data Types: char | string

CoarsestResolutionLevel — Coarsest resolution level
positive integer

This property is read-only.

Coarsest resolution level, specified as a positive integer. For single-resolution images,
CoarsestResolutionLevel is 1.

 bigimage

1-111

Data Types: double

FinestResolutionLevel — Finest resolution level
positive integer

This property is read-only.

Finest resolution level, specified as a positive integer. For single-resolution images,
FinestResolutionLevel is 1.
Data Types: double

LevelSizes — Image dimensions at each resolution level
r-by-2 matrix of positive integers

Image dimensions at each resolution level, specified as an r-by-2 matrix of positive integers. Each row
specifies the [numrows numcols] image dimensions at one of the r resolution levels.
Data Types: double

PixelLabelIDs — Pixel label IDs
c-element numeric vector | c-by-3 numeric array of data type uint8

Pixel label IDs that map pixel label values to categorical class names, specified as one of the
following.

• c-element numeric vector, where c is the number of classes.
• c-by-3 numeric array of data type uint8. Each row contains a 3-element vector representing the

RGB pixel value to associate with each class name. Use this format when the pixel label data is
stored as an RGB image.

If a pixel has a value that does not exist in PixelLabelIDs, then bigimage maps the pixel to the
class '<undefined>'.

SpatialReferencing — Pixel locations and sizes
scalar imref2d object | r-by-1 vector of imref2d objects

Pixel locations and sizes, specified as a scalar imref2d object for a single-resolution big image or an
r-by-1 vector of imref2d objects for a multi-resolution big image. Each element specifies the pixel
size, image size, and world limits at one of the r resolution levels.

UndefinedID — Pixel label value for '<undefined>' categorical class
0 (default) | numeric scalar | 1-by-3 numeric vector

Pixel label value for the '<undefined>' categorical class, specified as a numeric scalar or a 1-by-3
numeric vector. Do not specify this value as any of the values in PixelLabelIDs.

UnloadedValue — Default pixel value
logical scalar | numeric scalar | 1-by-1-by-Channels numeric vector | string scalar

Default pixel value used to fill blocks that do not exist in the DataSource, specified as a value in the
table. If you do not specify UnloadedValue, then bigimage uses the pixel value of 0 for numeric
and logical blocks and missing for categorical blocks.

1 Functions

1-112

Image Data Type Format of UnloadedValue
Logical image Logical scalar.
Numeric image Numeric scalar for grayscale images or a 1-by-1-by-Channels numeric

vector for truecolor and multispectral images. If you specify a numeric
scalar when Channels is greater than 1, then bigimage extends the value
to a 1-by-1-by-Channels numeric vector.

The data type of UnloadedValue must match the data type specified by
ClassUnderlying

Categorical image String scalar specifying an element of the Classes property.

Object Functions
apply (Not recommended) Process blocks of bigimage object
isequal (Not recommended) Compare two bigimage objects for equality
getBlock (Not recommended) Read block of bigimage object
getFullLevel (Not recommended) Get all data in one level of bigimage object
getRegion (Not recommended) Read arbitrary region of bigimage object
setBlock (Not recommended) Put data in specific block of bigimage object
write (Not recommended) Write bigimage object content to new file

Examples

Create Single-Resolution Mask from Multiresolution Blocked Image

Create a blocked image from the sample image tumor_091R.tif. This sample image is a training image
of a lymph node containing tumor tissue from the CAMELYON16 data set. The image has been
modified to have three coarse resolution levels, and has been adjusted to enforce a consistent aspect
ratio and to register features at each level.

bim = blockedImage('tumor_091R.tif');

Display the entire blocked image at the finest resolution level, including a grid of the block
boundaries.

bshow = bigimageshow(bim,'ResolutionLevel','fine', ...
 'GridVisible','on','GridLevel',1);

 bigimage

1-113

Create a mask of the coarsest resolution level.

First create a single-resolution image of the coarsest resolution level. By default, the gather function
gets data from the coarsest resolution level.

imcoarse = gather(bim);

Convert the coarse image to grayscale.

graycoarse = rgb2gray(imcoarse);

Binarize the grayscale image. In the binarized image, the object of interest is black and the
background is white.

bwcoarse = imbinarize(graycoarse);

Take the complement of the binarized image. The resulting mask follows the convention in which the
object of interest is white and the background is black.

mask = imcomplement(bwcoarse);

Create a blocked image containing the mask.

Use the same spatial referencing as the original blocked image. Determine the coarsest resolution
level and capture the spatial referencing information of the blocked image at the first two dimensions
at that level.

1 Functions

1-114

coarsestLevel = bim.NumLevels;
originalWorldStartCoarsest = bim.WorldStart(coarsestLevel,1:2);
originalWorldEndCoarsest = bim.WorldEnd(coarsestLevel,1:2);

Create the blocked image for the mask.

bmask = blockedImage(mask,'WorldStart',originalWorldStartCoarsest, ...
 'WorldEnd',originalWorldEndCoarsest);

Display the mask image.

figure
bigimageshow(bmask)

 bigimage

1-115

Overlay the mask on the display of the original blocked image using the showmask function. To
highlight all blocks that contain at least one nonzero mask pixel, specify an inclusion threshold of 0.

showmask(bshow,bmask,'InclusionThreshold',0)

1 Functions

1-116

Tips
• You can write to bigimage objects that are created using the SpatialReferencing or LevelSizes

syntaxes. Write to these bigimage objects by using the setBlock function. You cannot write to
bigimage objects that are created using the filename, dirname, or varname syntaxes.

• A bigimage object uses the UnloadedValue property in two situations. The first situation is when
you create a writeable bigimage object. Blocks of the writeable bigimage object are set to
UnloadedValue until you write the block data by using the setBlock function. The second
situation is when the apply function stops processing blocks of a bigimage object before all
blocks are processed.

Compatibility Considerations
bigimage is not recommended
Not recommended starting in R2021a

Starting in R2021a, the blockedImage object replaces the existing bigimage object. The new
blocked image object offers these advantages:

• Extension to N-D processing
• Introduction of a documented adapter interface to enable custom support for any data source that

can be chunked into blocks
• Simpler interface afforded by use of direct pixel subscripts (bigimage uses world coordinates)

 bigimage

1-117

• Simpler interface for single-resolution level images (default resolution level is 1)

To display blocked image data, you still use the bigimageshow function.

Code Updates

Update all instances of the bigimage object.

Discouraged Usage Recommended Replacement
This example creates a bigimage object.

bim = bigimage('tumor_091R.tif');

Here is equivalent code, replacing the bigimage
object with the new blockedImage object.

bim = blockedImage('tumor_091R.tif');

Other Code Updates

The blockedImage object supports some different properties and object functions than the
bigimage object. For example, to retrieve image data in a blocked image at a specified resolution
level, replace calls to getFullLevel with use of the gather object function.

References
[1] Bejnordi, Babak Ehteshami, Mitko Veta, Paul Johannes van Diest, Bram van Ginneken, Nico

Karssemeijer, Geert Litjens, Jeroen A. W. M. van der Laak, et al. “Diagnostic Assessment of
Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast
Cancer.” JAMA 318, no. 22 (December 12, 2017): 2199–2210. https://doi.org/10.1001/
jama.2017.14585.

[2] Grand Challenge. https://camelyon17.grand-challenge.org/Data/.

See Also
bigimageDatastore | bigimageshow | selectBlockLocations | blockLocationSet

Topics
“Set Up Spatial Referencing for Blocked Images”
“Process Blocked Images Efficiently Using Partial Images or Lower Resolutions”
“Process Blocked Images Efficiently Using Mask”
“Explore Blocked Image Details with Interactive ROIs”
“Warp Blocked Image at Coarse and Fine Resolution Levels”

Introduced in R2019b

1 Functions

1-118

https://camelyon17.grand-challenge.org/Data/

apply
(Not recommended) Process blocks of bigimage object

Note The apply function of the bigimage object is not recommended. Use the apply function
associated with the blockedImage object instead. For more information, see “Compatibility
Considerations”.

Syntax
newbig = apply(bigimg,level,fun)
newbig = apply(bigimg,level,fun,extraImages)
newbig = apply(___ ,Name,Value)

[newbig,other1,other2,...] = apply(___)

Description
newbig = apply(bigimg,level,fun) processes all blocks of the big image bigimg at the
specified resolution level using the function fun and returns a new big image newbig containing the
processed data.

newbig = apply(bigimg,level,fun,extraImages) processes all blocks of big image bigimg
and one or more extra big images extraImages. Use this syntax when the function fun accepts
multiple image inputs, such as an image and a mask.

newbig = apply(___ ,Name,Value) controls aspects of the processing, such as processing data
in parallel or padding blocks on the edge of the image, using name-value pair arguments.

[newbig,other1,other2,...] = apply(___) returns multiple outputs. Use this syntax when
the function fun returns multiple outputs, including image and non-image output.

Examples

Apply Filter to Big Image

Create a bigimage using a modified version of image "tumor_091.tif" from the CAMELYON16 data
set. The original image is a training image of a lymph node containing tumor tissue. The original
image has eight resolution levels, and the finest level has resolution 53760-by-61440. The modified
image has only three coarse resolution levels. The spatial referencing of the modified image has been
adjusted to enforce a consistent aspect ratio and to register features at each level.

bim = bigimage('tumor_091R.tif');

Enhance structures in the image by applying an edge-preserving non-local means filter to each block
at the finest resolution level, 1. For this example, the apply function performs these operations on
each block of the input bigimage:

 apply

1-119

• Convert the block to the L*a*b* color space.
• Filter the block using imnlmfilt.
• Convert the block back to the RGB color space.

The apply function recombines the output blocks to form a new bigimage.

bim_enhanced = apply(bim,1, ...
 @(block)lab2rgb(imnlmfilt(rgb2lab(block),'DegreeOfSmoothing',15)));

Display the original image on the left side of a figure window using the bigimageshow function.

figure
ha1 = subplot(1,2,1);
bigimageshow(bim,'ResolutionLevel',1);
title("Original Image")

Display the enhanced image on the right side of the figure window.

ha2 = subplot(1,2,2);
bigimageshow(bim_enhanced);
title("Enhanced Image")

Ensure that both displays show the same extents, then zoom in on a feature.

linkaxes([ha1,ha2]);
xlim([1600,2300])
ylim([1900,2600])

1 Functions

1-120

Input Arguments
bigimg — Big image
bigimage object

Big image, specified as a bigimage object.

level — Resolution level
positive integer

Resolution level, specified as a positive integer that is less than or equal to the number of resolution
levels of bigimg.

fun — Function handle
handle

Function handle, specified as a handle. For more information, see “Create Function Handle”.

Function Inputs

The function fun must accept at least one block as input.

Optionally, the function can accept additional inputs that are not blocks. To perform processing with
non-block inputs, you must call the apply function and specify fun as an anonymous function. For
more information, see “Anonymous Functions”.

 apply

1-121

The table shows sample function signatures for different types of input to fun. The table also shows
sample syntax to use when calling apply.

Input Type Function Signature Example of Calling apply
Single block function outblock = myfun(inblock)

 ...
end

newbig = apply(bigimg,level,@myfun);

Two blocks function outblock = myfun(inblock1,inblock2)
 ...
end

Specify the second bigimage after the
handle to the function myfun.

newbig = apply(bigimg,level,@myfun,otherbig);

One block and one non-
block

function outblock = myfun(inblock,nonblock)
 ...
end

This example passes a scalar value 37 to
the function myfun:

c = 37;
mynewbig = apply(mybigimg,level,@(x) myfun(x,c));

Function Outputs

The function fun typically returns one or more image blocks of the same size as the input block. In
this case, apply recombines the blocks and returns a bigimage. If you specify the BorderSize
argument of apply and desire a bigimage output, then apply will crop the border from the output
blocks. You can also crop the block directly within fun.

All of the examples in the above table demonstrate a function signature that returns a single block.
However, the function fun can also return structs or other non-image outputs.

The table shows sample function signatures for different types of output of fun. The table also shows
sample syntaxes to use when calling apply.

Output Type Sample Processing
Function

Example of Calling apply

Block of the same size as
the input block

function sameSizedBlock = myfun(inblock)
 sameSizedBlock = imgaussfilt(inblock);
end

bigimageOutput = apply(bigimg,level,@myfun);

bigimageOutput is a single-resolution
bigimage. In this example,
bigimageOutput has the same number
of channels and data type as the input
bigimg.

Multiple blocks of the same
size as the input block

function [sameSizedBlock,maskBlock] = myfun(inblock)
 sameSizedBlock = rgb2lightness(inblock);
 maskBlock = imbinarize(sameSizedBlock);
end

[bigimageOutput1,bigimageOutput2] = apply(bigimgRGB,level,@myfun);

bigimageOutput1 is a single-resolution
bigimage. In this example, if bigimgRGB
contains a color image, then
bigimageOutput1 has a different
number of channels than the input
bigimgRGB.

bigimageOutput2 is a single-resolution
bigimage that has a different number of
channels and a different data type than
bigimgRGB.

1 Functions

1-122

Output Type Sample Processing
Function

Example of Calling apply

Non-image function nonimageOutput = myfun(inblock)
 nonimageOutput = mean(inblock(:))
end

cellArrayOutput = apply(bigimg,level,@myfun);

cellArrayOutput is a cell array whose
elements are the non-image output of each
block. cellArrayOutput has one
additional column that specifies the (x,y)
origin of each block as a 1-by-2 vector.

Struct function structOutput = myfun(inblock)
 structOutput.num = numel(inblock);
 structOutput.mean = mean(inblock(:));
 structOutput.max = max(inblock(:));
end

tableOutput = apply(mybigimg,level,@myfun);

tableOutput is a table with four
variables: num, mean, max, and
BlockOrigin. The BlockOrigin
variable specifies the (x,y) origin of each
block as a 1-by-2 vector.

Multiple outputs function [out1,out2,out3,out4,out5] = myfun(inblock)
 % non-image output
 out1 = min(inblock(:));
 % image output of same size as input block
 out2 = imgaussfilt(out2);
 out3 = imbinarize(inblock);
 % struct output
 out4.originalMean = mean(inblock(:));
 out4.filteredMean = mean(out2(:));
 out4.fractionTrue = sum(out3(:))/numel(out3);
 % non-image output
 out5 = out4.fractionTrue;
end

[c1,b2,b3,t4] = apply(mybigimg,level,@myfun);

c1 is a cell array because the first output
of myfun is a non-image. b2 and b3 are
bigimages because the second and third
outputs of myfun are image blocks of the
same size as the input block. t4 is a table
because the fourth output of myfun is a
struct.

The apply function ignores the fifth
output argument of myfcn because only
four output arguments are specified in the
call to apply.

extraImages — Additional input big images
vector of bigimage objects

Additional input big images, specified as a vector of bigimage objects. Each big image must have the
same spatial extents as bigimg, but the blocks do not need to have the same size. The big images
may have different values of the ClassUnderlying and Channels properties.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: newbig = apply(bigimg,level,@myfun,'UseParallel',true);

BatchSize — Number of blocks supplied to fun
1 (default) | positive integer

Number of blocks supplied to the processing function fun in each batch, specified as the comma-
separated pair consisting of 'BatchSize' and a positive integer. When BatchSize is greater than
1, PadPartialBlocks must be true.

 apply

1-123

When BatchSize is greater than 1, apply supplies blocks as a numrows-by-numcols-by-channels-
by-BatchSize array. For apply to return a bigimage, fun must return an array of the same size.
For apply to return a cell array or table, fun must return a cell array of length BatchSize with one
element for each block.

BlockSize — Block size
1-by-2 vector of positive integers

Block size, specified as the comma-separated pair consisting of 'BlockSize' and a 1-by-2 vector of
positive integers of the form [numrows numcols]. If you specify 'BlockSize', then apply passes
blocks of size [numrows numcols] to the processing function, fun. apply passes all channels of
the block to fun.

BorderSize — Border size
[0 0] (default) | 1-by-2 vector of nonnegative integers

Border size, specified as the comma-separated pair consisting of 'BorderSize' and a 1-by-2 vector
of nonnegative integers of the form [numrows numcols]. The function adds numrows rows above
and below each block and numcols columns to the left and right of each block with data from the
neighboring blocks. For blocks that lie on the edge of an image, data is padded according to
PadMethod. By default, no border is added to blocks.

DisplayWaitbar — Display wait bar
true (default) | false

Display wait bar, specified as the comma-separated pair consisting of 'DisplayWaitbar' and true
or false. When true, the apply function displays a wait bar for long running operations. If you
close the wait bar, then apply returns a partial output, if available.
Data Types: logical

IncludeBlockInfo — Include block information
false (default) | true

Include block information, specified as the comma-separated pair consisting of
'IncludeBlockInfo' and false or true. When true, apply includes a struct as the last input to
the processing function, fun. The struct has these fields that describe spatial referencing information
about the block.

Field Description
BlockStartWorld World coordinates of the center of the top-left pixel of the block, excluding

any border or padding.
BlockEndWorld World coordinates of the center of the bottom-right pixel of the block,

excluding any border or padding.
DataStartWorld World coordinates of the center of the top-left pixel of the block, including

any border or padding.
DataEndWorld World coordinates of the center of the bottom-right pixel of the block,

including any border or padding.

If BatchSize is greater than 1, then the values in the struct are arrays of length BatchSize.
Data Types: logical

1 Functions

1-124

InclusionThreshold — Inclusion threshold
0.5 (default) | number in the range [0, 1]

Inclusion threshold for mask blocks, specified as the comma-separated pair consisting of
'InclusionThreshold' and a number in the range [0, 1]. The inclusion threshold indicates the
minimum fraction of nonzero pixels in a mask block required to process the image block.

• When the inclusion threshold is 0, then apply processes a block when at least one pixel in the
corresponding mask block is nonzero.

• When the inclusion threshold is 1, then apply only processes a block when all pixels in the mask
block are nonzero.

Mask — Mask
[] (default) | single-resolution bigimage object

Mask, specified as the comma-separated pair consisting of 'Mask' and a bigimage object of the
same size as bigimg and with a ClassUnderlying property value of logical.

The apply function only processes blocks that overlap with nonzero blocks of the mask. If you also
specify InclusionThreshold, then the block to process must overlap with a minimum percentage
of nonzero pixels in a mask block. If an image block sufficiently overlaps a mask block, then apply
sends the entire image block to the processing function fun, and fun processes all pixels within the
block. fun cannot access the mask directly.

An input block can overlap multiple mask blocks when the image is coarser than the mask or when
the edge of the block does not align with the mask blocks. If an input block overlaps multiple mask
blocks, then apply selects the mask that overlaps with the center of the input block.

OutputFolder — Location to save output bigimages
character vector

Location to save output bigimages, specified as the comma-separated pair consisting of
'OutputFolder' and false or true. Parallel processing requires Parallel Computing Toolbox™.

PadMethod — Pad method
numeric scalar | string scalar | 'replicate' | 'symmetric'

Pad method of incomplete edge blocks, specified as the comma-separated pair consisting of
'PadMethod' and one of these values. By default, apply pads numeric blocks with 0 and categorical
blocks with missing.

Value Meaning
numeric scalar Pad numeric array with elements of constant value.
string scalar Pad categorical array with the specified class in the Classes property of the

bigimage.
'replicate' Pad by repeating border elements of array.
'symmetric' Pad array with mirror reflections of itself.

PadPartialBlocks — Pad partial blocks
false (default) | true

 apply

1-125

Pad partial blocks, specified as the comma-separated pair consisting of 'PadPartialBlocks' and
false or true. Partial blocks arise when the image size is not exactly divisible by BlockSize. If
they exist, partial blocks lie along the right and bottom edge of the image.

• When false, the processing function fun operates on partial blocks without padding and can
return blocks smaller than BlockSize.

• When true, the apply function pads partial blocks using the specified PadMethod. The
processing function fun operates on and returns full-sized blocks.

Set PadPartialBlocks to true when BatchSize is greater than 1.
Data Types: logical

UseParallel — Use parallel processing
false (default) | true

Use parallel processing, specified as the comma-separated pair consisting of 'UseParallel' and
false or true. Parallel processing requires Parallel Computing Toolbox.

When you specify UseParallel as true, then MATLAB automatically opens a parallel pool based on
default parallel settings. apply processes the bigimage blocks across the available workers. The
DataSource property of all input bigimages should be valid paths on each of the parallel workers.
If relative paths are used, then ensure workers and the client process are on the same working
directory. If workers do not share the same file system as the client process, then specify
OutputFolder.
Data Types: logical

Output Arguments
newbig — Processed big image
bigimage object

Processed big image, returned as a bigimage object with a single resolution level. The number of
rows and columns of newbig is equal to the number of rows and columns of the input big image
bigimg at the specified resolution level. However, newbig can have a different number of channels
and a different underlying class.

other — Additional output
bigimage object | table | cell array

Additional output from processing function fun, returned as one of the following. If fun returns
multiple output arguments, then apply can return the same number or fewer output arguments.

Value Occurrence
bigimage object apply returns a bigimage when the corresponding output argument of

fun returns data as a numeric or logical array of the same size as the input
block, or the padded size of the input block when you specify the
BorderSize argument.

The returned bigimage has a single resolution level, but it can have a
different number of channels and underlying class.

1 Functions

1-126

Value Occurrence
table apply returns a table when the corresponding output argument of fun

returns data as a struct. The table has an additional BlockOrigin
variable that specifies the (x,y) origin of each block as a 1-by-2 vector in
world coordinates.

cell array apply returns a cell array when the corresponding output argument of
fun returns data as a non-image. The cell array has an additional column
that specifies the (x,y) origin of each block as a 1-by-2 vector in world
coordinates.

Tips
• Setting BatchSize as greater than 1 is useful to optimally load GPUs when running inference

deep learning networks inside the processing function fun.

Algorithms
apply passes data to the processing function, fun, one block at a time in the most efficient order to
traverse the data (often row-major block order). apply processes each block only once.

It is inefficient to perform many processing operations by making multiple calls to apply because the
data must be traversed multiple times. To optimize processing time, define fun such that it performs
multiple processing operations. This minimizes reading and writing overhead and ensures data
locality. You can further reduce processing time at a particular level by using masks created at
coarser resolution levels to exclude regions of the image from processing.

Compatibility Considerations
apply function is not recommended
Not recommended starting in R2021a

The apply function of the bigimage object is not recommended. Use the apply function of the
blockedImage object instead. The blockedImage object offers several advantages including
extension to N-D processing, a simpler interface, and custom support for reading and writing
nonstandard image formats.

Although there are no plans to remove the bigimage object and its apply function at this time,
switch to blockedImage to take advantage of the additional capabilities and flexibility.

See Also
apply | blockedImage

Topics
“Process Blocked Images Efficiently Using Partial Images or Lower Resolutions”
“Process Blocked Images Efficiently Using Mask”
“Warp Blocked Image at Coarse and Fine Resolution Levels”

Introduced in R2019b

 apply

1-127

isequal
(Not recommended) Compare two bigimage objects for equality

Note The isequal function of the bigimage object is not recommended. Use the blockedImage
object instead. For more information, see “Compatibility Considerations”.

Syntax
tf = isequal(bigimg1,bigimg2)

Description
tf = isequal(bigimg1,bigimg2) returns true if big images bigimg1 and bigimg2 have the
same spatial referencing, underlying data type, and block size. Pixel values are only compared if the
metadata is equal, and the comparison ends early when unequal pixel values are found. isequal
does not consider file names, masks, and other class properties.

Input Arguments
bigimg1 — First big image
bigimage object

First big image, specified as a bigimage object.

bigimg2 — Second big image
bigimage object

Second big image, specified as a bigimage object.

Output Arguments
tf — Big images are equal
logical scalar

Big images bigimg1 and bigimg2 are equal, returned as a logical scalar.
Data Types: logical

Compatibility Considerations
isequal function is not recommended
Not recommended starting in R2021a

The isequal function of the bigimage object is not recommended. Use a blockedImage object
instead. The blockedImage object offers several advantages including extension to N-D processing,
a simpler interface, and custom support for reading and writing nonstandard image formats.

1 Functions

1-128

Although there are no plans to remove the bigimage object and its isequal at this time, switch to
the blockedImage to take advantage of the additional capabilities and flexibility.

See Also
blockedImage

Introduced in R2019b

 isequal

1-129

getBlock
(Not recommended) Read block of bigimage object

Note The getBlock function of the bigimage object is not recommended. Use the getBlock
function associated with the blockedImage object instead. For more information, see “Compatibility
Considerations”.

Syntax
data = getBlock(bigimg,level,locationWorld)

Description
data = getBlock(bigimg,level,locationWorld) reads the big image data in bigimg at the
specified resolution level, and returns pixel data for the entire block that contains coordinate
locationWorld.

Examples

Select and Display bigimage Block Interactively

Create a bigimage using a modified version of image "tumor_091.tif" from the CAMELYON16 data
set. The original image is a training image of a lymph node containing tumor tissue. The original
image has eight resolution levels, and the finest level has resolution 53760-by-61440. The modified
image has only three coarse resolution levels. The spatial referencing of the modified image has been
adjusted to enforce a consistent aspect ratio and to register features at each level.

bim = bigimage('tumor_091R.tif');

Display the bigimage by using the bigimageshow function. Overlay a grid that shows the block
boundaries at the finest resolution level.

hb = subplot(1,2,1);
bigimageshow(bim,'GridVisible','on','GridLevel',1);

1 Functions

1-130

Specify the (x,y) coordinate of a block to display. Get the block containing the coordinate. Add a
Point ROI over the displayed bigimage at the specified coordinate.

coord = [2500,2500];
blk = getBlock(bim,1,coord);
hp = drawpoint(hb,'Position',coord);

 getBlock

1-131

In the figure, display the block next to the entire bigimage. You can use imshow to display the block
because the block fits in memory and has a single resolution level.

ha = subplot(1,2,2);
imshow(blk,'Parent',ha)

1 Functions

1-132

Add a listener to the Point ROI. When you drag the ROI with the mouse, the figure is updated to
show the block containing the current ROI coordinates.

title(hb,'Drag Point to Select Block');
addlistener(hp, ...
 'ROIMoved',@(~,~) imshow(getBlock(bim,1,hp.Position),'Parent',ha));

 getBlock

1-133

Input Arguments
bigimg — Big image
bigimage object

Big image, specified as a bigimage object.

level — Resolution level
positive integer

Resolution level, specified as a positive integer that is less than or equal to the number of resolution
levels of bigimg.

locationWorld — Coordinate of a point
1-by-2 numeric vector

Coordinate of a point, specified as a 1-by-2 numeric vector of the form [x y]. The location is
specified in world coordinates, which are the pixel locations relative to the highest resolution level.
The position must be a valid position within bigimg.

1 Functions

1-134

Output Arguments
data — Pixel data
numeric array

Pixel data, returned as a numeric array of the same data type as the big image,
bigimg.ClassUnderlying.

Compatibility Considerations
getBlock function is not recommended
Not recommended starting in R2021a

The getBlock function of the bigimage object is not recommended. Use the getBlock function of
the blockedImage object instead. The blockedImage object offers several advantages including
extension to N-D processing, a simpler interface, and custom support for reading and writing
nonstandard image formats.

Although there are no plans to remove the bigimage object and its getBlock function at this time,
switch to blockedImage to take advantage of the additional capabilities and flexibility.

See Also
getBlock | blockedImage

Introduced in R2019b

 getBlock

1-135

getFullLevel
(Not recommended) Get all data in one level of bigimage object

Note The getFullLevel function of the bigimage object is not recommended. Use the gather
function associated with the blockedImage object instead. For more information, see “Compatibility
Considerations”.

Syntax
I = getFullLevel(bigimg)
I = getFullLevel(bigimg,level)

Description
I = getFullLevel(bigimg) reads the big image data in bigimg at the coarsest resolution level
and returns the single-resolution image I.

I = getFullLevel(bigimg,level) reads the big image data in bigimg at the specified
resolution level and returns the single-resolution image I.

Examples

Create Single-Resolution Mask from Multiresolution Blocked Image

Create a blocked image from the sample image tumor_091R.tif. This sample image is a training image
of a lymph node containing tumor tissue from the CAMELYON16 data set. The image has been
modified to have three coarse resolution levels, and has been adjusted to enforce a consistent aspect
ratio and to register features at each level.

bim = blockedImage('tumor_091R.tif');

Display the entire blocked image at the finest resolution level, including a grid of the block
boundaries.

bshow = bigimageshow(bim,'ResolutionLevel','fine', ...
 'GridVisible','on','GridLevel',1);

1 Functions

1-136

Create a mask of the coarsest resolution level.

First create a single-resolution image of the coarsest resolution level. By default, the gather function
gets data from the coarsest resolution level.

imcoarse = gather(bim);

Convert the coarse image to grayscale.

graycoarse = rgb2gray(imcoarse);

Binarize the grayscale image. In the binarized image, the object of interest is black and the
background is white.

bwcoarse = imbinarize(graycoarse);

Take the complement of the binarized image. The resulting mask follows the convention in which the
object of interest is white and the background is black.

mask = imcomplement(bwcoarse);

Create a blocked image containing the mask.

Use the same spatial referencing as the original blocked image. Determine the coarsest resolution
level and capture the spatial referencing information of the blocked image at the first two dimensions
at that level.

 getFullLevel

1-137

coarsestLevel = bim.NumLevels;
originalWorldStartCoarsest = bim.WorldStart(coarsestLevel,1:2);
originalWorldEndCoarsest = bim.WorldEnd(coarsestLevel,1:2);

Create the blocked image for the mask.

bmask = blockedImage(mask,'WorldStart',originalWorldStartCoarsest, ...
 'WorldEnd',originalWorldEndCoarsest);

Display the mask image.

figure
bigimageshow(bmask)

1 Functions

1-138

Overlay the mask on the display of the original blocked image using the showmask function. To
highlight all blocks that contain at least one nonzero mask pixel, specify an inclusion threshold of 0.

showmask(bshow,bmask,'InclusionThreshold',0)

 getFullLevel

1-139

Input Arguments
bigimg — Big image
bigimage object

Big image, specified as a bigimage object.

level — Resolution level
positive integer

Resolution level, specified as a positive integer that is less than or equal to the number of resolution
levels of bigimg. The default level is the coarsest resolution level,
bigimg.CoarsestResolutionLevel.

Output Arguments
I — Single-resolution image
numeric array

Single-resolution image, returned as a numeric array.

Tips
• Check the LevelSizes property of the input big image bigimg to confirm that the size of image

data at the specified level is small enough to fit in memory.

1 Functions

1-140

Compatibility Considerations
getFullLevel function is not recommended
Not recommended starting in R2021a

The getFullLevel function of the bigimage object is not recommended. Use the gather function
of the blockedImage object instead. The blockedImage object offers several advantages including
extension to N-D processing, a simpler interface, and custom support for reading and writing
nonstandard image formats.

Although there are no plans to remove the bigimage object and its getFullLevel function at this
time, switch to the blockedImage object and the gather function to take advantage of the
additional capabilities and flexibility.

See Also
gather | blockedImage

Introduced in R2019b

 getFullLevel

1-141

getRegion
(Not recommended) Read arbitrary region of bigimage object

Note The getRegion function of the bigimage object is not recommended. Use the getRegion
function associated with the blockedImage object instead. For more information, see “Compatibility
Considerations”.

Syntax
data = getRegion(bigimg,level,regionStartWorld,regionEndWorld)

Description
data = getRegion(bigimg,level,regionStartWorld,regionEndWorld) reads the big image
data in bigimg at the specified resolution level. The function returns all pixels whose extents touch
or lie within the bounds of the rectangular region specified by regionStartWorld and
regionEndWorld, inclusive.

Examples

Get Region of Big Image at Different Resolution Levels

Create a bigimage using a modified version of image "tumor_091.tif" from the CAMELYON16 data
set. The original image is a training image of a lymph node containing tumor tissue. The original
image has eight resolution levels, and the finest level has resolution 53760-by-61440. The modified
image has only three coarse resolution levels. The spatial referencing of the modified image has been
adjusted to enforce a consistent aspect ratio and to register features at each level.

bim = bigimage('tumor_091R.tif');

Display the entire bigimage at the finest resolution level.

bshow = bigimageshow(bim);

1 Functions

1-142

Define a rectangular region by specifying the starting and ending coordinates in the horizontal and
vertical direction relative to the finest resolution level.

xyStart = [2100,1800];
xyEnd = [2600,2300];

Get the region of the bigimage at each resolution level.

imL1 = getRegion(bim,1,xyStart,xyEnd);
imL2 = getRegion(bim,2,xyStart,xyEnd);
imL3 = getRegion(bim,3,xyStart,xyEnd);

Display the three regions in a montage. The finest resolution level is on the left and the coarsest
resolution level is on the right.

montage({imL1,imL2,imL3},'Size',[1 3], ...
 'BorderSize',5,'BackgroundColor','w');

 getRegion

1-143

Input Arguments
bigimg — Big image
bigimage object

Big image, specified as a bigimage object.

level — Resolution level
positive integer

Resolution level, specified as a positive integer that is less than or equal to the number of resolution
levels of bigimg.

regionStartWorld — Top-left coordinates of rectangular region
1-by-2 numeric vector

Top-left coordinates of the rectangular region to read, specified as a 1-by-2 numeric vector of the
form [x y]. The location is specified in world coordinates, which are the pixel locations relative to
the highest resolution level.

regionEndWorld — Bottom-right coordinates of rectangular region
1-by-2 numeric vector

Bottom-right coordinates of the rectangular region to read, specified as a 1-by-2 numeric vector of
the form [x y]. The location is specified in world coordinates, which are the pixel locations relative
to the highest resolution level.

Output Arguments
data — Pixel data
numeric array

Pixel data, returned as a numeric array of the same data type as the big image,
bigimg.ClassUnderlying.

1 Functions

1-144

Compatibility Considerations
getRegion function is not recommended
Not recommended starting in R2021a

The getRegion function of the bigimage object is not recommended. Use the getRegion function
of the blockedImage object instead. The blockedImage object offers several advantages including
extension to N-D processing, a simpler interface, and custom support for reading and writing
nonstandard image formats.

Although there are no plans to remove the bigimage object and its getRegion function at this time,
switch to blockedImage to take advantage of the additional capabilities and flexibility.

See Also
getRegion | blockedImage

Introduced in R2019b

 getRegion

1-145

setBlock
(Not recommended) Put data in specific block of bigimage object

Note The setBlock function of the bigimage object is not recommended. Use the setBlock
function associated with the blockedImage object instead. For more information, see “Compatibility
Considerations”.

Syntax
setBlock(bigimg,level,locationWorld,data)

Description
setBlock(bigimg,level,locationWorld,data) sets the pixel data in the block of big image
bigimg that contains coordinate locationWorld at the specified resolution level.

Examples

Set Blocks of Writeable Big Image

Create a bigimage using a modified version of image "tumor_091.tif" from the CAMELYON16 data
set. The original image is a training image of a lymph node containing tumor tissue. The original
image has eight resolution levels, and the finest level has resolution 53760-by-61440. The modified
image has only three coarse resolution levels. The spatial referencing of the modified image has been
adjusted to enforce a consistent aspect ratio and to register features at each level.

bim = bigimage('tumor_091R.tif');

Display the bigimage, then create a circle ROI over the displayed image.

h = bigimageshow(bim);
hROI = drawcircle(gca,'Radius',470,'Position',[1477 2284]);

1 Functions

1-146

Choose the level at which to create a writeable bigimage. Level 3 is the coarsest resolution level.

maskLevel = 3;

Get the spatial referencing and pixel extents from the specified level.

ref = bim.SpatialReferencing(maskLevel);
pixelExtent = [ref.PixelExtentInWorldX,ref.PixelExtentInWorldY];

Create a writeable bigimage by specifying the spatial referencing instead of image data. This big
image has one channel and is of data type logical.

bmask = bigimage(ref,1,'logical');

Loop through all blocks in the writeable big image to create a mask image. For each block, set the
pixel values as 1 (true) for pixels inside the ROI and 0 (false) for pixels outside the ROI.

for cStart = 1:bmask.BlockSize(2):ref.ImageSize(2)
 for rStart = 1:bmask.BlockSize(1):ref.ImageSize(1)

 % Get the center of top left pixel of this block in world units.
 xyStart = [cStart,rStart].*pixelExtent;

 % Get the block size. The |'BlockSize'| property represents the
 % size as a 2-element vector of the form [row,column]. Switch the
 % order of the elements so that the block size is represented as
 % [x,y].
 bsize = bmask.BlockSize;

 setBlock

1-147

 numRows = bsize(1);
 numCols = bsize(2);

 % Determine which pixels have coordinates inside the ROI.
 roiPositions = hROI.Vertices;

 % Transform |roiPositions| from world coordinates to the intrinsic
 % image indices at the given resolution level.
 roiPositions = (roiPositions - xyStart) ./ pixelExtent + 1;

 blockMask = poly2mask(roiPositions(:,1),roiPositions(:,2), ...
 numRows, numCols);

 % Set the pixel values of the block.
 setBlock(bmask,1,xyStart,blockMask);
 end
end

Display the mask.

figure
bigimageshow(bmask)

Input Arguments
bigimg — Big image
bigimage object

1 Functions

1-148

Big image, specified as a bigimage object.

level — Resolution level
positive integer

Resolution level, specified as a positive integer that is less than or equal to the number of resolution
levels of bigimg.

locationWorld — Coordinate of a point
1-by-2 numeric vector

Coordinate of a point, specified as a 1-by-2 numeric vector of the form [x y]. The location is
specified in world coordinates, which are the pixel locations relative to the highest resolution level.
The position must be a valid position within bigimg.

data — Pixel data
numeric array

Pixel data, specified as a numeric array of the same data type as the big image,
bigimg.ClassUnderlying. The first two dimensions of the data must match the block size at the
specified level.

Tips
• Create a writeable bigimage by using a syntax that does not initialize image data. If you create a

bigimage by specifying the file name, directory name, or variable name of image data, or by
using the apply function, then the bigimage is not writeable and you cannot use the setBlock
function.

• If the size of data is less than the block size bigimg.BlockSize, then setBlock pads the data
with the default value, bigimg.UnloadedValue.

• setBlock trims data for partial edge blocks.

Compatibility Considerations
setBlock function is not recommended
Not recommended starting in R2021a

The setBlock function of the bigimage object is not recommended. Use the setBlock function of
the blockedImage object instead. The blockedImage object offers several advantages including
extension to N-D processing, a simpler interface, and custom support for reading and writing
nonstandard image formats.

Although there are no plans to remove the bigimage object and its setBlock function at this time,
switch to blockedImage to take advantage of the additional capabilities and flexibility.

See Also
blockedImage | setBlock

Introduced in R2019b

 setBlock

1-149

write
(Not recommended) Write bigimage object content to new file

Note The write function of the bigimage object is not recommended. Use the write function
associated with the blockedImage object instead. For more information, see “Compatibility
Considerations”.

Syntax
write(bigimg,filename)
write(bigimg,filename,'TIFFCompression',compression)
write(bigimg,dirname)
write(___ ,Name,Value)

Description
write(bigimg,filename) writes a formatted version of big image bigimg to a TIFF file named
filename. This syntax does not preserve the spatial referencing information of the big image.

write(bigimg,filename,'TIFFCompression',compression) also specifies the compression
scheme for writing a formatted version of big image bigimg to a TIFF file named filename. This
syntax does not preserve the spatial referencing information of the big image.

write(bigimg,dirname) writes a formatted version of big image bigimg to the directory named
dirname. This syntax preserves the spatial referencing information of the big image.

write(___ ,Name,Value) specifies additional options when writing categorical data using name-
value pair arguments.

Examples

Write Big Image Data to Disk

Create a bigimage using a modified version of image "tumor_091.tif" from the CAMELYON16 data
set. The original image is a training image of a lymph node containing tumor tissue. The original
image has eight resolution levels, and the finest level has resolution 53760-by-61440. The modified
image has only three coarse resolution levels. The spatial referencing of the modified image has been
adjusted to enforce a consistent aspect ratio and to register features at each level.

bim = bigimage('tumor_091R.tif');

Create a mask image from the coarsest resolution level, 3. The mask is 1 (true) for each pixel whose
grayscale value is less than 100.

mask = apply(bim,3,@(im)rgb2gray(im)<100);

Write the mask image to a directory called 'maskDir'. The directory must not already exist. Before
writing the mask image, check if the directory already exists, and if it does, delete it.

1 Functions

1-150

imageDir = 'maskDir';
if exist(imageDir,'dir')
 rmdir maskDir s;
end
write(mask,imageDir);

Load the mask image back into the workspace by creating a new bigimage from the data in the
mask directory. The spatial referencing information of the mask is retained.

mask1 = bigimage('maskDir');

Display the original image and the mask image. The spatial referencing matches the original image,
bim.

figure
bigimageshow(bim);
figure
bigimageshow(mask1);

 write

1-151

Input Arguments
bigimg — Big image
bigimage object

Big image, specified as a bigimage object.

filename — File name
string | character vector

File name of written big image data, specified as a string or character vector. Supported file
extensions are '.tif' and '.tiff'.
Data Types: string

dirname — Directory name
string | character vector

Directory name of written big image data, specified as a string or character vector.
Data Types: string

compression — TIFF compression scheme
"LZW" (default) | "PackBits" | "Deflate" | "JPEG" | "None"

TIFF compression scheme, specified as one of the following.

1 Functions

1-152

Compression Scheme Description
"LZW" Lempel-Ziv-Welch lossless compression
"PackBits" PackBits lossless compression
"Deflate" Adobe DEFLATE lossless compression
"JPEG" JPEG-based lossy compression
"None" No compression

Data Types: string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: write(bigimg,filename,'Classes',["sky" "vegetation"
"building"],'PixelLabelIDs',[1 2 3]) writes a categorical bigimage with three classes

Classes — Class names
string array | cell array of character vectors

Class names of categorical data, specified as the comma-separated pair consisting of 'Classes' and
a string array or a cell array of character vectors. The default value is the value of the Classes
property of the big image bigimg.

If a class has multiple pixel values in PixelLabelIDs, then write writes all instances of that class
using the first pixel value.
Data Types: char | string

PixelLabelIDs — Pixel label IDs
d-element numeric vector | d-by-3 numeric array of data type uint8

Pixel label IDs that map pixel label values to categorical class names, specified as the comma-
separated pair consisting of 'PixelLabelIDs' and one of the following.

• d-element numeric vector, where d is the number of classes
• d-by-3 numeric array of data type uint8. Each row contains a 3-element vector representing the

RGB pixel value to associate with each class name. Use this format when the pixel label data is
stored as an RGB image.

The data type of the written pixels matches the data type of PixelLabelIDs. The default value is the
value of the PixelLabelIDs property of the big image bigimg.

If a class has multiple pixel values in PixelLabelIDs, then write writes all instances of that class
using the first pixel value.

UndefinedID — Pixel label value for '<undefined>' categorical class
0 (default) | numeric scalar | 1-by-3 numeric vector

Pixel label value for the '<undefined>' categorical class and pixel values that do not exist in
PixelLabelIDs, specified as the comma-separated pair consisting of 'UndefinedID' and a
numeric scalar or a 1-by-3 numeric vector. Do not specify this value as any of the values in

 write

1-153

PixelLabelIDs. The default value is the value of the UndefinedID property of the big image
bigimg.

Compatibility Considerations
write function is not recommended
Not recommended starting in R2021a

The write function of the bigimage object is not recommended. Use the write function of the
blockedImage object instead. The blockedImage object offers several advantages including
extension to N-D processing, a simpler interface, and custom support for reading and writing
nonstandard image formats.

Although there are no plans to remove the bigimage object and its write function at this time,
switch to blockedImage to take advantage of the additional capabilities and flexibility.

See Also
write | blockedImage

Topics
“Create Labeled Blocked Image from ROIs and Masks”
“Preprocess Multiresolution Images for Training Classification Network”

Introduced in R2019b

1 Functions

1-154

bigimageDatastore
(Not recommended) Datastore to manage blocks of big image data

Note The bigimageDatastore object is not recommended. Use the blockedImageDatastore
object instead. For more information, see “Compatibility Considerations”.

Description
A bigimageDatastore object manages a collection of image blocks that belong to one or more
bigimage objects. A bigimageDatastore is analogous to an imageDatastore, which manages a
collection of unrelated images.

Creation

Syntax
bigds = bigimageDatastore(images)
bigds = bigimageDatastore(images,levels)
bigds = bigimageDatastore(images,levels,Name,Value)

bigds = bigimageDatastore(images,'BlockLocationSet',blockLocationSet)
bigds = bigimageDatastore(images,'BlockLocationSet',blockLocationSet,
Name,Value)

Description
Create Datastore that Reads Blocks Over Entire Image

bigds = bigimageDatastore(images) creates a datastore that manages a collection of image
blocks at the finest resolution level of one or more bigimage objects, Images.

bigds = bigimageDatastore(images,levels) creates a datastore that manages a collection of
image blocks of one or more bigimage objects, Images, at the specified resolution levels, Levels.

bigds = bigimageDatastore(images,levels,Name,Value) also uses name-value pairs to set
one or more “Properties” on page 1-156 except for BlockLocationSet. You can specify multiple
name-value pairs. Enclose each property name in quotes.
Example: bigimageDatastore(bigimg,3,'BlockSize',[128
128],'IncompleteBlocks','pad') creates a datastore that reads blocks of size 128-by-128 at
resolution level 3 from big image bigimg and zero-pads partial edge blocks.

Create Datastore that Reads Blocks at Specified Locations

bigds = bigimageDatastore(images,'BlockLocationSet',blockLocationSet) creates a
datastore that reads blocks from bigimage objects, Images, using the resolution level, block size,
and block positions specified by BlockLocationSet.

 bigimageDatastore

1-155

bigds = bigimageDatastore(images,'BlockLocationSet',blockLocationSet,
Name,Value) also uses name-value pairs to set one or more of the BorderSize, IncompleteBlocks,
PadMethod, and ReadSize properties. You can specify multiple name-value pairs. Enclose each
property name in quotes.
Example: bigimageDatastore(bigimg,'BlockLocationSet',bls,'ReadSize',4) creates a
datastore that reads four blocks at a time from big images bigimg according to the position, block
size, and resolution level specified by bls.

Properties
BlockLocationSet — Block locations
blockLocationSet object

Block locations, specified as a blockLocationSet object.

BlockOffsets — Block offsets
1-by-2 vector of positive integers

Block offsets, specified as 1-by-2 vector of positive integers of the form [numrows numcols].

The default value is equal to BlockSize. To overlap blocks during calls to read, specify a smaller
value. To add a gap between blocks, specify a larger value.

BlockSize — Block size
1-by-2 vector of positive integers

Block size of read data, specified as a 1-by-2 vector of positive integers of the form [numrows
numcols]. The default value is equal to the BlockSize property of the first big image in Images at the
first resolution level in Levels.

BorderSize — Border size
[0 0] (default) | 1-by-2 vector of nonnegative integers

Border size, specified as a 1-by-2 vector of nonnegative integers of the form [m n]. The function adds
m rows above and below each block and n columns to the left and right of each block with data from
the neighboring blocks. For blocks that lie on the edge of an image, data is padded according to
IncompleteBlocks. By default, the datastore does not add a border to blocks.

Images — Big images
b-element vector of bigimage objects

Big images that supply blocks for the bigimageDatastore, specified as a b-element vector of
bigimage objects. To read different resolution levels from the same big image, specify the same
image multiple times in the vector.

IncompleteBlocks — Method to handle edge blocks
"same" (default) | "exclude" | "pad"

Method to handle edge blocks that are smaller than BlockSize, specified as one of these values.

Value Meaning
"same" Return data of the same size as the edge block.

1 Functions

1-156

Value Meaning
"exclude" Do not include edge blocks in calls to read.
"pad" Pad incomplete blocks to the same size as BlockSize using the pad

method specified by PadMethod.

Levels — Resolution level
positive integer | b-element vector of positive integers

Resolution level of blocks from each big image in Images, specified as a positive integer scalar or a b-
element vector of positive integers. If you specify a scalar value, then all big images supply blocks to
the datastore at the same resolution level.
Data Types: double

PadMethod — Pad method
numeric scalar | string scalar | "replicate" | "symmetric"

Pad method of incomplete edge blocks, specified as one of these values. By default, the datastore
pads numeric blocks with 0 and categorical blocks with missing.

Value Meaning
numeric scalar Pad numeric array with elements of constant value.
string scalar Pad categorical array with the specified class in the Classes property of the

underlying bigimage.
"replicate" Pad by repeating border elements of array.
"symmetric" Pad array with mirror reflections of itself.

ReadSize — Number of blocks to return
1 (default) | positive integer

Number of blocks to return in each call to read, specified as a positive integer.

Object Functions
combine Combine data from multiple datastores
countEachLabel (Not recommended) Count number of pixel labels for each class of

bigimageDatastore object
hasdata Determine if data is available to read
numpartitions Number of datastore partitions
partition (Not recommended) Partition bigimageDatastore
preview Preview subset of data in datastore
read (Not recommended) Read data from bigimageDatastore
readRelative (Not recommended) Read neighboring block from bigimageDatastore using

relative position
reset Reset datastore to initial state
shuffle Shuffle data in datastore
transform Transform datastore
isPartitionable Determine whether datastore is partitionable
isShuffleable Determine whether datastore is shuffleable

 bigimageDatastore

1-157

Examples

Create Big Image Datastore and Specify Block Size

Create a bigimage using a modified version of image "tumor_091.tif" from the CAMELYON16 data
set. The original image is a training image of a lymph node containing tumor tissue. The original
image has eight resolution levels, and the finest level has resolution 53760-by-61440. The modified
image has only three coarse resolution levels. The spatial referencing of the modified image has been
adjusted to enforce a consistent aspect ratio and to register features at each level.

bim = bigimage('tumor_091R.tif');

Display the default block size of the bigimage at each resolution level. The block size is a 2-element
vector of the form [numrows, numcols].

t = table((1:3)',bim.BlockSize,'VariableNames',["Level" "Block Size"]);
disp(t)

 Level Block Size
 _____ ____________

 1 1024 1024
 2 1024 1024
 3 1024 1024

Display the bigimage by using the bigimageshow function.

bigimageshow(bim);

1 Functions

1-158

Create a bigimageDatastore at resolution level 1. Specify a nondefault block size. Set the
datastore to read four blocks at a time.

bimds = bigimageDatastore(bim,2,'BlockSize',[512 512],'ReadSize',4)

bimds =
 bigimageDatastore with properties:

 ReadSize: 4
 BorderSize: [0 0]
 PadMethod: 0
 Images: [1x1 bigimage]
 Levels: 2
 BlockSize: [512 512]
 BlockOffsets: [512 512]
 IncompleteBlocks: 'same'
 BlockLocationSet: [1x1 blockLocationSet]

Read one batch of data from the datastore. Notice that the third block is a partial edge block and has
a smaller size than interior blocks. Display the returned image patches as a montage. The montage
displays the third block with a thicker border because the width of the block is smaller than the width
of the complete blocks.

blocks = read(bimds)

blocks=4×1 cell array
 {512x512x3 uint8}

 bigimageDatastore

1-159

 {512x512x3 uint8}
 {512x316x3 uint8}
 {512x512x3 uint8}

montage(blocks,'Size',[1 bimds.ReadSize],'BorderSize',5,'BackgroundColor','k');

Read the next batch of data from the datastore and display the returned image patches as a montage.
The montage displays partial blocks with a thicker border because the dimensions of the blocks are
smaller than the dimensions of the full block.

blocks = read(bimds)

blocks=4×1 cell array
 {512x512x3 uint8}
 {512x316x3 uint8}
 {226x512x3 uint8}
 {226x512x3 uint8}

montage(blocks,'Size',[1 bimds.ReadSize],'BorderSize',5,'BackgroundColor','k');

Read the last batch of data from the datastore. The read operation returns a partial batch that
contains the only remaining patch. Display the patch.

blocks = read(bimds)

1 Functions

1-160

blocks = 1x1 cell array
 {226x316x3 uint8}

montage(blocks,'Size',[1 bimds.ReadSize],'BorderSize',5,'BackgroundColor','k');

Create Big Image Datastore and Specify Mask

Create a bigimage using a modified version of image "tumor_091.tif" from the CAMELYON16 data
set. The original image is a training image of a lymph node containing tumor tissue. The original
image has eight resolution levels, and the finest level has resolution 53760-by-61440. The modified
image has only three coarse resolution levels. The spatial referencing of the modified image has been
adjusted to enforce a consistent aspect ratio and to register features at each level.

bim = bigimage('tumor_091R.tif');

Display the bigimage by using the bigimageshow function.

h = bigimageshow(bim);

 bigimageDatastore

1-161

Create a mask at the coarsest resolution level, retaining the original spatial referencing information.

clevel = bim.CoarsestResolutionLevel;
imcoarse = getFullLevel(bim,clevel);
stainMask = ~imbinarize(rgb2gray(imcoarse));
bmask = bigimage(stainMask,'SpatialReferencing',bim.SpatialReferencing(clevel));

Specify the location of blocks to read from the bigimage by using the selectBlockLocations
function. Set the block size as 256-by-256 pixels. Select blocks that are at least 75% within the ROI
defined by the mask by specifying the 'InclusionThreshold' name-value pair argument. By
default, selectBlockLocations selects blocks from the finest resolution level of the big image.

t = 0.75;
blockSize = [256 256];
blockSet = selectBlockLocations(bim,"BlockSize",blockSize, ...
 "Masks",bmask,"InclusionThreshold",t);

Create a bigimageDatastore that reads four blocks at a time from the locations specified by the
blockLocationSet.

bimds = bigimageDatastore(bim,"BlockLocationSet",blockSet,"ReadSize",4);

To preview which patches are read by the datastore, display the mask over the original bigimage
using the same block size and inclusion threshold. The overlay highlights in green the patches that
are at least 75% within the ROI defined by the mask.

showmask(h,bmask,'BlockSize',blockSize,'InclusionThreshold',t)

1 Functions

1-162

Read the first batch of data from the datastore and display the returned image patches as a montage.
The content of these patches matches the green blocks of the overlay.

blocks = read(bimds);
montage(blocks,'Size',[1 bimds.ReadSize],'BorderSize',5,'BackgroundColor','k');

Read Big Image Blocks From Specified Block Locations

Create a bigimage using a modified version of image "tumor_091.tif" from the CAMELYON16 data
set. The original image is a training image of a lymph node containing tumor tissue. The original

 bigimageDatastore

1-163

image has eight resolution levels, and the finest level has resolution 53760-by-61440. The modified
image has only three coarse resolution levels. The spatial referencing of the modified image has been
adjusted to enforce a consistent aspect ratio and to register features at each level.

bim = bigimage('tumor_091R.tif');

Display the entire bigimage at the finest resolution level.

bshow = bigimageshow(bim);

Specify four [x y] block locations from the finest level. The first two blocks overlap in the vertical
direction. The second two blocks are adjacent horizontally.

xyLocations = [...
 2800 1300; ...
 2800 1400; ...
 1500 2400; ...
 1800 2400];
blockSize = [300,300];

All blocks are from the same image. Specify the image number as 1 for all blocks.

imageNumber = [1 1 1 1]';

Create a blockLocationSet object that stores block locations.

locationSet = blockLocationSet(imageNumber,xyLocations,blockSize);

1 Functions

1-164

Create a bigimageDatastore object that reads blocks from big image bim at locations specified by
the blockLocationSet object.

bimds = bigimageDatastore(bim,'BlockLocationSet',locationSet);

Read two blocks at a time from the datastore and display them in a montage.

bimds.ReadSize = 2;
while hasdata(bimds)
 figure
 blocks = read(bimds);
 montage(blocks,'BorderSize',5,'BackgroundColor','b');
end

 bigimageDatastore

1-165

Compatibility Considerations
bigimageDatastore is not recommended
Not recommended starting in R2021a

Starting in R2021a, the bigimageDatastore object, which reads data from bigimage objects, is no
longer recommended. Instead, use the blockedImageDatastore object, which reads data from
blockedImage objects. The blockedImage object offers several advantages including extension to
N-D processing, a simpler interface, and custom support for reading and writing nonstandard image
formats.

Code Updates

Update all instances of the bigimageDatastore object.

Discouraged Usage Recommended Replacement
This example creates a bigimageDatastore
object.

bim = bigimage('tumor_091R.tif');
bimds = bigimageDatastore(bim);

Here is equivalent code, replacing the
bigimageDatastore object with the new
blockedImageDatastore object.

bim = blockedImage('tumor_091R.tif');
bimds = blockedImageDatastore(bim);

The blockedImageDatastore object supports some different properties and functions than the
bigimageDatastore object. For example, the blockedImageDatastore object does not support
the BlockOffset and IncompleteBlocks properties, and it adds support for the TotalNumBlocks
property. The blockedImageDatastore object does not support the readRelative function.

1 Functions

1-166

The Mask and InclusionThreshold properties of bigimageDatastore are not
recommended

Starting in R2020b, the Mask and InclusionThreshold properties of bigimageDatastore are no
longer recommended. Instead, first specify a mask and inclusion threshold as input arguments to the
selectBlockLocations function. Then, specify the resulting blockLocationSet object as an
input to bigimageDatastore.

The table shows some typical usages of bigimageDatastore and how to update your code to use
selectBlockLocations.

Not Recommended Recommended
b = bigimageDatastore(bigimg,1,'Masks',m) bls = selectBlockLocations(bigimg,'Masks',m);

b = bigimageDatastore(bigimg,'BlockLocationSet',bls)
b = bigimageDatastore(bigimg,3,'Masks',m,'InclusionThreshold',t)bls = selectBlockLocations(bigimg,'Levels',3, ...

 'Masks',m,'InclusionThreshold',t);
b = bigimageDatastore(bigimg,'BlockLocationSet',bls)

References
[1] Bejnordi, Babak Ehteshami, Mitko Veta, Paul Johannes van Diest, Bram van Ginneken, Nico

Karssemeijer, Geert Litjens, Jeroen A. W. M. van der Laak, et al. “Diagnostic Assessment of
Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast
Cancer.” JAMA 318, no. 22 (December 12, 2017): 2199–2210. https://doi.org/10.1001/
jama.2017.14585.

See Also
blockedImage | selectBlockLocations | blockLocationSet

Topics
“Create Labeled Blocked Image from ROIs and Masks”
“Preprocess Multiresolution Images for Training Classification Network”
“Datastores for Deep Learning” (Deep Learning Toolbox)

External Websites
https://camelyon17.grand-challenge.org/Data/

Introduced in R2019b

 bigimageDatastore

1-167

https://camelyon17.grand-challenge.org/Data/

countEachLabel
(Not recommended) Count number of pixel labels for each class of bigimageDatastore object

Note The countEachLabel function of the bigimageDatastore object is not recommended. Use
the countEachLabel function associated with the blockedImageDatastore object instead. For
more information, see “Compatibility Considerations”.

Syntax
counts = countEachLabel(bigds)

Description
counts = countEachLabel(bigds) returns the number of each pixel label for all big images in
big image datastore bigds.

Examples

Calculate Class Weights of Labeled Big Images

Load pixel label data.

load('buildingPixelLabeled.mat');

Specify the classes and pixel label IDs of the pixel label data.

pixelLabelID = [1 2 3 4];
classNames = ["sky" "grass" "building" "sidewalk"];

Create a bigimage to manage the pixel label data.

bigLabeledImage = bigimage(uint8(label),'Classes',classNames,'PixelLabelIDs',pixelLabelID);
bigimageshow(bigLabeledImage)

1 Functions

1-168

Create a bigimageDatastore that reads blocks of size 200-by-150 pixels at the finest resolution
level from bigLabeledImage.

level = 1;
blockSize = [200 150];
biglabelds = bigimageDatastore(bigLabeledImage,level,'BlockSize',blockSize);

Count the number of pixel labels for each class.

tbl = countEachLabel(biglabelds)

tbl=4×3 table
 Name PixelCount BlockPixelCount
 __________ __________ _______________

 "sky" 81525 1.58e+05
 "grass" 32983 51200
 "building" 1.8036e+05 3.072e+05
 "sidewalk" 10491 51200

Balance the classes by using uniform prior weighting.

prior = 1/numel(classNames);
uniformClassWeights = prior ./ tbl.PixelCount

uniformClassWeights = 4×1
10-4 ×

 countEachLabel

1-169

 0.0307
 0.0758
 0.0139
 0.2383

Balance the classes by using inverse frequency weighting.

 totalNumberOfPixels = sum(tbl.PixelCount);
 freq = tbl.PixelCount / totalNumberOfPixels;
 invFreqClassWeights = 1./freq

invFreqClassWeights = 4×1

 3.7456
 9.2580
 1.6931
 29.1067

Balance the classes by using median frequency weighting.

freq = tbl.PixelCount ./ tbl.BlockPixelCount;
medFreqClassWeights = median(freq) ./ freq

medFreqClassWeights = 4×1

 1.0689
 0.8562
 0.9394
 2.6917

Input Arguments
bigds — Big image datastore
bigimageDatastore object

Big image datastore, specified as a bigimageDatastore object.

Output Arguments
counts — Label information
table

Label information, returned as a table that contains three variables.

Pixel Count Variables Description
Name Pixel label class name
PixelCount Number of pixels in class
ImagePixelCount Total number of pixels in images that have an

instance of the class

1 Functions

1-170

Tips
You can use the label information returned by countEachLabel to calculate class weights for class
balancing. For example, for labeled pixel data information in tbl:

• Uniform class balancing weights each class such that each contains a uniform prior probability:

numClasses = height(tbl)
prior = 1/numClasses;
classWeights = prior./tbl.PixelCount

• Inverse frequency balancing weights each class such that underrepresented classes are given
higher weight:

totalNumberOfPixels = sum(tbl.PixelCount)
frequency = tbl.PixelCount / totalNumberOfPixels;
classWeights = 1./frequency

• Median frequency balancing weights each class using the median frequency:

imageFreq = tbl.PixelCount ./ tbl.ImagePixelCount
classWeights = median(imageFreq) ./ imageFreq

You can pass the calculated class weights to a pixelClassificationLayer.

Compatibility Considerations
countEachLabel function is not recommended
Not recommended starting in R2021a

Starting in R2021a, the bigimageDatastore object and its object functions, which operate on data
from bigimage objects, are no longer recommended. Instead, use the blockedImageDatastore
object and its object functions, which operate on data from blockedImage objects. The
blockedImage object offers several advantages including extension to N-D processing, a simpler
interface, and custom support for reading and writing nonstandard image formats.

Although there are no plans to remove the bigimageDatastore object and its countEachLabel
function at this time, switch to the blockedImageDatastore object and its countEachLabel
function to take advantage of the additional capabilities and flexibility.

See Also
pixelClassificationLayer | trainNetwork | blockedImageDatastore | countEachLabel

Introduced in R2020a

 countEachLabel

1-171

partition
(Not recommended) Partition bigimageDatastore

Note The partition function of the bigimageDatastore object is not recommended. Use the
partition function associated with the blockedImageDatastore object instead. For more
information, see “Compatibility Considerations”.

Syntax
outds = partition(bigds,n,index)

Description
outds = partition(bigds,n,index) partitions big image datastore bigds into the number of
parts specified by n and returns the partition corresponding to the index index.

Input Arguments
bigds — Big image datastore
bigimageDatastore object

Big image datastore, specified as a bigimageDatastore object.

n — Number of partitions
positive integer

Number of partitions, specified as a positive integer.
Example: 3
Data Types: double

index — Index
positive integer

Index, specified as a positive integer.
Example: 1
Data Types: double

Output Arguments
outds — Output datastore
bigimageDatastore object

Output datastore, returned as a bigimageDatastore object.

1 Functions

1-172

Compatibility Considerations
partition function is not recommended
Not recommended starting in R2021a

Starting in R2021a, the bigimageDatastore object and its object functions, which operate on data
from bigimage objects, are no longer recommended. Instead, use the blockedImageDatastore
object and its object functions, which operate on data from blockedImage objects. The
blockedImage object offers several advantages including extension to N-D processing, a simpler
interface, and custom support for reading and writing nonstandard image formats.

Although there are no plans to remove the bigimageDatastore object and its partition function
at this time, switch to the blockedImageDatastore object and its partition function to take
advantage of the additional capabilities and flexibility.

See Also
blockedImageDatastore | partition | numpartitions

Introduced in R2019b

 partition

1-173

read
(Not recommended) Read data from bigimageDatastore

Note The read function of the bigimageDatastore object is not recommended. Use the read
function associated with the blockedImageDatastore object instead. For more information, see
“Compatibility Considerations”.

Syntax
data = read(bigds)
[data,info] = read(bigds)

Description
data = read(bigds) returns a batch of data from a big image datastore, bigds. Subsequent calls
to the read function continue reading from the endpoint of the previous call.

[data,info] = read(bigds) also returns information about the extracted data, including
metadata, in info.

Examples

Read Data from Big Image Datastore

Create a bigimage using a modified version of image "tumor_091.tif" from the CAMELYON16 data
set. The original image is a training image of a lymph node containing tumor tissue. The original
image has eight resolution levels, and the finest level has resolution 53760-by-61440. The modified
image has only three coarse resolution levels. The spatial referencing of the modified image has been
adjusted to enforce a consistent aspect ratio and to register features at each level.

bim = bigimage('tumor_091R.tif');

Create a bigimageDatastore that manages blocks of the big image at the finest resolution level.

bimds = bigimageDatastore(bim,1)

bimds =
 bigimageDatastore with properties:

 ReadSize: 1
 BorderSize: [0 0]
 PadMethod: 0
 Images: [1x1 bigimage]
 Levels: 1
 BlockSize: [1024 1024]
 BlockOffsets: [1024 1024]
 IncompleteBlocks: 'same'
 BlockLocationSet: [1x1 blockLocationSet]

1 Functions

1-174

Change the 'ReadSize' property of the datastore to 3.

bimds.ReadSize = 3;

Read one batch of image data from the datastore.

[data,info] = read(bimds);

Display the returned image data in a montage with a black border around each image. The montage
shows that the datastore reads blocks of the big image in row-major order.

montage(data,'Size',[1 3],"BorderSize",10)

Display the information about the returned data.

info

info = struct with fields:
 Level: [1 1 1]
 ImageNumber: [1 1 1]
 BlockStartWorld: [3x2 double]
 BlockEndWorld: [3x2 double]
 DataStartWorld: [3x2 double]
 DataEndWorld: [3x2 double]

Inspect the (x,y) coordinates of the center of the top-left pixel of each returned block of data.

info.BlockStartWorld

ans = 3×2

 1 1
 1025 1
 2049 1

 read

1-175

Input Arguments
bigds — Big image datastore
bigimageDatastore

Big image datastore, specified as a bigimageDatastore object.

• The datastore contains one or more big images, Images, each with Channels number of
channels.

• The datastore reads blocks from each big image at specified resolution levels, Levels.
• The datastore specifies the number of blocks to read in each batch, ReadSize.
• The datastore specifies the m-by-n pixel size of blocks to read, BlockSize.

Output Arguments
data — Output data
cell array

Output data, returned as a cell array with ReadSize elements. Each cell contains an m-by-n-by-
Channels numeric array.

info — Information about output data
struct

Information about output data, returned as a struct containing these fields.

Field Name Description
Level Resolution level of the data, specified as a 1-by-

ReadSize vector of positive integers.
ImageNumber Index of the big image providing the data, specified

as a 1-by-ReadSize vector of positive integers.
BlockStartWorld (x,y) coordinates of the center of the top-left pixel of

the data, excluding padding, specified as a
ReadSize-by-2 numeric vector. Values are in world-
coordinates.

BlockEndWorld (x,y) coordinates of the center of the bottom-right
pixel of the data, excluding padding, specified as a
ReadSize-by-2 numeric vector. Values are in world-
coordinates.

DataStartWorld (x,y) coordinates of the center of the top-left pixel of
the data, including padding, specified as a ReadSize-
by-2 numeric vector. Values are in world-coordinates.

DataEndWorld (x,y) coordinates of the center of the bottom-right
pixel of the data, including padding, specified as a
ReadSize-by-2 numeric vector. Values are in world-
coordinates.

1 Functions

1-176

Compatibility Considerations
read function is not recommended
Not recommended starting in R2021a

Starting in R2021a, the bigimageDatastore object and its object functions, which operate on data
from bigimage objects, are no longer recommended. Instead, use the blockedImageDatastore
object and its object functions, which operate on data from blockedImage objects. The
blockedImage object offers several advantages including extension to N-D processing, a simpler
interface, and custom support for reading and writing nonstandard image formats.

Although there are no plans to remove the bigimageDatastore object and its read function at this
time, switch to the blockedImageDatastore object and its read function to take advantage of the
additional capabilities and flexibility.

See Also
read | blockedImageDatastore

Topics
“Create Labeled Blocked Image from ROIs and Masks”

Introduced in R2019b

 read

1-177

readRelative
(Not recommended) Read neighboring block from bigimageDatastore using relative position

Note The readRelative function of the bigimageDatastore object is not recommended. Use the
blockedImageDatastore object and its object functions instead. For more information, see
“Compatibility Considerations”.

Syntax
data = readRelative(bigds,sourceInfo,blockOffset)
[data,info] = readRelative(bigds,sourceInfo,blockOffset)

Description
data = readRelative(bigds,sourceInfo,blockOffset) returns the block from big image
datastore bigds that neighbors the source block sourceInfo with offset blockOffset.

[data,info] = readRelative(bigds,sourceInfo,blockOffset) also returns information
about the extracted data, including metadata, in info.

Examples

Read Neighboring Big Image Blocks

Create a bigimage using a modified version of image "tumor_091.tif" from the CAMELYON16 data
set. The original image is a training image of a lymph node containing tumor tissue. The original
image has eight resolution levels, and the finest level has resolution 53760-by-61440. The modified
image has only three coarse resolution levels. The spatial referencing of the modified image has been
adjusted to enforce a consistent aspect ratio and to register features at each level.

bim = bigimage('tumor_091R.tif');

Create a bigimageDatastore that manages blocks of the big image at the finest resolution level.

bimds = bigimageDatastore(bim,1);

Read the first block from the datastore.

[b,binfo] = read(bimds);
b = b{1};

Read the neighboring blocks to the left and right of the block. The left neighboring block is empty
because the block is out of the bounds of bim.

bLeft = readRelative(bimds,binfo,[0 -1]);
bRight = readRelative(bimds,binfo,[0 1]);

Display the blocks as a montage. The left neighboring block appears black because it is empty.

1 Functions

1-178

montage({bLeft,b,bRight},'Size',[1 3],'BorderSize',5,'BackgroundColor','b')

Input Arguments
bigds — Big image datastore
bigimageDatastore object

Big image datastore, specified as a bigimageDatastore object.

sourceInfo — Information about source block
struct

Information about source block, specified as a struct containing at least these fields. The value of
info returned by read is a valid input for sourceInfo.

Field Name Description
Level Resolution level of the data, specified as a positive

integers.
ImageNumber Index of the big image providing the data, specified

as a positive integer.
BlockStartWorld (x,y) world coordinates of the top-left corner of the

data, specified as a 1-by-2 numeric vector. The
coordinates correspond to a position on the boundary
of the block, not the center of the top-left pixel.

blockOffset — Block offset
1-by-2 vector of integers

Block offset, specified as a 1-by-2 vector of integers in units of blocks. The two elements specify the
vertical and horizontal offset from the source block. respectively.

 readRelative

1-179

Output Arguments
data — Output data
numeric array

Output data, returned as a numeric array. If the requested block is outside the bounds of the source
image, then readRelative returns an empty block, []

info — Information about output data
struct

Information about output data, returned as a struct containing these fields.

Field Name Description
Level Resolution level of the data, specified as a 1-by-

ReadSize vector of positive integers.
ImageNumber Index of the big image providing the data, specified

as a 1-by-ReadSize vector of positive integers.
BlockStartWorld (x,y) coordinates of the center of the top-left pixel of

the data, excluding padding, specified as a
ReadSize-by-2 numeric vector. Values are in world-
coordinates.

BlockEndWorld (x,y) coordinates of the center of the bottom-right
pixel of the data, excluding padding, specified as a
ReadSize-by-2 numeric vector. Values are in world-
coordinates.

DataStartWorld (x,y) coordinates of the center of the top-left pixel of
the data, including padding, specified as a ReadSize-
by-2 numeric vector. Values are in world-coordinates.

DataEndWorld (x,y) coordinates of the center of the bottom-right
pixel of the data, including padding, specified as a
ReadSize-by-2 numeric vector. Values are in world-
coordinates.

Tips
• readRelative ignores masks.
• readRelative respects the PadMethod and BorderSize properties of the big image datastore.
• If the requested block is incomplete and bigds.IncompleteBlocks has a value of 'exclude',

then readRelative returns an empty block

Compatibility Considerations
readRelative function is not recommended
Not recommended starting in R2021a

Starting in R2021a, the bigimageDatastore object and its object functions, which operate on data
from bigimage objects, are no longer recommended. Instead, use the blockedImageDatastore
object and its object functions, which operate on data from blockedImage objects. The

1 Functions

1-180

blockedImage object offers several advantages including extension to N-D processing, a simpler
interface, and custom support for reading and writing nonstandard image formats.

Although there are no plans to remove the bigimageDatastore object and its readRelative
function at this time, switch to the blockedImageDatastore object to take advantage of the
additional capabilities and flexibility.

See Also
blockedImageDatastore

Introduced in R2019b

 readRelative

1-181

bigimageshow
Display 2-D blockedImage object

Description
A bigimageshow object displays data from a blockedImage object. The bigimageshow object
progressively loads image data based on image extents and screen resolution.

Creation

Syntax
bigimageshow(bim)
bigimageshow(hax,bim)
b = bigimageshow(___)
b = bigimageshow(___ ,Name,Value)

Description

bigimageshow(bim) displays the 2-D blocked image bim.

For categorical data, bigimageshow sets the axis colormap to parula. For numeric data, gray is
the default colormap.

bigimageshow(hax,bim) displays the blocked image, bim, in the axes specified by hax.

b = bigimageshow(___) returns the bigimageshow object b. Use b to modify the display
settings after you display the blocked image.

b = bigimageshow(___ ,Name,Value) sets initial display properties on page 1-183 using name-
value pairs. You can specify multiple name-value pairs. Enclose each argument or property name in
quotes.

For example, bigimageshow(bim,'GridVisible','on','GridLineStyle',':') displays the
blocked image, bim, and overlays dotted grid lines.

Input Arguments

bim — Blocked image
blockedImage object

Blocked image, specified as a blockedImage object.

hax — Parent axes
axes object

Parent axes of bigimageshow object, specified as an axes object.

1 Functions

1-182

Properties
Parent — Parent axes of bigimageshow object
gca (default) | axes object

Parent axes of the bigimageshow object, specified as an axes object. If you do not specify a parent,
bigimageshow uses the handle to the current figure, gca. If a figure does not exist, bigimageshow
creates a new figure.

CData — 2-D blockedImage object to display
blockedImage object

2-D blockedImage object to display, specified as a blockedImage object.

CDataMapping — Color data mapping method
'direct' (default) | 'scaled'

Color data mapping method, specified as 'direct' or 'scaled'. Use this property to control the
mapping of color data values in CData into the colormap. CData must be a vector or a matrix
defining indexed colors. This property has no effect if CData is a 3-D array defining RGB colors.

The methods have these effects:

• 'direct' — Interpret the values as indices into the current colormap. Values with a decimal
portion are fixed to the nearest lower integer.

• If the values are of type double or single, values of 1 or less map to the first color in the
colormap. Values equal to or greater than the length of the colormap map to the last color in
the colormap.

• If the values are of type uint8, uint16, uint32, uint64 , int8, int16, int32, or int64,
values of 0 or less map to the first color in the colormap. Values equal to or greater than the
length of the colormap map to the last color in the colormap (or up to the range limits of the
type).

• If the values are of type logical, values of 0 map to the first color in the colormap and values
of 1 map to the second color in the colormap.

• 'scaled' — Scale the values to range between the minimum and maximum color limits. The
CLim property of the axes contains the color limits.

AlphaData — Transparency data
1 (default) | numeric scalar | blockedImage object

Transparency data, specified in one of these forms:

• Numeric scalar — Use a consistent transparency across the entire image.
• 2-D blockedImage object — Transparency data must have the same rows and columns extent as

the CData 2-D blockedImage object. The blocked image can have multiple resolution levels, in
which case, bigimageshow selects the level closest to the current ResolutionLevel for display.

The AlphaDataMapping property controls how MATLAB interprets the alpha data transparency
values.
Example: 0.5

 bigimageshow

1-183

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

AlphaDataMapping — Interpretation of AlphaData values
'none' (default) | 'scaled' | 'direct'

Interpretation of AlphaData values, specified as one of these values:

• 'none' — Interpret the values as transparency values. A value of 1 or greater is completely
opaque, a value of 0 or less is completely transparent, and a value between 0 and 1 is
semitransparent.

• 'scaled' — Map the values into the figure’s alphamap. The minimum and maximum alpha limits
of the axes determine the alpha data values that map to the first and last elements in the
alphamap, respectively. For example, if the alpha limits are [3 5], alpha data values less than or
equal to 3 map to the first element in the alphamap. Alpha data values greater than or equal to 5
map to the last element in the alphamap. The ALim property of the axes contains the alpha limits.
The Alphamap property of the figure contains the alphamap.

• 'direct' — Interpret the values as indices into the figure’s alphamap. Values with a decimal
portion are fixed to the nearest lower integer:

• If the values are of type double or single, values of 1 or less map to the first element in the
alphamap. Values equal to or greater than the length of the alphamap map to the last element
in the alphamap.

• If the values are of type integer, then values of 0 or less map to the first element in the
alphamap. Values equal to or greater than the length of the alphamap map to the last element
in the alphamap (or up to the range limits of the type). The integer types are uint8, uint16,
uint32, uint64, int8, int16, int32, and int64.

• If the values are of type logical, values of 0 map to the first element in the alphamap and
values of 1 map to the second element in the alphamap.

ResolutionLevel — Resolution level
positive integer | 'fine' | 'coarse'

Resolution level of the 2-D blockedImage object to display, specified as a positive integer that
identifies a resolution level of the 2-D blockedImage object in the CData property. Resolution level
can also be specified as 'fine' or 'coarse' corresponding to these two limits. The default value is
computed based on available screen space and resolution.

ResolutionLevelMode — Selection mode for resolution level
'auto' (default) | 'manual'

Selection mode for resolution level, specified as one of these values:

• 'auto' — Automatically select resolution level based on parent axes and available screen size.
• 'manual' — Manually specify resolution level by setting the ResolutionLevel property.

GridVisible — Grid visibility
'off' (default) | 'on'

Grid visibility, specified as 'off' or 'on'. bigimageshow spaces the grid in world units to include
as many pixels as specified by CData.BlockSize at the current GridResolutionLevel.

1 Functions

1-184

GridLevel — Resolution level of blocked image at which to show grid
positive integer | 'fine' | 'coarse'

Resolution level of blocked image at which to show grid, specified as one of these values:

• positive integer — Display the grid specified as a numeric scalar that identifies a resolution level
of the 2-D blockedImage object in CData property. Value is between 1 and the value of the
NumLevels property of the blocked image in the bigimageshow CData property.

• 'fine' — Display the grid at the finest resolution level.
• 'coarse' — Display the grid at the coarsest resolution level.

By default, GridLevel has the same value as ResolutionLevel property.

GridLevelMode — Selection mode for grid level
'auto' (default) | 'manual'

Selection mode for grid level, specified as one of these values:

• 'auto' — Select the grid resolution level to match the image data resolution level
ResolutionLevel.

• 'manual' — Manually specify the grid resolution level by setting the GridLevel property.

GridColor — Grid line color
'blue' (default) | RGB triplet | hexadecimal color code | color name | short color name

Grid line color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short color
name. To display the grid lines, set the GridVisible property to 'on'.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'

 bigimageshow

1-185

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: b.GridColor = [1 0 0]
Example: b.GridColor = 'r'
Example: b.GridColor = 'red'
Example: b.GridColor = '#FF0000'

GridAlpha — Grid line transparency
0.8 (default) | value in the range [0,1]

Grid line transparency, specified as a value in the range [0, 1]. A value of 1 means completely opaque
and a value of 0 means completely transparent. To display the grid lines, set the GridVisible
property to 'on'.

GridLineWidth — Grid line width
1 (default) | positive numeric value

Grid line width, specified as a positive numeric value, measured in points. To display the grid lines,
set the GridVisible property to 'on'.

GridLineStyle — Grid line style
'-' (default) | '--' | ':' | '-.'

Grid line style, specified as one of the line styles in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dot line

1 Functions

1-186

To display the grid lines, set the GridVisible property to 'on'.

Interpolation — Interpolation method
'linear' (default) | 'nearest'

Interpolation method used to resample pixels, specified as 'linear' for bilinear interpolation, or
'nearest' for nearest neighbor interpolation.

For categorical data, bigimageshow supports only nearest neighbor interpolation. For logical data,
the default value is 'nearest'.

On Windows systems with a software version of OpenGL, the only supported interpolation option is
'nearest'.

Visible — Control image visibility
'on' (default) | 'off'

Control image visibility, specified as one of these values:

• 'on' — Display the bigimageshow object.
• 'off' — Hide the object without deleting it. You still can access the properties of an invisible

object.

Object Functions
showmask Show mask overlay at specified inclusion threshold
hidemask Hide mask overlay in bigimageshow object
showlabels Display label overlay on bigimageshow object
hidelabels Hide label overlay on bigimageshow object

Examples

Visualize 2-D Blocked Image at Different Resolution Levels

This example uses a modified version of a training image of a lymph node containing tumor tissue
(tumor_091.tif) from the CAMELYON16 data set. The modified image has three coarse resolution
levels and has been adjusted to enforce a consistent aspect ratio and to register features at each
level.

Create a blocked image from the sample image.

bim = blockedImage('tumor_091R.tif');

Display the blocked image.

h = bigimageshow(bim);

 bigimageshow

1-187

Zoom in on a region in the image.

xlim([2100, 2600])
ylim([1800 2300])

1 Functions

1-188

To view the image at the three resolution levels, specify a new value for the ResolutionLevel
property. As you view each resolution level, note that the axis limits remain the same, but
bigimageshow ensures that the images from other levels are correctly sized. When you set
ResolutionLevel , the ResolutionLevelMode value changes to 'manual' automatically.

h.ResolutionLevel = 3;
pause(1);
h.ResolutionLevel = 2;
pause(1);
h.ResolutionLevel = 1;
pause(1);

 bigimageshow

1-189

Visualize Blocked Image with Grid Lines Indicating Blocks

Create a blocked image from the sample image tumor_091R.tif. This sample image is a training
image of a lymph node containing tumor tissue from the CAMELYON16 data set. The image has been
modified to have three coarse resolution levels, and has been adjusted to enforce a consistent aspect
ratio and to register features at each level.

bim = blockedImage('tumor_091R.tif','BlockSize', [128 128]);

Display the blocked image with bigimageshow. Specify that you want the grid to be visible at the
finest resolution level (level 1). Also specify the color, width, and transparency of the grid lines.

 h = bigimageshow(bim,...
 'GridVisible','on','GridLevel',1,...
 'GridLineWidth', 2,'GridColor','k','GridAlpha',0.3);

1 Functions

1-190

Validate Mask using Alpha Layer

Create a blocked image from the sample image tumor_091R.tif. This sample image is a training
image of a lymph node containing tumor tissue from the CAMELYON16 data set. The image has been
modified to have three coarse resolution levels, and has been adjusted to enforce a consistent aspect
ratio and to register features at each level.

bim = blockedImage('tumor_091R.tif');

Create a coarse mask using the blockedImage apply object function.

bmask = apply(bim, @(bs)im2gray(bs.Data)<120, "Level", 3);

Overlay the mask as an alpha layer.

ha1 = subplot(1,2,1);
h = bigimageshow(bim);
h.AlphaData = bmask;
h.AlphaDataMapping = 'direct';
alphamap([0.4 1])
h.Parent.Color = 'r';

 bigimageshow

1-191

Independently visualize the mask.

ha2 = subplot(1,2,2);
bigimageshow(bmask);
linkaxes([ha1, ha2]);
%

1 Functions

1-192

Improve Mask Creation Using InclusionThreshold and BlockSize

Create a blocked image from the sample image tumor_091R.tif. This sample image is a training
image of a lymph node containing tumor tissue from the CAMELYON16 data set. The image has been
modified to have three coarse resolution levels, and has been adjusted to enforce a consistent aspect
ratio and to register features at each level.

bim = blockedImage('tumor_091R.tif');

Create a mask using the coarsest resolution level of the blocked image.

bmask = apply(bim, @(im)im2gray(im.Data)<120, "Level", 3);

Display the blocked image with the mask.

h = bigimageshow(bim);
showmask(h, bmask);

 bigimageshow

1-193

Experiment with different inclusion thresholds to get a better fit of the mask over the stained area. By
default, the inclusion threshold is 0.5.

showmask(h, bmask, 'InclusionThreshold', 0.2);
showmask(h, bmask, 'InclusionThreshold', 0);
showmask(h, bmask, 'InclusionThreshold', 0.06);

1 Functions

1-194

Experiment with different different block sizes, in conjunction with different inclusion thresholds, to
get a better fit of the mask over the stained area. By default, the block size for the coarsest resolution
level is 625-by-670.

showmask(h, bmask, 'InclusionThreshold', 0.06, 'BlockSize', [256 256]);
showmask(h, bmask, 'InclusionThreshold', 0.14, 'BlockSize', [256 256]);

 bigimageshow

1-195

When you are satisfied with the mask, use it to segment the lymph node.

bls = selectBlockLocations(bim,'BlockSize', [256 256],...
 'Mask', bmask, 'InclusionThreshold', 0.14);
bregion = apply(bim, @(bs)bs.Data, 'BlockLocationSet', bls);
figure
bigimageshow(bregion);
%

1 Functions

1-196

 bigimageshow

1-197

Display Blocked Image with Label Overlay

Create a blocked image from the sample image tumor_091R.tif. This sample image is a training
image of a lymph node containing tumor tissue from the CAMELYON16 data set. The image has been
modified to have three coarse resolution levels, and has been adjusted to enforce a consistent aspect
ratio and to register features at each level.

bim = blockedImage("tumor_091R.tif");

Create a label image at a coarse resolution level.

First get a single-resolution image. By default, gather gets data from the coarsest resolution level.

cim = gather(bim);

Convert the image to grayscale. Use multithresh to calculate three threshold values to convert the
image into a four-level image.

cgim = im2gray(cim);
numClasses = 4;
thresh = multithresh(cgim,numClasses-1);

Segment the image into four regions using imquantize, specifying the threshold levels returned by
multithresh.

1 Functions

1-198

labels = imquantize(cgim,thresh);
imagesc(labels)
axis square
title("Coarse Label Image")

Convert the labels image back to a blockedImage object, using the same spatial referencing as
the original image at the coarsest resolution level.

blabels = blockedImage(labels,WorldStart=bim.WorldStart(3,1:2),...
 WorldEnd=bim.WorldEnd(3,1:2));

Display the original blocked image.

figure
hB = bigimageshow(bim);

 bigimageshow

1-199

Overlay the labels image on the original blocked image.

showlabels(hB,blabels)

1 Functions

1-200

References
[1] Bejnordi, Babak Ehteshami, Mitko Veta, Paul Johannes van Diest, Bram van Ginneken, Nico

Karssemeijer, Geert Litjens, Jeroen A. W. M. van der Laak, et al. “Diagnostic Assessment of
Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast
Cancer.” JAMA 318, no. 22 (December 12, 2017): 2199–2210. https://doi.org/10.1001/
jama.2017.14585.

[2] Grand Challenge. https://camelyon17.grand-challenge.org/Data/.

See Also
blockedImage | imshow

Introduced in R2019b

 bigimageshow

1-201

https://camelyon17.grand-challenge.org/Data/

hidemask
Hide mask overlay in bigimageshow object

Syntax
hidemask(b)

Description
hidemask(b) hides the mask overlay in the specified bigimageshow object, b.

Input Arguments
b — bigimageshow object displaying blocked image data
bigimageshow object

bigimageshow object that is displaying blocked image data, specified as a bigimageshow object.
The CData property of the bigimageshow object specifies the blocked image data that is being
displayed.

See Also
showmask | blockedImage | bigimageshow

Introduced in R2019b

1 Functions

1-202

showmask
Show mask overlay at specified inclusion threshold

Syntax
showmask(b,mask)
showmask(b,mask,level)
showmask(___ ,Name,Value)

Description
showmask(b,mask) displays the mask, mask, as an overlay on the blocked image displayed in the
bigimageshow object, b. The overlay shows the blocks that the blockedImage apply object
function processes with the specified mask. mask is a 2-D blocked image object the same size as the
displayed image. If mask has multiple resolution levels, bigimageshow uses the finest level.

• bigimageshow displays blocks of the mask that exceed a minimum percentage of nonzero pixels
(by default, 50%) with a green tint. These blocks are considered regions of interest and would be
selected for processing by the apply object function of the blockedImage object.

• bigimageshow displays blocks of the mask below the minimum percentage of nonzero pixels with
a red tint. These blocks are considered background and would not be processed by the apply
object function.

showmask(b,mask,level) overlays a mask on a bigimageshow object, b, at the specified
resolution level of the blocked image data.

showmask(___ ,Name,Value) modifies the appearance of the mask blocks by using name-value
pair arguments.

Examples

Create Single-Resolution Mask from Multiresolution Blocked Image

Create a blocked image from the sample image tumor_091R.tif. This sample image is a training image
of a lymph node containing tumor tissue from the CAMELYON16 data set. The image has been
modified to have three coarse resolution levels, and has been adjusted to enforce a consistent aspect
ratio and to register features at each level.

bim = blockedImage('tumor_091R.tif');

Display the entire blocked image at the finest resolution level, including a grid of the block
boundaries.

bshow = bigimageshow(bim,'ResolutionLevel','fine', ...
 'GridVisible','on','GridLevel',1);

 showmask

1-203

Create a mask of the coarsest resolution level.

First create a single-resolution image of the coarsest resolution level. By default, the gather function
gets data from the coarsest resolution level.

imcoarse = gather(bim);

Convert the coarse image to grayscale.

graycoarse = rgb2gray(imcoarse);

Binarize the grayscale image. In the binarized image, the object of interest is black and the
background is white.

bwcoarse = imbinarize(graycoarse);

Take the complement of the binarized image. The resulting mask follows the convention in which the
object of interest is white and the background is black.

mask = imcomplement(bwcoarse);

Create a blocked image containing the mask.

Use the same spatial referencing as the original blocked image. Determine the coarsest resolution
level and capture the spatial referencing information of the blocked image at the first two dimensions
at that level.

1 Functions

1-204

coarsestLevel = bim.NumLevels;
originalWorldStartCoarsest = bim.WorldStart(coarsestLevel,1:2);
originalWorldEndCoarsest = bim.WorldEnd(coarsestLevel,1:2);

Create the blocked image for the mask.

bmask = blockedImage(mask,'WorldStart',originalWorldStartCoarsest, ...
 'WorldEnd',originalWorldEndCoarsest);

Display the mask image.

figure
bigimageshow(bmask)

 showmask

1-205

Overlay the mask on the display of the original blocked image using the showmask function. To
highlight all blocks that contain at least one nonzero mask pixel, specify an inclusion threshold of 0.

showmask(bshow,bmask,'InclusionThreshold',0)

1 Functions

1-206

Input Arguments
b — bigimageshow object displaying blocked image data
bigimageshow object

bigimageshow object displaying blocked image data, specified as a bigimageshow object. The
CData property of the bigimageshow object specifies the blocked image data that is being
displayed.

mask — Mask
[] (default) | single-resolution blockedImage object

Mask, specified as a single-resolution blockedImage object with a ClassUnderlying property
value of logical. The spatial extents of the mask must be the same as the blocked image data at the
displayed resolution level.

level — Resolution level
positive integer

Resolution level at which to display the bocked image data, specified as a positive integer.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

 showmask

1-207

Example: showmask(b,mask,'InclusionThreshold',0.4)

Alpha — Mask transparency
0.3 (default) | scalar value in the range [0, 1]

Mask transparency, specified as a scalar value in the range [0, 1]. A value of 1 means the mask is
completely opaque and a value of 0 means the mask is completely transparent.

BlockSize — Block size used with apply function
1-by-2 vector of positive integers

Block size used with the apply function, specified as a 1-by-2 vector of positive integers of the form
[numrows numcols]. The default value is equal to the BlockSize property of the
blockedimageobject in b.

InclusionThreshold — Inclusion threshold
0.5 (default) | number in the range [0, 1]

Inclusion threshold, specified as a number in the range [0, 1]. The inclusion threshold indicates the
minimum fraction of nonzero pixels in a mask block required to consider the mask block as a region
of interest.

• When the inclusion threshold is 0, the showmask function displays a mask block when at least one
pixel in the mask block is nonzero.

• When the inclusion threshold is 1, the showmask function displays a mask block only when all
pixels in the mask block are nonzero.

Tips
• When you call showmask for the first time, bigimageshow calculates the ratio of nonzero to zero

mask pixels for each block at the finest level of the displayed blockedImage. This calculation
takes some time to complete, so there can be some delay displaying the mask. When you make
subsequent calls to showmask, the function reuses the computed inclusion values and updates the
displayed mask more quickly.

See Also
hidemask | blockedImage | apply | bigimageshow

Topics
“Process Blocked Images Efficiently Using Mask”

Introduced in R2019b

1 Functions

1-208

hidelabels
Hide label overlay on bigimageshow object

Syntax
hidelabels(b)

Description
hidelabels(b) hides the label overlay on the specified bigimageshow object, b.

Input Arguments
b — bigimageshow object displaying blocked image data
bigimageshow object

bigimageshow object displaying blocked image data, specified as a bigimageshow object.

See Also
showlabels | bigimageshow | blockedImage

Introduced in R2021b

 hidelabels

1-209

showlabels
Display label overlay on bigimageshow object

Syntax
showlabels(b,labels)
showlabels(b,labels,Name=Value)

Description
showlabels(b,labels) displays the labels in the 2-D blocked image labels as an overlay on the
blocked image displayed in the bigimageshow object, b.

showlabels(b,labels,Name=Value) uses name-value arguments to modify the appearance of the
overlay.
Example: showlabels(b,labels,Colormap="jet") displays the label overlay using the "jet"
colormap.

Examples

Display Blocked Image with Label Overlay

Create a blocked image from the sample image tumor_091R.tif. This sample image is a training
image of a lymph node containing tumor tissue from the CAMELYON16 data set. The image has been
modified to have three coarse resolution levels, and has been adjusted to enforce a consistent aspect
ratio and to register features at each level.

bim = blockedImage("tumor_091R.tif");

Create a label image at a coarse resolution level.

First get a single-resolution image. By default, gather gets data from the coarsest resolution level.

cim = gather(bim);

Convert the image to grayscale. Use multithresh to calculate three threshold values to convert the
image into a four-level image.

cgim = im2gray(cim);
numClasses = 4;
thresh = multithresh(cgim,numClasses-1);

Segment the image into four regions using imquantize, specifying the threshold levels returned by
multithresh.

labels = imquantize(cgim,thresh);
imagesc(labels)
axis square
title("Coarse Label Image")

1 Functions

1-210

Convert the labels image back to a blockedImage object, using the same spatial referencing as
the original image at the coarsest resolution level.

blabels = blockedImage(labels,WorldStart=bim.WorldStart(3,1:2),...
 WorldEnd=bim.WorldEnd(3,1:2));

Display the original blocked image.

figure
hB = bigimageshow(bim);

 showlabels

1-211

Overlay the labels image on the original blocked image.

showlabels(hB,blabels)

1 Functions

1-212

Modify Transparency of Blocked Image Label Overlay

Create a blocked image using a modified version of image tumor_091R.tif from the CAMELYON16
data set. The original image is a training image of a lymph node containing tumor tissue. The original
image has eight resolution levels, and the finest level has resolution 53760-by-61440. The modified
image has only three coarse resolution levels. The spatial referencing of the modified image has been
adjusted to enforce a consistent aspect ratio and to register features at each level.

bim = blockedImage("tumor_091R.tif");

Create a mask at the coarsest resolution level and display it.

blabels = apply(bim,@(bs)rgb2lightness(bs.Data)<80,Level=3);
hbim = bigimageshow(blabels);

 showlabels

1-213

Display the original blocked image with the mask as a label overlay. Use the Alphadata and
Alphamap name-value arguments to display the mask background overlay as translucent and the
mask foreground overlay as fully transparent.

hbim = bigimageshow(bim);
showlabels(hbim,blabels,AlphaData=blabels,Alphamap=[0.8 0])

1 Functions

1-214

Display Categorical Labels as Blocked Image Overlay

Load a file containing an image, img, and its corresponding pixel label data, label. Convert the
image to a blockedImage object.

load("buildingPixelLabeled.mat")
bim = blockedImage(img);

Create a blocked image of the categorical pixel label data. Display the order of the four label
categories.

blabel = blockedImage(label);
labels = categories(blabel.InitialValue)

labels = 4x1 cell
 {'sky' }
 {'grass' }
 {'building'}

 showlabels

1-215

 {'sidewalk'}

Define a custom colormap specifying RGB triplets for each category. The first row of cmap
corresponds to undefined pixel labels, and the remaining four rows correspond to each categorical
label. Assign the sky overlay to display blue and the grass overlay to display green.

cmap = [0 0 0; 0 0 1; 0 1 0; 0 0 0; 0 0 0];

Define the transparency map.

amap = [.5 .5 0 0];

Display the original unlabeled blocked image and the label overlay on the same axes. The AlphaData
and Alphamap name-value arguments map each defined category in blabel to the corresponding
element in amap, making the sky and grass overlays translucent and the building and sidewalk
overlays fully transparent. Undefined pixel labels map to the first element in amap.

hbim = bigimageshow(bim);
showlabels(hbim,blabel,AlphaData=blabel,Alphamap=amap,Colormap=cmap)

Input Arguments
b — bigimageshow object displaying 2-D blocked image data
bigimageshow object

1 Functions

1-216

bigimageshow object displaying 2-D blocked image data, specified as a bigimageshow object.

labels — Labels
2-D blockedImage object | numeric matrix | logical matrix

Labels, specified as a 2-D blockedImage object, numeric matrix, or logical matrix. If labels is a
blockedImage object with multiple resolution levels, showlabels selects the level closest to the
current ResolutionLevel of b for display. If labels is specified as a numeric or logical matrix,
showlabels converts the matrix to a blockedImage object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: showlabels(b,labels,AlphaData=labels,Alphamap=[0 0.1 0.1 0.5 1])
specifies five varying transparency values in the overlay by mapping each element in AlphaData to
an index in Alphamap.

AlphaData — Transparency data
1 (default) | numeric scalar | 2-D blockedImage object

Transparency data, specified in one of these forms:

• Numeric scalar — Applies consistent transparency across the entire image.
• 2-D blockedImage object — Applies varying transparency values based on the underlying pixel

values. Transparency data must be the same size as the blockedImage object displayed in b.

The function interprets the numeric scalar or underlying pixel values as indices of the transparency
map specified by Alphamap. Values with a decimal portion are fixed to the nearest lower integer:

• If the values are of type double or single, values of 1 or less map to the first element of
Alphamap. Values equal to or greater than the length of Alphamap map to the last element of
Alphamap.

• If the values are of an integer data type, then values of 0 or less map to the first element of
Alphamap. Values equal to or greater than the length of Alphmap map to the last element of
Alphamap (or up to the range limits of the data type). The integer data types are uint8, uint16,
uint32, uint64, int8, int16, int32, and int64.

• If the values are of type logical, values of 0 map to the first element of Alphamap and values of
1 map to the second element of Alphamap.

• If AlphaData is a categorical blockedImage object, the defined categories map to
corresponding elements of Alphamap. You can verify the order in which categories map to
Alphamap by using the categories function.

Alphamap — Transparency map
0.5 (default) | numeric scalar or m-element vector

Transparency map, specified as a numeric scalar or m-element vector. All values must be in the range
[0, 1], where 0 is transparent and 1 is opaque. You can specify Alphamap as a 1-by-m or m-by-1
vector, where m is the number of transparency values.

Colormap — Colormap
"jet" (default) | c-by-3 colormap | string scalar | character vector

 showlabels

1-217

Colormap, specified as one of these values:

• A c-by-3 colormap, where c is the number of colors in the colormap. RGB triplets in each row of
the colormap must be normalized to the range [0, 1]. When c is greater than the number of labels l
in the blocked image labels, showlabels uses only the first l colors of the colormap.

• A string scalar or character vector corresponding to one of the valid inputs to the colormap
function. showlabels permutes the specified colormap so that adjacent labels are more distinct.

Example: [0.2 0.1 0.5; 0.1 0.5 0.8]
Example: "hot"
Data Types: single | double | char | string

See Also
hidelabels | bigimageshow | blockedImage

Introduced in R2021b

1 Functions

1-218

blendexposure
Create well-exposed image from images with different exposures

Syntax
J = blendexposure(I1,I2,...,In)
J = blendexposure(I1,I2,...,In,Name,Value)

Description
J = blendexposure(I1,I2,...,In) blends grayscale or RGB images that have different
exposures. blendexposure blends the images based on their contrast, saturation, and well-
exposedness, and returns the well-exposed image, J.

J = blendexposure(I1,I2,...,In,Name,Value) blends images that have different exposures,
using name-value pairs to adjust how each input image contributes to the blended image.

Examples

Blend Images with Strong Light Sources

Read a series of images with different exposures that were captured from a fixed camera with no
moving objects in the scene.

I1 = imread('car_1.jpg');
I2 = imread('car_2.jpg');
I3 = imread('car_3.jpg');
I4 = imread('car_4.jpg');

Display the images. In the underexposed images, only bright regions like headlights have informative
details. Conversely, the headlights are saturated in the overexposed images, and the best contrast
comes from darker regions such as the brick floor and the roof.

montage({I1,I2,I3,I4})

 blendexposure

1-219

Blend the images using exposure fusion. By default, the blendexposure function attempts to
suppress highlights from strong light sources. For comparison, also blend the images without
suppressing the highlights. Display the two results.

E = blendexposure(I1,I2,I3,I4);
F = blendexposure(I1,I2,I3,I4,'ReduceStrongLight',false);
montage({E,F})
title('Exposure Fusion With (Left) and Without (Right) Strong Light Suppression')

1 Functions

1-220

In the fused images, bright regions and dark regions retain informative details. With strong light
suppression, the shape of the headlights is identifiable, and saturated pixels do not extend past the
boundary of the headlights. Without strong light perception, the shape of the headlights is not
identifiable, and there are saturated pixels in the reflection of the headlights on the ground and on
some parts of the other cars.

Blend Images of Stationary Scene Using Exposure Fusion

Read a series of images with different exposures. The images were captured from a fixed camera, and
there are no moving objects in the scene.

I1 = imread('office_1.jpg');
I2 = imread('office_2.jpg');
I3 = imread('office_3.jpg');
I4 = imread('office_4.jpg');
I5 = imread('office_5.jpg');
I6 = imread('office_6.jpg');
montage({I1,I2,I3,I4,I5,I6})
title('Images with Different Exposures')

 blendexposure

1-221

Blend the registered images using exposure fusion, optionally varying the weight of contrast,
saturation and well-exposedness in the fusion, and without reducing strong light sources. Display the
result.

E = blendexposure(I1,I2,I3,I4,I5,I6,'contrast',0.8,...
 'saturation',0.8,'wellexposedness',0.8,'reduceStrongLight',false);
imshow(E)
title('Blended Image Using Exposure Fusion')

1 Functions

1-222

Input Arguments
I1,I2,...,In — Grayscale or RGB images
m-by-n numeric matrices | m-by-n-by-3 numeric arrays

Grayscale or RGB images, specified as a series of m-by-n numeric matrices or m-by-n-by-3 numeric
arrays. All images must have the same size and data type.
Data Types: single | double | uint8 | uint16

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: blendexposure(I1,I2,I3,'Contrast',0.5,'Saturation',0.9)

Contrast — Relative weight given to contrast
1 (default) | numeric scalar in the range [0, 1]

Relative weight given to contrast during blending, specified as the comma-separated pair consisting
of 'Contrast' and a numeric scalar in the range [0, 1].

 blendexposure

1-223

Saturation — Relative weight given to saturation
1 (default) | numeric scalar in the range [0, 1]

Relative weight given to saturation during blending, specified as the comma-separated pair consisting
of 'Saturation' and a numeric scalar in the range [0, 1].

Wellexposedness — Relative weight given to exposure quality
1 (default) | numeric scalar in the range [0, 1]

Relative weight given to exposure quality during blending, specified as the comma-separated pair
consisting of 'Wellexposedness' and a numeric scalar in the range [0, 1]. The exposure quality of
each image is based on the divergence of the pixel intensities from a model of pixels with good
exposure.

ReduceStrongLight — Reduce strong light
true (default) | false

Reduce strong light, specified as the comma-separated pair consisting of 'ReduceStrongLight'
and true or false. If 'ReduceStrongLight' is true, then blendexposure attempts to suppress
highlights from strong light sources in the images.

Note If the input images do not have strong light sources and you specify ReduceStrongLight as
true, then the output image J has less contrast.

Output Arguments
J — Fused image
numeric matrix or array

Fused image, returned as a numeric matrix or array of the same size and data type as the input
images I1,I2,...,In.

Tips
• To blend images of moving scenes or with camera jitter, first register the images by using the

imregmtb function. imregmtb considers only translations, not rotations or other types of
geometric transformations, when registering the images.

Algorithms
The blendexposure function computes the weight of each quality measure as follows:

• Contrast weights are computed using Laplacian filtering.
• Saturation weights are computed from the standard deviation of each image.
• Well-exposedness is determined by comparing parts of the image to a Gaussian distribution with a

mean of 0.5 and a standard deviation of 0.2.
• Strong light reduction weights are computed as a mixture of the other three weights, multiplied

by a Gaussian distribution with a fixed mean and variance.

The weights are decomposed using Gaussian pyramids for seamless blending with a Laplacian
pyramid of the corresponding image, which helps preserve scene details.

1 Functions

1-224

References
[1] Mertens, T., J. Kautz, and F. V. Reeth. "Exposure Fusion." Pacific Graphics 2007: Proceedings of the

Pacific Conference on Computer Graphics and Applications. Maui, HI, 2007, pp. 382–390.

See Also
imregmtb | makehdr | tonemap

Introduced in R2018a

 blendexposure

1-225

BINBlocks
Read and write blocks of blocked image data as binary files

Description
The BINBlocks object is an adapter that reads and writes blocked image data as binary files.

When writing to disk, the object creates an individual binary file with simple header information for
each block. The object saves the binary files in a folder. For multiresolution images, the object creates
one subfolder for each resolution level. The object also creates and saves a MAT file with information
about the blocked image, including the image size, block size, and data type.

The table lists the support that the BINBlocks object has for various blockedImage capabilities.

Capabilities Support
Data types All numeric and logical data types of any

dimension
Multiple resolution levels Yes
Process blocks in parallel using the apply
function

Yes

Resume block processing using the apply
function

Yes

Creation

Syntax
adapter = images.blocked.BINBlocks

Description

adapter = images.blocked.BINBlocks creates a BINBlocks object that reads and writes
blocked image data as binary files, with one binary file for each block.

See Also
blockedImage

Introduced in R2021a

1 Functions

1-226

GenericImage
Read and write blocked image data as single image file

Description
A GenericImage object is an adapter that reads and writes 2-D single-resolution blocked image data
as a single image file.

When writing to disk, if the blocked image has any additional metadata in the UserData property,
then the GenericImage object writes the data to a separate MAT file with the same file name.

By default, the object saves image data as a PNG file. To use a different file format, create the object
and then change the file format using the BlockFormat property. For example, to write a blocked
image as a JPG file, use this code.

adapter = images.blocked.GenericImage;
adapter.Extension = "jpg";

When reading from disk, the object reads all image data into memory as a single block. To access
smaller blocks of image data, create a blockedImage object from the image file and specify a block
size that is smaller than the full size of the image.

The table lists the support that the GenericImage object has for various blockedImage
capabilities.

Capabilities Support
Data types This object supports 2-D images only:

• Binary images of size m-by-n with data type
logical

• Grayscale images of size m-by-n with data
type uint8

• Truecolor (RGB) images of size m-by-n-by-3
with data type uint8

Multiple resolution levels No
Process blocks in parallel using the apply
function

No

Resume block processing using the apply
function

Limited. Only useful when processing an array of
blockedImage objects.

Creation
Description

adapter = images.blocked.GenericImage creates a GenericImage object that reads and
writes blocked image data as a single image file.

 GenericImage

1-227

Properties
Extension — Preferred file format
"png" (default) | string

Preferred file format, specified as a string. The apply function of blockedImage uses this value
when creating the output locations automatically.
Example: "jpg"

Examples

Save Single Level Image Data in Single PNG File

Create a blocked image.

bim = blockedImage("tumor_091R.tif");

Write blocked image data to a PNG file using the write function. Create a GenericImage object as
the adapter for the write function to use.

writeAdapter = images.blocked.GenericImage;
write(bim,"tumorL3.png","Adapter",writeAdapter,"Levels",3);

Create a blocked image from the PNG file that you just created. The blockedImage object
automatically picks the appropriate adapter for the data.

bgi = blockedImage("tumorL3.png");
disp(bgi.Adapter.Format)

png

Compatibility Considerations
Format property is not recommended

Starting in R2021b, the Format property is no longer recommended. Use the Extension property
instead. If you specify the Format property using dot notation, then the value is assigned to the
Extension property.

See Also
blockedImage | GenericImageBlocks | TIFF | InMemory

Introduced in R2021a

1 Functions

1-228

GenericImageBlocks
Read and write blocks of blocked image data as image files

Description
The GenericImageBlocks object is an adapter that reads and writes 2-D blocked image data as
image files.

When writing to disk, the object creates an individual image file for each block and saves the image
files in a folder. For multiresolution images, the object creates one subfolder for each resolution level.
The object also creates and saves a MAT file with information about the blocked image, including the
image size, block size, and data type.

By default, the object writes images as PNG files. To use a different file format, create the object and
then change the file format using the BlockFormat property. For example, to write images as JPG
files, use this code.

adapter = images.blocked.GenericImageBlocks;
adapter.BlockFormat = "jpg";

The table lists the support that the GenericImageBlocks object has for various blockedImage
capabilities.

Capabilities Support
Data types This object supports 2-D images only:

• Binary images of size m-by-n with data type
logical

• Grayscale images of size m-by-n with data
type uint8

• Truecolor (RGB) images of size m-by-n-by-3
with data type uint8

Multiple resolution levels Yes
Process blocks in parallel using the apply
function

Yes

Resume block processing using the apply
function

Yes

Creation
Description

adapter = images.blocked.GenericImageBlocks creates a GenericImageBlocks object that
reads and writes blocked image data as image files, with one image file per block.

 GenericImageBlocks

1-229

Properties
BlockFormat — Image file format for each block of data
"png" (default) | string

Image file format for each block of data, specified as a string that identifies one of the formats
supported by imwrite.
Example: "tif"
Data Types: string

Examples

Save Image in Folder with One TIFF File Per Block

Create blocked image.

bim = blockedImage('tumor_091R.tif');

Write image data to files. Specify the images.blocked.GenericImageBlocks adapter.

wa = images.blocked.GenericImageBlocks();
wa.BlockFormat = "tif";
write(bim, "dirOfTIFFs", "Adapter", wa);

Create a blocked image from the folder of images. The blockedImage object automatically picks the
appropriate adapter.

bt = blockedImage("dirOfTIFFs");
disp(bt.Adapter)

 GenericImageBlocks with properties:

 BlockFormat: "tif"

See Also
blockedImage | GenericImage

Introduced in R2021a

1 Functions

1-230

H5
Read and write blocked image data as single H5 file

Description
The H5 object is an adapter that reads and writes blocked image data as a single chunked HDF5 file.

When writing to disk, if the blocked image has any additional metadata in the UserData property,
then the H5 object writes the data to a separate MAT file with the same file name.

The object supports lossless compression. By default, the compression level is set to 1. To use a
different compression level, create the object and then change the compression level using the
GZIPLevel property. You can also use this property to turn off compression. For example, to use a
compression level of 3, use this code.

adapter = images.blocked.H5;
adapter.GZIPLevel = 3;

The table lists the support that the H5 object has for various blockedImage capabilities.

Capabilities Support
Data types All numeric and logical data types of any

dimension. The object writes logical data as
uint8.

Multiple resolution levels Yes
Process blocks in parallel using the apply
function

No

Resume block processing using the apply
function

No

Creation
Description

adapter = images.blocked.H5 creates an H5 object that reads and writes blocked image data as
a single chunked HDF5 file.

Properties
GZIPLevel — GZIP compression level
1 (default) | numeric scalar in the range [0, 9]

GZIP compression level, specified as a numeric scalar in the range [0, 9]. This value controls the level
of GZIP (lossless) compression. The value 0 turns off compression. Higher values attempt to increase
the level of compression and reduce the file size at the cost of higher runtimes.
Data Types: double

 H5

1-231

Examples

Save Single Level Image in Single HDF5 File

Create a blocked image.

bim = blockedImage('tumor_091R.tif');

Write blocked image data to a HDF5 file using the blocked image write object function. Specify the
images.blocked.H5 adapter for use by the write object function.

wa = images.blocked.H5();
wa.GZIPLevel = 5; % Slower, but results in smallest file size
write(bim, "tumor1.h5", "Adapter", wa);

Create a blocked image from the HDF5 file you just created. The blockedImage object automatically
picks the appropriate adapter for the data.

bh5 = blockedImage("tumor1.h5");
disp(bh5.Adapter.Extension)

h5

See Also
blockedImage | H5Blocks

Introduced in R2021a

1 Functions

1-232

H5Blocks
Read and write blocks of blocked image data as H5 files

Description
The H5Blocks object is an adapter that reads and writes blocked image data as chunked H5 files,
with one H5 file for each block.

When writing to disk, the object creates an individual H5 file for each block and saves the image files
in a folder. For multiresolution images, the object creates one subfolder for each resolution level. The
object also creates and saves a MAT file with information about the blocked image, including the
image size, block size, and data type.

The object supports lossless compression. By default, the compression level is set to 1. To use a
different compression level, create the object and then change the compression level using the
GZIPLevel property. You can also use this property to turn off compression. For example, to use a
compression level of 3, use this code.

adapter = images.blocked.H5Blocks;
adapter.GZIPLevel = 3;

The table lists the support that the H5Blocks object has for various blockedImage capabilities.

Capabilities Support
Data types All numeric and logical data types of any

dimension. The object writes logical data as
uint8.

Multiple resolution levels Yes
Process blocks in parallel using the apply
function

Yes

Resume block processing using the apply
function

Yes

Creation
Description

adapter = images.blocked.H5Blocked creates a H5Blocks object that reads and writes
blocked image data as chunked H5 files, with one file for each block.

Properties
GZIPLevel — GZIP compression level
1 (default) | number in the range [0, 9]

 H5Blocks

1-233

GZIP compression level, specified as a number in the range [0, 9]. This value controls the level of
GZIP (lossless) compression. 0 turns off compression. Higher values attempt to increase the level of
compression and reduce the file size at the cost of higher runtimes.
Data Types: double

Examples

Save Image Data in Folder with One HDF5 File Per Block

Create a blocked image.

bim = blockedImage('tumor_091R.tif');

Write image data to files. Specify the images.blocked.H5Blocks adapter.

wa = images.blocked.H5Blocks();
wa.GZIPLevel = 5;
write(bim, "H5sFolder", "Adapter", wa);

Create a blocked image from the folder of images. The blockedImage object automatically picks the
appropriate adapter.

bh5 = blockedImage("H5sFolder");

See Also
blockedImage | H5

Introduced in R2021a

1 Functions

1-234

InMemory
Read and write blocked image data as workspace variable

Description
The InMemory object is an adapter that reads and writes single-resolution blocked image data as a
variable in the workspace. This object has the fastest read/write performance of the adapter objects
that support blocked images.

The table lists the support that the InMemory object has for various blockedImage capabilities.

Capabilities Support
Data types All numeric, logical, categorical, and structure

data types of any dimension.
Multiple resolution levels No
Process blocks in parallel using the apply
function

No

Resume block processing using the apply
function

No

Creation
Description

adapter = images.blocked.InMemory creates an InMemory object that reads and writes single-
resolution blocked image data to a variable in the workspace.

See Also
blockedImage | GenericImage

Introduced in R2021a

 InMemory

1-235

JPEGBlocks
Read and write blocks of blocked image data as JPEG files

Description
The JPEGBlocks object is an adapter that reads and writes 2-D blocked image data in the JPEG
format.

When writing to disk, the object creates an individual JPEG file for each block and saves the image
files in a folder. For multiresolution images, the object creates one subfolder for each resolution level.
The object also creates and saves a MAT file with information about the blocked image, including the
image size, block size, and data type.

The object supports lossy and lossless compression. By default, the object writes JPEG image files
with lossy compression and a quality factor of 75. To use lossy compression with a different quality
factor, create the object and then change the quality factor using the JPEGQuality property. To use
lossless compression, create the object and then specify the CompressionMode property as
"Lossless". For example, to specify a quality factor of 90, use this code.

adapter = images.blocked.JPEGBlocks;
adapter.JPEGQuality = 90;

The table lists the support that the JPEGBlocks object has for various blockedImage capabilities.

Capabilities Support
Data types This object supports 2-D images only:

• Binary images of size m-by-n with data type
logical

• Grayscale images of size m-by-n with data
type uint8

• Truecolor (RGB) images of size m-by-n-by-3
with data type uint8

Multiple resolution levels Yes
Process blocks in parallel using the apply
function

Yes

Resume block processing using the apply
function

Yes

Creation
Description

adapter = images.blocked.JPEGBlocks creates a JPEGBlocks object that reads and writes
blocked image data as JPEG files, with one JPEG file for each block.

1 Functions

1-236

Properties
JPEGQuality — JPEG quality factor
75 (default) | number in the range [0, 100]

JPEG quality factor, specified as a number in the range [0, 100]. Higher numbers specify better
quality because there is less image degradation due to compression, but the resulting file size is
larger.

CompressionMode — JPEG compression mode
"Lossy" (default) | "Lossless"

JPEG compression mode, specified as the string scalar or character vector "Lossy" or "Lossless".
If you specify "Lossless", then the adapter ignores the JPEGQuality property.
Data Types: string | char

Examples

Save Image Data in Folder with One JPEG File Per Block

Create a blocked image.

bim = blockedImage('tumor_091R.tif');

Write image data to files. Specify the images.blocked.JPEGBlocks adapter. Choose to write in
highest quality. JPG uses lossy compression, so space required is still significantly lower than other
formats.

wa = images.blocked.JPEGBlocks();
wa.JPEGQuality = 100;
write(bim, "folderOfJPGs", "Adapter", wa);

Create a blocked image from the folder of images. The blockedImage object automatically picks the
appropriate adapter.

bjpeg = blockedImage("folderOfJPGs");
disp(bjpeg.Adapter)

 JPEGBlocks with properties:

 JPEGQuality: 100
 CompressionMode: "Lossy"
 BlockFormat: "jpeg"

See Also
blockedImage | PNGBlocks | GenericImageBlocks | GenericImage

Introduced in R2021a

 JPEGBlocks

1-237

MATBlocks
Read and write blocks of blocked image data as MAT files

Description
The MATBlocks object is an adapter that reads and writes blocked image data as MAT files, with one
MAT file for each block. The object can read and write numeric, binary, categorical, and structure
data types.

The object saves the image files in a folder. For multiresolution images, the object creates one
subfolder for each resolution level.

The table lists the support that the MATBlocks object has for various blockedImage capabilities.

Capabilities Support
Data types All numeric, logical, categorical, and structure

data types of any dimension.
Multiple resolution levels Yes
Process blocks in parallel using the apply
function

Yes

Resume block processing using the apply
function

Yes

Creation
Description

adapter = images.blocked.MATBlocks creates a MATBlocks object that reads and writes
blocked image data as MAT files, with one MAT file for each block.

See Also
blockedImage

Introduced in R2021a

1 Functions

1-238

PNGBlocks
Read and write blocks of blocked image data as PNG files

Description
The PNGBlocks object is an adapter that writes 2-D blocked image data in the PNG format.

When writing to disk, the object creates an individual PNG file for each block and saves the image
files in a folder. For multiresolution images, the object creates one subfolder for each resolution level.
The object also creates and saves a MAT file with information about the blocked image, including the
image size, block size, and data type.

The table lists the support that the PNGBlocks object has for various blockedImage capabilities.

Capabilities Support
Data types This object supports 2-D images only:

• Grayscale images of size m-by-n with data
type uint8 or uint16

• Truecolor (RGB) images of size m-by-n-by-3
with data type uint8 or uint16

Multiple resolution levels Yes
Process blocks in parallel using the apply
function

Yes

Resume block processing using the apply
function

Yes

Creation
Description

adapter = images.blocked.PNGBlocks creates a PNGBlocks object that reads and writes
blocked image data as PNG files, with one PNG file for each block.

Examples

Save Image Data in Folder with One PNG File Per Block

Create a blocked image.

bim = blockedImage('tumor_091R.tif');

Write image data to files. Specify the images.blocked.PNGBlocks adapter.

wa = images.blocked.PNGBlocks();
write(bim, "dirOfPNGs", "Adapter", wa);

 PNGBlocks

1-239

Create a blocked image from the folder of images. The blockedImage object automatically picks the
appropriate adapter.

bpng = blockedImage("dirOfPNGs");
disp(bpng.Adapter)

 PNGBlocks with properties:

 BlockFormat: "png"

See Also
blockedImage | JPEGBlocks | GenericImageBlocks | GenericImage

Introduced in R2021a

1 Functions

1-240

TIFF
Read and write blocked image data as single TIFF file

Description
The TIFF object is an adapter that reads and writes 2-D blocked image data as a single TIFF file.

When writing to disk, the TIFF format requires block sizes to be a multiple of 16. If the blocked image
has any additional metadata in the UserData property, then the TIFF object writes the data to a
separate MAT-file with the same file name.

The object supports lossy and lossless compression. By default, the object uses Lempel-Ziv-Welch
lossless compression. To use a different compression scheme, create the object and then change the
compression scheme using the Compression property. You can also use this property to turn off
compression. For example, to use JPEG-based lossy compression, use this code.

adapter = images.blocked.TIFF;
adapter.Compression = JPEG;

The table lists the support that the TIFF object has for various blockedImage capabilities.

Capabilities Support
Data types This object supports 2-D images only:

• Binary images of size m-by-n with data type
logical

Grayscale images of size m-by-n with data
type uint8, int16, uint16, int32, uint32,
single, or double

• Truecolor (RGB) images of size m-by-n-by-3
with data type uint8, uint16, uint32,
single, or double

Multiple resolution levels Yes
Process blocks in parallel using the apply
function

No

Resume block processing using the apply
function

No

Creation
Description

adapter = images.blocked.TIFF creates a TIFF object that reads and writes blocked image
data as a single TIFF file.

 TIFF

1-241

Properties
Compression — TIFF compression scheme
"LZW" (default) | "PackBits" | "Deflate" | "JPEG" | "None"

TIFF compression scheme, specified as one of the following.

Compression Scheme Description
"LZW" Lempel-Ziv-Welch lossless compression
"PackBits" PackBits lossless compression
"Deflate" Adobe DEFLATE lossless compression
"JPEG" JPEG-based lossy compression
"None" No compression

Data Types: string

Extension — Preferred file extension
"tiff" (default) | character vector | string scalar

Preferred file extension, specified as a string scalar or character vector.
Data Types: char | string

Examples

Save Two Images as Single Multiresolution TIFF file

Create a blocked image.

bim = blockedImage('tumor_091R.tif');

Create two separate images.

bim.BlockSize = [512 512 3];
bo1 = apply(bim, @(bs)im2gray(bs.Data));
bo3 = apply(bim, @(bs)im2gray(bs.Data), "Level", 3);

Create a single multiresolution TIFF file from the two images. You specify additional resolution levels
using the "LevelImages" parameter.

wa = images.blocked.TIFF(); % Specify the TIFF adapter
wa.Compression = Tiff.Compression.JPEG; % Specify compression in the adapter
write(bo1, "tumor_091RGray.tif", "LevelImages", bo3, "Adapter", wa);

See Also
blockedImage | GenericImage | InMemory

Introduced in R2021a

1 Functions

1-242

blockedImage
Image made from discrete blocks

Description
A blockedImage object is an image made from discrete blocks. Use blocked images when an image
or volume is too large to fit into memory. With a blocked image, you can perform processing without
running out of memory.

Creation

Syntax
bim = blockedImage(source)
bims = blockedImage(sources)
___ = blockedImage(___ ,Name,Value)

wbim = blockedImage(destination,size,blockSize,initialValue,'Mode','w')

Description
Create Read-only blockedImage Objects

bim = blockedImage(source) creates a blockedImage object from the specified source. The
source can be an in-memory array or the name of a file or folder with image data.

bims = blockedImage(sources) creates an array of blockedImage objects from multiple
sources. The source can be a collection of files or folders with image data. The length of bims is
equal to the number of sources in sources.

___ = blockedImage(___ ,Name,Value) creates a blockedImage object, using name-value
arguments to set object properties.

Create Writable blockedImage Object

wbim = blockedImage(destination,size,blockSize,initialValue,'Mode','w') creates
a writeable blockedImage object at one or multiple resolution levels. destination specifies the
location of the writable data. size indicates the image size at each resolution level. initialValue
indicates the initial value for each array element.

Input Arguments

source — Source of image data
numeric array | categorical array | structure array | character vector | string scalar

Source of image data, specified as a numeric array, categorical array, or structure array, or a
character vector or string scalar specifying the name of a file or folder.

Blocked images supports these file formats:

 blockedImage

1-243

• Single TIFF file. If the file contains multiple Image File Directories (IFDs), the blockedImage
object treats the IFDs as multiple resolution levels.

• Any image file that can be read by imread.
• Any source created by the adapters included with the toolbox, listed in Adapter.

sources — Sources of image data
cell array of character vectors | string array | FileSet object

Sources of image data, specified as an cell array of character vectors, a string array, or a FileSet
object.

destination — Location to place writeable data
[] | character vector | string scalar

Location to place writable data, specified as a character vector or string scalar.

Destination Type Image Format
Folder name (without a file extension) The blockedImage object creates the folder and

stores blocks of data as files within the folder.

• For numeric image data, blockedImage
stores each block as a binary file using the
BINBlocks adapter.

• For categorical and struct image data,
blockedImage stores each block as a MAT
file in the folder using the MATBlocks
adapter.

File name with TIF or TIFF file extension The blockedImage object stores data as a single
TIFF image using the TIFF adapter.

The initialValue must be numeric or logical
with data type uint8, int8, uint16,
int16,uint32, int32, single, double or
logical.

File name with H5 file extension The blockedImage object stores data as a single
HDF5 image using the H5 adapter.

The initialValue must be numeric with data
type uint8, int8, uint16, int16, uint32,
int32, single, or double.

[] The blockedImage object stores data as a
variable in memory using the InMemory adapter.

To specify a custom adapter for other output formats, use the Adapter property.

size — Image size at each resolution level
L-by-N matrix

Image size at each resolution level, specified as an L-by-N matrix of positive integers, where L is the
number of resolution levels and N is the number of dimensions of the image. The blockedImage
object always sorts size in descending order by number of pixels, irrespective of how Source stores
the levels.

1 Functions

1-244

blockSize — Size of blocks
L-by-N matrix

Size of blocks, specified as an L-by-N matrix of positive integers, where L is the number of resolution
levels and N is the number of dimensions.

If the image has multiple resolution levels, then you can specify blockSize as a 1-by-N vector to use
the same block size for all resolution levels.
Example: [64 128] specifies a block size of 64-by-128 pixels for a single resolution image
Example: [128 128; 64 64; 32 32] specifies three different block sizes for three resolution
levels

initialValue — Default element value for unloaded blocks
numeric scalar | categorical scalar | struct scalar

Default pixel value for unloaded blocks, specified as one of these values. The blocked image uses this
value to fill blocks which do not have data in the underlying source.

• Numeric scalar. The data type of initialValue specifies the value of the ClassUnderlying
property. The default value is 0.

• categorical scalar. The default value is <undefined>.
• Struct scalar with the same field names as the data. The default value is <undefined>.

Properties
Adapter — Read and write interface for blocked image object
InMemory object | MATBlocks object | PNGBlocks object | TIFF object | ...

Read and write interface for the blocked image object, specified as one of these adapter objects.

Adapter Description
BINBlocks Store each block as a binary file in a folder
GenericImage Store blocks in a single image
GenericImageBlocks Store each block as an image file in a folder
H5 Store blocks in a single HDF5 image
H5Blocks Store each block as an HDF5 file in a folder
InMemory Store blocks in a variable in main memory
JPEGBlocks Store each block as a JPEG file in a folder
MATBlocks Store each block as a MAT file in a folder
PNGBlocks Store each block as a PNG file in a folder
TIFF Store blocks in a single TIFF file

You can also create your own adapter using the images.blocked.Adapter class.

AlternateFileSystemRoots — Alternate file system path
string array

 blockedImage

1-245

Alternate file system path for the files specified in source, specified as a string array containing one
or more rows. Each row specifies a set of equivalent root paths.
Example: ["Z:\datasets", "/mynetwork/datasets"]
Data Types: char | string | cell

BlockSize — Size of blocks
L-by-N matrix

Size of blocks, specified as an L-by-N matrix of positive integers, where L is the number of resolution
levels and N is the number of dimensions. BlockSize serves as the default size of data that is loaded
into main memory at any time for use. It is the smallest unit of data that can be manipulated with the
blockedImage interface. If you specify BlockSize with less than N dimensions, blockedImage
pads the image with elements from the Size property.

You cannot specify this property when you specify Mode as 'w'.
Data Types: double

ClassUnderlying — Pixel data type
cell array of character vectors | string vector | structure | categorical array

This property is read-only.

Pixel data type, specified as a cell array of character vectors, string array, structure array, or
categorical array, with L elements. L is number of resolution levels. Each element in the array is the
data type of a pixel from the corresponding resolution level. Values are: "logical", "int8",
"uint8", "int16", "uint16", "int32", "uint32", "single", and "double".
Data Types: char | string

InitialValue — Default element value for unloaded blocks
numeric scalar | categorical scalar | struct

This property is read-only.

Default element value for unloaded blocks, specified as a numeric scalar of the type specified by
ClassUnderlying, a categorical value for categorical images, or a struct. The blockedImage
object uses this value to fill blocks which do not have data in the underlying source. The default value
varies by data type: 0 for numeric types, <undefined> for categorical, and a scalar struct.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | char |
categorical | struct

IOBlockSize — I/O block size of image source
numeric matrix

This property is read-only.

I/O block size of image source, specified as an L-by-N matrix of positive integers, where L is the
number of resolution levels and N is the number of dimensions. IOBlockSize is the size of the
underlying I/O block size the adapter uses to read from the image source. This represents the
smallest unit of data that can be written or read. This read-only property reflects the format of the
underlying image source.

1 Functions

1-246

Note You can set BlockSize to any value. The blockedImage object does the appropriate reading,
cropping, stitching, and caching of the source I/O blocks to ensure efficient I/O.

Data Types: double

Mode — Current read or write mode
'r' (default) | 'w'

Current read or write mode of the object, specified as 'r' for read mode and 'w' for write mode.

You can only set Mode to 'w' when you create the object. You can change the value of Mode from 'w'
to 'r', at which point no further writes are possible. You cannot change Mode from 'r' to 'w'.

When opening a blockedImage in write mode, you must also specify values for the ImageSize,
BlockSize, and InitialValue properties.
Data Types: char

NumDimensions — Number of dimensions in image
positive integer

This property is read-only.

Number of dimensions in the image, specified as a positive integer. For multiresolution level images
that have varying number of dimensions, NumDimensions is the maximum taken across all levels.
The blocked image extends other levels with singleton dimensions, if needed.
Data Types: double

NumLevels — Number of image resolution levels
positive integer

This property is read-only.

Number of image resolution levels, specified as a positive integer.
Data Types: double

Size — Image size at each level
L-by-N matrix

This property is read-only.

Image size at each level, specified as an L-by-N matrix of positive integers, where L is the number of
resolution levels and N is the number of dimensions of the image. The blockedImage object always
sorts Size in descending order by number of pixels, irrespective of how Source stores the levels.
Data Types: double

SizeInBlocks — Size expressed as number of blocks
L-by-N matrix

This property is read-only.

Size expressed as the number of blocks, specified as an L-by-N matrix of positive integers, where L is
the number of resolution levels and N is the number of dimensions. This property is dependent on the
BlockSize property. The value includes partial blocks.

 blockedImage

1-247

Data Types: double

Source — Source of image data
string scalar | numeric array | categorical array | struct array

This property is read-only.

Source of image data, specified as an in-memory numeric, categorical, or struct array, or as a
string scalar or char vector specifying a file or folder name.
Data Types: string

WorldEnd — World coordinates of ending edge of image
numeric matrix

World coordinates of ending edge of the image, specified as an L-by-N numeric matrix, where L is the
number of resolution levels and N is the number of dimensions. By default, the value is Size + 0.5
for each dimension and level, resulting in pixels that are one-unit wide. World coordinates of pixel
centers coincide with pixel subscript locations for the first level.
Data Types: double

WorldStart — World coordinates of starting edge of image
numeric matrix

World coordinates of the starting edge of the image, specified as a L-by-N numeric matrix, where L is
the number of levels and N is the number of dimensions. By default, the starting-edge value is 0.5 in
each dimension and level.
Data Types: double

UserData — User data associated with the image
struct

User data associated with the image, specified as a struct. This field can be empty. You can update
the value at any time. To make this value persist with the source, write the blockedImage to a file
using the write function, or specify the data as parameter when you create the object.
Data Types: struct

Object Functions
apply Process blocks of blocked image
crop Create cropped version of blocked image
blocksub2sub Convert block subscripts to pixel subscripts
gather Collect blocks into current workspace
getBlock Read specific block of blocked image
getRegion Read arbitrary region of blocked image
setBlock Put data in specific block of blocked image
sub2blocksub Convert pixel subscripts to block subscripts
sub2world Convert pixel subscripts to block subscripts
world2sub Convert world coordinates to pixel subscripts
write Write blocked image data to new destination

Examples

1 Functions

1-248

Create and Visualize Blocked Image

Create a blocked image from a sample image included with the toolbox.

bim = blockedImage('tumor_091R.tif');

Display details of the blocked image at the command line.

disp(bim)

 blockedImage with properties:

 Read only properties
 Source: "B:\matlab\toolbox\images\imdata\tumor_091R.tif"
 Adapter: [1x1 images.blocked.TIFF]
 Size: [3x3 double]
 SizeInBlocks: [3x3 double]
 ClassUnderlying: [3x1 string]

 Settable properties
 BlockSize: [3x3 double]

View the blocked image in a figure window.

bigimageshow(bim)

 blockedImage

1-249

Create Blocked Image from Workspace Variable

Read data into the workspace. For this example, read a sample volume that is included with the
toolbox.

dmri = tiffreadVolume('mri.tif');

Create a blocked image from the volume.

bim = blockedImage(dmri);

Display details about the blocked image at the command line.

disp(bim)

 blockedImage with properties:

 Read only properties
 Source: [128x128x27 uint8]
 Adapter: [1x1 images.blocked.InMemory]
 Size: [128 128 27]
 SizeInBlocks: [1 1 1]
 ClassUnderlying: "uint8"

 Settable properties
 BlockSize: [128 128 27]

Create Array of Blocked Images

Create a file set of the images in the toolbox folder of sample images.

fs = matlab.io.datastore.FileSet(...
 fullfile(matlabroot,'toolbox','images','imdata'), ...
 "FileExtensions",{'.jpg','.png'});

Create an array of blocked images from the images in the file set.

bims = blockedImage(fs);

Display details of the array of blocked images.

disp(bims)

 1x74 blockedImage array with properties:

 Read only properties
 Source: 'Various'
 Adapter: [1x1 images.blocked.GenericImage]
 ClassUnderlying: 'Various'

 Settable properties
 No properties.

1 Functions

1-250

Write Data to Blocked Image and Read It Back

Create a blocked image to which you can write data. You specify the format of the blocked image in
the destination parameter. To write to memory, specify an empty matrix. You must also specify the
size of the image and the size of the blocks into which you want the image chunked. The initial value
parameter depends on the format you specified in destination. To create a writable blocked image,
specify the 'Mode' parameter with the value 'w' for write mode.

destination = [];
imgsize = [5 7];
blocksize = [2 2];
initval = uint8(0);
bim = blockedImage(destination,imgsize,blocksize,initval, "Mode", 'w');

Write data to the specified blocks in the blocked image by using the setBlock object function. The
blocksubs parameter specifies the coordinates of the block to which you want to write data. The
blockdata parameter specifies the data to write to the specified block. The size of blockdata must
match the block size.

blocksubs = [1 1];
blockdata = ones(2,2,"uint8");
setBlock(bim, blocksubs, blockdata)

Close the image for writing.

Switch the blocked image to read mode by setting the 'Mode' parameter to 'r' for read.

bim.Mode = 'r'

bim =

 blockedImage with properties:

 Read only properties
 Source: [5x7 uint8]
 Adapter: [1x1 images.blocked.InMemory]
 Size: [5 7]
 SizeInBlocks: [3 4]
 ClassUnderlying: "uint8"

 Settable properties
 BlockSize: [2 2]

Create the full image by using the gather function to collect all the individual blocks.

fullImage = gather(bim);

Display details of the blocked image at the command line.

disp(fullImage)

 1 1 0 0 0 0 0
 1 1 0 0 0 0 0
 0 0 0 0 0 0 0
 0 0 0 0 0 0 0

 blockedImage

1-251

 0 0 0 0 0 0 0

Create Blocked Image Specifying Custom World Coordinates

Create a blocked image from a sample image included with the toolbox.

bim = blockedImage('tumor_091R.tif');
bigimageshow(bim)

Specify the distance between pixel centers at the finest level. This information obtained from the raw
data available at https://camelyon17.grand-challenge.org/Data/.

pext = 0.000226316; % (in millimeters)

Assume the top-left edge of the first pixel starts at (0,0).

worldStart = zeros(bim.NumLevels, bim.NumDimensions);

Calculate the bottom right edge of the last pixel of the finest resolution level, using only the spatial
dimensions. With the distance between each pixel center known, multiply the distance by the number
of pixels.

worldEnd = bim.Size(1,:)*pext;

All resolution levels span the same world coordinates.

1 Functions

1-252

https://camelyon17.grand-challenge.org/Data/

worldEnd = repmat(worldEnd,[bim.NumLevels,1]);

The third dimension holds the color channels, each with a pixel extent of 1. Update the world
coordinates of the edges of the pixels to center them on integer values (in this case, 1, 2, and 3).

worldStart(:,3) = 0.5;
worldEnd(:,3) = 3.5;

View the image with updated coordinates.

bim = blockedImage('tumor_091R.tif', ...
 'WorldStart',worldStart,'WorldEnd',worldEnd);
figure
h = bigimageshow(bim);
title('Measured in Millimeters')

 blockedImage

1-253

See Also
blockedImageDatastore | bigimageshow

Introduced in R2021a

1 Functions

1-254

apply
Process blocks of blocked image

Syntax
bres = apply(bim,fcn)
[bres1,bres2,...] = apply(bim,fcn)
[bres1s,bres2s,...] = apply(bims,fcn)
[___] = apply(___ ,Name,Value)

Description
bres = apply(bim,fcn) processes the entire blocked image bim by applying the function handle
fcn to each block. Returns bres, a new blocked image containing the processed data.

[bres1,bres2,...] = apply(bim,fcn) returns multiple output arguments. The specified
function handle, fcn, must point to a user function which returns the same number of arguments.

[bres1s,bres2s,...] = apply(bims,fcn) processes the array of blocked images bims by
applying the function handle fcn to each block of each blocked image. Returns an array of blocked
images containing the processed data.

[___] = apply(___ ,Name,Value) modifies aspects of the block processing using name-value
arguments.

Examples

Enhance Image Details to Better Visualize Region Boundaries

Create blocked image.

bim = blockedImage("tumor_091R.tif");

Create a smoothing filter and apply it to the blocks in the blocked image.

smoothing = 2000;

imguidedfilter operates on a default neighborhood of 5 pixels. Add a border to the input to read
additional data. This border pixels automatically get trimmed from the output since its the same size
as the input.

benh= apply(bim,...
 @(bs)imguidedfilter(bs.Data,bs.Data,"DegreeOfSmoothing", smoothing),...
 "BorderSize", [5 5]);

Display the original image and the enhanced image.

ha1 = subplot(1,2,1);
bigimageshow(bim,"ResolutionLevel",1);
ha2 = subplot(1,2,2);

 apply

1-255

bigimageshow(benh);
linkaxes([ha1, ha2]);
xlim([2100, 2600])
ylim([1800 2300])

Improve Efficiency By Using Mask to Limit Processed Region

Create a blocked image.

bim = blockedImage("tumor_091R.tif");

Create a mask at the coarsest level and display it.

bmask = apply(bim, @(bs)rgb2gray(bs.Data)<80, "Level",3);
figure
bigimageshow(bmask)

Use the mask to limit regions processed by the call to the apply object function.

bls = selectBlockLocations(bim, "Mask", bmask,"InclusionThreshold", 0.005);
benh = apply(bim, @(bs)imguidedfilter(bs.Data,bs.Data,"DegreeOfSmoothing", 2000),...
 "BorderSize", [5 5],...
 "BlockLocationSet", bls);

Display the original image and the enhanced image.

1 Functions

1-256

figure
ha1 = subplot(1,2,1);
bigimageshow(bim,"ResolutionLevel",1);
ha2 = subplot(1,2,2);
bigimageshow(benh);
linkaxes([ha1, ha2]);

 apply

1-257

Process Array of Blocked Images

Create a file set of all the JPEG images in the toolbox sample images folder.

fs = matlab.io.datastore.FileSet(...
 fullfile(matlabroot,"toolbox","images","imdata"), ...
 "FileExtensions",".jpg");

Create an array of blocked images from the file set.

bims = blockedImage(fs);

Create an adapter that saves a blocked image to disk as a single image file.

outputFolder = tempname;
outputAdapter = images.blocked.GenericImage;
outputAdapter.Extension = "jpg";

Convert the images to binary images on disk.

1 Functions

1-258

bos = apply(bims, @(b)imbinarize(im2gray(b.Data)), ...
 "OutputLocation",outputFolder,"Adapter",outputAdapter);

View the contents of the output folder using the Image Browser app by running this command:
imageBrowser(outputFolder)

Input Arguments
bim — Blocked image
blockedImage object

Blocked image, specified as a blockedImage object.

bims — Blocked images
array of blockedImage objects

Blocked images, specified as an array of blockedImage objects.

fcn — Processing function
function handle

Processing function, specified as a function handle. For more information, see “Create Function
Handle”.The processing function fcn must accept a bstruct as input. To pass additional arguments,
specify fcn as an anonymous function. For more information, see “Anonymous Functions”.

bstruct is a struct with these fields:

Field Description
Data Block of data from bim
Start Subscripts of the first element in the block. If

BorderSize is specified, this subscript can be
out-of-bounds for edge blocks.

End Subscripts of the last element in the block. If
BorderSize is specified, this subscript can be
out-of-bounds for edge blocks.

Blocksub Block subscripts of the current block
BorderSize Value of the BorderSize parameter.
BlockSize Value of the BlockSize parameter. Note:

size(data) can be less than this value for
border blocks when PadPartialValue is false.

BatchSize Value of the BatchSize parameter
ImageNumber Index into bim array for the current image.
Level The resolution level from which the data is being

read.

The function fcn typically returns the results for one block. The results can be numeric, a struct, or
categorical.

 apply

1-259

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: "Level",3

Adapter — Adapter used for writing blocked image data
adapter object

Adapter used for writing blocked image data, specified as an adapter object. To specify different
adapters for different outputs, use a cell array. Scalar values are expanded.

This table lists the adapters included with the toolbox.

Adapter Description
BINBlocks Store each block as a binary file in a folder
GenericImage Store blocks in a single image
GenericImageBlocks Store each block as an image file in a folder
H5 Store blocks in a single HDF5 image
H5Blocks Store each block as an HDF5 file in a folder
InMemory Store blocks in a variable in main memory
JPEGBlocks Store each block as a JPEG file in a folder
MATBlocks Store each block as a MAT file in a folder
PNGBlocks Store each block as a PNG file in a folder
TIFF Store blocks in a single TIFF file

You can also specify a custom adapter that performs custom writing operations. For more
information, see images.blocked.Adapter.

BatchSize — Number of blocks supplied to fcn
1 (default) | numeric scalar

Number of blocks supplied to the processing function fcn in each batch, specified as a numeric
scalar. The BatchSize is the last dimension of input to fcn. All outputs of fcn must have the last
dimension be the same as BatchSize. BatchSize greater than 1 is useful to optimally load GPUs
when applying deep learning inference calls. When BatchSize is greater than 1,
PadPartialBlocks must be true.

BlockLocationSet — Set of blocks to process
all non-overlapping BlockSize-sized blocks (default) | blockLocationSet object

Set of blocks to process, specified as a blockLocationSet object. The ImageNumber property
indexes into bims array. Specifying the blocks to process can improve efficiency by limiting the
number of blocks processed. For example, use selectBlockLocations with a mask to limit
applying the processing function to certain regions. Blocks contained must be on a regular grid.

BlockSize — Block size
value of BlockSize property of blocked image (default) | integer-valued vector

1 Functions

1-260

Block size, specified as an integer-valued vector of length equal to the NumDimensions property of
bim. Specifies the size of a block supplied as the input to fcn. If BlockSize contains fewer
elements, the apply object function pads the missing dimensions with elements from the Size
property.

BorderSize — Border size
0 (default) | integer-valued vector

Border size, specified as an integer-valued vector of length equal to the NumDimensions property of
bim. Specifies additional data from neighboring region to be included in a block. For edge blocks, the
apply object function uses 'PadMethod'. If BorderSize contains fewer elements, the apply
object function pads the border with 0s.

DisplayWaitbar — Display wait bar
true (default) | false

Display wait bar, specified as a logical scalar. When set to true,the apply object function displays a
wait bar for long-running operations. If you cancel the wait bar, the apply object function returns
partial output, if available.
Data Types: logical

ExtraImages — Additional inputs to fcn
array of blockedImage objects

Additional inputs to fcn, specified as an array of blockedImage objects. Blocks from this array are
provided to fcn as additional inputs after bstruct: __ = fcn(bstruct, extrablock1,...).
The apply object function extracts these blocks from the same world region as the main block from
bim, represented in bstruct.

ExtraLevels — Resolution level
vector of integers

Resolution level, specified as a vector of integers of the same length as 'ExtraImages'. Each value
specifies the resolution level to use from the corresponding blockedImage object in ExtraImages.

Level — Resolution level to use
1 (default) | integer scalar

Resolution level to use, specified as an integer scalar. For a multiresolution blockedImage object,
this value determines the resolution level to use to obtain blocks for processing.

OutputLocation — Location of output folder
char vector | string scalar

Location of output folder, specified as a string scalar or char vector. If there is a single output, the
apply object function writes it directly to this location. For multiple outputs, the apply object
function creates subfolders of the format output<N>/ for the N'th output. If the input is an array, the
apply object function derives the output name from the Source property of the corresponding
element. If the input is in-memory, the apply object function uses a numeric index. When the
UseParallel property is true, OutputLocation should be a valid path on the client session. Use the
AlternateFileSystemRoots property of the input to specify the required mapping for worker sessions.
All outputs inherit this value.

 apply

1-261

PadMethod — Pad method
'replicate' (default) | numeric scalar | string scalar | char vector

Pad method of incomplete edge blocks, specified as one of these values. The method specifies how to
obtain padding pixels to honor 'BorderSize' or the 'PadPartialBlocks' parameters.

Value Meaning
numeric scalar Pad numeric array with elements of a constant value of type specified by

the ClassUnderlying property of the blocked image.
'replicate' Pad by repeating border elements of array.

PadPartialBlocks — Pad partial blocks
false (default) | true

Pad partial blocks, specified as logical scalar. Specifies if partial blocks that may exist on the edges
need to be padded out to the specified block size. The apply object function uses the method specified
in PadMethod to perform the padding operation.

• When false, the processing function fcn operates on partial blocks without padding and can
return blocks smaller than BlockSize.

• When true, the apply function pads partial blocks using the specified PadMethod. The
processing function fcn operates on and returns full-sized blocks.

When BatchSize is greater than 1, set PadPartialBlocks to true
Data Types: logical

Resume — Continue processing from where previous run stopped
false (default) | true

Continue processing from where the previous run stopped, specified as a logical scalar. If true, and
the specified 'OutputLocation' has content from a previous run, the current run will continue
processing from where the previous run stopped. This support depends on the output adapter used. If
false, the apply object function deletes the previous content.

UseParallel — Use parallel processing
false (default) | true

Use parallel processing, specified as a logical scalar. Determines if a new or existing parallel pool
should be used. If no parallel pool is active, a new pool is opened based on the default parallel
settings. All adapters specified by the Adapter property must support parallel processing. You must
specify a valid OutputLocation. This argument requires Parallel Computing Toolbox.
Data Types: logical

Output Arguments
bres — New blocked image
blockedImage object

New blocked image, returned as a blockedImage object.

1 Functions

1-262

Tips
• The apply object function determines the output size by processing the first block. If processing

the first block yields an output block of the same size as the input, then the final output size is set
to match the input. Otherwise, the last block is processed to determine the final output size. The
first block must not be a partial block.

• The apply object function sets the InitialValue property of the output based on the type of the
output:

• Numeric or logical outputs – InitialValue is set to 0.
• Categorical outputs – InitialValue is set to the <undefined> value of the corresponding

type.
• struct outputs – InitialValue is derived from the first block's output. All fields are set to

empty.

See Also
blockedImage | selectBlockLocations

Introduced in R2021a

 apply

1-263

blocksub2sub
Convert block subscripts to pixel subscripts

Syntax
[pStart,pEnd] = blocksub2sub(bim,blocksub)
[pStart,pEnd] = blocksub2sub(bim,blocksub,'Level',L)

Description
[pStart,pEnd] = blocksub2sub(bim,blocksub) converts a block subscript to pixel subscripts.
pStart is the pixel subscripts of the first pixel in the block. pEnd is the pixel subscripts of the last
pixel in the block. Note: For partial blocks pEnd represents the last valid pixel subscript in the image.

[pStart,pEnd] = blocksub2sub(bim,blocksub,'Level',L) additionally specifies the
resolution level to use in a multiresolution image. Level defaults to 1.

Examples

Convert Block Subscripts to Pixel Subscripts

Create a small sample image as a 5-by-7 matrix of zeros. Here is an illustration of the small sample
image, with the pixel coordinates of the four corners provided.

Create a blocked image from the sample image, specifying a 2-by-2 block size. To create this blocked
image, use blockedImage in write mode.

bim = blockedImage([],[5 7],[2 2],uint8(0),"Mode",'w');

Here is an illustration of the blocked image overlaid on the original image. It is divided into 2-by-2
blocks. In the diagram, each block contains its block coordinates.

1 Functions

1-264

Convert block subscripts into pixel subscripts by using the blocksub2sub function. By default, if the
image is a multiresolution image, blocksub2sub uses pixel coordinates from coarsest level,
although you can specify any level. Since the sample image has only one resolution level,
blocksub2sub converts level 1.

[pstart,pend] = blocksub2sub(bim,[2 3])

pstart = 1×2

 3 5

pend = 1×2

 4 6

This illustration show the block coordinate [2 3] converted to pixel coordinates.

 blocksub2sub

1-265

Input Arguments
bim — Blocked image
blockedImage object

Blocked image, specified as a blockedImage object.

blocksub — Block subscripts
numeric array

Block subscripts, specified as a numeric array of positive integers.
Example: [2 3]

Output Arguments
pStart — Subscript of first pixel in block
numeric array

Subscript of first pixel in the specified block, returned as a numeric array.

pEnd — Subscript of last pixel in block
numeric array

Subscript of last pixel in the specified block, returned as a numeric array.

See Also
blockedImage

Introduced in R2021a

1 Functions

1-266

crop
Create cropped version of blocked image

Syntax
cbim = crop(bim,cstart,cend)

Description
cbim = crop(bim,cstart,cend) crops the blocked image bim to the crop window specified by
the starting and ending pixel subscripts cstart and cend, inclusive. Returns cbim, a
blockedImage which references the same Source as bim, but represents image data in the crop
window, across all levels.

Examples

Crop Multiresolution Image

Create a blocked image from a sample image included with the toolbox.

bim = blockedImage('tumor_091R.tif');
figure
bigimageshow(bim);

Inspect image size and world coordinate properties

bim.Size

ans = 3×3

 5000 5358 3
 1250 1340 3
 625 670 3

bim.WorldStart

ans = 3×3

 0.5000 0.5000 0.5000
 0.5000 0.5000 0.5000
 0.5000 0.5000 0.5000

bim.WorldEnd

ans = 3×3
103 ×

 5.0005 5.3585 0.0035
 5.0005 5.3585 0.0035

 crop

1-267

 5.0005 5.3585 0.0035

Define a region of interest on the image that will be the crop area.

hrect = drawrectangle('Position', [2280 1300 1024 800]);

Obtain the world coordinates of the region.

wstartxy = hrect.Position(1:2);
wendxy = wstartxy + hrect.Position(3:4);

Convert to row-col order, include world coordinates of the last dimension.

wstart = [wstartxy(2), wstartxy(1), bim.WorldStart(1,3)];
wend = [wendxy(2), wendxy(1), bim.WorldEnd(1,3)];

Convert to image subscripts, this is an optional step useful when using non-default world coordinates.

subs = world2sub(bim, [wstart; wend]);
cbim = crop(bim, subs(1,:), subs(2,:));

Inspect properties of the cropped image.

cbim.Size

ans = 3×3

1 Functions

1-268

 801 1025 3
 201 258 3
 101 130 3

cbim.WorldStart

ans = 3×3
103 ×

 1.2995 2.2795 0.0005
 1.2965 2.2757 0.0005
 1.2965 2.2717 0.0005

figure
% Axes limits reflect cropped coordinates
bigimageshow(cbim);

Input Arguments
bim — Blocked image
blockedImage object

Blocked image, specified as a blockedImage object.

 crop

1-269

cstart — First pixel in crop window
1-by-N integer-valued vector

First pixel in the crop window, in pixel subscripts, specified as a 1-by-N integer-valued vector for an
N-dimensional blockedImage. If cstart has fewer than N elements, blockedImage extends it with
1s.

cend — Last pixel in crop window
1-by-N integer-valued vector

Last pixel in the crop window, in pixel subscripts, specified as a 1-by-N integer-valued vector. If cend
has fewer than N elements, blockedImage extends the image with the corresponding elements from
Size at the finest level.

Output Arguments
cbim — Cropped blocked image
blockedImage object

Cropped blocked image, returned as a blockedImage object that contains image data in the crop
window across all resolution levels.

See Also
blockedImage

Introduced in R2021a

1 Functions

1-270

gather
Collect blocks into current workspace

Syntax
data = gather(bim)
data = gather(bim,'Level',L)

Description
data = gather(bim) returns an image in the workspace formed by assembling all the blocks of the
blockedImage, bim. By default, gather collects blocks from the coarsest level (level with the least
amount of data).

data = gather(bim,'Level',L) returns an array formed by assembling all the blocks from the
specified resolution level L.

Examples

Extract Finest and Coarsest Levels from Multiresolution Image

Create a blocked image using a modified version of image "tumor_091.tif" from the CAMELYON16
data set. The original image is a training image of a lymph node containing tumor tissue. The original
image has eight resolution levels, and the finest level has resolution 53760-by-61440. The modified
image has only three resolution levels. The spatial referencing of the modified image has been
adjusted to enforce a consistent aspect ratio and to register features at each level.

bim = blockedImage('tumor_091R.tif');

Use gather to extract the coarsest resolution level. By default, gather returns the coarsest level

level_coarsest = gather(bim);

Use gather to extract the finest resolution level. You must specify the resolution level. The finest
resolution level is always numbered 1.

level_finest = gather(bim, "Level", 1);

Display the coarsest resolution level and finest resolution level side-by-side.

montage({level_coarsest,level_finest})

 gather

1-271

Input Arguments
bim — Blocked image
blockedImage object

Blocked image, specified as a blockedImage object.

Output Arguments
data — Image formed from blocks
numeric array

Image formed from blocks, returned as a numeric array of the type specified by the
ClassUnderlying property of the blocked image.

See Also
blockedImage

Introduced in R2021a

1 Functions

1-272

getBlock
Read specific block of blocked image

Syntax
blockdata = getBlock(bim,blocksub)
blockdata = getBlock(bim,blocksub,'Level',L)
[blockdata,blockinfo] = getBlock(___)

Description
blockdata = getBlock(bim,blocksub) returns blockdata, the block specified by the
subscripts in blocksub.

blockdata = getBlock(bim,blocksub,'Level',L) gets the specified block from the L'th level
of the multiresolution blockedImage, bim. By default, L is 1.

[blockdata,blockinfo] = getBlock(___) also returns block metadata in blockinfo.

Examples

Read Block from Blocked Image

Create a blocked image and display it.

bim = blockedImage('tumor_091R.tif');
bigimageshow(bim,...
 'GridVisible','on', 'GridLevel', 1,...
 'GridLineWidth', 2, 'GridColor','k','GridAlpha',0.3);

 getBlock

1-273

Display the value of the SizeInBlocks property.

disp(bim.SizeInBlocks)

 5 6 1
 2 2 1
 1 1 1

Specify the block you want to read.

block = getBlock(bim, [3, 2, 1]);

Display the block.

imshow(block)

1 Functions

1-274

Input Arguments
bim — Blocked image
blockedImage object

Blocked image, specified as a blockedImage object.

blocksub — Block subscript vector
integer-valued vector

Block subscript vector, specified as a 1-by-N integer-valued vector. Valid elements range from 1 to the
corresponding element in the SizeInBlocks property.

 getBlock

1-275

Example: [3, 2, 1]

Output Arguments
blockdata — Block of pixels from blocked image
numeric array

Block of pixels from blocked image, returned as a numeric array. Partial blocks around the edges can
be smaller than the BlockSize property.

blockinfo — Metadata of block of pixels
scalar struct

Metadata of block of pixels, returned as a scalar struct. The blockinfo struct contains these
fields.

Field Description
Start Subscripts of the first element in blockdata
End Subscripts of the last element in blockdata
Level Image level

See Also
blockedImage | setBlock

Introduced in R2021a

1 Functions

1-276

getRegion
Read arbitrary region of blocked image

Syntax
pixels = getRegion(bim,pixelStart,pixelEnd)
pixels = getRegion(bim,pixelStart,pixelEnd,'Level',L)

Description
pixels = getRegion(bim,pixelStart,pixelEnd) returns all the pixels in the blocked image
bim, in the region specified by pixelStart and pixelEnd.

pixels = getRegion(bim,pixelStart,pixelEnd,'Level',L) gets the specified region from
the L'th resolution level of the multiresolution blockedImage, bim. pixelStart and pixelEnd are
pixel subscripts at the L'th resolution level.

Examples

Read Same Region from Multiple Levels

Create a blocked image.

bim = blockedImage('tumor_091R.tif');

Specify a region in the blocked image and retrieve the data.

pstart_l1 = [2100, 1800, 1];
pend_l1 = [2600, 2300, 3];
imL1 = getRegion(bim, pstart_l1, pend_l1, "Level", 1);

Convert the start and end points of the region to world coordinates.

wstart_l1 = sub2world(bim, pstart_l1, "Level", 1);
wend_l1 = sub2world(bim, pend_l1, "Level", 1);

Convert the world coordinates to level 3 pixel subscripts.

pstart_l3 = world2sub(bim, wstart_l1, "level", 3);
pend_l3 = world2sub(bim, wend_l1, "level", 3);
imL3 = getRegion(bim, pstart_l3, pend_l3, "Level", 3);

Display the region in both resolution levels.

montage({imL1, imL3});

 getRegion

1-277

Input Arguments
bim — Blocked image
blockedImage object

Blocked image, specified as a blockedImage object.

pixelStart — Starting pixel of region
1-by-N vector of pixel subscripts

Starting pixel of the region, specified as a 1-by-N vector of pixel subscripts in the form
[row,column,...,subN], where N is the dimensionality of blocked image bim. Specify the pixel
subscripts at the desired resolution level.

pixelEnd — Ending pixel of region
1-by-N vector of pixel subscripts

Ending pixel of the region, specified as a 1-by-N vector of pixel subscripts in the form
[row,column,...,subN], where N is the dimensionality of blocked image bim. Specify the pixel
subscripts at the desired resolution level.

L — Resolution level
1 (default) | positive integer

Resolution level, specified as a positive integer that is less than or equal to the number of resolution
levels of bim.

1 Functions

1-278

Output Arguments
pixels — Pixels in specified region
numeric array

Pixels in specified region, returned as a numeric array.

See Also
blockedImage | getBlock | world2sub | sub2world | blocksub2sub | sub2blocksub

Introduced in R2021a

 getRegion

1-279

setBlock
Put data in specific block of blocked image

Syntax
setBlock(bim,blocksub,blockdata)
setBlock(bim,blocksub,blockdata,'Level',L)

Description
setBlock(bim,blocksub,blockdata) sets the block content blockdata at the specified block
subscript location, blocksub in the blockedImage object bim.

setBlock(bim,blocksub,blockdata,'Level',L) sets the block content at the L'th level of a
multiresolution blockedImage. By default, L is 1.

Examples

Write Data to Blocked Image and Read It Back

Create a blocked image to which you can write data. You specify the format of the blocked image in
the destination parameter. To write to memory, specify an empty matrix. You must also specify the
size of the image and the size of the blocks into which you want the image chunked. The initial value
parameter depends on the format you specified in destination. To create a writable blocked image,
specify the 'Mode' parameter with the value 'w' for write mode.

destination = [];
imgsize = [5 7];
blocksize = [2 2];
initval = uint8(0);
bim = blockedImage(destination,imgsize,blocksize,initval, "Mode", 'w');

Write data to the specified blocks in the blocked image by using the setBlock object function. The
blocksubs parameter specifies the coordinates of the block to which you want to write data. The
blockdata parameter specifies the data to write to the specified block. The size of blockdata must
match the block size.

blocksubs = [1 1];
blockdata = ones(2,2,"uint8");
setBlock(bim, blocksubs, blockdata)

Close the image for writing.

Switch the blocked image to read mode by setting the 'Mode' parameter to 'r' for read.

bim.Mode = 'r'

bim =

1 Functions

1-280

 blockedImage with properties:

 Read only properties
 Source: [5x7 uint8]
 Adapter: [1x1 images.blocked.InMemory]
 Size: [5 7]
 SizeInBlocks: [3 4]
 ClassUnderlying: "uint8"

 Settable properties
 BlockSize: [2 2]

Create the full image by using the gather function to collect all the individual blocks.

fullImage = gather(bim);

Display details of the blocked image at the command line.

disp(fullImage)

 1 1 0 0 0 0 0
 1 1 0 0 0 0 0
 0 0 0 0 0 0 0
 0 0 0 0 0 0 0
 0 0 0 0 0 0 0

Create Mask from ROI

Create a blocked image.

bim = blockedImage('tumor_091R.tif');

Display the blocked image and draw a circular ROI on the image.

h = bigimageshow(bim);
hROI = drawcircle(gca, 'Radius', 470, 'Position', [1477 2284]);

 setBlock

1-281

Specify the resolution level at which to create the mask.

maskLevel = 3;

Create a writable blocked image in memory.

bmask = blockedImage([], [200 200], bim.Size(maskLevel,1:2), false, "Mode", "w");

Specify the start and ending points for the mask.

bmask.WorldStart = bim.WorldStart(maskLevel, 1:2);
bmask.WorldEnd = bim.WorldEnd(maskLevel, 1:2);

Display the number of blocks.

disp(bmask.SizeInBlocks);

 1 1

Convert the ROI coordinates to pixel level.

roiPositionsRC = fliplr(hROI.Vertices); % x,y to row,column
roiPosSub = world2sub(bmask, roiPositionsRC, "level", 1);

for cSub = 1:bmask.SizeInBlocks(2)
 for rSub = 1:bmask.SizeInBlocks(1)
 blockSub = [rSub, cSub];
 [pStart, pEnd] = blocksub2sub(bmask, blockSub, "Level", 1);

1 Functions

1-282

 % Create a grid encompassing all pixels in the block in X-Y order
 [xgrid,ygrid] = meshgrid(pStart(2):pEnd(2), pStart(1):pEnd(1));

 % Create in/out mask for this block
 tileMask = inpolygon(xgrid, ygrid,...
 roiPosSub(:,2), roiPosSub(:,1));

 % Write out the block
 setBlock(bmask, blockSub, tileMask);

 end
end

Switch the blocked image to read mode.

bmask.Mode = 'r';

Display the mask.

figure
bigimageshow(bmask)

Input Arguments
bim — Blocked image
blockedImage object

 setBlock

1-283

Blocked image, specified as a blockedImage object.

blocksub — Block subscript vector
integer-valued vector

Block subscript vector, specified as a 1-by-N integer-valued block subscript vector. Valid elements
range from 1 to the corresponding element in SizeInBlocks property.
Example: [3, 2, 1]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

blockdata — Block of data
numeric array

Block of data, specified as a numeric array with dimensions that match BlockSize. The type
matches the type specified by the ClassUnderlying property. setBlock automatically trims blocks
along the edges to fit the Size property.

See Also
blockedImage | getBlock

Introduced in R2021a

1 Functions

1-284

sub2blocksub
Convert pixel subscripts to block subscripts

Syntax
blocksub = sub2blocksub(bim,pixelsub)
blocksub = sub2blocksub(bim,pixelsub,'Level',L)

Description
blocksub = sub2blocksub(bim,pixelsub) converts the pixel subscripts in pixelsub to the
block subscripts identifying the block containing the specified pixel.

blocksub = sub2blocksub(bim,pixelsub,'Level',L) additionally specifies the resolution
level to use in a multiresolution image. By default, Level is 1.

Examples

Convert Pixel Subscripts to Block Subscripts

Create a small sample image as a 5-by-7 matrix of zeros. Here is an illustration of the small sample
image, with the pixel coordinates of the four corners provided.

Create a blocked image from the sample image, specifying a 2-by-2 block size. To create this blocked
image, use blockedImage in write mode.

bim = blockedImage([],[5 7],[2 2],uint8(0),"Mode",'w');

Here is an illustration of the blocked image overlaid on the original image. It is divided into 2-by-2
blocks. In the diagram, each block contains it's block coordinates.

 sub2blocksub

1-285

To determine which block contains a particular pixel, convert the pixel subscripts into block
subscripts by using the sub2blocksub function. By default, if the image is a multiresolution image,
then sub2blocksub uses pixel coordinates from coarsest level, although you can specify any level.
Since the sample image has only one resolution level, sub2blocksub converts level 1.

[blocksub] = sub2blocksub(bim,[2 3])

blocksub = 1×2

 1 2

Input Arguments
bim — Blocked image
blockedImage object

Blocked image, specified as a blockedImage object.

pixelsub — Pixel subscripts
K-by-N integer-valued matrix

Pixel subscripts, specified as a K-by-N integer-valued matrix, N is the number of dimensions and K is
the number of coordinates.

Output Arguments
blocksub — Subscripts of block that contains pixel
K-by-N integer-valued matrix

Subscripts of the block that contains the pixel, returned as a K-by-N integer-valued matrix, for an N-
dimensional blocked image. K is the number of coordinates.

See Also
blockedImage

1 Functions

1-286

Introduced in R2021a

 sub2blocksub

1-287

sub2world
Convert pixel subscripts to block subscripts

Syntax
world = sub2world(bim,pixelsub)
world = sub2world(bim,pixelsub,'Level',L)

Description
world = sub2world(bim,pixelsub) converts the pixel subscripts, pixelsub, to the block
subscript of the block containing the corresponding pixel.

world = sub2world(bim,pixelsub,'Level',L) additionally specifies the resolution level to use
in a multiresolution image. Level defaults to 1.

Examples

Convert Pixel Subscripts to World Coordinates

Convert pixel subscripts from one level to another via the world coordinates to refer to the same
spatial region.

Create a blocked image from a sample image included with the toolbox.

bim = blockedImage('tumor_091R.tif');

Define a region of interest in the finest resolution level in pixel subscripts.

level1PixelSubStart = [1700, 1550 1];
level1PixelSubEnd = [2100, 2000 3];

Get the image data from the region of interest on the resolution level 1 image.

imr = getRegion(bim, level1PixelSubStart, level1PixelSubEnd, "Level", 1);
size(imr)

ans = 1×3

 401 451 3

Convert the pixel subscripts that define the region of interest into world coordinates. By default,
sub2world converts the coordinates at level 1, the finest resolution.

worldRegion = sub2world(bim,[level1PixelSubStart; level1PixelSubEnd]);

Compute a binary mask at the coarsest level.

bbw = apply(bim, @(bs)imbinarize(im2gray(bs.Data)), "Level", 3);

1 Functions

1-288

Convert the world coordinates of the region of interest to pixel subscripts of the mask. Note that the
mask has only two dimensions.

worldRegion = worldRegion(:,1:2);
maskPixelSubs = world2sub(bbw,worldRegion);

Corresponding mask region.

bwr = getRegion(bbw, maskPixelSubs(1,:), maskPixelSubs(2,:));
size(bwr)

ans = 1×2

 51 58

View the original image and the mask.

montage({imr,bwr})

Input Arguments
bim — Blocked image
blockedImage object

Blocked image, specified as a blockedImage object.

pixelsub — Pixel subscripts
K-by-N integer-valued vector

Pixel subscripts, specified as a K-by-N integer-valued vector, where N is the number of dimensions
and K is the number of coordinates.

 sub2world

1-289

Output Arguments
world — World subscripts
K-by-N numeric array

World subscripts, returned as a K-by-X numeric array. The world coordinates are in the same order as
the pixel subscripts. For an N-dimensional blockedImage, and K subscripts (each row is a separate
subscript), pixelsub is a K-by-N integer-valued matrix and world is a K-by-N numeric matrix.

See Also
blockedImage | world2sub

Introduced in R2021a

1 Functions

1-290

world2sub
Convert world coordinates to pixel subscripts

Syntax
pixelsub = world2sub(bim,world)
pixelsub = world2sub(bim,world,'Level',L)

Description
pixelsub = world2sub(bim,world) converts the world coordinates, world, to the
corresponding pixel subscripts, pixelsub. The world coordinates should be in the same order as the
pixel subscripts.

pixelsub = world2sub(bim,world,'Level',L) additionally specifies the resolution level to use
in a multi-resolution image. By default, Level is 1.

Examples

Convert Pixel Subscripts to World Coordinates

Convert pixel subscripts from one level to another via the world coordinates to refer to the same
spatial region.

Create a blocked image from a sample image included with the toolbox.

bim = blockedImage('tumor_091R.tif');

Define a region of interest in the finest resolution level in pixel subscripts.

level1PixelSubStart = [1700, 1550 1];
level1PixelSubEnd = [2100, 2000 3];

Get the image data from the region of interest on the resolution level 1 image.

imr = getRegion(bim, level1PixelSubStart, level1PixelSubEnd, "Level", 1);
size(imr)

ans = 1×3

 401 451 3

Convert the pixel subscripts that define the region of interest into world coordinates. By default,
sub2world converts the coordinates at level 1, the finest resolution.

worldRegion = sub2world(bim,[level1PixelSubStart; level1PixelSubEnd]);

Compute a binary mask at the coarsest level.

bbw = apply(bim, @(bs)imbinarize(im2gray(bs.Data)), "Level", 3);

 world2sub

1-291

Convert the world coordinates of the region of interest to pixel subscripts of the mask. Note that the
mask has only two dimensions.

worldRegion = worldRegion(:,1:2);
maskPixelSubs = world2sub(bbw,worldRegion);

Corresponding mask region.

bwr = getRegion(bbw, maskPixelSubs(1,:), maskPixelSubs(2,:));
size(bwr)

ans = 1×2

 51 58

View the original image and the mask.

montage({imr,bwr})

Input Arguments
bim — Blocked image
blockedImage object

Blocked image, specified as a blockedImage object.

world — World coordinates
numeric matrix

World coordinates, specified as a K-by-N numeric matrix, where K is the number of world coordinate
vectors and N is the number of dimensions of the blockedImage.

1 Functions

1-292

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Output Arguments
pixelsub — Pixel subscripts
K-by-N integer-valued matrix

Pixel subscripts, returned as a K-by-N integer-valued matrix, where N is the number of dimensions
and K is the number of coordinates.

Tips
• World coordinates are theoretically continuous domain values represented by floating point

numbers. Subscripts are discrete integer values that can be used to index into the underlying
array. Floating point computation and rounding may cause small changes in world coordinates
around the edge of pixels to map to different neighboring subscript locations. world2sub rounds
up world coordinate values on the edge of two pixels, except for pixels on the border, where it
rounds down to the last pixel.

See Also
blockedImage | sub2world

Introduced in R2021a

 world2sub

1-293

write
Write blocked image data to new destination

Syntax
write(bim,destination)
write(bim,destination,Name,Value)

Description
write(bim,destination) writes the blocked image data bim to the location specified by
destination.

write(bim,destination,Name,Value) specifies additional options for writing the blocked image
data using name-value arguments.

Examples

Create Pyramidal Representation of Single Image

Create a blocked image and view the value of the Size property.

bim = blockedImage('cameraman.tif');
disp(bim.Size)

 256 256

Resize the blocked image using the blocked image apply object function to call imresize.

bsub1 = bim.apply(@(bs)imresize(bs.Data,0.5));

Create the new resolution level for the image.

write(bim, "pyramid2.tif", "LevelImages", bsub1, "BlockSize", [32 32]);

Create a new, multiresolution blocked image and display the Size property.

bpyramid = blockedImage("pyramid2.tif");
disp(bpyramid.Size)

 256 256
 128 128

Write Two Levels from a Three Level Image

Create a blocked image and view the value of the Size property.

bim = blockedImage('tumor_091R.tif');
disp(bim.Size)

1 Functions

1-294

 5000 5358 3
 1250 1340 3
 625 670 3

Write only two levels from a three level image. Write to a folder where each block is a saved in a
separate PNG file.

write(bim, "lev1_and_3", "Levels", [1 3], "Adapter", images.blocked.PNGBlocks);
bim2 = blockedImage("lev1_and_3");
disp(bim2.Size)

 5000 5358 3
 625 670 3

Inspect the output folder structure, using the Image Browser app, or view a montage of the images in
the folders lev1_and_3/L1 and lev1_and_3/L2.

figure; montage(imageDatastore('lev1_and_3/L1'), 'BorderSize', 5);

View a montage of the images in the folder lev1_and_3/L2.

 write

1-295

figure; montage(imageDatastore('lev1_and_3/L2'), 'BorderSize', 5);

Write HDF5 Compressed Data for Archival Use

Create a blocked image.

bim = blockedImage('tumor_091R.tif');

Write the data from the three resolution levels of the blocked image to an H5 file. Specify the blocked
image adapter for HDF5 files and the compression level when you write the data.

wadapter = images.blocked.H5;
wadapter.GZIPLevel = 5;
write(bim, "tumor_091.h5", "Adapter", wadapter);

1 Functions

1-296

Display information about the HDF5 image that was created.

h5disp("tumor_091.h5");

HDF5 tumor_091.h5
Group '/'
 Group '/blockedImage'
 Attributes:
 'Size': 3x3 H5T_FLOAT
 'IOBlockSize': 3x3 H5T_FLOAT
 'Datatype': 'uint8', 'uint8', 'uint8'
 Dataset 'L1'
 Size: 5000x5358x3
 MaxSize: 5000x5358x3
 Datatype: H5T_STD_U8LE (uint8)
 ChunkSize: 1024x1024x3
 Filters: deflate(5)
 FillValue: 0
 Dataset 'L2'
 Size: 1250x1340x3
 MaxSize: 1250x1340x3
 Datatype: H5T_STD_U8LE (uint8)
 ChunkSize: 1024x1024x3
 Filters: deflate(5)
 FillValue: 0
 Dataset 'L3'
 Size: 625x670x3
 MaxSize: 625x670x3
 Datatype: H5T_STD_U8LE (uint8)
 ChunkSize: 625x670x3
 Filters: deflate(5)
 FillValue: 0

Input Arguments
bim — Blocked image
blockedImage object

Blocked image, specified as a blockedImage object.

destination — Location to place writable data
char vector | string scalar

Location to place writable data, specified as a character vector or string scalar.
Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: "Levels",[1 3]

Adapter — Adapter used for writing blocked image data
adapter object

 write

1-297

Adapter used for writing blocked image data, specified as an adapter object.

Adapter Description
BINBlocks Store each block as a binary file in a folder
GenericImage Store blocks in a single image
GenericImageBlocks Store each block as an image file in a folder
H5 Store blocks in a single HDF5 image
H5Blocks Store each block as an HDF5 file in a folder
InMemory Store blocks in a variable in main memory
JPEGBlocks Store each block as a JPEG file in a folder
MATBlocks Store each block as a MAT file in a folder
PNGBlocks Store each block as a PNG file in a folder
TIFF Store blocks in a single TIFF file

You can also specify a custom adapter that performs custom writing operations. For more
information, see images.blocked.Adapter.

You must specify a value for the 'OutputLocation' property for all adapters except InMemory. If
you do not specify a value for the OutputLocation parameter, write uses InMemory as the default
adapter. Otherwise, the default adapter is BINBlocks for numeric and logical data and MATBlocks
for struct and categorical data.

BlockSize — Output block size
1-by-D vector of positive integers

Output block size, specified as 1-by-D vector of positive integers, where D is the value of the
NumDimensions property of the blocked image bim. The default block size is equal to the
BlockSize property of bim.

DisplayWaitbar — Display wait bar
true (default) | false

Display wait bar, specified as true or false. When set to true, the write object function displays a
wait bar for long-running operations. If you cancel the wait bar, the write function returns a partial
output, if available.

LevelImages — Additional single-level blocked images
vector of blockedImage objects

Additional single-level blocked images, specified as a vector of single-level blockedImage objects.
The write function appends these additional single-level blocked image to the specified blocked
image (bim) to create a multiresolution blocked image. The single-level blocked images should have
the same NumDimensions property value as bim.

Levels — Levels of multiresolution blocked image to write
[] (default) | vector of positive integers

Levels of a multiresolution blocked image to write, specified as vector of positive integers. Use this
argument to selectively write the specified levels of the blocked image to the destination.

1 Functions

1-298

See Also
blockedImage | images.blocked.Adapter

Introduced in R2021a

 write

1-299

blockedImageDatastore
Datastore for use with blocks from blockedImage objects

Description
A blockedImageDatastore object manages a collection of image blocks that belong to one or more
blockedImage objects. A blockedImageDatastore is analogous to an imageDatastore, which
manages a collection of unrelated images.

Creation

Syntax
bimds = blockedImageDatastore(Images)
bimds = blockedImageDatastore(sources)
bimds = blockedImageDatastore(___ ,Name,Value)

Description

bimds = blockedImageDatastore(Images) creates a blockedImageDatastore object that
manages a collection of image blocks of one or more blockedImage objects, Images.

If Images contains an object with multiple resolution levels, then blockedImageDatastore chooses
only blocks from the finest resolution level. The BlockSize property of the first element in Images is
the default datastore block size.

bimds = blockedImageDatastore(sources) creates a datastore from the files specified by
sources.

bimds = blockedImageDatastore(___ ,Name,Value) also uses name-value pairs to set one or
more properties, except for Images and TotalNumBlocks. You can specify multiple name-value
pairs. Enclose each property name in quotes.

Input Arguments

sources — Name of blocked image files
cell array of character vectors | string array | FileSet object

Name of the blocked image files, specified as a cell array of character vectors, a string scalar, or a
FileSet object. The blockedImageDatastore object converts the images in the files into blocked
images and sets those images as the Images property.

Properties
BlockLocationSet — Blocks to include in datastore
blockLocationSet object

1 Functions

1-300

Blocks to include in the datastore, specified as a blockLocationSet object. The object specifies
which blocks to include from the blocked image bims. You can repeat or omit individual blocks. To
obtain the default value, blockedImageDatastore calls the selectBlockLocations function.

You cannot change the BlockLocationSet property after creating the blockedImageDatastore.

BlockSize — Block size
1-by-D numeric vector

Block size, specified as a 1-by-D numeric vector, where D is the number of dimensions of the first
blocked image in Images, at the first resolution level in Levels.

You cannot change the BlockSize property after creating the blockedImageDatastore.

BorderSize — Size of additional block border elements
1-by-D vector of nonnegative integers

Size of additional block border elements in each dimension, specified as a 1-by-D numeric vector,
where D is the number of dimensions of the first blocked image in Images, at the first resolution level
in Levels. The default value is zeros(1,D).

Images — Blocked images
array of blockedImage objects

Blocked images that supply blocks for the blockedImageDatastore, specified as an array of
blockedImage objects. All elements of Images must have the same number of dimensions and be of
the same type.

You cannot change the Images property after creating the blockedImageDatastore.

PadMethod — Method used for padding incomplete blocks
numeric scalar | 'replicate'

Method used for padding incomplete blocks, specified as one of the values in this table. By default,
the datastore pads numeric blocks with the value of the InitialValue property of the first blocked
image in the array of blocked images, Images.

Value Meaning
numeric scalar Pad incomplete blocks with the specified scalar value. The type of the value

depends on the ClassUnderlying of the blocked images in Images.
'replicate' Pad by repeating border elements of array.

PadPartialBlocks — Pad partial blocks
true (default) | false

Pad partial blocks that exist on the edge, specified as a logical scalar true or false. When true, the
blocked image datastore add padding according to the padding method specified in the PadMethod
property.

ReadSize — Number of blocks to return in each call to read function
1 (default) | positive integer

Number of blocks to return in each call to the read function, specified as a positive integer. Each call
to the read function reads at most ReadSize blocks

 blockedImageDatastore

1-301

TotalNumBlocks — Total number of blocks available
numeric scalar

This property is read-only.

Total number of blocks available, specified as a numeric scalar.

Object Functions
combine Combine data from multiple datastores
countEachLabel Counts number of pixel labels for each class
hasdata Returns true if more data is available in blockedImageDatastore
numpartitions Number of datastore partitions
partition Return partitioned part of blockedImageDatastore
preview Preview subset of data in datastore
read Read data and metadata from blockedImageDatastore
readall Read all data from the blockedImageDatastore
reset Reset datastore to initial state
shuffle Shuffle data in datastore
subset Create subset of datastore or file-set
transform Transform datastore

Examples

Create blockedImageDatastore at Specific level and Block Size

Create a blockedImage.

bim = blockedImage('tumor_091R.tif');

Create a datastore, specifying the resolution level and the blocksize.

bls = selectBlockLocations(bim,"Levels",2,"BlockSize",[512, 512]);
bimds = blockedImageDatastore(bim, "BlockLocationSet", bls);

Read all the blocks in the datastore.

b = readall(bimds)

b=9×1 cell array
 {512×512×3 uint8}
 {512×512×3 uint8}
 {512×512×3 uint8}
 {512×512×3 uint8}
 {512×512×3 uint8}
 {512×512×3 uint8}
 {512×512×3 uint8}
 {512×512×3 uint8}
 {512×512×3 uint8}

Display the blocked image

montage(b)

1 Functions

1-302

Create blockedImageDatastore from Multiple Files

Create a FileSet object containing multiple image files of the PNG file format.

fs = matlab.io.datastore.FileSet(...
 fullfile(matlabroot,"toolbox","images","imdata"), ...
 "FileExtensions",".png");

Create a blockedImage object, specifying an adapter. This saves time by skipping the need to
inspect each file to pick a suitable adapter.

 blockedImageDatastore

1-303

readAdapter = images.blocked.GenericImage;
bims = blockedImage(fs,"Adapter",readAdapter);

All images must have the same number of dimensions, so only retain RGB images.

bims = bims([bims.NumDimensions]==3);
bimds = blockedImageDatastore(bims,"BlockSize",[300 500], ...
 "PadMethod","replicate");

Display all of the blocks in the blockedImageDatastore.

montage(readall(bimds),"Border",2,"BackgroundColor","w");

1 Functions

1-304

Create blockedImageDatastore with Overlapping Blocks

Create a blockedImage.

bim = blockedImage('tumor_091R.tif');

Specify overlapping blocks.

blockSize = [512 512];
overlapPct = 0.5;
blockOffsets = round(blockSize.*overlapPct);
bls = selectBlockLocations(bim,...
 'BlockSize', blockSize,...
 'BlockOffSets', blockOffsets,...
 'ExcludeIncompleteBlocks', true);

Create the blockedImageDatastore.

bimds = blockedImageDatastore(bim, "BlockLocationSet", bls);

Display the overlapping blocks.

bimds.ReadSize = 6;
blocks = read(bimds);
montage(blocks, "BorderSize", 5, "BackgroundColor", 'b');

 blockedImageDatastore

1-305

Create blockedImageDatastore using Coarse Level Mask

Create a blockedImage.

bim = blockedImage('tumor_091R.tif');

Create a mask at the coarsest level.

bmask = apply(bim, @(bs)~imbinarize(im2gray(bs.Data)),"Level",3);

Create a blockedImageDatastore for blocks which have at least 90% pixels 'on' in the stained
region as defined by the mask.

mbls = selectBlockLocations(bim,...
 'Levels', 1, ...
 'Masks', bmask, 'InclusionThreshold', 0.90,...
 'BlockSize', [256 256]);
bimds = blockedImageDatastore(bim, 'BlockLocationSet', mbls);

Read blocks and display them.

bimds.ReadSize = 5;
blocks = read(bimds);
montage(blocks, "BorderSize", 5, "BackgroundColor", 'b')

1 Functions

1-306

Create Categorical Data from Labelled Numeric Data

Create blocked images from numeric and labeled data.

bim = blockedImage('yellowlily.jpg', 'BlockSize', [512 512]);
lbim = blockedImage('yellowlily-segmented.png', 'BlockSize', [512 512]);

Create blockedImageDatastore objects for each blocked image.

bimds = blockedImageDatastore(bim);
lbimds = blockedImageDatastore(lbim);

Transform the labeled numeric data into categorical data.

catbimds = transform(lbimds,...
 @(bs){categorical(bs{1}, [0,1, 2, 3], ["Unknown", "Flower", "Leaf", "Background"])});

Combine the original blockedImageDatastore with the categorical datastore.

cbimds = combine(bimds,catbimds);

Read data from the datastore and display it. The first cell is image data, second is categorical labels.

data = read(cbimds);
imshow(labeloverlay(data{1},data{2}));

 blockedImageDatastore

1-307

See Also
blockedImage | blockLocationSet | selectBlockLocations

Introduced in R2021a

1 Functions

1-308

countEachLabel
Counts number of pixel labels for each class

Syntax
counts = countEachLabel(bimds)
counts = countEachLabel(___ ,Name,Value)

Description
counts = countEachLabel(bimds) counts the occurrence of each pixel label in all the blocks
represented by the blocked image datastore bimds.

counts = countEachLabel(___ ,Name,Value) specifies additional parameters.

If bimds contains categorical data, countEachLabel obtains the class names from the categories
specified in the InitialValue property of the first blocked image. In this case, do not specify values
for the 'Classes' and 'PixelLabelIDs' parameters. If bimds contains numeric data, you must
provide values for the 'Classes' and 'PixelLabelIDs' parameters.

Examples

Count Pixel Labels from Numeric Data

Create a blocked image from a sample label image.

label_bim = blockedImage('yellowlily-segmented.png', 'BlockSize', [512 512]);

Create a blocked image datastore from the blocked image.

lbimds = blockedImageDatastore(label_bim);

Count the labels in the blocked image datastore. Labels 0 and 3 both map to 'Background'.

countEachLabel(lbimds, ...
 "Classes", ["Background", "Flower", "Leaf", "Background"],...
 "PixelLabelIDs", [0, 1, 2, 3])

ans=3×3 table
 Name PixelCount BlockPixelCount
 ____________ __________ _______________

 "Background" 2.3706e+06 3.1457e+06
 "Flower" 4.3349e+05 1.5729e+06
 "Leaf" 3.4159e+05 2.0972e+06

 countEachLabel

1-309

Input Arguments
bimds — Blocked image datastore
blockedImageDatastore object

Blocked image datastore, specified as a blockedImageDatastore object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: countEachLabel(lbimds, ... "Classes",
["Background","Flower","Leaf","Background"],... "PixelLabelIDs",[0,1,2,3])

Classes — Class names
string array | cell array of char vectors

Class names, specified as a string array or a cell array of char vectors.
Example: "Classes",["Background","Flower","Leaf"]
Data Types: char | string | cell

PixelLabelIDs — Values for each label
numeric array

Values for each label, specified as a numeric array of values with the same length as 'Classes'. This
parameter provides the mapping from numeric values to the label class.
Example: "PixelLabelIDs",[0,1,2,3]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

UseParallel — Use new or existing parallel pool
false (default) | true

Use new or existing parallel pool, specified as a logical scalar true or false. If no parallel pool is
active, countEachLabel opens a new pool based on the default parallel settings. This syntax
requires Parallel Computing Toolbox.
Data Types: logical

Output Arguments
counts — Counts the occurrence of each pixel label
table

Counts the occurrence of each pixel label in all blocks represented by the blocked image datastore,
returned as a table that contains three variables.

Pixel Count Variables Description
Name Pixel label class name
PixelCount Number of pixels of a given class in all blocks

1 Functions

1-310

Pixel Count Variables Description
ImagePixelCount Total number of pixels in blocks that have an

instance of the given class

Tips
You can use the label information returned by countEachLabel to calculate class weights for class
balancing. For example, for labeled pixel data information in tbl:

• Uniform class balancing weights each class such that each contains a uniform prior probability:

numClasses = height(tbl)
prior = 1/numClasses;
classWeights = prior./tbl.PixelCount

• Inverse frequency balancing weights each class such that underrepresented classes are given
higher weight:

totalNumberOfPixels = sum(tbl.PixelCount)
frequency = tbl.PixelCount / totalNumberOfPixels;
classWeights = 1./frequency

• Median frequency balancing weights each class using the median frequency. The weight for each
class c is defined as median(imageFreq)/imageBlockFreq(c) where imageBlockFreq(c)
is the number of pixels of a given class divided by the total number of pixels in image blocks that
had an instance of the given class c.

imageBlockFreq = tbl.PixelCount ./ tbl.BlockPixelCount
classWeights = median(imageBlockFreq) ./ imageBlockFreq

You can pass the calculated class weights to a pixelClassificationLayer.

See Also
blockedImage | blockedImageDatastore | pixelClassificationLayer

Introduced in R2021a

 countEachLabel

1-311

hasdata
Returns true if more data is available in blockedImageDatastore

Syntax
tf = hasdata(bimds)

Description
tf = hasdata(bimds) returns a logical scalar, true or false, indicating the availability of data in
the blockedImageDatastore bimds. Use hasdata in conjunction with the read function to read
all the data within the datastore. Call hasdata before calling read.

Examples

Read Until All Data in Datastore Has Been Read

Create a blocked image from a sample image.

bim = blockedImage('tumor_091R.tif');

Create a blockedImageDatastore object from the blocked image, bim.

bimds = blockedImageDatastore(bim);

Read blocks from the blockedImageDatastore until there is no more data to read, that is, until
hasdata returns false.

while hasdata(bimds)
 [data, info] = read(bimds);
 disp(info);
end

 BlockSub: [1 1 1]
 Start: [1 1 1]
 End: [1024 1024 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [1 2 1]
 Start: [1 1025 1]
 End: [1024 2048 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [1 3 1]
 Start: [1 2049 1]

1 Functions

1-312

 End: [1024 3072 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [1 4 1]
 Start: [1 3073 1]
 End: [1024 4096 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [1 5 1]
 Start: [1 4097 1]
 End: [1024 5120 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [1 6 1]
 Start: [1 5121 1]
 End: [1024 6144 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [2 1 1]
 Start: [1025 1 1]
 End: [2048 1024 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [2 2 1]
 Start: [1025 1025 1]
 End: [2048 2048 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [2 3 1]
 Start: [1025 2049 1]
 End: [2048 3072 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [2 4 1]
 Start: [1025 3073 1]
 End: [2048 4096 3]
 Level: 1

 hasdata

1-313

 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [2 5 1]
 Start: [1025 4097 1]
 End: [2048 5120 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [2 6 1]
 Start: [1025 5121 1]
 End: [2048 6144 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [3 1 1]
 Start: [2049 1 1]
 End: [3072 1024 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [3 2 1]
 Start: [2049 1025 1]
 End: [3072 2048 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [3 3 1]
 Start: [2049 2049 1]
 End: [3072 3072 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [3 4 1]
 Start: [2049 3073 1]
 End: [3072 4096 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [3 5 1]
 Start: [2049 4097 1]
 End: [3072 5120 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]

1 Functions

1-314

 BlockSize: [1024 1024 3]

 BlockSub: [3 6 1]
 Start: [2049 5121 1]
 End: [3072 6144 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [4 1 1]
 Start: [3073 1 1]
 End: [4096 1024 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [4 2 1]
 Start: [3073 1025 1]
 End: [4096 2048 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [4 3 1]
 Start: [3073 2049 1]
 End: [4096 3072 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [4 4 1]
 Start: [3073 3073 1]
 End: [4096 4096 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [4 5 1]
 Start: [3073 4097 1]
 End: [4096 5120 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [4 6 1]
 Start: [3073 5121 1]
 End: [4096 6144 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 hasdata

1-315

 BlockSub: [5 1 1]
 Start: [4097 1 1]
 End: [5120 1024 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [5 2 1]
 Start: [4097 1025 1]
 End: [5120 2048 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [5 3 1]
 Start: [4097 2049 1]
 End: [5120 3072 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [5 4 1]
 Start: [4097 3073 1]
 End: [5120 4096 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [5 5 1]
 Start: [4097 4097 1]
 End: [5120 5120 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [5 6 1]
 Start: [4097 5121 1]
 End: [5120 6144 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

Input Arguments
bimds — Blocked image datastore
blockedImageDatastore object

Blocked image datastore, specified as a blockedImageDatastore object.

1 Functions

1-316

Output Arguments
tf — Data availability
true | false

Data availability, returned as a logical scalar, true or false.

See Also
blockedImageDatastore

Introduced in R2021a

 hasdata

1-317

partition
Return partitioned part of blockedImageDatastore

Syntax
subbimds = partition(bimds,n,index)

Description
subbimds = partition(bimds,n,index) partitions the blocked image datastore bimds into the
number of parts, specified by n, and returns the partition corresponding to the index index.

Examples

Partition blockedImageDatastore and Read Each Partition

Create a blocked image.

bim = blockedImage('tumor_091R.tif');

Create a blocked image datastore from the blocked image.

bimds = blockedImageDatastore(bim);

Partition the blocked image datastore into two partitions and create a new
blockedImageDatastore object of the data in the first partition.

bimdsp1 = partition(bimds, 2, 1);

Read data from the first partition.

disp('Partition 1');

Partition 1

while hasdata(bimdsp1)
 [data, info] = read(bimdsp1);
 disp(info);
end

 BlockSub: [1 1 1]
 Start: [1 1 1]
 End: [1024 1024 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [1 2 1]
 Start: [1 1025 1]
 End: [1024 2048 3]
 Level: 1

1 Functions

1-318

 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [1 3 1]
 Start: [1 2049 1]
 End: [1024 3072 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [1 4 1]
 Start: [1 3073 1]
 End: [1024 4096 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [1 5 1]
 Start: [1 4097 1]
 End: [1024 5120 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [1 6 1]
 Start: [1 5121 1]
 End: [1024 6144 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [2 1 1]
 Start: [1025 1 1]
 End: [2048 1024 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [2 2 1]
 Start: [1025 1025 1]
 End: [2048 2048 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [2 3 1]
 Start: [1025 2049 1]
 End: [2048 3072 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]

 partition

1-319

 BlockSize: [1024 1024 3]

 BlockSub: [2 4 1]
 Start: [1025 3073 1]
 End: [2048 4096 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [2 5 1]
 Start: [1025 4097 1]
 End: [2048 5120 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [2 6 1]
 Start: [1025 5121 1]
 End: [2048 6144 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [3 1 1]
 Start: [2049 1 1]
 End: [3072 1024 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [3 2 1]
 Start: [2049 1025 1]
 End: [3072 2048 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [3 3 1]
 Start: [2049 2049 1]
 End: [3072 3072 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

Partition the blocked image datastore and create a new blockedImageDatastore object of the data
in the second partition.

bimdsp2 = partition(bimds, 2, 2);

Read data from the second partition.

disp('Partition 2');

1 Functions

1-320

Partition 2

while hasdata(bimdsp2)
 [data, info] = read(bimdsp2);
 disp(info);
end

 BlockSub: [3 4 1]
 Start: [2049 3073 1]
 End: [3072 4096 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [3 5 1]
 Start: [2049 4097 1]
 End: [3072 5120 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [3 6 1]
 Start: [2049 5121 1]
 End: [3072 6144 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [4 1 1]
 Start: [3073 1 1]
 End: [4096 1024 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [4 2 1]
 Start: [3073 1025 1]
 End: [4096 2048 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [4 3 1]
 Start: [3073 2049 1]
 End: [4096 3072 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [4 4 1]
 Start: [3073 3073 1]
 End: [4096 4096 3]

 partition

1-321

 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [4 5 1]
 Start: [3073 4097 1]
 End: [4096 5120 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [4 6 1]
 Start: [3073 5121 1]
 End: [4096 6144 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [5 1 1]
 Start: [4097 1 1]
 End: [5120 1024 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [5 2 1]
 Start: [4097 1025 1]
 End: [5120 2048 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [5 3 1]
 Start: [4097 2049 1]
 End: [5120 3072 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [5 4 1]
 Start: [4097 3073 1]
 End: [5120 4096 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [5 5 1]
 Start: [4097 4097 1]
 End: [5120 5120 3]
 Level: 1
 ImageNumber: 1

1 Functions

1-322

 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [5 6 1]
 Start: [4097 5121 1]
 End: [5120 6144 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

Input Arguments
bimds — Blocked image datastore
blockedImageDatastore object

Blocked image datastore, specified as a blockedImageDatastore object.

n — Number of partitions
numeric scalar

Number of partitions, specified as a numeric scalar. To get an estimate for a reasonable value for N,
use the numpartitions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

index — Partition to read
numeric scalar

Partition to read, specified as a numeric scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Output Arguments
subbimds — Subset of datastore
blockedImageDatastore object

Subset of datastore, returned as a blockedImageDatastore object.

See Also
blockedImage | blockedImageDatastore

Introduced in R2021a

 partition

1-323

read
Read data and metadata from blockedImageDatastore

Syntax
b = read(bimds)
[b,info] = read(bimds)

Description
b = read(bimds) returns the data extracted from the blockedImageDatastore, bimds. b is a
cell array of block data. The value of the ReadSize property of the blockedImageDatastore object
determines the length of the cell array.

[b,info] = read(bimds) also returns info, a structure containing information about where the
data was extracted from the blockedImageDatastore.

Examples

Read Data and Metadata from blockedImageDatastore

Create a blocked image.

bim = blockedImage('tumor_091R.tif');

Create a blockedImageDatastore from the blocked image.

bimds = blockedImageDatastore(bim);

Read data and metadata from the blockedImageDatastore. Display the metadata.

while hasdata(bimds)
 [data, info] = read(bimds);
 disp(info);
end

 BlockSub: [1 1 1]
 Start: [1 1 1]
 End: [1024 1024 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [1 2 1]
 Start: [1 1025 1]
 End: [1024 2048 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

1 Functions

1-324

 BlockSub: [1 3 1]
 Start: [1 2049 1]
 End: [1024 3072 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [1 4 1]
 Start: [1 3073 1]
 End: [1024 4096 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [1 5 1]
 Start: [1 4097 1]
 End: [1024 5120 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [1 6 1]
 Start: [1 5121 1]
 End: [1024 6144 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [2 1 1]
 Start: [1025 1 1]
 End: [2048 1024 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [2 2 1]
 Start: [1025 1025 1]
 End: [2048 2048 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [2 3 1]
 Start: [1025 2049 1]
 End: [2048 3072 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [2 4 1]

 read

1-325

 Start: [1025 3073 1]
 End: [2048 4096 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [2 5 1]
 Start: [1025 4097 1]
 End: [2048 5120 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [2 6 1]
 Start: [1025 5121 1]
 End: [2048 6144 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [3 1 1]
 Start: [2049 1 1]
 End: [3072 1024 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [3 2 1]
 Start: [2049 1025 1]
 End: [3072 2048 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [3 3 1]
 Start: [2049 2049 1]
 End: [3072 3072 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [3 4 1]
 Start: [2049 3073 1]
 End: [3072 4096 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [3 5 1]
 Start: [2049 4097 1]
 End: [3072 5120 3]

1 Functions

1-326

 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [3 6 1]
 Start: [2049 5121 1]
 End: [3072 6144 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [4 1 1]
 Start: [3073 1 1]
 End: [4096 1024 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [4 2 1]
 Start: [3073 1025 1]
 End: [4096 2048 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [4 3 1]
 Start: [3073 2049 1]
 End: [4096 3072 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [4 4 1]
 Start: [3073 3073 1]
 End: [4096 4096 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [4 5 1]
 Start: [3073 4097 1]
 End: [4096 5120 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [4 6 1]
 Start: [3073 5121 1]
 End: [4096 6144 3]
 Level: 1
 ImageNumber: 1

 read

1-327

 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [5 1 1]
 Start: [4097 1 1]
 End: [5120 1024 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [5 2 1]
 Start: [4097 1025 1]
 End: [5120 2048 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [5 3 1]
 Start: [4097 2049 1]
 End: [5120 3072 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [5 4 1]
 Start: [4097 3073 1]
 End: [5120 4096 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [5 5 1]
 Start: [4097 4097 1]
 End: [5120 5120 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

 BlockSub: [5 6 1]
 Start: [4097 5121 1]
 End: [5120 6144 3]
 Level: 1
 ImageNumber: 1
 BorderSize: [0 0 0]
 BlockSize: [1024 1024 3]

Input Arguments
bimds — Blocked image datastore
blockedImageDatastore object

1 Functions

1-328

Blocked image datastore, specified as a blockedImageDatastore object.

Output Arguments
b — Data from blockedImageDatastore
cell array

Data from blockedImageDatastore, returned as a cell array of block data of length ReadSize.

info — Metadata from blockedImageDatastore
scalar struct

Metadata from blockedImageDatastore, returned as a scalar struct with these fields. If
ReadSize>1, these fields are arrays.

Field Description
Level Resolution level from which this data was read.
ImageNumber Index into the bimds.Images array

corresponding to the blockedImage from which
this block was read.

Start Subscripts of the first element in the block. If
BorderSize is specified, this subscript can be
out-of-bounds for edge blocks.

End Subscripts of the last element in the block. If
BorderSize is specified, this subscript can be
out-of-bounds for edge blocks.

Blocksub Block subscripts of the current block
BorderSize Value of the BorderSize parameter
BlockSize Value of the BlockSize parameter

See Also
blockedImage | blockedImageDatastore

Introduced in R2021a

 read

1-329

readall
Read all data from the blockedImageDatastore

Syntax
b = readall(bimds)

Description
b = readall(bimds) read all the data from the blockedImagesDatastore, bimds. readall
returns b, a cell array containing an element for every individual block. All the data returned from the
individual reads should be able to be concatenated vertically. The datatype of the output should be
the same as that of the read method.

Examples

Read All the Blocks from a blockedImageDatastore

Create a blocked image. The blockedImage object chunks the image into a 5-by-6 grid of 1024-
by-1024 sized blocks, totaling 30 blocks.

bim = blockedImage('tumor_091R.tif');

Create a blockedImageDatastore from the blocked image.

bimds = blockedImageDatastore(bim);

Read all the blocks from the blockedImageDatastore. The readall object function returns a cell
array containing the 30 blocks.

b = readall(bimds)

b=30×1 cell array
 {1024x1024x3 uint8}
 {1024x1024x3 uint8}
 {1024x1024x3 uint8}
 {1024x1024x3 uint8}
 {1024x1024x3 uint8}
 {1024x1024x3 uint8}
 {1024x1024x3 uint8}
 {1024x1024x3 uint8}
 {1024x1024x3 uint8}
 {1024x1024x3 uint8}
 {1024x1024x3 uint8}
 {1024x1024x3 uint8}
 {1024x1024x3 uint8}
 {1024x1024x3 uint8}
 {1024x1024x3 uint8}
 {1024x1024x3 uint8}
 ⋮

1 Functions

1-330

Display all the blocks.

montage(b)

Input Arguments
bimds — Blocked image datastore
blockedImageDatastore object

Blocked image datastore, specified as a blockedImageDatastore object.
Data Types: blockedImageDatastore

Output Arguments
b — Data from blockedImageDatastore
cell array

 readall

1-331

Data from blockedImageDatastore, returned as a cell array of block data of length ReadSize.

See Also
blockedImage | blockedImageDatastore

Introduced in R2021a

1 Functions

1-332

blockedNetwork
Create network with repeating block structure

Syntax
net = blockedNetwork(fun,numBlocks)
net = blockedNetwork(fun,numBlocks,'NamePrefix',namePrefix)

Description
net = blockedNetwork(fun,numBlocks) creates an uninitialized network, net, that consists of
numBlocks blocks of layers connected sequentially. The function fun creates each block of layers.

This function requires Deep Learning Toolbox.

net = blockedNetwork(fun,numBlocks,'NamePrefix',namePrefix) adds the prefix
namePrefix to all layer names in the network.

Examples

Create U-Net Style Encoder

Define a function that creates an array of layers. The first block has 32 filters in the convolution
layers. The number of filters doubles in each successive block.

unetBlock = @(block) [
 convolution2dLayer(3,2^(5+block))
 reluLayer
 convolution2dLayer(3,2^(5+block))
 reluLayer
 maxPooling2dLayer(2,"Stride",2)];

Create a network that consists of four repeating blocks of layers. Add the prefix "encoder_" to all
layer names in the network.

net = blockedNetwork(unetBlock,4,"NamePrefix","encoder_")

net =
 dlnetwork with properties:

 Layers: [20x1 nnet.cnn.layer.Layer]
 Connections: [19x2 table]
 Learnables: [16x3 table]
 State: [0x3 table]
 InputNames: {'encoder_Block1Layer1'}
 OutputNames: {'encoder_Block4Layer5'}
 Initialized: 0

Initialize network weights for input of size [224 224 3].

 blockedNetwork

1-333

net = initialize(net,dlarray(zeros(224,224,3),"SSC"));

Display the network.

analyzeNetwork(net)

Create U-Net from Pretrained GoogLeNet

Create a GAN encoder network with four downsampling operations from a pretrained GoogLeNet
network.

depth = 4;
[encoder,outputNames] = pretrainedEncoderNetwork('googlenet',depth);

Determine the input size of the encoder network.

inputSize = encoder.Layers(1).InputSize;

Determine the output size of the activation layers in the encoder network by creating a sample data
input and then calling forward, which returns the activations.

exampleInput = dlarray(zeros(inputSize),'SSC');
exampleOutput = cell(1,length(outputNames));
[exampleOutput{:}] = forward(encoder,exampleInput,'Outputs',outputNames);

Determine the number of channels in the decoder blocks as the length of the third channel in each
activation.

numChannels = cellfun(@(x) size(extractdata(x),3),exampleOutput);
numChannels = fliplr(numChannels(1:end-1));

Define a function that creates an array of layers for one decoder block.

decoderBlock = @(block) [
 transposedConv2dLayer(2,numChannels(block),'Stride',2)
 convolution2dLayer(3,numChannels(block),'Padding','same')
 reluLayer
 convolution2dLayer(3,numChannels(block),'Padding','same')
 reluLayer];

Create the decoder module with the same number of upsampling blocks as there are downsampling
blocks in the encoder module.

decoder = blockedNetwork(decoderBlock,depth);

Create the U-Net network by connecting the encoder module and decoder module and adding skip
connections.

net = encoderDecoderNetwork([224 224 3],encoder,decoder, ...
 'OutputChannels',3,'SkipConnections','concatenate')

net =
 dlnetwork with properties:

 Layers: [139x1 nnet.cnn.layer.Layer]
 Connections: [167x2 table]

1 Functions

1-334

 Learnables: [116x3 table]
 State: [0x3 table]
 InputNames: {'data'}
 OutputNames: {'encoderDecoderFinalConvLayer'}
 Initialized: 1

Display the network.

analyzeNetwork(net)

Input Arguments
fun — Function that creates blocks of layers
function

Function that creates blocks of layers, specified as a function with this signature:

block = fun(blockIndex)

• The input to fun, blockIndex, is an integer in the range [1, numBlocks].
• The output from fun, block, is a layer or layer array.

numBlocks — Number of blocks
positive integer

Number of blocks in the network, specified as a positive integer.

namePrefix — Prefix to all layer names
"" (default) | string | character vector

Prefix to all layer names in the network, specified as a string or character vector.
Data Types: char | string

Output Arguments
net — Network with repeating block structure
dlnetwork object

Network with a repeating block structure, returned as a dlnetwork object.

Tips
• The dlnetwork returned by blockedNetwork is uninitialized and not ready for use with training

or inference. To initialize the network, use the initialize function.
• Connect an encoder network to a decoder network using the encoderDecoderNetwork function.

See Also
encoderDecoderNetwork

Topics
“Create Modular Neural Networks”

 blockedNetwork

1-335

“Get Started with GANs for Image-to-Image Translation”

Introduced in R2021a

1 Functions

1-336

blockLocationSet
List of block locations in large images

Description
A blockLocationSet object provides locations of blocks used for class balancing in semantic
segmentation and object detection training workflows. It is used by blockedImageDatastore and
boxLabelDatastore objects to specify block locations to read data.

Creation
You can create a blockLocationSet object in these ways.

• selectBlockLocations — Select blocks from an entire blocked image or within the masked
region of a blocked image. Optionally specify the overlap and spacing between blocks.

• balancePixelLabels — Select blocks from labeled blocked images with pixel label data
(requires Computer Vision Toolbox™). Use this function to perform class balancing in semantic
segmentation workflows.

• balanceBoxLabels — Select blocks from labeled blocked images with bounding box data
(requires Computer Vision Toolbox). Use this function to perform class balancing in object
detection workflows.

• The blockLocationSet function described here. Use this function when you know the
coordinates of blocks within the blocked images.

Syntax
locationSet = blockLocationSet(ImageNumber,BlockOrigin,BlockSize)
locationSet = blockLocationSet(ImageNumber,BlockOrigin,BlockSize,Levels)

Description

locationSet = blockLocationSet(ImageNumber,BlockOrigin,BlockSize) creates a
blockLocationSet object that stores the locations BlockOrigin and size BlockSize of blocks to
be read from a set of blocked image files indexed by ImageNumber.

locationSet = blockLocationSet(ImageNumber,BlockOrigin,BlockSize,Levels) also
specifies the resolution level at which to read blocks from the blocked images.

Properties
ImageNumber — Image number
N-by-1 vector of positive integers

Image number of image files containing the read blocks, specified as an N-by-1 vector of positive
integers, where N is the number of blocks specified by the blockLocationSet. Values cannot
exceed the number of blocked images in the blockedImageDatastore.

 blockLocationSet

1-337

Example: [1 1 1 2] specifies that a blockedImageDatastore reads four blocks total, with the
first three blocks coming from the first blockedImage and the fourth block coming from the second
blockedImage in the datastore.
Data Types: double

BlockOrigin — Block origin
n-by-2 numeric matrix

Block origin, specified as an n-by-P numeric matrix where n is the number of blocks specified by the
blockLocationSet and P refers to the number of blocks. Each row specifies the [x y] coordinate
of the upper left corner of a block.
Data Types: double

BlockSize — Block size
1-by-N vector of positive integers

Block size, specified as a 1-by-N vector of positive integers. The block size is the same for all blocks in
the blockLocationSet. N matches the NumDimensions property of the blockedImage object.

Levels — Resolution levels
1 (default) | positive integer | vector of positive integers

Resolution level of each blockedImage in a blockedImageDatastore, specified as a positive
integer or a vector of positive integers.

• When you specify Levels as a positive integer scalar, the blockedImageDatastore reads all
blocks from the same resolution level.

• When you specify Levels as a vector of positive integers, each element indicates the resolution
level at which the blockedImageDatastore reads blocks from the corresponding
blockedImage. The length of Levels must equal the number of blockedImage objects in the
blockedImageDatastore.

Example: [1 1 2 2 1] specifies that a blockedImageDatastore containing five blockedImage
objects reads blocks at the first resolution level from the first, second, and fifth blockedImage
objects and blocks at the second resolution level from the third and fourth blockedImage objects.

Examples

Specify Locations to Select Blocks from Blocked Images

Create a blocked image.

bim = blockedImage('tumor_091R.tif');
bigimageshow(bim)

1 Functions

1-338

Since all the blocks are from the same image, imageNumber is 1 for all the blocks. For resolution
level, choose the finest resolution. Specify block locations in x,y coordinates.

imageNumber = [1, 1, 1, 1]';
levels = 1;
xyLocations = [[20 30 1]; [30 40 1]; [40 50 1]; [50 60 1]]

xyLocations = 4×3

 20 30 1
 30 40 1
 40 50 1
 50 60 1

blockSize = [300,300, 3];
locationSet = blockLocationSet(imageNumber,xyLocations,blockSize,levels);

Use the block location set to create a blockedImageDatastore containing just the specified blocks.

bimds = blockedImageDatastore(bim,'BlockLocationSet',locationSet);

Read two blocks at a time from the blockedImageDatastore.

bimds.ReadSize = 2;
while hasdata(bimds)
 blocks = read(bimds)
end

 blockLocationSet

1-339

blocks=2×1 cell array
 {300×300×3 uint8}
 {300×300×3 uint8}

blocks=2×1 cell array
 {300×300×3 uint8}
 {300×300×3 uint8}

Display the read blocks.

montage(blocks,'BorderSize',5,'BackgroundColor','b');

Tips
• The blockLocationSet object does not read or store data from blocked image files.

See Also
blockedImage | blockedImageDatastore | boxLabelDatastore | balancePixelLabels |
balanceBoxLabels | selectBlockLocations

Introduced in R2020a

1 Functions

1-340

blockproc
Distinct block processing for image

Syntax
B = blockproc(A,[m n],fun)
B = blockproc(src_filename,[m n],fun)
B = blockproc(adapter,[m n],fun)
blockproc(___ ,Name,Value)

Description
B = blockproc(A,[m n],fun) processes the image A by applying the function fun to each
distinct block of size [m n] and concatenating the results into the output image, B.

B = blockproc(src_filename,[m n],fun) processes the image with file name src_filename,
reading and processing one block at a time. This syntax is useful for processing large images.

B = blockproc(adapter,[m n],fun) processes the source image specified by adapter, an
ImageAdapter object. Use this syntax if you need a custom API for reading and writing to a
particular image file format.

blockproc(___ ,Name,Value) uses name-value pair arguments to control various aspects of the
block behavior.

Examples

Create Thumbnail of Image

Read image into the workspace.

I = imread('pears.png');

Create block processing function.

fun = @(block_struct) imresize(block_struct.data,0.15);

Process the image, block-by-block.

I2 = blockproc(I,[100 100],fun);

Display the original image and the processed image.

figure;
imshow(I);

 blockproc

1-341

figure;
imshow(I2);

Set Pixels in 32-by-32 blocks to Standard Deviation

Create block processing function.

fun = @(block_struct) ...
 std2(block_struct.data) * ones(size(block_struct.data));

Perform the block processing operation, specifying the input image by filename.

1 Functions

1-342

I2 = blockproc('moon.tif',[32 32],fun);

Display the original image and the processed version.

figure;
imshow('moon.tif');

figure;
imshow(I2,[]);

 blockproc

1-343

Switch Red and Green Bands of RGB Image

Read image into the workspace.

I = imread('peppers.png');

Create block processing function.

fun = @(block_struct) block_struct.data(:,:,[2 1 3]);

Perform the block processing operation.

1 Functions

1-344

blockproc(I,[200 200],fun,'Destination','grb_peppers.tif');

Display original image and the processed image.

figure;
imshow('peppers.png');

figure;
imshow('grb_peppers.tif');

 blockproc

1-345

Convert Large TIFF Image into JPEG2000 Image

Note: To run this example, you must replace 'largeImage.tif' with the name of your file.

Create block processing function.

fun = @(block_struct) block_struct.data;

Convert a TIFF image into a new JPEG2000 image. Replace 'largeImage.tif' with the name of an
actual image file.

blockproc('largeImage.tif',[1024 1024],fun,'Destination','New.jp2');

Input Arguments
A — Image to process
numeric array

Image to process, specified as a numeric array.

1 Functions

1-346

src_filename — Source file name
character vector | string scalar

Source file name, specified as a character vector or string scalar. Files must have one of these file
types and must be named with one of the listed file extensions.

• TIFF (*.tif, *.tiff)
• JPEG2000 (*.jp2, *.jpf, *.jpx, *.j2c, *.j2k)

Data Types: char | string

adapter — Image adapter
ImageAdapter object

Image adapter, specified as an ImageAdapter object. An ImageAdapter is a user-defined class that
provides blockproc with a common API for reading and writing to a particular image file format. For
more information, see “Perform Block Processing on Image Files in Unsupported Formats”.

[m n] — Block size
2-element vector

Block size, specified as a 2-element vector. m is the number of rows and n is the number of columns in
the block.

fun — Function handle
handle

Function handle, specified as a handle. The function must accept a block_struct on page 1-349 as
input and return an array, vector, or scalar. If fun returns empty, then blockproc does not generate
any output and returns empty after processing all blocks.

For more information about function handles, see “Create Function Handle”.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'BorderSize',[8 4]

Destination — Destination
character vector | string scalar | ImageAdapter object

Destination for the output, specified as the comma-separated pair consisting of 'Destination' and
one of the following. When you specify the 'Destination' argument, blockproc does not return
the processed image as an output argument, but instead writes the output to the destination file.

• A character vector or string scalar with a destination file name. Files must have one of these file
types and must be named with one of the listed file extensions.

• TIFF (*.tif, *.tiff)
• JPEG2000 (*.jp2, *.j2c, *.j2k)

If a file with this name exists, then it is overwritten.

 blockproc

1-347

• An ImageAdapter object, which provides a common API for reading and writing to a particular
image file format. For more information, see “Perform Block Processing on Image Files in
Unsupported Formats”.

The 'Destination' argument is useful when you expect your output to be too large to fit into
memory. It provides a workflow for file-to-file image processing for arbitrarily large images.

Note You cannot request an output argument when you specify the 'Destination' argument.

BorderSize — Border size
[0 0] (default) | 2-element vector of positive integers

Number of border pixels to add to each block, specified as the comma-separated pair consisting of
'BorderSize' and a 2-element vector of positive integers, of the form [v h]. The function adds v
rows above and below each block and h columns left and right of each block. The size of each
resulting block is:

[m+2*v, n+2*h]

By default, the function automatically removes the border from the result of fun. See the
TrimBorder argument for more information.

The function pads blocks with borders extending beyond the image edges with zeros.

PadPartialBlocks — Pad partial blocks
false (default) | true

Pad partial blocks to make them full-sized, specified as the comma-separated pair consisting of
'PadPartialBlocks' and false or true. Partial blocks arise when the image size is not exactly
divisible by the block size. If they exist, partial blocks lie along the right and bottom edge of the
image.

When set to true, blockproc pads partial blocks to make them full-sized m-by-n blocks. The default
is false, meaning that the function does not pad the partial blocks, but processes them as-is.
blockproc uses zeros to pad partial blocks when necessary.

PadMethod — Pad method
0 (default) | 'replicate' | 'symmetric' | numeric scalar

Method used to pad the image boundary, specified as the comma-separated pair consisting of
'PadMethod' and one of the following.

Value Description
'replicate' Repeat border elements.
'symmetric' Pad image with mirror reflections of itself.
numeric scalar Pad image with a scalar value. By default, the image

boundary is padded with the value 0.

Data Types: char | string

TrimBorder — Remove border pixels
true (default) | false

1 Functions

1-348

Remove border pixels from the output of the user function, specified as the comma-separated pair
consisting of 'TrimBorder' and true or false. When set to true, the blockproc function
removes border pixels from the output of the user function, fun. The function removes v rows from
the top and bottom of the output of fun, and h columns from the left and right edges. The
BorderSize argument defines v and h.

UseParallel — Use parallel processing
false (default) | true

Use parallel processing, specified as the comma-separated pair consisting of 'UseParallel' and
false or true. If you have Parallel Computing Toolbox installed, when set to true, MATLAB
automatically opens a parallel pool of workers on your local machine. blockproc runs the
computation across the available workers. For more information, see “Parallel Block Processing on
Large Image Files”.

DisplayWaitbar — Display wait bar
true (default) | false

Display wait bar, specified as the comma-separated pair consisting of 'DisplayWaitbar' and true
or false. When set to true, blockproc displays a wait bar to indicate progress for long-running
operations. To prevent blockproc from displaying a wait bar, set DisplayWaitbar to false.

Output Arguments
B — Processed image
numeric array

Processed image, returned as a numeric array.

More About
Block Struct

A block struct is a MATLAB structure that contains the block data and other information about the
block. Fields in the block struct are:

Field Description
border 2-element vector of the form [v h]. The border field specifies the size of

the vertical and horizontal padding around the block of data. See the
BorderSize argument for more information.

blockSize 2-element vector of the form [rows cols]. The blockSize field specifies
the size of the block data. If a border has been specified, the size does not
include the border pixels.

data m-by-n or m-by-n-by-p array of block data.
imageSize 2-element vector of the form [rows cols]. The imageSize field specifies

the full size of the input image.
location 2-element vector of the form [row col]. The location field specifies the

position of the first pixel (minimum-row, minimum-column) of the block
data in the input image. If a border has been specified, the location refers
to the first pixel of the discrete block data, not the added border pixels.

 blockproc

1-349

Tips
• Choosing an appropriate block size can significantly improve performance. For more information,

see “Block Size and Performance”.
• If the output image B is too large to fit into memory, then omit the output argument and instead

use the Destination name-value pair argument to write the output to a file.
• blockproc can read BigTIFF images but has limited support for writing BigTIFF images to file. If

you write an image to file, then blockproc automatically selects the file type according to the
size of the file. If the image is less than or equal to 4.0 Gb, then blockproc saves the image as a
standard TIFF image. If the size of the file is larger than 4.0 Gb, then blockproc saves the image
as a BigTIFF image.

blockproc does not provide an argument that enables you to specify the file type as BigTIFF
when the file size is less than or equal to 4.0 Gb. If you want to write a small image as a BigTIFF
file, then specify a custom image adapter using the adapter argument. For more information, see
TIFF, BigTIFF, and blockproc.

• To determine whether a written TIFF file is standard TIFF or BigTIFF, query the image format
signature using the imfinfo function:

tiffinfo = imfinfo(Destination);
tiffformat = tiffinfo.FormatSignature

If the last nonzero value of tiffformat is 42, then the file is in the standard TIFF format. If the
last nonzero value is 43, then the file is in the BigTIFF format.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

Usage notes and limitations:

• This function supports automatic parallel processing (requires Parallel Computing Toolbox). To run
in parallel, specify the 'UseParallel' argument as true. For more information, see “Parallel
Block Processing on Large Image Files”.

• Control parallel behavior with the parallel preferences, including scaling up to a cluster. See
parpool for information on configuring your parallel environment.

• To run in parallel, this function requires a parallel pool with SPMD enabled.
• Parallel processing does not support an adapter source image.

See Also
bigimage | colfilt | ImageAdapter | nlfilter

Topics
“Distinct Block Processing”
“Parallel Block Processing on Large Image Files”

Introduced in R2009b

1 Functions

1-350

https://blogs.mathworks.com/steve/2013/08/07/tiff-bigtiff-and-blockproc/

boundarymask
Find region boundaries of segmentation

Syntax
mask = boundarymask(L)
mask = boundarymask(BW)
mask = boundarymask(___ ,conn)

Description
mask = boundarymask(L) computes a mask that represents the region boundaries for the input
label matrix L. The output, mask, is a logical image that is true at boundary locations and false at
non-boundary locations.

mask = boundarymask(BW) computes the region boundaries for the input binary image BW.

mask = boundarymask(___ ,conn) computes the region boundaries using a connectivity specified
by conn.

Examples

Create Rasterized Grid of Region Boundaries

Read an image into the workspace.

I = imread('kobi.png');

Create a superpixel representation of the image, returned as a label matrix.

L = superpixels(I,100);

Display the label matrix.

imshow(label2rgb(L))

 boundarymask

1-351

Find the region boundaries of the label matrix.

mask = boundarymask(L);

Display the boundary mask over the original image by using the labeloverlay function. The region
boundaries of the label matrix appear as 1-pixel wide cyan lines.

imshow(labeloverlay(I,mask,'Transparency',0))

1 Functions

1-352

Input Arguments
L — Label matrix
2-D numeric matrix | 2-D logical matrix

Label matrix, specified as a 2-D numeric matrix of nonnegative numbers or a 2-D logical matrix.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

BW — Binary image
numeric matrix | logical matrix

Binary image, specified as a numeric or logical matrix of the same size as L.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | logical

conn — Pixel connectivity
8 (default) | 4

Pixel connectivity, specified as 4 or 8.

 boundarymask

1-353

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch. The

neighborhood of a pixel are the adjacent pixels
in the horizontal or vertical direction.

8-connected Pixels are connected if their edges or corners
touch. The neighborhood of a pixel are the
adjacent pixels in the horizontal, vertical, or
diagonal direction.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Output Arguments
mask — Rasterized grid of region boundaries
2-D logical matrix

Rasterized grid of region boundaries, specified as a 2-D logical matrix of the same size as the input
image. A pixel in mask is true when the corresponding pixel in the input image with value P has a
neighboring pixel with a different value than P.
Data Types: logical

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• boundarymask supports the generation of C code (requires MATLAB Coder). Note that if you
choose the generic MATLAB Host Computer target platform, boundarymask generates code
that uses a precompiled, platform-specific shared library. Use of a shared library preserves
performance optimizations but limits the target platforms for which code can be generated. For
more information, see “Types of Code Generation Support in Image Processing Toolbox”.

• When generating code, the input argument conn must be a compile-time constant.

See Also
superpixels | imoverlay | label2idx

Introduced in R2016a

1 Functions

1-354

brisque
Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) no-reference image quality score

Syntax
score = brisque(A)
score = brisque(A,model)

Description
score = brisque(A) calculates the no-reference image quality score for image A using the Blind/
Referenceless Image Spatial Quality Evaluator (BRISQUE). brisque compare A to a default model
computed from images of natural scenes with similar distortions. A smaller score indicates better
perceptual quality.

score = brisque(A,model) calculates the image quality score using a custom feature model.

Examples

Calculate BRISQUE Score Using Default Feature Model

Compute the BRISQUE score for a natural image and its distorted versions using the default model.

Read an image into the workspace. Create copies of the image with noise and blurring distortions.

I = imread('lighthouse.png');
Inoise = imnoise(I,'salt & pepper',0.02);
Iblur = imgaussfilt(I,2);

Display the images.

montage({I,Inoise,Iblur},'Size',[1 3],'ThumbnailSize',([]))
title('Original Image | Noisy Image | Blurry Image')

 brisque

1-355

Calculate the BRISQUE score for each image using the default model, and display the score.

brisqueI = brisque(I);
fprintf('BRISQUE score for original image is %0.4f.\n',brisqueI)

BRISQUE score for original image is 20.6586.

brisqueInoise = brisque(Inoise);
fprintf('BRISQUE score for noisy image is %0.4f.\n',brisqueInoise)

BRISQUE score for noisy image is 52.6074.

brisqueIblur = brisque(Iblur);
fprintf('BRISQUE score for blurry image is %0.4f.\n',brisqueIblur)

BRISQUE score for blurry image is 47.7552.

The original undistorted image has the best perceptual quality and therefore the lowest BRISQUE
score.

Calculate BRISQUE Score Using Custom Feature Model

Train a custom BRISQUE model from a set of quality-aware features and corresponding human
opinion scores. Use the custom model to calculate a BRISQUE score for an image of a natural scene.

Save images from an image datastore. These images all have compression artifacts resulting from
JPEG compression.

setDir = fullfile(toolboxdir('images'),'imdata');
imds = imageDatastore(setDir,'FileExtensions',{'.jpg'});

1 Functions

1-356

Specify the opinion score for each image. The following differential mean opinion score (DMOS)
values are for illustrative purposes only. They are not real DMOS values obtained through
experimentation.

opinionScores = 100*rand(1,size(imds.Files,1));

Create the custom model of quality-aware features using the image datastore and the opinion scores.
Because the scores are random, the property values will vary.

model = fitbrisque(imds,opinionScores')

Extracting features from 38 images.
......
Completed 15 of 38 images. Time: Calculating...
.....Training support vector regressor...

Done.

model =
 brisqueModel with properties:

 Alpha: [35x1 double]
 Bias: 58.1250
 SupportVectors: [35x36 double]
 Kernel: 'gaussian'
 Scale: 0.2767

Read an image of a natural scene that has the same type of distortion as the training images. Display
the image.

I = imread('car1.jpg');
imshow(I)

 brisque

1-357

Calculate the BRISQUE score for the image using the custom model. Display the score.

brisqueI = brisque(I,model);
fprintf('BRISQUE score for the image is %0.4f.\n',brisqueI)

BRISQUE score for the image is 72.7492.

Input Arguments
A — Input image
2-D grayscale image | 2-D RGB image

Input image, specified as a 2-D grayscale or RGB image.
Data Types: single | double | int16 | uint8 | uint16

model — Custom model
brisqueModel object

Custom model trained on a set of quality-aware features, specified as a brisqueModel object. model
is derived from natural scene statistics.

1 Functions

1-358

Output Arguments
score — No-reference image quality score
nonnegative scalar

No-reference image quality score, returned as a nonnegative scalar. The BRISQUE score is usually in
the range [0, 100]. Lower values of score reflect better perceptual quality of image A with respect to
the input model.
Data Types: double

Algorithms
brisque predicts the BRISQUE score by using a support vector regression (SVR) model trained on
an image database with corresponding differential mean opinion score (DMOS) values. The database
contains images with known distortion such as compression artifacts, blurring, and noise, and it
contains pristine versions of the distorted images. The image to be scored must have at least one of
the distortions for which the model was trained.

References
[1] Mittal, A., A. K. Moorthy, and A. C. Bovik. "No-Reference Image Quality Assessment in the Spatial

Domain." IEEE Transactions on Image Processing. Vol. 21, Number 12, December 2012, pp.
4695–4708.

[2] Mittal, A., A. K. Moorthy, and A. C. Bovik. "Referenceless Image Spatial Quality Evaluation
Engine." Presentation at the 45th Asilomar Conference on Signals, Systems and Computers,
Pacific Grove, CA, November 2011.

See Also
Functions
fitbrisque | niqe | fitniqe | piqe

Objects
brisqueModel

Topics
“Image Quality Metrics”

Introduced in R2017b

 brisque

1-359

brisqueModel
Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) model

Description
A brisqueModel object encapsulates a model used to calculate the Blind/Referenceless Image
Spatial Quality Evaluator (BRISQUE) perceptual quality score of an image. The object contains a
support vector regressor (SVR) model.

Creation
You can create a brisqueModel object using the following methods:

• fitbrisque — Train a BRISQUE model containing a custom trained support vector regressor
(SVR) model. Use this function if you do not have a pretrained model.

• The brisqueModel function described here. Use this function if you have a pretrained SVR
model, or if the default model is sufficient for your application.

Syntax
m = brisqueModel
m = brisqueModel(alpha,bias,supportVectors,scale)

Description

m = brisqueModel creates a BRISQUE model object with default property values that are derived
from the LIVE IQA image database [1] [2].

m = brisqueModel(alpha,bias,supportVectors,scale) creates a custom BRISQUE model
and sets the Alpha on page 1-0 , Bias on page 1-0 , SupportVectors on page 1-0 ,
and Scale on page 1-0 properties. You must provide all four arguments to create a custom
model.

Note It is difficult to predict good property values without running an optimization routine. Use this
syntax only if you are creating a brisqueModel object using a pretrained SVR model with known
property values.

Properties
Alpha — Coefficients obtained by solving dual problem
m-by-1 numeric vector

Coefficients obtained by solving the dual problem, specified as an m-by-1 numeric vector. The length
of Alpha must match the number of support vectors (the number of rows of SupportVectors on
page 1-0).

1 Functions

1-360

Example: rand(10,1)
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Bias — Bias term in SVM model
43.4582 (default) | numeric scalar

Bias term in SVM model, specified as a numeric scalar.
Example: 47.4
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

SupportVectors — Support vectors
m-by-36 numeric vector

Support vectors, specified as an m-by-36 numeric vector. The number of rows, m, matches the length
of Alpha on page 1-0 .
Example: rand(10,36)
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Kernel — Kernel function
'gaussian' (default)

This property is read-only.

Kernel function, specified as 'gaussian'.

Scale — Kernel scale factor
0.3210 (default) | numeric scalar

Kernel scale factor, specified as a numeric scalar. The scale factor divides predictor values in the SVR
kernel.
Example: 0.25
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Examples

Create BRISQUE Model Object with Default Properties

model = brisqueModel

model =
 brisqueModel with properties:

 Alpha: [593x1 double]
 Bias: 43.4582
 SupportVectors: [593x36 double]
 Kernel: 'gaussian'
 Scale: 0.3210

 brisqueModel

1-361

Create BRISQUE Model Object with Custom Properties

Create a brisqueModel object using precomputed Alpha, Bias, SupportVectors, and Scale
properties. Random initializations are shown for illustrative purposes only.

model = brisqueModel(rand(10,1),47,rand(10,36),0.25)

model =
 brisqueModel with properties:

 Alpha: [10x1 double]
 Bias: 47
 SupportVectors: [10x36 double]
 Kernel: 'gaussian'
 Scale: 0.2500

You can use the custom model to calculate the BRISQUE score for an image.

I = imread('lighthouse.png');
score = brisque(I,model)

score = 47

Algorithms
The support vector regressor (SVR) calculates regression scores for predictor matrix X as:

F = G(X,SupportVectors on page 1-0) × Alpha on page 1-0 + Bias on page 1-
0

G(X,SupportVectors) is an n-by-m matrix of kernel products for n rows in X and m rows in
SupportVectors. The SVR has 36 predictors, which determine the number of columns in
SupportVectors.

The SVR computes a kernel product between vectors x and z using Kernel on page 1-0 (x/
Scale on page 1-0 ,z/Scale).

References
[1] Mittal, A., A. K. Moorthy, and A. C. Bovik. "No-Reference Image Quality Assessment in the Spatial

Domain." IEEE Transactions on Image Processing. Vol. 21, Number 12, December 2012, pp.
4695–4708.

[2] Mittal, A., A. K. Moorthy, and A. C. Bovik. "Referenceless Image Spatial Quality Evaluation
Engine." Presentation at the 45th Asilomar Conference on Signals, Systems and Computers,
Pacific Grove, CA, November 2011.

See Also
Functions
brisque | fitbrisque

Objects
niqeModel | CompactRegressionSVM

1 Functions

1-362

Topics
“Image Quality Metrics”
“Train and Use No-Reference Quality Assessment Model”

Introduced in R2017b

 brisqueModel

1-363

burstinterpolant
Create high-resolution image from set of low-resolution burst mode images

Syntax
B = burstinterpolant(imds,tforms,scale)
B = burstinterpolant(images,tforms,scale)

Description
B = burstinterpolant(imds,tforms,scale) creates a high-resolution image, B from a set of
low-resolution burst mode images stored as an ImageDatastore object, imds. scale specifies the
magnification value for high-resolution image. The size of B is scale times the size of input images.

B = burstinterpolant(images,tforms,scale) creates a high-resolution image, B from a set of
low-resolution burst mode images stored in cell array images. The size of B is scale times the size
of input images.

Examples

Create High-Resolution Image from Burst Mode Images in Image Datastore

Specify the location of low-resolution burst mode images to be stored as an image datastore object.
The input images are 2-D RGB images.

setDir = fullfile(toolboxdir('images'),'imdata','notebook');

Use the imageDatastore function to read and store the low-resolution burst mode images as an
image datastore object.

imds = imageDatastore(setDir,'FileExtensions',{'.png'});

Display the images as a montage.

montage(imds)
title('Set of Low-Resolution Burst Mode Images')

1 Functions

1-364

Compute Geometric Transformation Parameters

To compute geometric transformation parameters, convert all the RGB images into lightness images
by using rgb2lightness function. The burst mode lightness images are stored as an image
datastore object.

imdsTransformed = transform(imds,@(x) rgb2lightness(x));

Read the first lightness image into the workspace and use it as the reference image for estimating
geometric transformations.

refImg = read(imdsTransformed);

Get the optimal configuration parameters required for registration of the burst mode lightness
images by using imregconfig function. Specify the image capture modality as 'monomodal'.

[optimizer,metric] = imregconfig('monomodal');

Find the total number of images stored in the image datastore object by using numpartitions
function.

numImages = numpartitions(imds);

Create an array of 2-D affine transformation object to store 2-D affine transformations of each low-
resolution burst mode lightness image excluding the reference image. Set the number of rows in the
transformation array as total number of images in the image datastore object minus one.

 burstinterpolant

1-365

tforms = repmat(affine2d(),numImages-1,1);

Use the imregtform function to estimate the rigid geometric transformations for each low-resolution
burst mode lightness image with respect to the reference image.

idx = 1;
while hasdata(imdsTransformed)
 movingImg = read(imdsTransformed);
 tforms(idx) = imregtform(refImg,movingImg,'rigid',optimizer,metric);
 idx = idx + 1;
end

Construct High-Resolution Image

Specify the scale factor for generating the high-resolution image.

scale = 4;

Create the high-resolution image from the set of low-resolution burst mode RGB images. Specify the
transformation parameter to robustly estimate the high-resolution pixel values.

B = burstinterpolant(imds,tforms,scale);

Display the high-resolution image.

figure('WindowState','maximized')
imshow(B)
title ('High-Resolution Image')

1 Functions

1-366

Read a low-resolution burst mode RGB image from the image datastore and display its size.

Img = read(imds);
inputDim = [size(Img,1) size(Img,2)]

inputDim = 1×2

 161 186

Display the size of the high-resolution image. Because the scale factor is 4, the size of the high-
resolution image is 4 times the size of the low-resolution burst mode RGB images.

outputDim = [size(B,1) size(B,2)]

outputDim = 1×2

 burstinterpolant

1-367

 644 744

Create High-Resolution Image from Cell Array of Burst Mode Images

Load cell array data containing the low-resolution burst mode image into the workspace. The input
images are monomodal and 2-D RGB images.

load('LRData')

Display images in the cell array data as a montage.

montage(images,'Size',[2 4],'BackgroundColor',[1 1 1]);
title('Set of Low-Resolution Burst Mode Images')

Compute Geometric Transformation Parameters

To compute geometric transformation parameters, convert all the RGB images into lightness images
by using rgb2lightness function.

imagesT = cellfun(@rgb2lightness,images,'UniformOutput',false);

Read the first lightness image into the workspace and use it as the reference image for estimating
geometric transformations.

refImg = imagesT{1};

Get the optimal configuration parameters required for registration of the burst mode lightness
images by using imregconfig. Specify the image capture modality as 'monomodal'.

[optimizer,metric] = imregconfig('monomodal');

Find the total number of images stored in the cell array.

numImages = length(images);

Create an array of 2-D affine transformation object to store 2-D affine transformations of each low-
resolution burst mode lightness image excluding the reference image. Set the number of rows in the
transformation array as total number of images in the cell array minus one.

1 Functions

1-368

tforms = repmat(affine2d(),numImages-1,1);

Use the imregtform function to estimate the rigid geometric transformations for each low-resolution
burst mode lightness image with respect to the reference image.

for i= 2:length(images)
 movingImg = imagesT{i};
 tforms(i-1) = imregtform(refImg,movingImg,'rigid',optimizer,metric);
end

Construct High-Resolution Image

Specify the scale factor for generating the high-resolution image.

scale = 3;

Construct the high-resolution image from the set of low-resolution burst mode RGB images. Specify
the transformation parameter to robustly estimate the high-resolution pixel values.

B = burstinterpolant(images,tforms,scale);

Display the high-resolution image.

figure
imshow(B);
title ('High-Resolution Image')

Read a low-resolution burst mode RGB image from the cell array and display its size.

Img = images{1};
inputDim = [size(Img,1) size(Img,2)]

 burstinterpolant

1-369

inputDim = 1×2

 154 265

Display the size of the high-resolution image. Because the scale factor is 3, the size of the high-
resolution image is 3 times the size of the low-resolution burst mode images.

ouputDim = [size(B,1) size(B,2)]

ouputDim = 1×2

 462 795

Input Arguments
imds — Input image datastore
ImageDatastore object

Input image datastore, specified as an ImageDatastore object. The input image datastore contains
multiple low-resolution burst mode images used for creating the high-resolution image output.

• Images in the input image datastore must be 2-D grayscale images of size m-by-n or 2-D RGB
images of size m-by-n-by-3.

• All images in the input image datastore must be of the same size and data type.
• The number of images in the input image datastore must be greater than or equal to 2.

Data Types: single | double | uint8 | uint16

images — Input images
k-by-1 cell array

Input images, specified as a k-by-1 cell array. k is the number of input images stored in the cell array.
All the input images must have same size.
Data Types: single | double | uint8 | uint16

tforms — Transformation parameter
affine2d object array

Transformation parameter, specified as an affine2d object array of size (k-1)-by-1 or 1-by-(k-1). k is
the number of images in input imds or images.

scale — Resize factor
scalar greater than or equal to 1

Resize factor, specified as a scalar greater than or equal to 1.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
B — High-resolution image
2-D grayscale image | 2-D RGB image

1 Functions

1-370

High-resolution image, returned as a 2-D grayscale image or 2-D RGB image. B is of the same data
type as the input images. The size of B is the value of scale times the size of the images in input
imds or images.

For example, let L be the value of scale, and m-by-n be the size of the low-resolution burst mode
images. Then, the size of the high-resolution image is mL-by-nL.

Tips
• Compute tforms with respect to each input image using the imregtform function. The first

image in the input can be used as the reference image for estimating rigid geometric
transformations (rotations and translations only).

• Compute input arguments optimizer and metric in imregtform using imregconfig function.
optimizer must be a RegularStepGradientDescent object and metric must be a
MeanSquares object.

• To improve the high-resolution output, you can modify the input argument value of
RegularStepGradientDescent optimizer object in imregtform. For more details about these
modifications, see the properties of RegularStepGradientDescent.

Algorithms
The burstinterpolant function uses the inverse distance weighting method [1] to generate high-
resolution image from a set of low-resolution burst mode images. The function predicts a high-
resolution pixel value from a set of pixels in the low-resolution burst mode images, selected based on
the transformation parameter. The use of transformation parameter tforms makes the pixel selection
robust to any rigid geometric transformations (rotations and translations only).

Note

• If the input images are 2-D RGB images, estimate tforms from the lightness component. You can
use the rgb2lightness function to compute lightness values from the RGB color values.

References
[1] Shepard, Donald. “A Two-Dimensional Interpolation Function for Irregularly-Spaced Data”, In

Proceedings of the 1968 23rd ACM National Conference, 517-524. New York, NY: ACM, 1968.

See Also
scatteredInterpolant | imregtform | imregconfig | rgb2lightness

Introduced in R2019a

 burstinterpolant

1-371

bwarea
Area of objects in binary image

Syntax
total = bwarea(BW)

Description
total = bwarea(BW) estimates the area of the objects in binary image BW. total is a scalar whose
value corresponds roughly to the total number of on pixels in the image, but might not be exactly the
same because different patterns of pixels are weighted differently.

Examples

Calculate Area of Objects in Binary Image

Read a binary image and display it.

BW = imread('circles.png');
imshow(BW)

Calculate the area of objects in the image.

bwarea(BW)

1 Functions

1-372

ans = 1.4187e+04

Input Arguments
BW — Binary image
2-D numeric matrix | 2-D logical matrix

Binary image, specified as a 2-D numeric or logical matrix. For numeric input, any nonzero pixels are
considered to be 1 (true).
Example: BW = imread('text.png'); L = bwlabel(BW);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Output Arguments
total — Estimated number of on pixels
numeric scalar

Estimated number of on pixels in binary image BW, returned as a numeric scalar.
Data Types: double

Algorithms
bwarea estimates the area of all of the on pixels in an image by summing the areas of each pixel in
the image. The area of an individual pixel is determined by looking at its 2-by-2 neighborhood. There
are six different patterns, each representing a different area:

• Patterns with zero on pixels (area = 0)
• Patterns with one on pixel (area = 1/4)
• Patterns with two adjacent on pixels (area = 1/2)
• Patterns with two diagonal on pixels (area = 3/4)
• Patterns with three on pixels (area = 7/8)
• Patterns with all four on pixels (area = 1)

Each pixel is part of four different 2-by-2 neighborhoods. This means, for example, that a single on
pixel surrounded by off pixels has a total area of 1.

References
[1] Pratt, William K., Digital Image Processing, New York, John Wiley & Sons, Inc., 1991, p. 634.

See Also
bweuler | bwperim | bwferet

Introduced before R2006a

 bwarea

1-373

bwareafilt
Extract objects from binary image by size

Syntax
BW2 = bwareafilt(BW,range)
BW2 = bwareafilt(BW,n)
BW2 = bwareafilt(BW,n,keep)
BW2 = bwareafilt(___ ,conn)

Description
BW2 = bwareafilt(BW,range) extracts all connected components (objects) from the binary image
BW, where the area of the objects is in the specified range, producing another binary image BW2.
bwareafilt returns a binary image BW2 containing only those objects that meet the criteria.

BW2 = bwareafilt(BW,n) keeps the n largest objects. In the event of a tie for n-th place, only the
first n objects are included in BW2.

BW2 = bwareafilt(BW,n,keep) specifies whether to keep the n largest objects or the n smallest
objects.

BW2 = bwareafilt(___ ,conn) specifies the pixel connectivity that defines the objects.

Examples

Filter Binary Image by Area of Objects

Read image.

BW = imread('text.png');

Filter image, retaining only those objects with areas between 40 and 50.

BW2 = bwareafilt(BW,[40 50]);

Display the original image and filtered image side by side.

imshowpair(BW,BW2,'montage')

1 Functions

1-374

Filter Binary Image by Size of Objects

Read image.

BW = imread('text.png');

Filter image, retaining only the 5 objects with the largest areas.

BW2 = bwareafilt(BW,5);

Display the original image and the filtered image side by side.

imshowpair(BW,BW2,'montage')

 bwareafilt

1-375

Input Arguments
BW — Image to be filtered
binary image

Image to be filtered, specified as a binary image.
Data Types: logical

range — Minimum and maximum areas
2-by-1 numeric vector

Minimum and maximum values of the area, specified as a 2-by-1 numeric vector of the form [low
high].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

n — Number of objects to include
numeric scalar

Number of objects to include when filtering image objects by size, specified as a numeric scalar.
Data Types: double

keep — Size of objects to include
'largest' (default) | 'smallest'

Size of objects to include in the output image, specified as 'largest' or 'smallest'. In the event
of a tie for n-th place, bwareafilt includes only the first n objects.
Data Types: char | string

1 Functions

1-376

conn — Pixel connectivity
8 (default) | 4 | 3-by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of these values.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch. Two

adjoining pixels are part of the same object if
they are both on and are connected along the
horizontal or vertical direction.

8-connected Pixels are connected if their edges or corners
touch. Two adjoining pixels are part of the
same object if they are both on and are
connected along the horizontal, vertical, or
diagonal direction.

Connectivity can also be defined in a more general way by specifying a 3-by-3 matrix of 0s and 1s.
The 1-valued elements define neighborhood locations relative to the center element of conn. The
matrix must be symmetric about its center element.
Data Types: double | logical

Output Arguments
BW2 — Filtered image
binary image

Filtered image, returned as a binary image of the same size and class as the input image BW.

See Also
bwareaopen | bwconncomp | bwpropfilt | conndef | regionprops

Topics
“Filter Images on Properties Using Image Region Analyzer App”

Introduced in R2014b

 bwareafilt

1-377

bwareaopen
Remove small objects from binary image

Syntax
BW2 = bwareaopen(BW,P)
BW2 = bwareaopen(BW,P,conn)

Description
BW2 = bwareaopen(BW,P) removes all connected components (objects) that have fewer than P
pixels from the binary image BW, producing another binary image, BW2. This operation is known as an
area opening.

BW2 = bwareaopen(BW,P,conn) removes all connected components, where conn specifies the
desired connectivity.

Examples

Remove Objects in Image Containing Fewer Than 50 Pixels

Read binary image.

BW = imread('text.png');

Remove objects containing fewer than 50 pixels using bwareaopen function.

BW2 = bwareaopen(BW, 50);

Display original image next to morphologically opened image.

imshowpair(BW,BW2,'montage')

1 Functions

1-378

Input Arguments
BW — Binary image
logical array | numeric array

Binary image, specified as a logical or numeric array of any dimension.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

P — Maximum number of pixels in objects
nonnegative integer

Maximum number of pixels in objects, specified as a nonnegative integer.
Example: 50
Data Types: double

conn — Pixel connectivity
4 | 8 | 6 | 18 | 26 | 3-by-3-by- ... -by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of the values in this table. The default connectivity is 8 for 2-D
images, and 26 for 3-D images.

Value Meaning
Two-Dimensional Connectivities

 bwareaopen

1-379

Value Meaning
4-connected Pixels are connected if their edges touch. Two

adjoining pixels are part of the same object if
they are both on and are connected along the
horizontal or vertical direction.

8-connected Pixels are connected if their edges or corners
touch. Two adjoining pixels are part of the
same object if they are both on and are
connected along the horizontal, vertical, or
diagonal direction.

Three-Dimensional Connectivities
6-connected Pixels are connected if their faces touch. Two

adjoining pixels are part of the same object if
they are both on and are connected in:

• One of these directions: in, out, left, right,
up, and down

18-connected Pixels are connected if their faces or edges
touch. Two adjoining pixels are part of the
same object if they are both on and are
connected in

• One of these directions: in, out, left, right,
up, and down

• A combination of two directions, such as
right-down or in-up

26-connected Pixels are connected if their faces, edges, or
corners touch. Two adjoining pixels are part of
the same object if they are both on and are
connected in

• One of these directions: in, out, left, right,
up, and down

• A combination of two directions, such as
right-down or in-up

• A combination of three directions, such as
in-right-up or in-left-down

For higher dimensions, bwareaopen uses the default value conndef(ndims(BW),'maximal').

Connectivity can also be defined in a more general way for any dimension by specifying a 3-by-3-
by- ... -by-3 matrix of 0s and 1s. The 1-valued elements define neighborhood locations relative to the
center element of conn. Note that conn must be symmetric about its center element. See “Specifying
Custom Connectivities” for more information.
Data Types: double | logical

1 Functions

1-380

Output Arguments
BW2 — Area-opened image
logical array

Area-opened image, returned as a logical array of the same size as BW.

Algorithms
The basic steps are

1 Determine the connected components:

CC = bwconncomp(BW, conn);
2 Compute the area of each component:

S = regionprops(CC, 'Area');
3 Remove small objects:

L = labelmatrix(CC);
BW2 = ismember(L, find([S.Area] >= P));

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• bwareaopen supports the generation of C code (requires MATLAB Coder). For more information,
see “Code Generation for Image Processing”.

• BW must be a 2-D binary image. N-D arrays are not supported.
• conn can only one of the two-dimensional connectivities (4 or 8) or a 3-by-3 matrix. The 3-D

connectivities (6, 18, and 26) are not supported. Matrices of size 3-by-3-by-...-by-3 are not
supported.

• conn must be a compile-time constant.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• BW must be a 2-D binary image. N-D arrays are not supported.
• conn must be one of the two-dimensional connectivities (4 or 8) or a 3-by-3 matrix. The 3-D

connectivities (6, 18, and 26) are not supported. Matrices of size 3-by-3-by-...-by-3 are not
supported.

• conn must be a compile-time constant.

See Also
bwconncomp | conndef

 bwareaopen

1-381

Introduced before R2006a

1 Functions

1-382

bwboundaries
Trace region boundaries in binary image

Syntax
B = bwboundaries(BW)
B = bwboundaries(BW,conn)
B = bwboundaries(BW,conn,options)
[B,L]= bwboundaries(___)
[B,L,n,A] = bwboundaries(___)

Description
B = bwboundaries(BW) traces the exterior boundaries of objects, as well as boundaries of holes
inside these objects, in the binary image BW. bwboundaries also descends into the outermost objects
(parents) and traces their children (objects completely enclosed by the parents). Returns B, a cell
array of boundary pixel locations.

B = bwboundaries(BW,conn) traces the exterior boundaries of objects, where conn specifies the
connectivity to use when tracing parent and child boundaries.

B = bwboundaries(BW,conn,options) traces the exterior boundaries of objects, where options
is either 'holes' or 'noholes', specifying whether you want to include the boundaries of holes
inside other objects.

[B,L]= bwboundaries(___) returns a label matrix L where objects and holes are labeled.

[B,L,n,A] = bwboundaries(___) returns n, the number of objects found, and A, an adjacency
matrix.

Examples

Overlay Region Boundaries on Image

Read grayscale image into the workspace.

I = imread('rice.png');

Convert grayscale image to binary image using local adaptive thresholding.

BW = imbinarize(I);

Calculate boundaries of regions in image and overlay the boundaries on the image.

[B,L] = bwboundaries(BW,'noholes');
imshow(label2rgb(L, @jet, [.5 .5 .5]))
hold on
for k = 1:length(B)
 boundary = B{k};

 bwboundaries

1-383

 plot(boundary(:,2), boundary(:,1), 'w', 'LineWidth', 2)
end

Overlay Region Boundaries on Image and Annotate with Region Numbers

Read binary image into the workspace.

BW = imread('blobs.png');

Calculate boundaries of regions in the image.

[B,L,N,A] = bwboundaries(BW);

Display the image with the boundaries overlaid. Add the region number next to every boundary
(based on the label matrix). Use the zoom tool to read individual labels.

imshow(BW); hold on;
colors=['b' 'g' 'r' 'c' 'm' 'y'];
for k=1:length(B),
 boundary = B{k};
 cidx = mod(k,length(colors))+1;
 plot(boundary(:,2), boundary(:,1),...
 colors(cidx),'LineWidth',2);

 %randomize text position for better visibility
 rndRow = ceil(length(boundary)/(mod(rand*k,7)+1));
 col = boundary(rndRow,2); row = boundary(rndRow,1);
 h = text(col+1, row-1, num2str(L(row,col)));
 set(h,'Color',colors(cidx),'FontSize',14,'FontWeight','bold');
end

1 Functions

1-384

Display the adjacency matrix using the spy function.

figure
spy(A);

 bwboundaries

1-385

Display Object Boundaries in Red and Hole Boundaries in Green

Read binary image into workspace.

BW = imread('blobs.png');

Calculate boundaries.

[B,L,N] = bwboundaries(BW);

Display object boundaries in red and hole boundaries in green.

imshow(BW); hold on;
for k=1:length(B),
 boundary = B{k};
 if(k > N)
 plot(boundary(:,2), boundary(:,1), 'g','LineWidth',2);
 else
 plot(boundary(:,2), boundary(:,1), 'r','LineWidth',2);
 end
end

1 Functions

1-386

Display Parent Boundaries in Red and Holes in Green

Read image into workspace.

BW = imread('blobs.png');

Display parent boundaries in red and their holes in green.

[B,L,N,A] = bwboundaries(BW);
figure; imshow(BW); hold on;
% Loop through object boundaries
for k = 1:N
 % Boundary k is the parent of a hole if the k-th column
 % of the adjacency matrix A contains a non-zero element
 if (nnz(A(:,k)) > 0)
 boundary = B{k};
 plot(boundary(:,2),...
 boundary(:,1),'r','LineWidth',2);
 % Loop through the children of boundary k
 for l = find(A(:,k))'
 boundary = B{l};
 plot(boundary(:,2),...
 boundary(:,1),'g','LineWidth',2);
 end
 end
end

 bwboundaries

1-387

Input Arguments
BW — Input binary image
2-D numeric matrix | 2-D logical matrix

Binary input image, specified as a 2-D logical or numeric matrix. BW must be a binary image where
nonzero pixels belong to an object and zero-valued pixels constitute the background. The following
figure illustrates these components.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

conn — Pixel connectivity
8 (default) | 4

Pixel connectivity, specified as one of the values in this table.

1 Functions

1-388

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch. Two

adjoining pixels are part of the same object if
they are both on and are connected along the
horizontal or vertical direction.

8-connected Pixels are connected if their edges or corners
touch. Two adjoining pixels are part of the
same object if they are both on and are
connected along the horizontal, vertical, or
diagonal direction.

Data Types: double

options — Determine whether to search for both parent and child boundaries
'holes' (default) | 'noholes'

Determine whether to search for both parent and child boundaries, specified as either of the
following:

Option Meaning
'holes' Search for both object and hole boundaries. This is the default.
'noholes' Search only for object (parent and child) boundaries. This can provide better

performance.

Data Types: char | string

Output Arguments
B — Row and column coordinates of boundary pixels
p-by-1 cell array

Row and column coordinates of boundary pixels, returned as a p-by-1 cell array, where p is the
number of objects and holes. Each cell in the cell array contains a q-by-2 matrix. Each row in the
matrix contains the row and column coordinates of a boundary pixel. q is the number of boundary
pixels for the corresponding region.

L — Label matrix
2-D matrix of nonnegative integers

Label matrix of contiguous regions, returned as a 2-D matrix of nonnegative integers. The kth region
includes all elements in L that have value k. The number of objects and holes represented by L is
equal to max(L(:)). The zero-valued elements of L make up the background.
Data Types: double

n — Number of objects found
nonnegative integer

Number of objects found, returned as a nonnegative integer.

 bwboundaries

1-389

Data Types: double

A — Parent-child dependencies between boundaries and holes
square, sparse, logical matrix

Parent-child dependencies between boundaries and holes, returned as a square, sparse, logical
matrix of class double with side of length max(L(:)). The rows and columns of A correspond to the
positions of boundaries stored in B. The first n cells in B are object boundaries. A(i,j)=1 means that
object i is a child of object j. .The boundaries that enclose or are enclosed by the k-th boundary can
be found using A as follows:

enclosing_boundary = find(A(m,:));
enclosed_boundaries = find(A(:,m));

Algorithms
The bwboundaries function implements the Moore-Neighbor tracing algorithm modified by Jacob's
stopping criteria. This function is based on the boundaries function presented in the first edition of
Digital Image Processing Using MATLAB, by Gonzalez, R. C., R. E. Woods, and S. L. Eddins, New
Jersey, Pearson Prentice Hall, 2004.

References
[1] Gonzalez, R. C., R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB, New

Jersey, Pearson Prentice Hall, 2004.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• bwboundaries supports the generation of C code (requires MATLAB Coder). Note that if you
choose the generic MATLAB Host Computer target platform, bwboundaries generates code
that uses a precompiled, platform-specific shared library. Use of a shared library preserves
performance optimizations but limits the target platforms for which code can be generated. For
more information, see “Types of Code Generation Support in Image Processing Toolbox”.

• The parameter conn must be a compile-time constant.
• The parameter options must be a compile-time constant.
• The return value A can only be a full matrix, not a sparse matrix.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The parameter conn must be a compile-time constant.
• The parameter options must be a compile-time constant.
• The return value A can only be a full matrix, not a sparse matrix.

1 Functions

1-390

See Also
bwlabel | bwlabeln | bwtraceboundary | bwperim

Introduced before R2006a

 bwboundaries

1-391

bwconncomp
Find connected components in binary image

Syntax
CC = bwconncomp(BW)
CC = bwconncomp(BW,conn)

Description
CC = bwconncomp(BW) returns the connected components CC found in the binary image BW.
bwconncomp uses a default connectivity of 8 for two dimensions, 26 for three dimensions, and
conndef(ndims(BW),'maximal') for higher dimensions.

CC = bwconncomp(BW,conn) returns the connected components where conn specifies the desired
connectivity for the connected components.

Examples

Calculate Centroids of 3-D Objects

Create a small sample 3-D array.

BW = cat(3, [1 1 0; 0 0 0; 1 0 0],...
 [0 1 0; 0 0 0; 0 1 0],...
 [0 1 1; 0 0 0; 0 0 1]);

Find the connected components in the array.

CC = bwconncomp(BW)

CC = struct with fields:
 Connectivity: 26
 ImageSize: [3 3 3]
 NumObjects: 2
 PixelIdxList: {[5x1 double] [3x1 double]}

Calculate centroids of the objects in the array.

S = regionprops(CC,'Centroid')

S=2×1 struct array with fields:
 Centroid

Erase Largest Component from Image

Read image into the workspace and display it.

1 Functions

1-392

BW = imread('text.png');
imshow(BW)

Find the number of connected components in the image.

CC = bwconncomp(BW)

CC = struct with fields:
 Connectivity: 8
 ImageSize: [256 256]
 NumObjects: 88
 PixelIdxList: {1x88 cell}

Determine which is the largest component in the image and erase it (set all the pixels to 0).

numPixels = cellfun(@numel,CC.PixelIdxList);
[biggest,idx] = max(numPixels);
BW(CC.PixelIdxList{idx}) = 0;

Display the image, noting that the largest component happens to be the two consecutive f's in the
word different.

figure
imshow(BW)

 bwconncomp

1-393

Input Arguments
BW — Input binary image
numeric array | logical array

Input binary image, specified as a numeric or logical array of any dimension. For numeric input, any
nonzero pixels are considered to be on.
Example: BW = imread('text.png');
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

conn — Pixel connectivity
4 | 8 | 6 | 18 | 26 | 3-by-3-by- ... -by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of the values in this table. The default connectivity is 8 for 2-D
images, and 26 for 3-D images.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch. Two

adjoining pixels are part of the same object if
they are both on and are connected along the
horizontal or vertical direction.

1 Functions

1-394

Value Meaning
8-connected Pixels are connected if their edges or corners

touch. Two adjoining pixels are part of the
same object if they are both on and are
connected along the horizontal, vertical, or
diagonal direction.

Three-Dimensional Connectivities
6-connected Pixels are connected if their faces touch. Two

adjoining pixels are part of the same object if
they are both on and are connected in:

• One of these directions: in, out, left, right,
up, and down

18-connected Pixels are connected if their faces or edges
touch. Two adjoining pixels are part of the
same object if they are both on and are
connected in

• One of these directions: in, out, left, right,
up, and down

• A combination of two directions, such as
right-down or in-up

26-connected Pixels are connected if their faces, edges, or
corners touch. Two adjoining pixels are part of
the same object if they are both on and are
connected in

• One of these directions: in, out, left, right,
up, and down

• A combination of two directions, such as
right-down or in-up

• A combination of three directions, such as
in-right-up or in-left-down

For higher dimensions, bwconncomp uses the default value conndef(ndims(BW),'maximal').

Connectivity can also be defined in a more general way for any dimension by specifying a 3-by-3-
by- ... -by-3 matrix of 0s and 1s. The 1-valued elements define neighborhood locations relative to the
center element of conn. Note that conn must be symmetric about its center element. See “Specifying
Custom Connectivities” for more information.
Data Types: double | logical

Output Arguments
CC — Connected components
struct

Connected components, returned as a structure with four fields.

 bwconncomp

1-395

Field Description
Connectivity Connectivity of the connected components (objects)
ImageSize Size of BW
NumObjects Number of connected components (objects) in BW
PixelIdxList 1-by-NumObjects cell array where the k-th element in the cell array is a

vector containing the linear indices of the pixels in the k-th object.

Tips
• The functions bwlabel, bwlabeln, and bwconncomp all compute connected components for

binary images. bwconncomp replaces the use of bwlabel and bwlabeln. It uses significantly less
memory and is sometimes faster than the other functions.

Function Input Dimension Output Form Memory Use Connectivity
bwlabel 2-D Label matrix with double-

precision
High 4 or 8

bwlabeln N-D Double-precision label
matrix

High Any

bwconncomp N-D CC struct Low Any

• To extract features from a binary image using regionprops with default connectivity, just pass
BW directly into regionprops using the command regionprops(BW).

• To compute a label matrix having more memory-efficient data type (for instance, uint8 versus
double), use the labelmatrix function on the output of bwconncomp. See the documentation
for each function for more information.

Algorithms
The basic steps in finding the connected components are:

1 Search for the next unlabeled pixel, p.
2 Use a flood-fill algorithm to label all the pixels in the connected component containing p.
3 Repeat steps 1 and 2 until all the pixels are labeled.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• bwconncomp supports the generation of C code (requires MATLAB Coder). For more information,
see “Code Generation for Image Processing”.

• bwconncomp only supports 2-D inputs.
• The conn arguments must be a compile-time constant and the only connectivities supported are 4

or 8. You can also specify connectivity as a 3-by-3 matrix, but it can only be [0 1 0;1 1 1;0 1
0] or ones(3)

1 Functions

1-396

• The PixelIdxList field in the CC struct return value is not supported.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• bwconncomp only supports 2-D inputs.
• The conn arguments must be a compile-time constant and the only connectivities supported are 4

or 8. You can also specify connectivity as a 3-by-3 matrix, but it can only be [0 1 0;1 1 1;0 1
0] or ones(3)

• The PixelIdxList field in the CC struct return value is not supported.

See Also
bwlabel | bwlabeln | labelmatrix | regionprops

Introduced in R2009a

 bwconncomp

1-397

bwconvhull
Generate convex hull image from binary image

Syntax
CH = bwconvhull(BW)
CH = bwconvhull(BW,method)
CH = bwconvhull(BW,'objects',conn)

Description
CH = bwconvhull(BW) computes the convex hull of all objects in BW and returns CH, a binary
convex hull image.

CH = bwconvhull(BW,method) specifies the desired method for computing the convex hull image.

CH = bwconvhull(BW,'objects',conn) specifies the desired connectivity used when defining
individual foreground objects.

Examples

Display Binary Convex Hull of Image

Read a grayscale image into the workspace. Convert it into a binary image and calculate the union
binary convex hull. Finally, calculate the objects convex hull and display all the images in one figure
window.

subplot(2,2,1);
I = imread('coins.png');
imshow(I);
title('Original');

subplot(2,2,2);
BW = I > 100;
imshow(BW);
title('Binary');

subplot(2,2,3);
CH = bwconvhull(BW);
imshow(CH);
title('Union Convex Hull');

subplot(2,2,4);
CH_objects = bwconvhull(BW,'objects');
imshow(CH_objects);
title('Objects Convex Hull');

1 Functions

1-398

Input Arguments
BW — Input binary image
2-D logical matrix

Input binary image, specified as a 2-D logical matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

method — Method used to compute the convex hull
'union' (default) | 'objects'

Method used to compute the convex hull, specified as one of the following:

Value Description
'union' Compute the convex hull of all foreground objects, treating them

as a single object
'objects' Compute the convex hull of each connected component of BW

individually. CH contains the convex hulls of each connected
component.

Data Types: char | string

 bwconvhull

1-399

conn — Pixel connectivity
8 (default) | 4 | 3-by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of these values The conn parameter is only valid when the method
is 'objects'.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch. Two

adjoining pixels are part of the same object if
they are both on and are connected along the
horizontal or vertical direction.

8-connected Pixels are connected if their edges or corners
touch. Two adjoining pixels are part of the
same object if they are both on and are
connected along the horizontal, vertical, or
diagonal direction.

Connectivity can also be defined in a more general way by specifying a 3-by-3 matrix of 0s and 1s.
The 1-valued elements define neighborhood locations relative to the center element of conn. The
matrix must be symmetric about its center element.
Data Types: double

Output Arguments
CH — Binary mask of the convex hull of all foreground objects in the input image
2-D logical matrix

Binary mask of the convex hull of all foreground objects in the input image, returned as a 2-D logical
matrix.

See Also
bwconncomp | bwlabel | labelmatrix | regionprops

Introduced in R2011a

1 Functions

1-400

bwdist
Distance transform of binary image

Syntax
D = bwdist(BW)
[D,idx] = bwdist(BW)
[D,idx] = bwdist(BW,method)

Description
D = bwdist(BW) computes the Euclidean distance transform of the binary image BW. For each pixel
in BW, the distance transform assigns a number that is the distance between that pixel and the
nearest nonzero pixel of BW.

[D,idx] = bwdist(BW) also computes the closest-pixel map in the form of an index array, idx.
Each element of idx contains the linear index of the nearest nonzero pixel of BW. The closest-pixel
map is also called the feature map, feature transform, or nearest-neighbor transform.

[D,idx] = bwdist(BW,method) computes the distance transform using an alternate distance
metric, specified by method.

Examples

Compute the Euclidean Distance Transform

This example shows how to compute the Euclidean distance transform of a binary image, and the
closest-pixel map of the image.

Create a binary image.

bw = zeros(5,5);
bw(2,2) = 1;
bw(4,4) = 1

bw = 5×5

 0 0 0 0 0
 0 1 0 0 0
 0 0 0 0 0
 0 0 0 1 0
 0 0 0 0 0

Calculate the distance transform.

[D,IDX] = bwdist(bw)

D = 5x5 single matrix

 1.4142 1.0000 1.4142 2.2361 3.1623

 bwdist

1-401

 1.0000 0 1.0000 2.0000 2.2361
 1.4142 1.0000 1.4142 1.0000 1.4142
 2.2361 2.0000 1.0000 0 1.0000
 3.1623 2.2361 1.4142 1.0000 1.4142

IDX = 5x5 uint32 matrix

 7 7 7 7 7
 7 7 7 7 19
 7 7 7 19 19
 7 7 19 19 19
 7 19 19 19 19

In the nearest-neighbor matrix IDX the values 7 and 19 represent the position of the nonzero
elements using linear matrix indexing. If a pixel contains a 7, its closest nonzero neighbor is at linear
position 7.

Compare 2-D Distance Transforms for Supported Distance Methods

This example shows how to compare the 2-D distance transforms for supported distance methods. In
the figure, note how the quasi-Euclidean distance transform best approximates the circular shape
achieved by the Euclidean distance method.

bw = zeros(200,200);
bw(50,50) = 1; bw(50,150) = 1; bw(150,100) = 1;
D1 = bwdist(bw,'euclidean');
D2 = bwdist(bw,'cityblock');
D3 = bwdist(bw,'chessboard');
D4 = bwdist(bw,'quasi-euclidean');
RGB1 = repmat(rescale(D1), [1 1 3]);
RGB2 = repmat(rescale(D2), [1 1 3]);
RGB3 = repmat(rescale(D3), [1 1 3]);
RGB4 = repmat(rescale(D4), [1 1 3]);

figure
subplot(2,2,1), imshow(RGB1), title('Euclidean')
hold on, imcontour(D1)
subplot(2,2,2), imshow(RGB2), title('Cityblock')
hold on, imcontour(D2)
subplot(2,2,3), imshow(RGB3), title('Chessboard')
hold on, imcontour(D3)
subplot(2,2,4), imshow(RGB4), title('Quasi-Euclidean')
hold on, imcontour(D4)

1 Functions

1-402

Compare Isosurface Plots for Distance Transforms of 3-D Image

This example shows how to compare isosurface plots for the distance transforms of a 3-D image
containing a single nonzero pixel in the center.

bw = zeros(50,50,50); bw(25,25,25) = 1;
D1 = bwdist(bw);
D2 = bwdist(bw,'cityblock');
D3 = bwdist(bw,'chessboard');
D4 = bwdist(bw,'quasi-euclidean');
figure
subplot(2,2,1), isosurface(D1,15), axis equal, view(3)
camlight, lighting gouraud, title('Euclidean')
subplot(2,2,2), isosurface(D2,15), axis equal, view(3)
camlight, lighting gouraud, title('City block')
subplot(2,2,3), isosurface(D3,15), axis equal, view(3)
camlight, lighting gouraud, title('Chessboard')
subplot(2,2,4), isosurface(D4,15), axis equal, view(3)
camlight, lighting gouraud, title('Quasi-Euclidean')

 bwdist

1-403

Input Arguments
BW — Binary image
numeric array | logical array

Binary image, specified as a numeric or logical array of any dimension. For numeric input, any
nonzero pixels are considered to be 1 (true).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

method — Distance metric
'euclidean' (default) | 'chessboard' | 'cityblock' | 'quasi-euclidean'

Distance metric, specified as one of the these values.

Method Description
'chessboard' In 2-D, the chessboard distance between (x1,y1) and (x2,y2) is

max(│x1 – x2│,│y1 – y2│).
'cityblock' In 2-D, the cityblock distance between (x1,y1) and (x2,y2) is

│x1 – x2│ + │y1 – y2│

1 Functions

1-404

Method Description
'euclidean' In 2-D, the Euclidean distance between (x1,y1) and (x2,y2) is

(x1− x2)2 + (y1− y2)2 .

'quasi-euclidean' In 2-D, the quasi-Euclidean distance between (x1,y1) and (x2,y2) is

x1− x2 + (2− 1) y1− y2 , x1− x2 > y1− y2

(2− 1) x1− x2 + y1− y2 , otherwise.

For more information, see “Distance Transform of a Binary Image”.
Data Types: char | string

Output Arguments
D — Distance array
numeric array

Distance, returned as a numeric array of the same size as BW. The value of each element is the
distance between that pixel and the nearest nonzero pixel in BW, as defined by the distance metric,
method.
Data Types: single

idx — Index array
numeric array

Index array, returned as a numeric array of the same size as BW. Each element of idx contains the
linear index of the nearest nonzero pixel of BW. The class of idx depends on the number of elements
in the input image, and is determined as follows.

Class Range
'uint32' numel(BW) <= 232 − 1
'uint64' numel(BW) >= 232

Data Types: uint32 | uint64

Tips
• bwdist uses fast algorithms to compute the true Euclidean distance transform, especially in the

2-D case. The other methods are provided primarily for pedagogical reasons. However, the
alternative distance transforms are sometimes significantly faster for multidimensional input
images, particularly those that have many nonzero elements.

• The function bwdist changed in version 6.4 (R2009b). Previous versions of the Image Processing
Toolbox used different algorithms for computing the Euclidean distance transform and the
associated label matrix. If you need the same results produced by the previous implementation,
use the function bwdist_old.

 bwdist

1-405

Algorithms
• For Euclidean distance transforms, bwdist uses the fast algorithm. [1]
• For cityblock, chessboard, and quasi-Euclidean distance transforms, bwdist uses the two-pass,

sequential scanning algorithm. [2]
• The different distance measures are achieved by using different sets of weights in the scans, as

described in [3].

References
[1] Maurer, Calvin, Rensheng Qi, and Vijay Raghavan, "A Linear Time Algorithm for Computing Exact

Euclidean Distance Transforms of Binary Images in Arbitrary Dimensions," IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. 25, No. 2, February 2003, pp. 265-270.

[2] Rosenfeld, Azriel and John Pfaltz, "Sequential operations in digital picture processing," Journal of
the Association for Computing Machinery, Vol. 13, No. 4, 1966, pp. 471-494.

[3] Paglieroni, David, "Distance Transforms: Properties and Machine Vision Applications," Computer
Vision, Graphics, and Image Processing: Graphical Models and Image Processing, Vol. 54, No.
1, January 1992, pp. 57-58.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• bwdist supports the generation of C code (requires MATLAB Coder). Note that if you choose the
generic MATLAB Host Computer target platform, bwdist generates code that uses a
precompiled, platform-specific shared library. Use of a shared library preserves performance
optimizations but limits the target platforms for which code can be generated. For more
information, see “Types of Code Generation Support in Image Processing Toolbox”.

• When generating code, the optional second input argument, method, must be a compile-time
constant. Input images must have less than 232 pixels.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• When generating code, the optional second input argument, method, must be a compile-time
constant. Input images must have fewer than 232 pixels.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• Input images must be 2-D and have less than 232 elements.
• The method argument only supports the 'euclidean' distance metric.

1 Functions

1-406

For more information, see “Image Processing on a GPU”.

See Also
bwulterode | watershed

Topics
“Distance Transform of a Binary Image”

Introduced before R2006a

 bwdist

1-407

bwdistgeodesic
Geodesic distance transform of binary image

Syntax
D = bwdistgeodesic(BW,mask)
D = bwdistgeodesic(BW,C,R)
D = bwdistgeodesic(BW,idx)
D = bwdistgeodesic(___ ,method)

Description
D = bwdistgeodesic(BW,mask) computes the geodesic distance transform, given the binary
image BW and the seed locations specified by mask. Regions where BW is true represent valid regions
that can be traversed in the computation of the distance transform. Regions where BW is false
represent constrained regions that cannot be traversed in the distance computation. For each true
pixel in BW, the geodesic distance transform assigns a number that is the constrained distance
between that pixel and the nearest true pixel in mask. Output matrix D contains geodesic distances.

D = bwdistgeodesic(BW,C,R) computes the geodesic distance transform of the binary image BW.
Vectors C and R contain the column and row coordinates of the seed locations.

D = bwdistgeodesic(BW,idx) computes the geodesic distance transform of the binary image BW.
idx is a vector of linear indices of seed locations.

D = bwdistgeodesic(___ ,method) computes the geodesic distance transform using an alternate
distance metric specified by method.

Examples

Compute Geodesic Distance Transformation of Binary Image

Create a sample binary image for this example.

BW = [1 1 1 1 1 1 1 1 1 1;...
 1 1 1 1 1 1 0 0 1 1;...
 1 1 1 1 1 1 0 0 1 1;...
 1 1 1 1 1 1 0 0 1 1;...
 0 0 0 0 0 1 0 0 1 0;...
 0 0 0 0 1 1 0 1 1 0;...
 0 1 0 0 1 1 0 0 0 0;...
 0 1 1 1 1 1 1 0 1 0;...
 0 1 1 0 0 0 1 1 1 0;...
 0 0 0 0 1 0 0 0 0 0];
 BW = logical(BW);

Create two vectors of seed locations.

C = [1 2 3 3 3];
R = [3 3 3 1 2];

1 Functions

1-408

Calculate the geodesic distance transform. Output pixels for which BW is false have undefined
geodesic distance and contain NaN values. Because there is no connected path from the seed
locations to element BW(10,5), the output D(10,5) has a value of Inf.

D = bwdistgeodesic(BW,C,R)

D = 10x10 single matrix

 2 1 0 1 2 3 4 5 6 7
 1 1 0 1 2 3 NaN NaN 6 7
 0 0 0 1 2 3 NaN NaN 7 7
 1 1 1 1 2 3 NaN NaN 8 8
 NaN NaN NaN NaN NaN 3 NaN NaN 9 NaN
 NaN NaN NaN NaN 4 4 NaN 10 10 NaN
 NaN 8 NaN NaN 5 5 NaN NaN NaN NaN
 NaN 8 7 6 6 6 6 NaN 8 NaN
 NaN 8 7 NaN NaN NaN 7 7 8 NaN
 NaN NaN NaN NaN Inf NaN NaN NaN NaN NaN

Input Arguments
BW — Binary image
numeric array | logical array

Binary image, specified as a numeric array or logical array of any dimension. For numeric input, any
nonzero pixels are considered to be 1 (true).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

mask — Seed locations
logical array

Seed locations, specified as a logical array of the same size as BW.

C — Column coordinates of seed locations
vector of positive integers

Column coordinates of seed locations, specified as a vector of positive integers of the same length as
R.

R — Row coordinates of seed locations
vector of positive integers

Row coordinates of seed locations, specified as a vector of positive integers of the same length as C.

idx — Linear indices of seed locations
vector of positive integers

Linear indices of seed locations, specified as a vector of positive integers.

method — Distance metric
'chessboard' (default) | 'cityblock' | 'quasi-euclidean'

Distance metric, specified as one of the following.

 bwdistgeodesic

1-409

Method Description
'chessboard' In 2-D, the chessboard distance between (x1,y1) and (x2,y2) is

max(abs(x1-x2),abs(y1-y2))

'cityblock' In 2-D, the cityblock distance between (x1,y1) and (x2,y2) is

abs(x1-x2) + abs(y1-y2)

'quasi-euclidean' In 2-D, the quasi-Euclidean distance between (x1,y1) and (x2,y2) is

x1− x2 + (2− 1) y1− y2 , x1− x2 > y1− y2

(2− 1) x1− x2 + y1− y2 , otherwise.

Data Types: char | string

Output Arguments
D — Geodesic distances
numeric array

Geodesic distances, returned as a numeric array of the same size as BW.
Data Types: single

Algorithms
bwdistgeodesic uses the geodesic distance algorithm described in Soille, P., Morphological Image
Analysis: Principles and Applications, 2nd Edition, Secaucus, NJ, Springer-Verlag, 2003, pp. 219–221.

See Also
bwdist | graydist

Introduced in R2011b

1 Functions

1-410

bweuler
Euler number of binary image

Syntax
eul = bweuler(BW,conn)

Description
eul = bweuler(BW,conn) returns the Euler number for the binary image BW. The Euler number
(also known as the Euler characteristic) is the total number of objects in the image minus the total
number of holes in those objects. conn specifies the connectivity. Objects are connected sets of on
pixels, that is, pixels having a value of 1.

Examples

Calculate Euler Number for Binary Image

Read binary image into workspace, and display it.

BW = imread('circles.png');
imshow(BW)

Calculate the Euler number. In this example, all the circles touch so they create one object. The
object contains four "holes", which are the black areas created by the touching circles. Thus the Euler
number is 1 minus 4, or -3.

 bweuler

1-411

bweuler(BW)

ans = -3

Input Arguments
BW — Binary image
2-D numeric matrix | 2-D logical matrix

Binary image, specified as a 2-D numeric matrix or 2-D logical matrix. For numeric input, any nonzero
pixels are considered to be on.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

conn — Connectivity
8 (default) | 4

Connectivity, specified as the values 4 for 4-connected objects or 8 for 8-connected objects.
Data Types: double

Output Arguments
eul — Euler number
numeric scalar

Euler number, returned as a numeric scalar.
Data Types: double

Algorithms
bweuler computes the Euler number by considering patterns of convexity and concavity in local 2-
by-2 neighborhoods. See [2] on page 1-412 for a discussion of the algorithm used.

References
[1] Horn, Berthold P. K., Robot Vision, New York, McGraw-Hill, 1986, pp. 73-77.

[2] Pratt, William K., Digital Image Processing, New York, John Wiley & Sons, Inc., 1991, p. 633.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• bweuler supports the generation of C code (requires MATLAB Coder). Note that if you choose the
generic MATLAB Host Computer target platform, bweuler generates code that uses a
precompiled, platform-specific shared library. Use of a shared library preserves performance

1 Functions

1-412

optimizations but limits the target platforms for which code can be generated. For more
information, see “Types of Code Generation Support in Image Processing Toolbox”.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
bwperim | bwmorph

Introduced before R2006a

 bweuler

1-413

bwferet
Measure Feret properties

Syntax
out = bwferet(BW,properties)
out = bwferet(CC,properties)
out = bwferet(L,properties)
out = bwferet(input)
[out,LM] = bwferet(___)

Description
out = bwferet(BW,properties) measures the Feret properties of objects in an image and
returns the measurements in a table. The input properties specifies the Feret properties to be
measured for each object in input binary image BW. The measured Feret properties include the
minimum and maximum Feret diameters, Feret angles, and endpoint coordinates of Feret diameters.

out = bwferet(CC,properties) measures the Feret properties for each connected component in
structure CC.

out = bwferet(L,properties) measures the Feret properties for each object in the input label
matrix L.

out = bwferet(input) measures the maximum Feret diameter, its relative angle, and coordinate
values measured from the input. The function returns the measurements in a table. The input can
be binary image BW, connected component CC, or label matrix L.

[out,LM] = bwferet(___) also returns a label matrix containing label values that represent the
row indices of the table out. You can use any of the input arguments from previous syntaxes. Each
row entry in out corresponds to a labeled region (object) in label matrix LM.

Examples

Measure Feret Properties of Objects in Binary Image

Read an image into the workspace.

I = imread('toyobjects.png');

Convert the image into a binary image.

bw = imbinarize(I,'adaptive');

Extract the first two largest objects from the binary image.

bw = bwareafilt(bw,2);

Fill holes in the extracted object regions.

1 Functions

1-414

bw = imfill(bw,'holes');

Calculate the minimum Feret properties and the label matrix of the extracted objects.

[out,LM] = bwferet(bw,'MinFeretProperties');

Get the maximum number of objects in the output label matrix.

maxLabel = max(LM(:));

Display the output containing the table of minimum Feret properties.

out

out=2×3 table
 MinDiameter MinAngle MinCoordinates
 ___________ ________ ______________

 116.23 99.462 {2x2 double}
 132.08 -159.27 {2x2 double}

Display the minimum Feret properties of the object with label-value 1 from the output label matrix.

out.MinDiameter(1)

ans = 116.2301

out.MinAngle(1)

ans = 99.4623

out.MinCoordinates{1}

ans = 2×2

 120.5000 311.5000
 139.6081 196.8514

Display the minimum Feret properties of the object with label-value 2 from the output label matrix.

out.MinDiameter(2)

ans = 132.0776

out.MinAngle(2)

ans = -159.2744

out.MinCoordinates{2}

ans = 2×2

 215.5000 197.5000
 339.0304 244.2412

Display the output label matrix. Plot the endpoint coordinates and minimum Feret diameter of objects
with different label values from the output label matrix.

 bwferet

1-415

h = imshow(LM,[]);
axis = h.Parent;
for labelvalues = 1:maxLabel
 xmin = [out.MinCoordinates{labelvalues}(1,1) out.MinCoordinates{labelvalues}(2,1)];
 ymin = [out.MinCoordinates{labelvalues}(1,2) out.MinCoordinates{labelvalues}(2,2)];
 imdistline(axis,xmin,ymin);
end
title(axis,'Minimum Feret Diameter of Objects');
colorbar('Ticks',1:maxLabel)

Measure Feret Properties of Connected Components

Read an image into the workspace.

I = imread('toyobjects.png');

Convert the image into a binary image.

bw = imbinarize(I,'adaptive');

Fill holes in the object regions of the input binary image.

1 Functions

1-416

bw = imfill(bw,'holes');

Use the bwconncomp function to generate connected components from the resulting image.

cc = bwconncomp(bw);

Measure the maximum Feret properties of the connected components.

[out,LM] = bwferet(cc,'MaxFeretProperties');

Get the maximum number of objects in the output label matrix.

maxLabel = max(LM(:));

Inspect the table to verify the measured maximum Feret properties.

out

out=4×3 table
 MaxDiameter MaxAngle MaxCoordinates
 ___________ ________ ______________

 162.6 -175.06 {2x2 double}
 156.21 -127.46 {2x2 double}
 187.96 121.07 {2x2 double}
 63.781 -131.19 {2x2 double}

Display the maximum Feret diameters of objects with different label values from output label matrix.

out.MaxDiameter(1:maxLabel)

ans = 4×1

 162.6038
 156.2082
 187.9628
 63.7809

Display the directional angles of the maximum Feret diameters specific to objects with different label
values from output label matrix.

out.MaxAngle(1:maxLabel)

ans = 4×1

 -175.0608
 -127.4568
 121.0683
 -131.1859

Display the endpoint coordinates of the maximum Feret diameters specific to objects with different
label values from output label matrix.

out.MaxCoordinates{1:maxLabel}

ans = 2×2

 bwferet

1-417

 186.5000 113.5000
 24.5000 99.5000

ans = 2×2

 156.5000 315.5000
 61.5000 191.5000

ans = 2×2

 337.5000 174.5000
 240.5000 335.5000

ans = 2×2

 288.5000 129.5000
 246.5000 81.5000

Display the output label matrix. Plot the endpoint coordinates and the maximum Feret diameter of
objects with different label values from output label matrix.

h = imshow(LM,[]);
axis = h.Parent;
for labelvalues = 1:maxLabel
 xmax = [out.MaxCoordinates{labelvalues}(1,1) out.MaxCoordinates{labelvalues}(2,1)];
 ymax = [out.MaxCoordinates{labelvalues}(1,2) out.MaxCoordinates{labelvalues}(2,2)];
 imdistline(axis,xmax,ymax);
end
title(axis,'Maximum Feret Diameter of Objects');
colorbar('Ticks',1:maxLabel)

1 Functions

1-418

Input Arguments
BW — Binary image
numeric matrix | logical matrix

Binary image, specified as a logical or numeric matrix. BW must be a binary image where nonzero
pixels correspond to an object and zero-valued pixels correspond to the background.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

CC — Connected components
structure

Connected components, specified as a structure with the four fields shown in this table.

Field Description
Connectivity Connectivity of the connected components (objects)
ImageSize Size of input binary image
NumObjects Number of connected components (objects) in the input binary image

 bwferet

1-419

Field Description
PixelIdxList 1-by-NumObjects cell array, where the kth element is a vector containing

the linear indices of the pixels in the kth object

You can use the bwconncomp function to generate connected components from a binary image.
Data Types: struct

L — Label matrix
matrix of nonnegative integers

Label matrix of contiguous regions, specified as a matrix of nonnegative integers. The pixels labeled 0
are the background. The pixels labeled 1 make up one object; the pixels labeled 2 make up a second
object; and so on. The number of objects represented by L is equal to the maximum value of L. You
can use the bwlabel function to generate label matrix from a binary image.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

properties — Label for Feret properties
MaxFeretProperties | MinFeretProperties | all

Label for Feret properties, specified as MaxFeretProperties, MinFeretProperties, or all.
Data Types: char | string

input — Generic input
numeric matrix | logical matrix | structure | matrix of nonnegative integers

Generic input, specified as one of these values:

• Numeric matrix or logical matrix — When input is a binary image, BW.
• Structure — When input is the connected component, CC.
• Matrix of nonnegative integers — When input is the label matrix, L.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical |
struct

Output Arguments
out — Table of Feret properties
m-by-n table

Table of Feret properties, returned as an m-by-n table. m is the number of objects for which the Feret
properties are measured. n is 3 or 6, depending on the properties input.

• If properties is 'MaxFeretProperties', then the table out is of size m-by-3 with columns
MaxDiameter, MaxAngle, and MaxCoordinates.

• If properties is 'MinFeretProperties', then the table out is of size m-by-3 with columns
MinDiameter, MinAngle, and MinCoordinates.

• If properties is 'all', then the table out is of size m-by-6 with all columns listed in this table.

1 Functions

1-420

Column Name Description
MaxDiameter Maximum Feret diameter of an object, measured as the maximum distance

between any two boundary points on the antipodal vertices of the convex
hull that encloses that object

MaxAngle Directional angle of the maximum Feret diameter with respect to the
horizontal axis of the image. The value, in degrees, is in the range [–
180o,180o]

MaxCoordinates Endpoint coordinates of the maximum Feret diameter, returned in the form
x1 y1
x2 y2

MinDiameter Minimum Feret diameter of an object, measured as the minimum distance
between any two boundary points on the antipodal vertices of the convex
hull that encloses that object

MinAngle Directional angle of the minimum Feret diameter with respect to the
horizontal axis of the image. The value, in degrees, is in the range [–
180o,180o]

MinCoordinates Endpoint coordinates of the minimum Feret diameter, returned in the form
x1 y1
x2 y2

LM — Label matrix of contiguous regions
matrix of nonnegative integers

Label matrix of contiguous regions, specified as a matrix of nonnegative integers. The pixels labeled 0
are the background. The pixels labeled 1 make up one object; the pixels labeled 2 make up a second
object; and so on. The Feret properties in the kth row entry of out correspond to the kth region
(object) in LM that have the value k. The number of objects represented by LM is equal to the
maximum value of LM.

Note If the input to bwferet is a label matrix, then the output label matrix LM is same as the input
label matrix.

Data Types: uint8

Algorithms
The Feret properties of an object are measured by using boundary points on the antipodal vertices of
the convex hull that encloses that object.

 bwferet

1-421

Given the endpoint coordinates of the maximum (or minimum) Feret diameter,
x1 y1
x2 y2

, the maximum

(or minimum) Feret angle is measured as angle = tan−1 y2− y1
x2− x1

.

See Also
bwconncomp | bwlabel | bwlabeln | labelmatrix | regionprops

Introduced in R2019a

1 Functions

1-422

bwhitmiss
Binary hit-miss operation

Syntax
BW2 = bwhitmiss(BW,SE1,SE2)
BW2 = bwhitmiss(BW,interval)

Description
BW2 = bwhitmiss(BW,SE1,SE2) performs the hit-miss operation defined by the structuring
elements SE1 and SE2. The hit-miss operation preserves pixels in binary image BW whose
neighborhoods match the shape of SE1 and don't match the shape of SE2.

This syntax is equivalent to imerode(BW,SE1) & imerode(~BW,SE2).

BW2 = bwhitmiss(BW,interval) performs the hit-miss operation defined in terms of a single
array, called an interval. An interval is an array whose elements are 1, 0, or -1. The 1-valued
elements make up the domain of SE1, the -1-valued elements make up the domain of SE2, and the 0-
valued elements are ignored.

This syntax is equivalent to bwhitmiss(BW,interval==1,interval==-1).

Examples

Perform Hit-miss Operation on Binary Image

Create sample binary image for this example.

bw = [0 0 0 0 0 0
 0 0 1 1 0 0
 0 1 1 1 1 0
 0 1 1 1 1 0
 0 0 1 1 0 0
 0 0 1 0 0 0]

bw = 6×6

 0 0 0 0 0 0
 0 0 1 1 0 0
 0 1 1 1 1 0
 0 1 1 1 1 0
 0 0 1 1 0 0
 0 0 1 0 0 0

Define an interval.

interval = [0 -1 -1
 1 1 -1
 0 1 0];

 bwhitmiss

1-423

Perform hit-miss operation.

bw2 = bwhitmiss(bw,interval)

bw2 = 6x6 logical array

 0 0 0 0 0 0
 0 0 0 1 0 0
 0 0 0 0 1 0
 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0

Input Arguments
BW — Binary image
numeric array | logical array

Binary image, specified as a numeric or logical array of any dimension. For numeric input, any
nonzero pixels are considered to be 1 (true).

SE1, SE2 — Structuring element
strel object | numeric array

Flat structuring element, specified as a strel object or a numeric matrix with values of 1 and 0. The
neighborhoods of SE1 and SE2 should not have overlapping elements.

interval — Interval
numeric array

Interval, specified as a numeric array with values of 1, 0, and -1.
Data Types: single | double | int8 | int16 | int32 | int64

Output Arguments
BW2 — Processed binary image
logical array

Processed binary image after the hit-miss operation, specified as a logical array of the same size as
BW.
Data Types: logical

See Also
imdilate | imerode | strel

Introduced before R2006a

1 Functions

1-424

bwlabel
Label connected components in 2-D binary image

Syntax
L = bwlabel(BW)
L = bwlabel(BW,conn)
[L,n] = bwlabel(___)

Description
L = bwlabel(BW) returns the label matrix L that contains labels for the 8-connected objects found
in BW.

L = bwlabel(BW,conn) returns a label matrix, where conn specifies the connectivity.

[L,n] = bwlabel(___) also returns n, the number of connected objects found in BW.

Examples

Label Components Using 4-connected Objects

Create a small binary image.

BW = logical ([1 1 1 0 0 0 0 0
 1 1 1 0 1 1 0 0
 1 1 1 0 1 1 0 0
 1 1 1 0 0 0 1 0
 1 1 1 0 0 0 1 0
 1 1 1 0 0 0 1 0
 1 1 1 0 0 1 1 0
 1 1 1 0 0 0 0 0]);

Create the label matrix using 4-connected objects.

L = bwlabel(BW,4)

L = 8×8

 1 1 1 0 0 0 0 0
 1 1 1 0 2 2 0 0
 1 1 1 0 2 2 0 0
 1 1 1 0 0 0 3 0
 1 1 1 0 0 0 3 0
 1 1 1 0 0 0 3 0
 1 1 1 0 0 3 3 0
 1 1 1 0 0 0 0 0

Use the find command to get the row and column coordinates of the object labeled "2".

 bwlabel

1-425

[r, c] = find(L==2);
rc = [r c]

rc = 4×2

 2 5
 3 5
 2 6
 3 6

Input Arguments
BW — Binary image
2-D numeric matrix | 2-D logical matrix

Binary image, specified as a 2-D numeric matrix or 2-D logical matrix. For numeric input, any nonzero
pixels are considered to be 1 (true).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

conn — Pixel connectivity
8 (default) | 4

Pixel connectivity, specified as one of these values.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch. Two

adjoining pixels are part of the same object if
they are both on and are connected along the
horizontal or vertical direction.

8-connected Pixels are connected if their edges or corners
touch. Two adjoining pixels are part of the
same object if they are both on and are
connected along the horizontal, vertical, or
diagonal direction.

Data Types: double | logical

Output Arguments
L — Label matrix
matrix of nonnegative integers

Label matrix of contiguous regions, returned as matrix of nonnegative integers with the same size as
BW. The pixels labeled 0 are the background. The pixels labeled 1 make up one object; the pixels
labeled 2 make up a second object; and so on.
Data Types: double

1 Functions

1-426

n — Number of connected objects
nonnegative integer

Number of connected objects in BW, returned as a nonnegative integer.
Data Types: double

Tips
• The functions bwlabel, bwlabeln, and bwconncomp all compute connected components for

binary images. bwconncomp replaces the use of bwlabel and bwlabeln. It uses significantly less
memory and is sometimes faster than the other functions.

 Input Dimension Output Form Memory Use Connectivity
bwlabel 2-D Double-precision label

matrix
High 4 or 8

bwlabeln N-D Double-precision label
matrix

High Any

bwconncomp N-D CC struct Low Any

• You can use the MATLAB find function in conjunction with bwlabel to return vectors of indices
for the pixels that make up a specific object. For example, to return the coordinates for the pixels
in object 2, enter the following:.

[r,c] = find(bwlabel(BW)==2)

You can display the output matrix as a pseudocolor indexed image. Each object appears in a
different color, so the objects are easier to distinguish than in the original image. For more
information, see label2rgb.

• To extract features from a binary image using regionprops with default connectivity, just pass
BW directly into regionprops using the command regionprops(BW).

• The bwlabel function can take advantage of hardware optimization for data types logical,
uint8, and single to run faster. Hardware optimization requires marker and mask to be 2-D
images and conn to be either 4 or 8.

Algorithms
bwlabel uses the general procedure outlined in reference [1], pp. 40-48:

1 Run-length encode the input image.
2 Scan the runs, assigning preliminary labels and recording label equivalences in a local

equivalence table.
3 Resolve the equivalence classes.
4 Relabel the runs based on the resolved equivalence classes.

References
[1] Haralick, Robert M., and Linda G. Shapiro, Computer and Robot Vision, Volume I, Addison-Wesley,

1992, pp. 28-48.

 bwlabel

1-427

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• bwlabel supports the generation of C code (requires MATLAB Coder). For more information, see
“Code Generation for Image Processing”.

• When generating code, the parameter n must be a compile-time constant.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• When generating code, the parameter n must be a compile-time constant.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on a GPU”.

See Also
bwconncomp | bwlabeln | bwselect | labelmatrix | label2rgb | regionprops

Introduced before R2006a

1 Functions

1-428

bwlabeln
Label connected components in binary image

Syntax
L = bwlabeln(BW)
L = bwlabeln(BW,conn)
[L,n] = bwlabeln(___)

Description
L = bwlabeln(BW) returns a label matrix, L, containing labels for the connected components in BW.

L = bwlabeln(BW,conn) returns a label matrix, where conn specifies the connectivity.

[L,n] = bwlabeln(___) also returns n, the number of connected objects found in BW.

Examples

Calculate Centroids of 3-D Objects

Create simple sample 3-D binary image.

BW = cat(3, [1 1 0; 0 0 0; 1 0 0],...
 [0 1 0; 0 0 0; 0 1 0],...
 [0 1 1; 0 0 0; 0 0 1])

BW =
BW(:,:,1) =

 1 1 0
 0 0 0
 1 0 0

BW(:,:,2) =

 0 1 0
 0 0 0
 0 1 0

BW(:,:,3) =

 0 1 1
 0 0 0
 0 0 1

Label connected components in the image.

bwlabeln(BW)

 bwlabeln

1-429

ans =
ans(:,:,1) =

 1 1 0
 0 0 0
 2 0 0

ans(:,:,2) =

 0 1 0
 0 0 0
 0 2 0

ans(:,:,3) =

 0 1 1
 0 0 0
 0 0 2

Input Arguments
BW — Binary image
numeric array | logical array

Binary image, specified as a numeric or logical array of any dimension. For numeric input, any
nonzero pixels are considered to be on.
Example: BW = imread('text.png');
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

conn — Pixel connectivity
4 | 8 | 6 | 18 | 26 | 3-by-3-by- ... -by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of the values in this table. The default connectivity is 8 for 2-D
images, and 26 for 3-D images.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch. Two

adjoining pixels are part of the same object if
they are both on and are connected along the
horizontal or vertical direction.

8-connected Pixels are connected if their edges or corners
touch. Two adjoining pixels are part of the
same object if they are both on and are
connected along the horizontal, vertical, or
diagonal direction.

1 Functions

1-430

Value Meaning
Three-Dimensional Connectivities
6-connected Pixels are connected if their faces touch. Two

adjoining pixels are part of the same object if
they are both on and are connected in:

• One of these directions: in, out, left, right,
up, and down

18-connected Pixels are connected if their faces or edges
touch. Two adjoining pixels are part of the
same object if they are both on and are
connected in

• One of these directions: in, out, left, right,
up, and down

• A combination of two directions, such as
right-down or in-up

26-connected Pixels are connected if their faces, edges, or
corners touch. Two adjoining pixels are part of
the same object if they are both on and are
connected in

• One of these directions: in, out, left, right,
up, and down

• A combination of two directions, such as
right-down or in-up

• A combination of three directions, such as
in-right-up or in-left-down

For higher dimensions, bwlabeln uses the default value conndef(ndims(BW),'maximal').

Connectivity can also be defined in a more general way for any dimension by specifying a 3-by-3-
by- ... -by-3 matrix of 0s and 1s. The 1-valued elements define neighborhood locations relative to the
center element of conn. Note that conn must be symmetric about its center element. See “Specifying
Custom Connectivities” for more information.
Data Types: double | logical

Output Arguments
L — Label matrix
array of nonnegative integers

Label matrix, returned as an array of nonnegative integers with the same size as BW. The pixels
labeled 0 are the background. The pixels labeled 1 make up one object; the pixels labeled 2 make up
a second object; and so on.
Data Types: double

n — Number of connected objects
nonnegative integer

 bwlabeln

1-431

Number of connected objects in BW, returned as a nonnegative integer.
Data Types: double

Tips
• The functions bwlabel, bwlabeln, and bwconncomp all compute connected components for

binary images. bwconncomp replaces the use of bwlabel and bwlabeln. It uses significantly less
memory and is sometimes faster than the other functions.

Function Input Dimension Output Form Memory Use Connectivity
bwlabel 2-D Label matrix with double-

precision
High 4 or 8

bwlabeln N-D Double-precision label
matrix

High Any

bwconncomp N-D CC struct Low Any

• To extract features from a binary image using regionprops with default connectivity, just pass
BW directly into regionprops using the command regionprops(BW).

Algorithms
bwlabeln uses the following general procedure:

1 Scan all image pixels, assigning preliminary labels to nonzero pixels and recording label
equivalences in a union-find table.

2 Resolve the equivalence classes using the union-find algorithm [1].
3 Relabel the pixels based on the resolved equivalence classes.

References
[1] Sedgewick, Robert, Algorithms in C, 3rd Ed., Addison-Wesley, 1998, pp. 11-20.

See Also
bwconncomp | bwlabel | labelmatrix | label2rgb | regionprops

Introduced before R2006a

1 Functions

1-432

bwlookup
Nonlinear filtering using lookup tables

Syntax
J = bwlookup(BW,lut)

Description
J = bwlookup(BW,lut) performs a 2-by-2 or 3-by-3 nonlinear neighborhood filtering operation on
binary image BW. The neighborhood processing determines an integer index value used to access
values in lookup table lut. The fetched lut value becomes the pixel value in output image J at the
targeted position.

Examples

Perform Erosion Along Edges of Binary Image

Construct the vector lut such that the filtering operation places a 1 at the targeted pixel location in
the input image only when all four pixels in the 2-by-2 neighborhood of BW are set to 1.

lutfun = @(x)(sum(x(:))==4);
lut = makelut(lutfun,2)

lut = 16×1

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 ⋮

Load a binary image.

BW1 = imread('text.png');

Perform 2-by-2 neighborhood processing with 16-element vector lut .

BW2 = bwlookup(BW1,lut);

Show zoomed before and after images.

figure;
h1 = subplot(1,2,1); imshow(BW1), axis off; title('Original Image')

 bwlookup

1-433

h2 = subplot(1,2,2); imshow(BW2); axis off; title('Eroded Image')
% 16X zoom to see effects of erosion on text
set(h1,'Ylim',[1 64],'Xlim',[1 64]);
set(h2,'Ylim',[1 64],'Xlim',[1 64]);

Input Arguments
BW — Binary image
2-D logical matrix | 2-D numeric matrix

Binary image to be transformed by the nonlinear neighborhood filtering operation, specified as a 2-D
logical matrix or 2-D numeric matrix. For numeric input, any nonzero pixels are considered to be 1
(true).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

lut — Lookup table of output pixel values
16-element vector | 512-element vector

Lookup table of output pixel values, specified as a 16- or 512-element vector. The size of lut
determines which of the two neighborhood operations is performed. You can use the makelut
function to create a lookup table.

• If lut contains 16 data elements, then the neighborhood matrix is 2-by-2.

1 Functions

1-434

• If lut contains 512 data elements, then the neighborhood matrix is 3-by-3.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Output Arguments
J — Output image
binary image | grayscale image

Output image, returned as a grayscale or binary image whose distribution of pixel values are
determined by the content of the lookup table, lut. The output image J is the same size as the input
image BW and the same data type as lut.

Algorithms
The first step in each iteration of the filtering operation performed by bwlookup entails computing
the index into vector lut based on the binary pixel pattern of the neighborhood matrix on image BW.
The value in lut accessed at index, lut(index), is inserted into output image J at the targeted
pixel location. This results in image J being the same data type as vector lut.

Since there is a 1-to-1 correspondence in targeted pixel locations, image J is the same size as image
BW. If the targeted pixel location is on an edge of image BW and if any part of the 2-by-2 or 3-by-3
neighborhood matrix extends beyond the image edge, then these non-image locations are padded
with 0 in order to perform the filtering operation.

The following figures show the mapping from binary 0 and 1 patterns in the neighborhood matrices to
its binary representation. Adding 1 to the binary representation yields index which is used to access
lut.

2-by-2 Neighborhood Lookup

For 2-by-2 neighborhoods, length(lut) is 16. There are four pixels in each neighborhood, and two
possible states for each pixel, so the total number of permutations is 24 = 16.

 bwlookup

1-435

To illustrate, this example shows how the pixel pattern in a 2-by-2 matrix determines which entry in
lut is placed in the targeted pixel location.

1 Create random 16-element lut vector containing uint8 data.

scurr = rng; % save current random number generator seed state
rng('default') % always generate same set of random numbers
lut = uint8(round(255*rand(16,1))) % generate lut
rng(scurr); % restore

lut =

 208

1 Functions

1-436

 231
 32
 233
 161
 25
 71
 139
 244
 246
 40
 248
 244
 124
 204
 36

2 Create a 2-by-2 image and assume for this example that the targeted pixel location is location
BW(1,1).

BW = [1 0; 0 1]

BW =

 1 0
 0 1

3 By referring to the color coded mapping figure above, the binary representation for this 2-by-2
neighborhood can be computed as shown in the code snippet below. The logical 1 at BW(1,1)
corresponds to blue in the figure which maps to the Least Significant Bit (LSB) at position 0 in
the 4-bit binary representation (,20= 1). The logical 1 at BW(2,2) is red which maps to the Most
Significant Bit (MSB) at position 3 in the 4-bit binary representation (23= 8) .

% BW(1,1): blue square; sets bit position 0 on right
% BW(2,2): red square; sets bit position 3 on left
binNot = '1 0 0 1'; % binary representation of 2x2 neighborhood matrix

X = bin2dec(binNot); % convert from binary to decimal
index = X + 1 % add 1 to compute index value for uint8 vector lut
A11 = lut(index) % value at A(1,1)

index =

 10

A11 =

 246
4 The above calculation predicts that output image A should contain the value 246 at targeted

position A(1,1).

A = bwlookup(BW,lut) % perform filtering

A =

 246 32
 161 231

A(1,1) does in fact equal 246.

 bwlookup

1-437

3-by-3 Neighborhood Lookup

For 3-by-3 neighborhoods, length(lut) is 512. There are nine pixels in each neighborhood, and two
possible states for each pixel, so the total number of permutations is 29 = 512.

The process for computing the binary representation of 3-by-3 neighborhood processing is the same
as for 2-by-2 neighborhoods.

1 Functions

1-438

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 bwlookup

1-439

Usage notes and limitations:

• bwlookup supports the generation of C code (requires MATLAB Coder). Note that if you choose
the generic MATLAB Host Computer target platform, bwlookup generates code that uses a
precompiled, platform-specific shared library. Use of a shared library preserves performance
optimizations but limits the target platforms for which code can be generated. For more
information, see “Types of Code Generation Support in Image Processing Toolbox”.

• When generating code, specify an input image of class logical.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• When generating code, specify an input image of class logical.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on a GPU”.

See Also
makelut

Introduced in R2012b

1 Functions

1-440

bwmorph
Morphological operations on binary images

Syntax
BW2 = bwmorph(BW,operation)
BW2 = bwmorph(BW,operation,n)

Description
BW2 = bwmorph(BW,operation) applies a specific morphological operation to the binary image
BW.

Note To perform morphological operations on a 3-D volumetric image, use bwmorph3.

BW2 = bwmorph(BW,operation,n) applies the operation n times. n can be Inf, in which case the
operation is repeated until the image no longer changes.

Examples

Perform Morphological Operations on Binary Image

Read binary image and display it.

BW = imread('circles.png');
imshow(BW);

 bwmorph

1-441

Remove interior pixels to leave an outline of the shapes.

BW2 = bwmorph(BW,'remove');
figure
imshow(BW2)

Get the image skeleton.

1 Functions

1-442

BW3 = bwmorph(BW,'skel',Inf);
figure
imshow(BW3)

Input Arguments
BW — Binary image
2-D numeric matrix | 2-D logical matrix

Binary image, specified as a 2-D numeric matrix or 2-D logical matrix. For numeric input, any nonzero
pixels are considered to be 1 (true).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

operation — Morphological operation to perform
character vector | string scalar

Morphological operation to perform, specified as one of the following.

Operation Description
'bothat' Perform the morphological bottom hat operation, returning the image

minus the morphological closing of the image.

The bwmorph function performs morphological closing using the
neighborhood ones(3). If you want to perform a morphological bottom hat
operation with a different neighborhood, then use the imbothat function.

 bwmorph

1-443

Operation Description
'branchpoints' Find branch points of skeleton. For example:

0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
1 1 1 1 1 becomes 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0

Note: To find branch points, the image must be skeletonized. To create a
skeletonized image, use bwmorph(BW,'skel').

'bridge' Bridge unconnected pixels, that is, sets 0-valued pixels to 1 if they have
two nonzero neighbors that are not connected. For example:

1 0 0 1 1 0
1 0 1 becomes 1 1 1
0 0 1 0 1 1

'clean' Remove isolated pixels (individual 1s that are surrounded by 0s), such as
the center pixel in this pattern.

0 0 0
0 1 0
0 0 0

'close' Perform morphological closing (dilation followed by erosion).

The bwmorph function performs morphological closing using the
neighborhood ones(3). If you want to perform a morphological closing
operation with a different neighborhood, then use the imclose function.

'diag' Use diagonal fill to eliminate 8-connectivity of the background. For
example:

0 1 0 0 1 0
1 0 0 becomes 1 1 0
0 0 0 0 0 0

'endpoints' Find end points of skeleton. For example:

1 0 0 0 1 0 0 0
0 1 0 0 becomes 0 0 0 0
0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0

Note: To find end points, the image must be skeletonized. To create a
skeletonized image, use bwmorph(BW,'skel').

'fill' Fill isolated interior pixels (individual 0s that are surrounded by 1s), such
as the center pixel in this pattern.

1 1 1
1 0 1
1 1 1

1 Functions

1-444

Operation Description
'hbreak' Remove H-connected pixels. For example:

1 1 1 1 1 1
0 1 0 becomes 0 0 0
1 1 1 1 1 1

'majority' Set a pixel to 1 if five or more pixels in its 3-by-3 neighborhood are 1;
otherwise, set the pixel to 0.

'open' Perform morphological opening (erosion followed by dilation).

The bwmorph function performs morphological opening using the
neighborhood ones(3). If you want to perform a morphological opening
operation with a different neighborhood, then use the imopen function.

'remove' Remove interior pixels. This option sets a pixel to 0 if all its 4-connected
neighbors are 1, thus leaving only the boundary pixels on.

'shrink' With n = Inf, shrink objects to points by removing pixels from the
boundaries of objects. Objects without holes shrink to a point, and objects
with holes shrink to a connected ring halfway between each hole and the
outer boundary. This option preserves the Euler number (also known as the
Euler characteristic).

'skel' With n = Inf, remove pixels on the boundaries of objects without
allowing objects to break apart. The pixels remaining make up the image
skeleton. This option preserves the Euler number.

When working with 3-D volumes, or when you want to prune a skeleton,
use the bwskel function.

'spur' Remove spur pixels. For example:

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 becomes 0 0 0 0
0 1 0 0 0 1 0 0
1 1 0 0 1 1 0 0

'thicken' With n = Inf, thicken objects by adding pixels to the exterior of objects
until doing so would result in previously unconnected objects being 8-
connected. This option preserves the Euler number.

'thin' With n = Inf, thin objects to lines by removing pixels from the boundary
of objects. An object without holes shrinks to a minimally connected stroke,
and an object with holes shrinks to a connected ring halfway between each
hole and the outer boundary. This option preserves the Euler number. See
“Algorithms” on page 1-446 for more detail.

'tophat' Perform the morphological top hat operation, returning the image minus
the morphological opening of the image.

The bwmorph function performs morphological opening using the
neighborhood ones(3). If you want to perform a morphological top hat
operation with a different neighborhood, then use the imtophat function.

 bwmorph

1-445

Tip To perform morphological erosion or dilation, use the imerode or imdilate function,
respectively. If you want to replicate the dilation or erosion performed by the bwmorph function, then
specify the neighborhood as ones(3).

Data Types: char | string

n — Number of times to perform operation
positive integer | Inf

Number of times to perform the operation, specified as a positive integer or Inf. When you specify n
as Inf, the bwmorph function repeats the operation until the image no longer changes.
Example: 100
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
BW2 — Image after morphological operations
2-D logical matrix

Image after morphological operations, returned as a 2-D logical matrix.
Data Types: logical

Algorithms
When used with the 'thin' option, bwmorph uses the following algorithm [3]:

1 In the first subiteration, delete pixel p if and only if the conditions G1, G2, and G3 are all satisfied.
2 In the second subiteration, delete pixel p if and only if the conditions G1, G2, and G3′ are all

satisfied.

Condition G1:

XH(p) = 1

where

XH(p) = ∑
i = 1

4
bi

bi =
1, if x2i− 1 = 0 and (x2i = 1 or x2i + 1 = 1)
0, otherwise

x1, x2, ..., x8 are the values of the eight neighbors of p, starting with the east neighbor and numbered
in counter-clockwise order.

Condition G2:

2 ≤ min n1(p), n2(p) ≤ 3

where

1 Functions

1-446

n1(p) = ∑
k = 1

4
x2k− 1 ∨ x2k

n2(p) = ∑
k = 1

4
x2k ∨ x2k + 1

Condition G3:

(x2 ∨ x3 ∨ x8) ∧ x1 = 0

Condition G3':

(x6 ∨ x7 ∨ x4) ∧ x5 = 0

The two subiterations together make up one iteration of the thinning algorithm. When the user
specifies an infinite number of iterations (n=Inf), the iterations are repeated until the image stops
changing. The conditions are all tested using applylut with precomputed lookup tables.

References
[1] Haralick, Robert M., and Linda G. Shapiro, Computer and Robot Vision, Vol. 1, Addison-Wesley,

1992.

[2] Kong, T. Yung and Azriel Rosenfeld, Topological Algorithms for Digital Image Processing, Elsevier
Science, Inc., 1996.

[3] Lam, L., Seong-Whan Lee, and Ching Y. Suen, "Thinning Methodologies-A Comprehensive Survey,"
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol 14, No. 9, September
1992, page 879, bottom of first column through top of second column.

[4] Pratt, William K., Digital Image Processing, John Wiley & Sons, Inc., 1991.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• bwmorph supports the generation of C code (requires MATLAB Coder). Note that if you choose the
generic MATLAB Host Computer target platform, bwmorph generates code that uses a
precompiled, platform-specific shared library. Use of a shared library preserves performance
optimizations but limits the target platforms for which code can be generated. For more
information, see “Types of Code Generation Support in Image Processing Toolbox”.

• When generating code, the character vectors or string scalars specifying the operation must be a
compile-time constant and, for best results, the input image must be of class logical.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

 bwmorph

1-447

• When generating code, the character vectors or string scalars specifying the operation must be a
compile-time constant and, for best results, the input image must be of class logical.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on a GPU”.

See Also
bweuler | bwskel | bwmorph3 | imdilate | bwperim | imerode

Topics
“Types of Morphological Operations”
“Pixel Connectivity”

Introduced before R2006a

1 Functions

1-448

bwmorph3
Morphological operations on binary volume

Syntax
J = bwmorph3(V,operation)

Description
J = bwmorph3(V,operation) applies the morphological operation specified by the string or
character vector operation to the binary volume V. bwmorph3 returns the results of the operation
in logical volume J.

Examples

Compare the Clean and Majority Operations of bwmorph3

Load 3-D MRI volumetric data and create a binary volume. Use volshow to view the volumetric data.

load mristack;
BW1 = mristack > 127;
volshow(BW1);

To remove voxels that are set to 1 and that are also surrounded by voxels set to 0, perform the
'clean' operation on the volumetric data. When determining which voxels to remove, the 'clean'
operation considers 26 neighboring voxels. Use volshow to view the results.

BW2 = bwmorph3(BW1,'clean');
volshow(BW2);

 bwmorph3

1-449

For comparison, perform the 'majority' operation on the volumetric data. The 'majority'
operation performs a similar task to the 'clean' operation but only retains voxels if more than half
(the majority) of the voxels in the neighborhood of the target voxel are set to 1. When determining
which voxels to retain, the 'majority' operation also considers 26 neighboring voxels. Use volshow
to view the results.

BW3 = bwmorph3(BW1,'majority');
volshow(BW3);

Illustrations of Morphological Operations

This example shows how each of the morphological operations supported by bwmorph3 works on
simple volumes.

Make a 9-by-9-by-3 cuboid of 0s that contains a 3-by-3-by-3 cube of 1s at its center.

innercube = ones(3,3,3);
cube_center = padarray(innercube,[3 3],0,'both')

cube_center =
cube_center(:,:,1) =

1 Functions

1-450

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

cube_center(:,:,2) =

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

cube_center(:,:,3) =

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

Turning Pixels Off with the Remove Operation

Set the center voxel of the inner cube to 0 using the 'remove' operation. This operation sets the
value of any 'on' voxel completely surrounded by 'on' voxels to 'off'.

remove_center = bwmorph3(cube_center,'remove')

remove_center = 9x9x3 logical array
remove_center(:,:,1) =

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

 bwmorph3

1-451

remove_center(:,:,2) =

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 0 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

remove_center(:,:,3) =

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

Setting Pixels to On with the Fill Operation

Set the center voxel of the inner cube to 1 using the 'fill' operation. This operation sets the value
of any 'off' voxel completely surrounded by 'on' voxels to 'on'.

fill_center = bwmorph3(remove_center,'fill')

fill_center = 9x9x3 logical array
fill_center(:,:,1) =

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

fill_center(:,:,2) =

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

1 Functions

1-452

 0 0 0 0 0 0 0 0 0

fill_center(:,:,3) =

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

Removing Unconnected Pixels with the Clean Operation

Use the 'clean' operation to remove any stray voxels that are set to 1 but are not connected to a
component in the volume. The example creates a stray voxel by setting a random voxel on the second
plane to 1 and then uses the 'clean' operation to remove it.

cube_center(2,2,2) = 1

cube_center =
cube_center(:,:,1) =

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

cube_center(:,:,2) =

 0 0 0 0 0 0 0 0 0
 0 1 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

cube_center(:,:,3) =

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0

 bwmorph3

1-453

 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

cube_cleaned = bwmorph3(cube_center,'clean')

cube_cleaned = 9x9x3 logical array
cube_cleaned(:,:,1) =

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

cube_cleaned(:,:,2) =

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

cube_cleaned(:,:,3) =

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

Finding the Majority

Find the majority of the cube_center using the 'majority' operation. This operation retains a
voxel only if more than half (the majority) of the voxels in the 26-connected neighborhood around the
voxel are set to 1.

cube_major = bwmorph3(cube_center,'majority')

cube_major = 9x9x3 logical array
cube_major(:,:,1) =

1 Functions

1-454

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 1 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

cube_major(:,:,2) =

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 1 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 1 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

cube_major(:,:,3) =

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 1 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

Creating a Shape Similar to a Skeleton

To illustrate the branch points and end points options, create another small matrix, this time with a
linear shape, like a skeleton.

x1 = eye(5);
x2 = zeros(5);
x2(3,3) = 1;
x3 = x2;
shape = cat(3,x1,x2,x3)

shape =
shape(:,:,1) =

 1 0 0 0 0
 0 1 0 0 0
 0 0 1 0 0
 0 0 0 1 0
 0 0 0 0 1

 bwmorph3

1-455

shape(:,:,2) =

 0 0 0 0 0
 0 0 0 0 0
 0 0 1 0 0
 0 0 0 0 0
 0 0 0 0 0

shape(:,:,3) =

 0 0 0 0 0
 0 0 0 0 0
 0 0 1 0 0
 0 0 0 0 0
 0 0 0 0 0

Finding End Points

Find the end points of the shape using the 'endpoints' operation. The shape has three end points,
one at each end of the diagonal in the first plane and one at the end of the line through the center, on
the third plane.

shape_endpts = bwmorph3(shape,'endpoints')

shape_endpts = 5x5x3 logical array
shape_endpts(:,:,1) =

 1 0 0 0 0
 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 1

shape_endpts(:,:,2) =

 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 0

shape_endpts(:,:,3) =

 0 0 0 0 0
 0 0 0 0 0
 0 0 1 0 0
 0 0 0 0 0
 0 0 0 0 0

1 Functions

1-456

Finding Branch Points

Find the branch points of the shape using the 'branchpoints' operation. The shape has a single
branch point, where the diagonal line and the horizontal line meet.

shape_brpts = bwmorph3(shape,'branchpoints')

shape_brpts = 5x5x3 logical array
shape_brpts(:,:,1) =

 0 0 0 0 0
 0 1 0 0 0
 0 0 1 0 0
 0 0 0 1 0
 0 0 0 0 0

shape_brpts(:,:,2) =

 0 0 0 0 0
 0 0 0 0 0
 0 0 1 0 0
 0 0 0 0 0
 0 0 0 0 0

shape_brpts(:,:,3) =

 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 0

Input Arguments
V — Input volume
numeric array | logical array

Input volume, specified as a numeric or logical array. For numeric input, any nonzero pixels are
considered to be 1 (true).

bwmorph3 accepts 1-D, 2-D, or 3-D arrays. If you specify 1-D or 2-D input arrays, then bwmorph3
performs the morphological operation as defined for a 3-D volume. If you want 2-D behavior, use
bwmorph instead.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

operation — Morphological operation to perform
character vector | string scalar

Morphological operation to perform, specified as one of the following character vectors or string
scalar. For examples of these operations, see “Illustrations of Morphological Operations” on page 1-
450.

 bwmorph3

1-457

Operation Description Illustration
'branchpoint
s'

Find branch points of skeleton. Branch points are
the voxels at the junction where multiple
branches meet.

To find branch points, the image must be
skeletonized. To create a skeletonized image, use
bwskel.

'clean' Remove isolated voxels, setting them to 0. An
isolated voxel is an individual, 26-connected voxel
that is set to 1 that are surrounded by voxels set
to 0.

'endpoints' Find end points of skeleton. End points are voxels
at the ends of branches.

Note: To find end points, the image must be
skeletonized. To create a skeletonized image, use
bwskel.

'fill' Fill isolated interior voxels, setting them to 1.
Isolated interior voxels are individual voxels that
are set to 0 that are surrounded (6-connected) by
voxels set to 1.

'majority' Keep a voxel set to 1 if 14 or more voxels (the
majority) in its 3-by-3-by-3, 26-connected
neighborhood are set to 1; otherwise, set the
voxel to 0.

See “Illustrations of
Morphological Operations” on
page 1-450.

'remove' Remove interior voxels, setting it to 0. Interior
voxels are individual voxels that are set to 1 that
are surrounded (6-connected) by voxels set to 1.

1 Functions

1-458

Data Types: char | string

Output Arguments
J — Volume after morphological operations
logical array

Volume after morphological operations, returned as a logical array of the same size as input volume
V.

Tips
• To perform the morphological operations erosion or dilation on 3-D volumes, use the imerode or

imdilate functions, specifying the structuring element ones(3,3,3).
• To perform morphological closing, opening, top-hat filtering, or bottom-hat filtering on 3-D

volumes, use the imclose, imopen, imtophat, or imbothat functions, specifying the
structuring element ones(3,3,3).

See Also
imdilate | imerode | imclose | imopen | imbothat | imtophat | bwmorph | bwskel

Topics
“Types of Morphological Operations”

Introduced in R2018a

 bwmorph3

1-459

bwpack
Pack binary image

Syntax
BWP = bwpack(BW)

Description
BWP = bwpack(BW) packs the binary image BW into the uint32 array BWP, which is known as a
packed binary image. Because each pixel value in the binary image has only two possible values, 1
and 0, bwpack can map each pixel to a single bit in the packed output image.

Examples

Pack, Dilate, and Unpack Binary Image

Read binary image into the workspace.

BW = imread('text.png');
imshow(BW)

Pack the image.

BWp = bwpack(BW);

1 Functions

1-460

Dilate the packed image.

BWp_dilated = imdilate(BWp,ones(3,3),'ispacked');

Unpack the dilated image and display it.

BW_dilated = bwunpack(BWp_dilated, size(BW,1));
imshow(BW_dilated)

Input Arguments
BW — Binary image
2-D numeric matrix | 2-D logical matrix

Binary image, specified as a 2-D numeric or logical matrix. For numeric input, any nonzero pixels are
considered to be 1 (true).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Output Arguments
BWP — Packed binary image
numeric matrix

Packed binary image, returned as a numeric matrix of type uint32.
Data Types: uint32

 bwpack

1-461

Tips
• Binary image packing is used to accelerate some binary morphological operations, such as dilation

and erosion. If the input to imdilate or imerode is a packed binary image, then the function
uses a specialized routine to perform the operation faster.

• Use bwunpack to unpack packed binary images.

Algorithms
bwpack processes the input image pixels by column, mapping groups of 32 pixels into the bits of a
uint32 value. The first pixel in the first row corresponds to the least significant bit of the first
uint32 element of the output array. The first pixel in the 32nd input row corresponds to the most
significant bit of this same element. The first pixel of the 33rd row corresponds to the least significant
bit of the second output element, and so on. If BW is M-by-N, then BWP is ceil(M/32)-by-N. This
figure illustrates how bwpack maps the pixels in a binary image to the bits in a packed binary image.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• bwpack supports the generation of C code (requires MATLAB Coder). The code generated for
bwpack uses a precompiled, platform-specific shared library. Use of a shared library preserves
performance optimizations but limits the target platforms for which code can be generated. For
more information, see “Types of Code Generation Support in Image Processing Toolbox”.

See Also
bwunpack | imdilate | imerode

1 Functions

1-462

Introduced before R2006a

 bwpack

1-463

bwperim
Find perimeter of objects in binary image

Syntax
BW2 = bwperim(BW)
BW2 = bwperim(BW,conn)

Description
BW2 = bwperim(BW) returns a binary image that contains only the perimeter pixels of objects in the
input image BW. A pixel is part of the perimeter if it is nonzero and it is connected to at least one zero-
valued pixel.

BW2 = bwperim(BW,conn) specifies the pixel connectivity, conn.

Examples

Find Perimeter of Objects in Binary Image

Read binary image into workspace.

BW = imread('circles.png');

Calculate the perimeters of objects in the image.

BW2 = bwperim(BW,8);

Display the original image and the perimeters side-by-side.

imshowpair(BW,BW2,'montage')

1 Functions

1-464

Find Perimeter Pixels in Binary Image

This example shows how to find the perimeter pixels in a binary image using the bwperim function.

Read a binary image into the workspace.

BW1 = imread('circbw.tif');

Find the perimeters of objects in the image.

BW2 = bwperim(BW1);

Display the original image and the image showing perimeters side-by-side.

montage({BW1,BW2},'BackgroundColor','blue','BorderSize',5)

 bwperim

1-465

Input Arguments
BW — Input binary image
2-D numeric matrix | 2-D logical matrix

Input binary image, specified as a 2-D numeric or logical matrix.
Example: BW = imread('circles.png');
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

conn — Pixel connectivity
4 | 8 | 6 | 18 | 26 | 3-by-3-by- ... -by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of the values in this table. The default connectivity is 4 for 2-D
images, and 6 for 3-D images.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch. Two

adjoining pixels are part of the same object if
they are both on and are connected along the
horizontal or vertical direction.

1 Functions

1-466

Value Meaning
8-connected Pixels are connected if their edges or corners

touch. Two adjoining pixels are part of the
same object if they are both on and are
connected along the horizontal, vertical, or
diagonal direction.

Three-Dimensional Connectivities
6-connected Pixels are connected if their faces touch. Two

adjoining pixels are part of the same object if
they are both on and are connected in:

• One of these directions: in, out, left, right,
up, and down

18-connected Pixels are connected if their faces or edges
touch. Two adjoining pixels are part of the
same object if they are both on and are
connected in

• One of these directions: in, out, left, right,
up, and down

• A combination of two directions, such as
right-down or in-up

26-connected Pixels are connected if their faces, edges, or
corners touch. Two adjoining pixels are part of
the same object if they are both on and are
connected in

• One of these directions: in, out, left, right,
up, and down

• A combination of two directions, such as
right-down or in-up

• A combination of three directions, such as
in-right-up or in-left-down

For higher dimensions, bwperim uses the default value conndef(ndims(BW),'minimal').

Connectivity can also be defined in a more general way for any dimension by specifying a 3-by-3-
by- ... -by-3 matrix of 0s and 1s. The 1-valued elements define neighborhood locations relative to the
center element of conn. Note that conn must be symmetric about its center element. See “Specifying
Custom Connectivities” for more information.
Data Types: double | logical

Output Arguments
BW2 — Output binary image containing only perimeter pixels of objects
logical array

Output image containing only perimeter pixels of objects, returned as a logical array.

 bwperim

1-467

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• bwperim supports the generation of C code (requires MATLAB Coder). Note that if you choose the
generic MATLAB Host Computer target platform, bwperim generates code that uses a
precompiled, platform-specific shared library. Use of a shared library preserves performance
optimizations but limits the target platforms for which code can be generated. For more
information, see “Types of Code Generation Support in Image Processing Toolbox”.

• bwperim supports only 2-D images.
• bwperim does not support a no-output-argument syntax.
• The connectivity matrix input argument, conn, must be a constant.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• bwperim supports only 2-D images.
• bwperim does not support a no-output-argument syntax.
• The connectivity matrix input argument, conn, must be a constant.

See Also
bwarea | imfill | conndef | bweuler | bwboundaries | bwtraceboundary | bwferet

Topics
“Types of Morphological Operations”

Introduced before R2006a

1 Functions

1-468

bwpropfilt
Extract objects from binary image using properties

Syntax
BW2 = bwpropfilt(BW,attrib,range)
BW2 = bwpropfilt(BW,attrib,n)
BW2 = bwpropfilt(BW,attrib,n,keep)
BW2 = bwpropfilt(BW,I,attrib,___)
BW2 = bwpropfilt(BW,___,conn)

Description
BW2 = bwpropfilt(BW,attrib,range) extracts all connected components (objects) from a binary
image BW whose value of property attrib is in the specified range. bwpropfilt returns a binary
image BW2 containing only those objects that meet the criteria.

BW2 = bwpropfilt(BW,attrib,n) sorts the objects based on the value of the specified property,
attrib, returning a binary image that contains only the top n largest objects. In the event of a tie for
n-th place, bwpropfilt keeps only the first n objects in BW2.

BW2 = bwpropfilt(BW,attrib,n,keep) specifies whether to keep the n largest objects or the n
smallest objects when sorted by property attrib.

BW2 = bwpropfilt(BW,I,attrib,___) sorts objects based on the intensity values in the
grayscale image I and the property attrib.

BW2 = bwpropfilt(BW,___,conn) specifies the pixel connectivity, conn.

Examples

Find Regions Without Holes

Read image and display it.

BW = imread('text.png');
figure
imshow(BW)
title('Original Image')

 bwpropfilt

1-469

Use filtering to create a second image that contains only those regions in the original image that do
not have holes. For these regions, the Euler number property is equal to 1. Display filtered image.

BW2 = bwpropfilt(BW,'EulerNumber',[1 1]);
figure
imshow(BW2)
title('Regions with Euler Number == 1')

1 Functions

1-470

Find Which Ten Objects Have Largest Perimeters

Read image.

BW = imread('text.png');

Find the ten objects in the image with the largest perimeters and display filtered image.

BW2 = bwpropfilt(BW,'perimeter',10);
figure;
imshow(BW2)
title('Objects with the Largest Perimeters')

Input Arguments
BW — Image to be filtered
binary image

Image to be filtered, specified as a binary image.
Data Types: logical

attrib — Name of attribute on which to filter
character vector | string scalar

Name of attribute on which to filter, specified as one of the following values. For detailed information
about these attributes, see regionprops.

 bwpropfilt

1-471

Area EulerNumber MinorAxisLength
ConvexArea Extent Orientation
Eccentricity FilledArea Perimeter
EquivDiameter MajorAxisLength Solidity

If you specify a grayscale image, then attrib can have one of these additional values.

MaxIntensity MeanIntensity MinIntensity

Data Types: char | string

range — Minimum and maximum property values
2-by-1 numeric vector

Minimum and maximum property values, specified as a 2-by-1 numeric vector of the form [low
high].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

n — Number of objects to return
positive integer

Number of object to return, specified as a positive integer.
Data Types: double

keep — Objects to retain
'largest' (default) | 'smallest'

Objects to retain, specified as 'largest' or 'smallest'.
Data Types: char | string

I — Marker image
grayscale image

Marker image, specified as a grayscale image, the same size as the input binary image. Intensity
values in the grayscale image define regions in the input binary image.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

conn — Pixel connectivity
8 (default) | 4 | 3-by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of these values.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch. Two

adjoining pixels are part of the same object if
they are both on and are connected along the
horizontal or vertical direction.

1 Functions

1-472

Value Meaning
8-connected Pixels are connected if their edges or corners

touch. Two adjoining pixels are part of the
same object if they are both on and are
connected along the horizontal, vertical, or
diagonal direction.

Connectivity can also be defined in a more general way by specifying a 3-by-3 matrix of 0s and 1s.
The 1-valued elements define neighborhood locations relative to the center element of conn. The
matrix must be symmetric about its center element.
Data Types: double | logical

Output Arguments
BW2 — Filtered image
binary image

Filtered image, returned as a binary image the same size as BW.

See Also
bwareafilt | bwareaopen | bwconncomp | conndef | regionprops

Topics
“Filter Images on Properties Using Image Region Analyzer App”

Introduced in R2014b

 bwpropfilt

1-473

bwselect
Select objects in binary image

Syntax
BW2 = bwselect(BW,c,r)
BW2 = bwselect(BW,c,r,n)
[BW2,idx] = bwselect(___)
[x,y,BW2,idx,xi,yi] = bwselect(___)
[___] = bwselect(x,y,BW,xi,yi,n)

[___] = bwselect(BW,n)
[___] = bwselect

Description
BW2 = bwselect(BW,c,r) returns a binary image containing the objects that overlap the pixel (r,
c). Objects are connected sets of on pixels, that is, pixels having a value of 1.

BW2 = bwselect(BW,c,r,n) also specifies the object connectivity, n, as 4-connected or 8-
connected.

[BW2,idx] = bwselect(___) returns the linear indices of the pixels belonging to the selected
objects.

[x,y,BW2,idx,xi,yi] = bwselect(___) returns the x and y extents of the image and the (xi,
yi) coordinates of the pixels. By default, bwselect uses the intrinsic coordinate system so that x and
y are the image XData and YData.

[___] = bwselect(x,y,BW,xi,yi,n) establishes a nondefault world coordinate system for BW
from the vectors x and y. The arguments xi and yi specify pixel coordinates in the world coordinate
system.

[___] = bwselect(BW,n) displays the image BW in a figure and lets you select the (r, c)
coordinates interactively using the mouse. With this syntax and the other interactive syntax,
bwselect blocks the MATLAB command line until you finish selecting points.

For more information about selecting points interactively, see “Interactive Behavior” on page 1-477.

[___] = bwselect without an input argument lets you select the (r, c) coordinates of the image in
the current axes interactively.

Examples

Select Objects in Binary Image

Select objects in a binary image and create a new image containing only those objects.

Read binary image into the workspace.

1 Functions

1-474

BW = imread('text.png');

Specify the locations of objects in the image using row and column indices.

c = [43 185 212];
r = [38 68 181];

Create a new binary image containing only the selected objects. This example specifies 4-connected
objects.

BW2 = bwselect(BW,c,r,4);

Display the original image and the new image side-by-side.

imshowpair(BW,BW2,'montage');

Input Arguments
BW — Binary image
2-D numeric matrix | 2-D logical matrix

Binary image, specified as a 2-D numeric matrix or 2-D logical matrix.
Example: BW = imread('text.png');
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

c — Column index
numeric scalar | numeric vector

 bwselect

1-475

Column index, specified as a numeric scalar or numeric vector. If r and c are equal-length vectors,
then BW2 contains the sets of objects overlapping with any of the pixels (r(k),c(k)).
Example: c = [43 185 212];
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

r — Row index
numeric scalar | numeric vector

Row index, specified as a numeric scalar or numeric vector. If r and c are equal-length vectors, then
BW2 contains the sets of objects overlapping with any of the pixels (r(k),c(k)).
Example: r = [38 68 181];
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

n — Connectivity
8 (default) | 4

Connectivity, specified as 4 or 8.

Value Description
4 4-connected objects
8 8-connected objects

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

x — World x-axis coordinates
numeric scalar | numeric vector

World x-axis coordinates, specified as a numeric scalar or numeric vector of the same length as y.
Use x and y to establish a nondefault spatial coordinate system. By default, if you do not specify x and
y, then bwselect uses the intrinsic coordinate system in which x is [1, size(BW,2)].
Example: x = [19.5 23.5];
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

y — World y-axis coordinates
numeric scalar | numeric vector

World y-axis coordinates, specified as a numeric scalar or numeric vector of the same length as x.
Use x and y to establish a nondefault spatial coordinate system. By default, if you do not specify x and
y, then bwselect uses the intrinsic coordinate system in which y is [1, size(BW,1)].
Example: y = [8.0 12.0];
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

xi — x-coordinates of points
numeric scalar | numeric vector

x-coordinates of points in the world coordinate system, specified as a numeric scalar or numeric
vector.
Example: x = [19.5 23.5];

1 Functions

1-476

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

yi — y-coordinates of points
numeric scalar | numeric vector

y-coordinates of points in the world coordinate system, specified as a numeric scalar or numeric
vector.
Example: y = [8.0 12.0];
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
BW2 — Binary image containing objects that overlap specified pixels
logical array

Binary image containing objects that overlap the specified pixels, returned as a logical array. BW2
contains the set of objects overlapping with any of the pixels specified by r and c or xi and yi.

If you do not specify an output argument, then bwselect displays the output image in a new figure.

idx — Linear indices of pixels belonging to selected objects
numeric vector

Linear indices of the pixels belonging to the selected objects, returned as a numeric vector.

More About
Interactive Behavior

When you run bwselect without specifying pixel coordinates, bwselect enables you to select points
interactively from an image in a figure window. Select points using these commands.

Interactive Behavior Description
Add points Left-click points in the image.
Remove previous point Press Backspace or Delete.
Add final point and complete
selection

Right-click, double-click, or press Shift and left-click
simultaneously.

Complete selection without
adding final point

Press Return.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• bwselect supports the generation of C code (requires MATLAB Coder). Note that if you choose
the generic MATLAB Host Computer target platform, bwselect generates code that uses a
precompiled, platform-specific shared library. Use of a shared library preserves performance

 bwselect

1-477

optimizations but limits the target platforms for which code can be generated. For more
information, see “Types of Code Generation Support in Image Processing Toolbox”.

• When generating code, bwselect only supports the following syntaxes:

• BW2 = bwselect(BW,c,r)
• [BW2,idx] = bwselect(BW,c,r)
• BW2 = bwselect(BW,c,r,n)
• [BW2,idx] = bwselect(BW,c,r,n)

• In addition, the optional fourth input argument, n, must be a compile-time constant.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• When generating code, bwselect supports only these syntaxes:

• BW2 = bwselect(BW, c, r)
• [BW2, idx] = bwselect(BW, c, r)
• BW2 = bwselect(BW, c, r, n)
• [BW2, idx] = bwselect(BW, c, r, n)

• In addition, the optional fourth input argument, n, must be a compile-time constant.

See Also
bwselect3 | bwlabel | imfill | grayconnected | roipoly | regionfill

Topics
“Image Coordinate Systems”
“Shift X- and Y-Coordinate Range of Displayed Image”

Introduced before R2006a

1 Functions

1-478

bwselect3
Select objects in binary volume

Syntax
J = bwselect3(V,c,r,p)
J = bwselect3(V,c,r,p,n)
[J,idx] = bwselect3(___)
[x,y,z,J,idx,xi,yi,zi] = bwselect3(___)
[___] = bwselect3(x,y,z,V,xi,yi,zi)

Description
J = bwselect3(V,c,r,p) returns the binary volume J containing the objects that overlap the
voxel (r,c,p). Objects are connected sets of voxels with the value 1.

J = bwselect3(V,c,r,p,n) also specifies the connectivity, n, used to define objects.

[J,idx] = bwselect3(___) returns in idx the linear indices of voxels belonging to the selected
objects.

[x,y,z,J,idx,xi,yi,zi] = bwselect3(___) also returns the x, y, and z extents of the binary
volume and the (xi,yi,zi) coordinates of selected voxels. By default, bwselect3 uses the intrinsic
coordinate system so that x,y, and z are the volume XData, YData, and ZData.

[___] = bwselect3(x,y,z,V,xi,yi,zi) establishes a nondefault world coordinate system for
V from the vectors x, y, and z. The arguments xi, yi, and zi specify voxel coordinates in the world
coordinate system.

Examples

Find Objects in Volume

Load a volume and change its name to V.

load mristack;
V = mristack;

Define a set of points in the volume.

C = [126 87 11];
R = [34 120 20];
P = [20 2 12];

Return a volume that contains objects that intersect with the points specified.

J = bwselect3(V,C,R,P);

 bwselect3

1-479

Input Arguments
V — Binary volume
3-D numeric array | 3-D logical array

Binary volume, specified as a 3-D numeric array or 3-D logical array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

r — Row index of voxels
numeric scalar | numeric vector

Row index of voxels in objects of interest, specified as a numeric scalar or numeric vector. If you
specify a vector, then r must be the same length as c and p. The output binary volume J contains the
sets of objects overlapping with any of the voxels (r(k), c(k), p(k)), where k is an index into the vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

c — Column index of object
numeric scalar | numeric vector

Column index of voxels in objects of interest, specified as a numeric scalar or numeric vector. If you
specify a vector, then c must be the same length as r and p. The output binary volume J contains the
sets of objects overlapping with any of the voxels (r(k), c(k), p(k)), where k is an index into the vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

p — Plane index of object
numeric scalar | numeric vector

Plane index of voxels in objects of interest, specified as a numeric scalar or numeric vector. If you
specify a vector, then p must be the same length as r and c. The output binary volume J contains the
sets of objects overlapping with any of the voxels (r(k), c(k), p(k)), where k is an index into the vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

n — Connectivity
26 (default) | 6 | 18

Connectivity, specified as one of these values.

Connectivities

Value Connectivity
6 6-connected objects (Face-Face)
18 18-connected objects (Face-Face and Edge-Edge)
26 26-connected objects (Face-Face, Edge-Edge, and Vertex-

Vertex)

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

x — World x-axis coordinates
numeric scalar | numeric vector

1 Functions

1-480

World x-axis coordinates, specified as a numeric scalar or numeric vector of the same length as y and
z. Use x, y, and z to establish a nondefault spatial coordinate system. If you do not specify a
coordinate system, then by default bwselect3 uses the intrinsic coordinate system in which x is [1,
size(J,2)].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

y — World y-axis coordinates
numeric scalar | numeric vector

World y-axis coordinates, specified as a numeric scalar or numeric vector of the same length as x and
z. Use x, y, and z to establish a nondefault spatial coordinate system. If you do not specify a
coordinate system, then by default bwselect3 uses the intrinsic coordinate system in which y is [1,
size(J,1)].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

z — World z-axis coordinates
numeric scalar | numeric vector

World z-axis coordinates, specified as a numeric scalar or numeric vector of the same length as x and
y. Use x, y, and z to establish a nondefault spatial coordinate system. If you do not specify a
coordinate system, then by default bwselect3 uses the intrinsic coordinate system in which z is [1,
size(J,3)].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

xi — x-coordinates of voxels
numeric scalar | numeric vector

x-coordinates of voxels in the world coordinate system, specified as a numeric scalar or numeric
vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

yi — y-coordinates of voxels
numeric scalar | numeric vector

y-coordinates of voxels in the world coordinate system, specified as a numeric scalar or numeric
vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

zi — z-coordinates of voxels
numeric scalar | numeric vector

z-coordinates of voxels in the world coordinate system, specified as a numeric scalar or numeric
vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
J — Binary volume containing objects that overlap specified voxels
3-D logical array

 bwselect3

1-481

Binary volume containing objects that overlap specified voxels, returned as a 3-D logical array. J
contains the set of objects overlapping with any of the voxels specified by r,c, and p, or xi,yi, and
zi.

idx — Linear indices of voxels belonging to selected objects
numeric vector

Linear indices of the voxels belonging to the selected objects, returned as a numeric vector.

See Also
bwlabel | imfill | roipoly | regionfill | bwselect

Topics
“Image Coordinate Systems”
“Shift X- and Y-Coordinate Range of Displayed Image”

Introduced in R2017b

1 Functions

1-482

bwskel
Reduce all objects to lines in 2-D binary image or 3-D binary volume

Syntax
B = bwskel(A)
B = bwskel(V)
B = bwskel(___ ,'MinBranchLength',N)

Description
B = bwskel(A) reduces all objects in the 2-D binary image A to 1-pixel wide curved lines, without
changing the essential structure of the image. This process, called skeletonization, extracts the
centerline while preserving the topology and Euler number (also known as the Euler characteristic)
of the objects.

B = bwskel(V) returns the skeleton of a 3-D binary volume.

B = bwskel(___ ,'MinBranchLength',N) specifies the minimum branch length N of the
skeleton. bwskel removes (prunes) all branches shorter than the specified length. bwskel calculates
the length as the number of pixels in a branch using 8-connectivity for 2-D and 26-connectivity for 3-
D.

Examples

Skeletonize 2-D Grayscale Image

Read a 2-D grayscale image into the workspace. Display the image. Objects of interest are dark
threads against a light background.

I = imread('threads.png');
imshow(I)

 bwskel

1-483

Skeletonization requires a binary image in which foreground pixels are 1 (white) and the background
is 0 (black). To make the original image suitable for skeletonization, take the complement of the
image so that the objects are light and the background is dark. Then, binarize the result.

Icomplement = imcomplement(I);
BW = imbinarize(Icomplement);
imshow(BW)

1 Functions

1-484

Perform skeletonization of the binary image using bwskel.

out = bwskel(BW);

Display the skeleton over the original image by using the labeloverlay function. The skeleton
appears as a 1-pixel wide blue line over the dark threads.

imshow(labeloverlay(I,out,'Transparency',0))

 bwskel

1-485

Prune small spurs that appear on the skeleton and view the result. One short branch is pruned from a
thread near the center of the image.

out2 = bwskel(BW,'MinBranchLength',15);
imshow(labeloverlay(I,out2,'Transparency',0))

1 Functions

1-486

Skeletonize Binary Image

Read a binary image into the workspace.

BW1 = imread('circbw.tif');

Skeletonize objects in the image by using the bwskel function.

BW2 = bwskel(BW1);

View the original image and the skeletonized image side by side.

montage({BW1,BW2},'BackgroundColor','blue','BorderSize',5)

 bwskel

1-487

Skeletonize 3-D Volume

Load a volumetric data set into the workspace. The name of the data set is spiralVol. Display the
volume using volshow.

load spiralVol.mat;
volshow(spiralVol);

1 Functions

1-488

Convert the spiralVol data set to a binary format which is required by the bwskel function.

spiralVolLogical = imbinarize(spiralVol);

Skeletonize the spiral shape in the data set. Display the skeletonized volume with volshow.

spiralVolSkel = bwskel(spiralVolLogical);

.

Input Arguments
A — Binary image
2-D logical matrix

 bwskel

1-489

Binary image, specified as a 2-D logical matrix.
Data Types: logical

V — 3-D binary volume
3-D logical array

3-D binary volume, specified as a 3-D logical array.
Data Types: logical

N — Minimum branch length
0 (default) | nonnegative integer

Minimum branch length, specified as a nonnegative integer. bwskel prunes branches shorter than N.
By default, bwskel does not prune branches.

Output Arguments
B — Skeletonized image or volume
2-D logical matrix | 3-D logical array

Skeletonized image or volume, returned as a 2-D logical matrix or 3-D logical array of the same size
as the input image or volume.

Tips
• While both bwskel and bwmorph can skeletonize 2-D images, you can get different results using

bwmorph than when using bwskel. Because they use different algorithms, the bwskel function
uses 4-connectivity with 2-D images; bwmorph uses 8-connectivity.

• bwskel assumes that foreground objects in the binary image are white (logical true). If your
image has a white background and black objects, then use the complement of your image as the
input to bwskel. You can compute the complement by using imcomplement.

Algorithms
• The bwskel function uses the medial axis transform.

References
[1] Ta-Chih Lee, Rangasami L. Kashyap and Chong-Nam Chu. Building skeleton models via 3-D medial

surface/axis thinning algorithms. Computer Vision, Graphics, and Image Processing,
56(6):462-478, 1994.

[2] Kerschnitzki, M, Kollmannsberger, P, Burghammer, M. et al. Architecture of the osteocyte network
correlates with bone material quality. Journal of Bone and Mineral Research,
28(8):1837-1845, 2013.

See Also
bwmorph | bwmorph3

1 Functions

1-490

Topics
“Types of Morphological Operations”

Introduced in R2018a

 bwskel

1-491

bwtraceboundary
Trace object in binary image

Syntax
B = bwtraceboundary(BW,P,fstep)
B = bwtraceboundary(BW,P,fstep,conn)
B = bwtraceboundary(BW,P,fstep,conn,m,dir)

Description
B = bwtraceboundary(BW,P,fstep) traces the outline of an object in binary image BW. Nonzero
pixels belong to an object and zero-valued pixels constitute the background. P specifies the row and
column coordinates of the point on the object boundary where you want the tracing to begin. fstep
specifies the initial search direction for the next object pixel connected to P. B holds the row and
column coordinates of the boundary pixels for the region.

B = bwtraceboundary(BW,P,fstep,conn) traces the boundary, where conn specifies the
desired connectivity.

B = bwtraceboundary(BW,P,fstep,conn,m,dir) specifies m, the maximum number of
boundary pixels to extract, and dir, the direction in which to trace the boundary. By default,
bwtraceboundary identifies all the pixels on the boundary.

Examples

Trace Boundary and Visualize Contours

Read an image and display it.

BW = imread('blobs.png');
imshow(BW)

1 Functions

1-492

Pick an object in the image and trace the boundary. To select an object, specify a pixel on its
boundary. This example uses the coordinates of a pixel on the boundary of the thick white circle,
obtained through visual inspection using impixelinfo. By default, bwtraceboundary identifies all
pixels on the boundary.

r1 = 163;
c1 = 37;
contour = bwtraceboundary(BW,[r1 c1],'W');

Plot the contour on the image.

hold on
plot(contour(:,2),contour(:,1),'g','LineWidth',2)

 bwtraceboundary

1-493

Pick a point on the boundary of a second object. This example uses the coordinates of a pixel near the
upper-left corner of the largest rectangle. Trace the first fifty boundary pixels in the clockwise
direction.

r2 = 68;
c2 = 95;
contourCW = bwtraceboundary(BW,[r2 c2],'W',8,50,'clockwise');

Starting at the same point on the second object boundary, trace the first fifty boundary pixels in the
counterclockwise direction.

contourCCW = bwtraceboundary(BW,[r2 c2],'W',8,50,'counterclockwise');

Plot the clockwise contour on the image in red. Plot the counterclockwise contour on the image in
blue.

plot(contourCW(:,2),contourCW(:,1),'r','LineWidth',2)
plot(contourCCW(:,2),contourCCW(:,1),'b','LineWidth',2)

1 Functions

1-494

Input Arguments
BW — Binary image
2-D numeric matrix | 2-D logical matrix

Binary image, specified as a 2-D numeric or logical matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

P — Coordinates of starting point
2-element vector

Coordinates of starting point on the object boundary where you want the tracing to begin, specified
as a 2-element vector of the format [row column].
Data Types: double

fstep — Initial search direction
'N' | 'NE' | 'E' | 'SE' | 'S' | 'SW' | 'W' | 'NW'

Initial search direction for the next object pixel connected to P, specified as a character vector or
string scalar as depicted in the diagram.

 bwtraceboundary

1-495

Note When the connectivity conn is 4, fstep is limited to the values 'N', 'E', 'S', and 'W'.

Data Types: char | string

conn — Pixel connectivity
8 (default) | 4

Pixel connectivity, specified as 8 or 4.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch. The

neighborhood of a pixel are the adjacent pixels
in the horizontal or vertical direction.

8-connected Pixels are connected if their edges or corners
touch. The neighborhood of a pixel are the
adjacent pixels in the horizontal, vertical, or
diagonal direction.

Data Types: double

m — Maximum number of boundary pixels to extract
Inf (default) | positive integer

Maximum number of boundary pixels to extract, specified as a positive integer. By default, m is Inf
and bwtraceboundary identifies all the pixels on the boundary.
Data Types: double

dir — Direction in which to trace boundary
'clockwise' (default) | 'counterclockwise'

Direction in which to trace boundary, specified as 'clockwise' or 'counterclockwise'.
Data Types: char | string

1 Functions

1-496

Output Arguments
B — Row and column coordinates of boundary pixels
q-by-2 matrix

Row and column coordinates of the boundary pixels for the region, returned as a q-by-2 matrix. Each
row in B has the form [row column].

Algorithms
The bwtraceboundary function implements the Moore-Neighbor tracing algorithm modified by
Jacob's stopping criteria. This function is based on the boundaries function presented in the first
edition of Digital Image Processing Using MATLAB, by Gonzalez, R. C., R. E. Woods, and S. L. Eddins,
New Jersey, Pearson Prentice Hall, 2004.

References
[1] Gonzalez, R. C., R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB, New

Jersey, Pearson Prentice Hall, 2004.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• bwtraceboundary supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

• When generating code, the dir, fstep, and conn arguments must be compile-time constants.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• When generating code, the dir, fstep, and conn arguments must be compile-time constants.

See Also
bwboundaries | bwperim

Introduced before R2006a

 bwtraceboundary

1-497

bwulterode
Ultimate erosion

Syntax
BW2 = bwulterode(BW)
BW2 = bwulterode(BW,method)
BW2 = bwulterode(___ ,conn)

Description
BW2 = bwulterode(BW) computes the ultimate erosion of the binary image BW. The ultimate
erosion of BW consists of the regional maxima of the Euclidean distance transform of the complement
of BW.

BW2 = bwulterode(BW,method) specifies the distance transform method.

BW2 = bwulterode(___ ,conn) specifies the pixel connectivity.

Examples

Perform Ultimate Erosion of Binary Image

Read a binary image into the workspace and display it.

originalBW = imread('circles.png');
imshow(originalBW)

1 Functions

1-498

Perform the ultimate erosion of the image and display it.

ultimateErosion = bwulterode(originalBW);
figure, imshow(ultimateErosion)

Input Arguments
BW — Binary image
numeric array | logical array

Binary image, specified as a numeric or logical array of any dimension. For numeric input, any
nonzero pixels are considered to be 1 (true).
Example: BW = imread('circles.png');
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

method — Distance transform method
'euclidean' (default) | 'quasi-euclidean' | 'cityblock' | 'chessboard'

Distance transform method, specified as one of the values in this table.

Method Description
'chessboard' In 2-D, the chessboard distance between (x1,y1) and (x2,y2) is

max(│x1 – x2│,│y1 – y2│).

 bwulterode

1-499

Method Description
'cityblock' In 2-D, the cityblock distance between (x1,y1) and (x2,y2) is

│x1 – x2│ + │y1 – y2│
'euclidean' In 2-D, the Euclidean distance between (x1,y1) and (x2,y2) is

(x1− x2)2 + (y1− y2)2 .

'quasi-euclidean' In 2-D, the quasi-Euclidean distance between (x1,y1) and (x2,y2) is

x1− x2 + (2− 1) y1− y2 , x1− x2 > y1− y2

(2− 1) x1− x2 + y1− y2 , otherwise.

For more information, see “Distance Transform of a Binary Image”.

conn — Pixel connectivity
4 | 8 | 6 | 18 | 26 | 3-by-3-by- ... -by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of the values in this table. The default connectivity is 8 for 2-D
images, and 26 for 3-D images.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch. The

neighborhood of a pixel are the adjacent pixels
in the horizontal or vertical direction.

8-connected Pixels are connected if their edges or corners
touch. The neighborhood of a pixel are the
adjacent pixels in the horizontal, vertical, or
diagonal direction.

Three-Dimensional Connectivities
6-connected Pixels are connected if their faces touch. The

neighborhood of a pixel are the adjacent pixels
in:

• One of these directions: in, out, left, right,
up, and down

18-connected Pixels are connected if their faces or edges
touch. The neighborhood of a pixel are the
adjacent pixels in:

• One of these directions: in, out, left, right,
up, and down

• A combination of two directions, such as
right-down or in-up

1 Functions

1-500

Value Meaning
26-connected Pixels are connected if their faces, edges, or

corners touch. The neighborhood of a pixel are
the adjacent pixels in:

• One of these directions: in, out, left, right,
up, and down

• A combination of two directions, such as
right-down or in-up

• A combination of three directions, such as
in-right-up or in-left-down

For higher dimensions, bwulterode uses the default value conndef(ndims(BW),'maximal').

Connectivity can also be defined in a more general way for any dimension by specifying a 3-by-3-
by- ... -by-3 matrix of 0s and 1s. The 1-valued elements define neighborhood locations relative to the
center element of conn. Note that conn must be symmetric about its center element. See “Specifying
Custom Connectivities” for more information.
Data Types: double | logical

Output Arguments
BW2 — Eroded image
logical array

Eroded image, returned as a logical array of the same size as BW.
Data Types: logical

See Also
bwdist | conndef | imregionalmax

Topics
“Distance Transform of a Binary Image”

Introduced before R2006a

 bwulterode

1-501

bwunpack
Unpack binary image

Syntax
BW = bwunpack(BWP,m)

Description
BW = bwunpack(BWP,m) unpacks the packed binary image BWP into binary image BW with m rows.

Examples

Pack, Dilate, and Unpack Binary Image

Read binary image into the workspace.

BW = imread('text.png');
imshow(BW)

Pack the image.

BWp = bwpack(BW);

Dilate the packed image.

1 Functions

1-502

BWp_dilated = imdilate(BWp,ones(3,3),'ispacked');

Unpack the dilated image and display it.

BW_dilated = bwunpack(BWp_dilated, size(BW,1));
imshow(BW_dilated)

Input Arguments
BWP — Packed binary image
2-D numeric matrix

Packed binary image, specified as a 2-D numeric array of data type uint32.
Data Types: uint32

m — Number of image rows
positive integer

Number of image rows, specified as a positive integer. The default value of m is 32*size(BWP,1).
Data Types: uint32

Output Arguments
BW — Unpacked binary image
m-by-n logical matrix

Unpacked binary image, returned as a logical matrix with m rows.
Data Types: logical

 bwunpack

1-503

Algorithms
When bwunpack unpacks BWP, the function maps the least significant bit of the first row of BWP to the
first pixel in the first row of BW. The most significant bit of the first element of BWP maps to the first
pixel in the 32nd row of BW, and so on.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• bwunpack supports the generation of C code (requires MATLAB Coder). Note that if you choose
the generic MATLAB Host Computer target platform, bwunpack generates code that uses a
precompiled, platform-specific shared library. Use of a shared library preserves performance
optimizations but limits the target platforms for which code can be generated. For more
information, see “Types of Code Generation Support in Image Processing Toolbox”.

• When generating code, all input arguments must be compile-time constants.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• When generating code, all input arguments must be compile-time constants.

See Also
bwpack | imdilate | imerode

Introduced before R2006a

1 Functions

1-504

camresponse
Estimate camera response function

Syntax
crf = camresponse(files)
crf = camresponse(imds)
crf = camresponse(___ ,'ExposureTimes',expTimes)
crf = camresponse(images,'ExposureTimes',expTimes)

Description
crf = camresponse(files) estimates the camera response function from a set of spatially
registered, low dynamic range (LDR) images listed in files.

crf = camresponse(imds) estimates the camera response function from a set of spatially
registered LDR images stored as an ImageDatastore object, imds.

crf = camresponse(___ ,'ExposureTimes',expTimes) specifies the exposure time for each
image in the input set using a name-value pair. You can specify this name-value pair in addition to the
input argument from any of the previous syntaxes.

crf = camresponse(images,'ExposureTimes',expTimes) estimates the camera response
function from a set of spatially registered LDR images stored as a cell array. Specify the exposure
time for each image in the input set by using a name-value pair.

Examples

Estimate Camera Response Function from Set of Images

Specify a set of six low dynamic range (LDR) images that are spatially registered. These LDR images
have same f-stop values and varying exposure times.

files = ["office_1.jpg","office_2.jpg","office_3.jpg",...
 "office_4.jpg","office_5.jpg","office_6.jpg"];

Estimate the camera response function from the set of specified images.

crf = camresponse(files);

Specify the range of intensity levels in the input images.

range = 0:length(crf)-1;

Plot the estimated camera response function for each of the red, green, and blue color components.
The plot shows the relationship between log-exposure and image intensity.

figure
hold on
plot(crf(:,1),range,'--r','LineWidth',2);

 camresponse

1-505

plot(crf(:,2),range,'-.g','LineWidth',2);
plot(crf(:,3),range,'-.b','LineWidth',2);
xlabel('Log-Exposure');
ylabel('Image Intensity');
title('Camera Response Function');
grid on
axis('tight')
legend('R-component','G-component','B-component','Location','southeast')

Estimate Camera Response Function from Images in Datastore

Create an ImageDatastore object containing six low dynamic range (LDR) images.

setDir = fullfile(toolboxdir('images'),'imdata','office_*');
imds = imageDatastore(setDir);

Display the images in a montage.

montage(imds,'Size',[6 1])

1 Functions

1-506

Specify the exposure time for each image in the ImageDatastore object.

expTimes = [0.0333 0.1000 0.3333 0.6250 1.3000 4.0000];

 camresponse

1-507

Estimate the camera response function from the images in the datastore, specifying the exposure
times.

crf = camresponse(imds,'ExposureTimes',expTimes);

Specify the range of intensity values in the input images.

range = 0:length(crf)-1;

Plot the estimated camera response function for each of the R, G, and B color components. The plot
shows the relationship between log-exposure and image intensity.

figure
hold on
plot(crf(:,1),range,'--r','LineWidth',2);
plot(crf(:,2),range,'-.g','LineWidth',2);
plot(crf(:,3),range,'-.b','LineWidth',2);
xlabel('Log-Exposure');
ylabel('Image Intensity');
title('Camera Response Function');
grid on
axis('tight')
legend('R-component','G-component','B-component','Location','southeast')

1 Functions

1-508

Input Arguments
files — Set of spatially registered LDR images
string array | cell array of character vectors

Set of spatially registered LDR images, specified as a string array or a cell array of character vectors.
These images can be color or grayscale of any bit depth. However, the preferred bit depth for LDR
images is 8 or 16.
Data Types: char | string | cell

imds — Set of spatially registered LDR images
ImageDatastore object

Set of spatially registered LDR images, specified as an ImageDatastore object. These images can
be color or grayscale of any bit depth. However, the preferred bit depth for LDR images is 8 or 16.

images — Set of spatially registered LDR images
cell array

Set of spatially registered LDR images, specified as a cell array. These images can be color or
grayscale of any bit depth. However, the preferred bit depth for LDR images is 8 or 16.

expTimes — Exposure time of input images
numeric vector of positive values

Exposure time of input images, specified as a numeric vector of positive values. The kth element in
the vector corresponds to the kth LDR image in the input set. If you specify expTimes, the function
overrides the EXIF exposure metadata.
Example: camresponse(files,'ExposureTimes',[0.1 0.3 0.4]);
Data Types: single | double

Note When input is a cell array of LDR images, you must specify exposure time as the second input
argument by using the name-value pair 'ExposureTimes'.

Output Arguments
crf — Estimate of camera response function
n-by-1 vector | n-by-3 matrix

Estimate of camera response function, returned as an n-by-1 vector for grayscale images and n-by-3
matrix for color images. The camera response function maps the log-exposure value (scene radiance)
to the intensity levels in the input images. The value of n is 2bit depth. For example, if the bit depth of
the input set of images is 8, then n is 256.
Data Types: double

Note
• This function requires a minimum of two images with different exposure times. A larger number of

images yields a better estimate of crf at the expense of more processing time.

 camresponse

1-509

• The input image files in files and imds must contain the Exchangeable Image File Format
(EXIF) exposure metadata. To estimate the crf values, the function reads the exposure time in the
EXIF metadata. If you specify expTimes, the function overrides the exposure time in the EXIF
metadata.

References
[1] Debevec, P.E., and J. Malik. "Recovering High Dynamic Range Radiance Maps from Photographs."

In ACM SIGGRAPH 2008 classes, Article No. 31. New York, NY: ACM, 2008.

See Also
makehdr | hdrread | hdrwrite

Introduced in R2019a

1 Functions

1-510

centerCropWindow2d
Create rectangular center cropping window

Syntax
win = centerCropWindow2d(inputSize,targetSize)

Description
win = centerCropWindow2d(inputSize,targetSize) determines the window to crop from a 2-
D input image of size inputSize such that the size of the cropped image is targetSize. The
coordinates of the window are centered in the input image.

Examples

Center Crop Image To Target Size

Read and display an image.

chips = imread('coloredChips.png');
imshow(chips)

 centerCropWindow2d

1-511

Specify the target size of the cropping window.

targetSize = [256 256];

Create a center crop window.

win1 = centerCropWindow2d(size(chips),targetSize);

Crop the original image using the center crop window.

B1 = imcrop(chips,win1);

Display the cropped image.

imshow(B1)

1 Functions

1-512

Read and display a second image of a different size.

kobi = imread('kobi.png');
imshow(kobi)

 centerCropWindow2d

1-513

Try applying the center crop window to this image. The cropped region does not come from the
center of the image because the center crop window uses the spatial extents of the chips image.

B2 = imcrop(kobi,win1);
imshow(B2)

1 Functions

1-514

To crop the kobi image from the center, specify a new center crop window.

win2 = centerCropWindow2d(size(kobi),targetSize);
B3 = imcrop(kobi,win2);
imshow(B3)

 centerCropWindow2d

1-515

Input Arguments
inputSize — Input image size
2-element vector of positive integers | 3-element vector of positive integers

Input image size, specified as one of the following.

Type of Input Image Format of inputSize
2-D grayscale or binary image 2-element vector of positive integers of the form [height width]
2-D RGB or multispectral image
of size

3-element vector of positive integers of the form [height width
channels]

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

targetSize — Target image size
2-element vector of positive integers | 3-element vector of positive integers

Target image size, specified as one of the following.

Type of Target Image Format of targetSize
2-D grayscale or binary image 2-element vector of positive integers of the form [height width]
2-D RGB or multispectral image
of size

3-element vector of positive integers of the form [height width
channels]

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
win — Cropping window
Rectangle object

Cropping window, returned as a Rectangle object.

See Also
centerCropWindow3d | randomWindow2d | imcrop

Topics
“Augment Images for Deep Learning Workflows Using Image Processing Toolbox” (Deep Learning
Toolbox)

Introduced in R2019b

1 Functions

1-516

centerCropWindow3d
Create cuboidal center cropping window

Syntax
win = centerCropWindow3d(inputSize,targetSize)

Description
win = centerCropWindow3d(inputSize,targetSize) determines the window to crop from a 3-
D input image of size inputSize such that the size of the cropped image is targetSize. The
coordinates of the window are centered in the input image.

Examples

Center Crop 3-D Image to Target Size

Load a 3-D MRI image. Use the squeeze function to remove any singleton dimensions.

load mri;
D = squeeze(D);

Display the image.

fullViewPnl = uipanel(figure,'Title','Original Volume');
volshow(D,'Parent',fullViewPnl);

 centerCropWindow3d

1-517

Specify the target size of the cropping window.

targetSize = [64 64 10];

Create a center cropping window that crops the specified image from its center.

win = centerCropWindow3d(size(D),targetSize);

Crop the image using the center cropping window.

Dcrop = imcrop3(D,win);

Display the cropped image in a display panel.

fullViewPnl = uipanel(figure,'Title','Cropped Volume');
volshow(Dcrop,'Parent',fullViewPnl);

1 Functions

1-518

Input Arguments
inputSize — Input image size
3-element vector of positive integers | 4-element vector of positive integers

Input image size, specified as one of the following.

Type of Input Image Format of inputSize
3-D grayscale or binary image 3-element vector of positive integers of the form [height width

depth]
3-D RGB or multispectral image 4-element vector of positive integers of the form [height width

depth channels]

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

targetSize — Target image size
3-element vector of positive integers | 4-element vector of positive integers

Target image size, specified as one of the following.

 centerCropWindow3d

1-519

Type of Target Image Format of targetSize
3-D grayscale or binary image 3-element vector of positive integers of the form [height width

depth]
3-D RGB or multispectral image 4-element vector of positive integers of the form [height width

depth channels]

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
win — Cropping window
Cuboid object

Cropping window, returned as a Cuboid object.

See Also
centerCropWindow2d | randomCropWindow3d | imcrop3

Topics
“Augment Images for Deep Learning Workflows Using Image Processing Toolbox” (Deep Learning
Toolbox)

Introduced in R2019b

1 Functions

1-520

checkerboard
Create checkerboard image

Syntax
I = checkerboard
I = checkerboard(n)
I = checkerboard(n,p,q)

Description
I = checkerboard creates an 8-by-8 square checkerboard image that has four identifiable corners.
The checkerboard pattern is made up of tiles. Each tile contains four squares, each with a default of
10 pixels per side. The light squares on the left half of the checkerboard are white. The light squares
on the right half of the checkerboard are gray.

TILE = [DARK LIGHT; LIGHT DARK]

I = checkerboard(n) creates an 8-by-8 square checkerboard image where each square has n
pixels per side.

I = checkerboard(n,p,q) creates a rectangular checkerboard image where p specifies the
number of rows of tiles and q specifies the number of columns of tiles. If you omit q, the number of
columns defaults to p and the checkerboard is square. Each square has n pixels per side.

Examples

Create Square Checkerboard

Create a checkerboard where the side of every square is 20 pixels in length.

I = checkerboard(20);

Display the checkerboard.

imshow(I)

 checkerboard

1-521

Create Rectangular Checkerboard

Create a rectangular checkerboard that is 2 tiles high and 3 tiles wide. The side of every square is 20
pixels in length.

J = checkerboard(20,2,3);

Display the checkerboard.

figure
imshow(J)

Create Black and White Checkerboard

Create a black and white checkerboard with the default tile size and the default number of rows and
columns.

K = (checkerboard > 0.5);

Display the checkerboard.

1 Functions

1-522

figure
imshow(K)

Input Arguments
n — Side length in pixels of each square in the checkerboard pattern
10 (default) | positive integer

Side length in pixels of each square in the checkerboard pattern, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

p — Number of rows of tiles in the checkerboard pattern
8 (default) | positive integer

Number of rows of tiles in the checkerboard pattern, specified as a positive integer. Since there are
four squares per tile, there are 2*p rows of squares in the checkerboard.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

q — Number of columns of tiles in the checkerboard pattern
positive integer

Number of columns of tiles in the checkerboard pattern, specified as a positive integer. If you omit q,
the value defaults to p and the checkerboard is square. Since there are four squares per tile, there
are 2*q columns of squares in the checkerboard.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
I — Rectangular image with a checkerboard pattern
2-D numeric array

Rectangular image with a checkerboard pattern, returned as a 2-D numeric array. The light squares
on the left half of the checkerboard are white. The light squares on the right half of the checkerboard
are gray.
Data Types: double

See Also
fitgeotrans | imwarp

 checkerboard

1-523

Introduced before R2006a

1 Functions

1-524

chromadapt
Adjust color balance of RGB image with chromatic adaptation

Syntax
B = chromadapt(A,illuminant)
B = chromadapt(A,illuminant,Name,Value)

Description
B = chromadapt(A,illuminant) adjusts the color balance of sRGB image A according to the
scene illuminant. The illuminant must be in the same color space as the input image.

B = chromadapt(A,illuminant,Name,Value) adjusts the color balance of A using name-value
pairs to control additional options.

Examples

Color Balance Image by Specifying Gray Pixel

Read and display an image with a strong yellow color cast.

A = imread('hallway.jpg');
imshow(A)
title('Original Image')

 chromadapt

1-525

Pick a pixel in the image that should look white or gray, such as a point on a pillar. Do not pick a
saturated pixel, such as a point on the ceiling light. Display the selected point in green.

x = 2800;
y = 1000;
gray_val = impixel(A,x,y);
drawpoint('Position',[x y],'Color','g');

1 Functions

1-526

Use the selected color as reference for the scene illumination, and correct the white balance of the
image.

B = chromadapt(A,gray_val);

Display the corrected image. The pillars now appear white as expected, and the rest of the image has
no yellow tint.

imshow(B)
title('White-Balanced Image')

 chromadapt

1-527

Color Balance Image in Linear RGB Color Space

Open an image file containing minimally processed linear RGB intensities.

A = imread('foosballraw.tiff');

The image data is the raw sensor data after correcting the black level and scaling to 16 bits per pixel.
Interpolate the intensities to reconstruct color. The color filter array pattern is RGGB.

A = demosaic(A,'rggb');

Display the image. Because the image is in linear RGB color space, apply gamma correction so the
image appears correctly on the screen.

A_sRGB = lin2rgb(A);
imshow(A_sRGB)
title('Original Image')

1 Functions

1-528

The image has an X-Rite® ColorChecker® chart in the scene. To get the color of the ambient light,
display the RGB values of a pixel in one of the neutral patches of the chart. The intensity of the red
channel is lower than the intensity of the other two channels, which indicates that the light is bluish
green.

x = 1510;
y = 1250;
light_color = [A(y,x,1) A(y,x,2) A(y,x,3)]

light_color = 1x3 uint16 row vector

 7361 14968 10258

Balance the color channels of the image. Use the 'ColorSpace' option to specify that the image and
the illuminant are expressed in linear RGB.

B = chromadapt(A,light_color,'ColorSpace','linear-rgb');

Display the color-balanced image with gamma correction.

B_sRGB = lin2rgb(B);
imshow(B_sRGB)
title('Color-Balanced Image')

 chromadapt

1-529

Confirm that the gray patch has been color balanced. The three color channels in the color-balanced
gray patch have similar intensities, as expected.

patch_color = [B(y,x,1) B(y,x,2) B(y,x,3)]

patch_color = 1x3 uint16 row vector

 13010 13010 13010

Input Arguments
A — RGB image
m-by-n-by-3 numeric array

RGB image, specified as an m-by-n-by-3 numeric array.
Data Types: single | double | uint8 | uint16

illuminant — Scene illuminant
3-element numeric vector

Scene illuminant, specified as a 3-element numeric vector. The illuminant must be in the same color
space as the input image, A.

1 Functions

1-530

Data Types: single | double | uint8 | uint16

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: I2 = chromadapt(I,uint8([22 97 118]),'ColorSpace','linear-rgb') adjusts
the color balance of an image, I, in linear RGB color space.

ColorSpace — Color space
'srgb' (default) | 'adobe-rgb-1998' | 'linear-rgb'

Color space of the input image and illuminant, specified as the comma-separated pair consisting of
'ColorSpace' and 'srgb', 'adobe-rgb-1998', or 'linear-rgb'. Use the 'linear-rgb'
option to adjust the color balance of an RGB image whose intensities are linear.
Data Types: char | string

Method — Chromatic adaptation method
'bradford' (default) | 'vonkries' | 'simple'

Chromatic adaptation method used to scale the RGB values in A, specified as the comma-separated
pair consisting of 'Method' and one of:

• 'bradford'—Scale using the Bradford cone response model
• 'vonkries'—Scale using the von Kries cone response model
• 'simple'—Scale using the illuminant

Data Types: char | string

Output Arguments
B — Color-balanced RGB image
m-by-n-by-3 numeric array

Color-balanced RGB image, returned as an m-by-n-by-3 numeric array of the same data type as A.

References
[1] Lindbloom, Bruce. Chromatic Adaptation. http://www.brucelindbloom.com/index.html?

Eqn_ChromAdapt.html.

See Also
whitepoint | colorangle | illumgray | illumpca | illumwhite

Introduced in R2017b

 chromadapt

1-531

http://www.brucelindbloom.com/index.html?Eqn_ChromAdapt.html
http://www.brucelindbloom.com/index.html?Eqn_ChromAdapt.html

col2im
Rearrange matrix columns into blocks

Syntax
A = col2im(B,[m n],[M N])
A = col2im(B,[m n],[M N],'sliding')
A = col2im(B,[m n],[M N],'distinct')

Description
A = col2im(B,[m n],[M N]) or

A = col2im(B,[m n],[M N],'sliding') rearranges the row vector B into neighborhoods of size
m-by-n to create the matrix A of size (M-m+1)-by-(N-n+1).

The row vector B is usually the result of processing the output of im2col(...,'sliding') using a
column compression function, such as sum.

A = col2im(B,[m n],[M N],'distinct') rearranges each column of matrix B into a distinct m-
by-n block to create the matrix A of size M-by-N.

For example, if B consists of column vectors Bi(:) with length m*n, arranged as B = [B1(:)
B2(:) B3(:) B4(:)], then A = [B1 B3; B2 B4] where each block Bi has size m-by-n.

Examples

Rearrange Matrix Values into Row-wise Orientation

Create a matrix.

B = reshape(uint8(1:25),[5 5])'

B = 5x5 uint8 matrix

 1 2 3 4 5
 6 7 8 9 10
 11 12 13 14 15
 16 17 18 19 20
 21 22 23 24 25

Rearrange the values in the matrix into a column-wise arrangement.

C = im2col(B,[1 5])

C = 5x5 uint8 matrix

 1 6 11 16 21
 2 7 12 17 22
 3 8 13 18 23

1 Functions

1-532

 4 9 14 19 24
 5 10 15 20 25

Rearrange the values in the matrix back into their original row-wise orientation.

A = col2im(C,[1 5],[5 5],'distinct')

A = 5x5 uint8 matrix

 1 2 3 4 5
 6 7 8 9 10
 11 12 13 14 15
 16 17 18 19 20
 21 22 23 24 25

Input Arguments
B — Image blocks
matrix | row vector

Image blocks, specified as one of the following.

• For distinct block processing, B is a numeric or logical matrix with m*n rows. Each column
corresponds to one block.

• For sliding neighborhood processing, B is a numeric or logical row vector of size 1-by-(M-m
+1)*(N-n+1).

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

[m n] — Block size
2-element vector of positive integers

Block size, specified as a 2-element vector of positive integers. m is the number of rows and n is the
number of columns in each block. m*n must be equal to the number of rows of B.
Data Types: double

[M N] — Image size
2-element vector of positive integers

Image size, specified as a 2-element vector of positive integers. M is the number of rows and N is the
number of columns in the image.
Data Types: double

Output Arguments
A — Reconstructed image
numeric matrix

Reconstructed image, returned as a numeric matrix of size M-by-N for distinct block processing, or
(M-m+1)-by-(N-n+1) for sliding block processing. A has the same data type as B.

 col2im

1-533

See Also
blockproc | colfilt | im2col | nlfilter | reshape

Introduced before R2006a

1 Functions

1-534

colfilt
Column-wise neighborhood operations

Syntax
B = colfilt(A,[m n],block_type,fun)
B = colfilt(A,[m n],[mblock nblock],block_type,fun)
B = colfilt(A,'indexed', ___)

Description
B = colfilt(A,[m n],block_type,fun) processes the image A by rearranging each m-by-n
block of A into a column of a temporary matrix, and then applying the function fun to this matrix.
colfilt zero-pads A, if necessary.

B = colfilt(A,[m n],[mblock nblock],block_type,fun) subdivides A into regions of size
mblock-by-nblock blocks to save memory. Note that the result of the operation does not change
when using the [mblock nblock] argument.

For example, if [mblock nblock] is [3 4] and the size of each block is 16-by-16 pixels, then
colfilt subdivides the image into regions of size 48-by-64 pixels and processes each region
separately.

B = colfilt(A,'indexed', ___) processes A as an indexed image, padding with 0s if the class
of A is uint8, uint16, or logical, and padding with 1s otherwise.

Examples

Perform Column-Wise Neighborhood Filtering on Image

This example shows how to set each output pixel to the mean value of the input pixel's 5-by-5
neighborhood using column-wise neighborhood processing.

Read a grayscale image into the workspace.

I = imread('tire.tif');

Perform column-wise filtering. The function mean is called on each 5-by-5 pixel neighborhood.

I2 = uint8(colfilt(I,[5 5],'sliding',@mean));

Display the original image and the filtered image.

imshow(I)
title('Original Image')

 colfilt

1-535

figure
imshow(I2)
title('Filtered Image')

Input Arguments
A — Image
array

Image, specified as an array of any class supported by fun.

[m n] — Block size
2-element vector of positive integers

1 Functions

1-536

Block size, specified as a 2-element vector of positive integers. m is the number of rows and n is the
number of columns in each block.

[mblock nblock] — Block group size
2-element vector of positive integers

Block group size, specified as a 2-element vector of positive integers. mblock is the number of blocks
in the group in the vertical direction, and nblock is the number of blocks in the group in the
horizontal direction.

block_type — Block type
'sliding' | 'distinct'

Block type, specified as 'sliding' for sliding neighborhoods or 'distinct' for distinct blocks.
Data Types: char | string

fun — Function handle
handle

Function handle, specified as a handle. The input and output arguments to this function depend on
the value of block_type. For more information, see “Algorithms” on page 1-537.

For more information about function handles, see “Create Function Handle”.

Output Arguments
B — Filtered image
numeric matrix

Filtered image, returned as a numeric matrix.

Algorithms
The algorithm that colfilt uses to process images depends on the value of block_type.

Value Description
'distinct' • First, colfilt rearranges each m-by-n block of A into a column in a

temporary matrix by using the im2col function.
• Next, colfilt applies the function fun to this temporary matrix. fun must

return a matrix the same size as the temporary matrix.
• Finally, colfilt rearranges the columns of the matrix returned by fun into

m-by-n distinct blocks, by using the col2im function.

 colfilt

1-537

Value Description
'sliding' • First, colfilt rearranges each m-by-n neighborhood of A into a column in a

temporary matrix by using the im2col function.
• Next, colfilt applies the function fun to this temporary matrix. fun must

return a row vector containing a single value for each column in the
temporary matrix. (Column compression functions such as sum return the
appropriate type of output.)

• Finally, colfilt reshapes the vector returned by fun into a matrix the same
size as A, by using the reshape function.

To save memory, the colfilt function might divide A into subimages and process one subimage at a
time. This implies that fun may be called multiple times, and that the first argument to fun may have
a different number of columns each time.

See Also
blockproc | col2im | im2col | nlfilter | reshape

Topics
“Use Column-wise Processing to Speed Up Sliding Neighborhood or Distinct Block Operations”
“Border Padding Behavior in Sliding Neighborhood Operations”
“Anonymous Functions”
“Parameterizing Functions”
“Create Function Handle”

Introduced before R2006a

1 Functions

1-538

colorangle
Angle between two RGB vectors

Syntax
angle = colorangle(rgb1,rgb2)

Description
angle = colorangle(rgb1,rgb2) computes the angle in degrees between two RGB vectors.

Examples

Compare Accuracy of Illuminant Estimation Algorithms

Read a test image. The image is the raw data captured with a Canon EOS 30D digital camera after
correcting the black level and scaling the intensities to 16 bits per pixel. No demosaicing, white
balancing, color enhancement, noise filtering, or gamma correction has been applied.

RAW = imread('foosballraw.tiff');

Interpolate using the demosaic function to obtain a color image. The color filter array pattern is
RGGB.

A = demosaic(RAW,'rggb');

Display the image. Because the image is in linear RGB color space, apply gamma correction so the
image appears correctly on the screen.

A_sRGB = lin2rgb(A);
imshow(A_sRGB)

 colorangle

1-539

The image contains an X-Rite® ColorChecker® chart. Specify the ground truth illuminant, which was
calculated in advance using the neutral patches of the chart.

illuminant_groundtruth = [0.0717 0.1472 0.0975];

To avoid skewing the estimation of the illuminant, exclude the ColorChecker chart by creating a
mask.

mask = true(size(A,1), size(A,2));
mask(920:1330,1360:1900) = false;

Run three different illuminant estimation algorithms: illumwhite, illumgray, and illumpca.

illuminant_whitepatch = illumwhite(A,'Mask',mask);
illuminant_grayworld = illumgray(A,'Mask',mask);
illuminant_pca = illumpca(A,'Mask',mask);

Compare each estimation against the ground truth by calculating the angle between each estimated
illuminant and the ground truth using the colorangle function. The smaller the angle, the better
the estimation. The magnitude of the estimation does not matter because only the direction of the
illuminant is used to white-balance an image with chromatic adaptation.

angle_whitepatch = colorangle(illuminant_whitepatch, illuminant_groundtruth)

angle_whitepatch = 5.0921

angle_grayworld = colorangle(illuminant_grayworld, illuminant_groundtruth)

1 Functions

1-540

angle_grayworld = 5.1036

angle_pca = colorangle(illuminant_pca, illuminant_groundtruth)

angle_pca = 5.0134

The value of angle_pca is smallest, indicating that the PCA illuminant estimation algorithm is
closest to the ground truth illumination for this image.

Input Arguments
rgb1 — First RGB vector
3-element numeric vector

First RGB vector, specified as a 3-element numeric vector.
Data Types: single | double | uint8 | uint16

rgb2 — Second RGB vector
3-element numeric vector

Second RGB vector, specified as a 3-element numeric vector.
Data Types: single | double | uint8 | uint16

Output Arguments
angle — Angle between RGB vectors
numeric scalar

Angle between RGB vectors, returned as a numeric scalar.
Data Types: double

More About
Angular Error

Angular error is a useful metric to evaluate the estimation of an illuminant against the ground truth.
The smaller the angle between the ground truth illuminant and the estimated illuminant, the better
the estimate.

See Also
whitepoint | chromadapt | illumgray | illumpca | illumwhite

Introduced in R2017b

 colorangle

1-541

colorChecker
X-Rite ColorChecker test chart

Description
A colorChecker object stores the positions and measurements of the regions of interest (ROIs) of
an X-Rite® ColorChecker® Classic test chart (formerly produced by GretagMacbath®).

Creation
Syntax
chart = colorChecker(A)
chart = colorChecker(A,Name,Value)
chart = colorChecker(A,'RegistrationPoints',p)

Description

chart = colorChecker(A) creates a colorChecker object from input image A. The input image
sets the Image on page 1-0 property.

chart = colorChecker(A,Name,Value) controls the automatic chart detection using one or
more name-value arguments.

chart = colorChecker(A,'RegistrationPoints',p) creates a colorChecker object and
sets the RegistrationPoints property using the specified points in p.

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Downsample',false

Downsample — Downsample chart image
true or 1 (default) | false or 0

Downsample the chart image for chart detection, specified as the comma-separated pair consisting of
'Downsample' and a numeric or logical 1 (true) or 0 (false). When true, colorChecker resizes
the image while preserving the aspect ratio such that the size of the smallest dimension is 1000.
Downsampling enables colorChecker to detect the chart more quickly.

colorChecker uses the downsampled image for detection only. The object calculates all properties
using the original image.

Sensitivity — Sensitivity
0.6 (default) | number in the range [0, 1]

1 Functions

1-542

Sensitivity of chart detection, specified as the comma-separated pair consisting of 'Sensitivity'
and a number in the range [0, 1]. If you set a high sensitivity value, colorChecker detects more
points of interest with which to register the test chart image.
Data Types: single | double

Properties
Image — Test chart image
RGB image

This property is read-only.

Test chart image, specified as an RGB image.
Data Types: single | double | uint8 | uint16

ColorROIs — Position and intensity values of color patches
24-by-1 vector of structures

This property is read-only.

Position and intensity values of the color patches, specified as a 24-by-1 vector of structures. Each
element in the vector corresponds to one ROI and contains these fields:

Field Description
ROI 1-by-4 vector specifying the spatial extent of the ROI. The vector has the

form [X Y Width Height]. X and Y are the coordinates of the top-left corner
of the ROI. Width and Height are the width and height of the ROI, in pixels.
ROI is of data type double.

ROIIntensity Array of color values within the ROI. The array has dimensions Height-by-
Width-by-3. The data type of ROIIntensity matches the data type of the
Image on page 1-0 property.

RegistrationPoints — Coordinates of registration points
4-by-2 numeric matrix

Coordinates of registration points, specified as a 4-by-2 numeric matrix. The registration points are
the (x,y) coordinates of the plus-shaped (+) fiducials on the outer corners of the chart. Each row of
the matrix contains the coordinates for one registration point. Specify the points in the order "black",
"white", "dark skin", and "bluish green" according to the color of the nearest color patch.
Data Types: double

Object Functions
measureColor Measure color reproduction using test chart
measureIlluminant Measure scene illuminant using test chart
displayChart Display test chart with overlaid regions of interest

Examples

 colorChecker

1-543

Create ColorChecker Chart from Test Image

Read an image of an X-Rite® ColorChecker® chart into the workspace.

I = imread('colorCheckerTestImage.jpg');

Display the image.

imshow(I)
title('Captured Image of ColorChecker Chart')
text(size(I,2),size(I,1)+15,['Chart courtesy of X-Rite' char(174)], ...
 'FontSize',10,'HorizontalAlignment','right')

Create a colorChecker object by performing automatic chart detection on the image.

chart = colorChecker(I)

chart =
 colorChecker with properties:

 Image: [1024x1541x3 uint8]
 RegistrationPoints: [4x2 double]
 ColorROIs: [24x1 struct]

1 Functions

1-544

To confirm that the colorChecker object detected the chart correctly, display the chart and detected
ROIs. Each ROI appears as a blue rectangle centered in the appropriate color patch. The registration
points appear as red diamonds on the outer corners of the chart.

displayChart(chart)

Create ColorChecker Chart from Registration Points

Read an image of an X-Rite® ColorChecker® chart into the workspace.

I = imread('colorCheckerTestImage.jpg');

Display the image.

imshow(I)
title('Captured Image of ColorChecker Chart')
text(size(I,2),size(I,1)+15,['Chart courtesy of X-Rite' char(174)], ...
 'FontSize',10,'HorizontalAlignment','right')

Draw point ROIs that overlap the plus-shaped (+) fiducials at the corners of the chart.

blackPoint = drawpoint;
whitePoint = drawpoint;

 colorChecker

1-545

darkSkinPoint = drawpoint;
bluishGreenPoint = drawpoint;

Combine the (x,y) coordinates of the point ROIs into a 4-by-2 matrix.

cornerPoints = [blackPoint.Position;
 whitePoint.Position;
 darkSkinPoint.Position;
 bluishGreenPoint.Position];

Create a colorChecker object by specifying the (x,y) coordinates of the corner registration points.

chart = colorChecker(I,'RegistrationPoints',cornerPoints);

To confirm that the colorChecker object detected the chart correctly, display the chart and detected
ROIs.

displayChart(chart)

1 Functions

1-546

Tips
• X-Rite has manufactured two versions of the ColorChecker test chart with slightly different

reference values. The reference values of the colorChecker object match the "After November
2014" version of the chart.

References
[1] Fernandez, P. D. M., F. A. Guerrero-Peña, T. I. Ren, and G. J. J. Leandro, "Fast and robust multiple

ColorChecker detection using deep convolutional neural networks," Image and Vision
Computing, Volume 81, 2019, pp. 15-24.

See Also
esfrChart

Topics
“Calculate CIE94 Color Difference of Colors on Test Chart”
“Correct Colors Using Color Correction Matrix”
“Comparison of Auto White Balance Algorithms”

 colorChecker

1-547

External Websites
https://xritephoto.com/colorchecker-classic

Introduced in R2020b

1 Functions

1-548

https://xritephoto.com/colorchecker-classic

colorcloud
Display 3-D color gamut as point cloud in specified color space

Syntax
colorcloud(rgb)
colorcloud(rgb,colorspace)
colorcloud(___ ,Name,Value)
hPanel = colorcloud(___)

Description
colorcloud(rgb) displays the full color gamut of the color image rgb as a point cloud. By default,
colorcloud uses the RGB color space.

colorcloud(rgb,colorspace) displays the full color gamut of the color image rgb as a point
cloud in the color space specified by colorspace.

colorcloud(___ ,Name,Value) displays the full color gamut using name-value pairs to control
aspects of the visualization.

hPanel = colorcloud(___) returns the uipanel object created by colorcloud.

Examples

View 3D Color Gamut of RGB Image in HSV Color Space

Read in RGB image

RGB = imread('peppers.png');

View color gamut

colorcloud(RGB,'hsv');

 colorcloud

1-549

Input Arguments
rgb — Color image
m-by-n-by-3 numeric array

Color image, specified as an m-by-n-by-3 numeric array.
Data Types: single | double | uint8 | uint16

colorspace — Color space name
'rgb' (default) | 'hsv' | 'ycbcr' | 'lab'

Color space name, specified as one of these values:

Value Description
'hsv' Color gamut in HSV color space
'lab' Color gamut in CIE 1976 L*a*b* color space
'rgb' Color gamut in RGB color space
'ycbcr' Color gamut in YCbCr color space

Data Types: char | string

1 Functions

1-550

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'BackgroundColor','w'

Parent — Parent of object created by colorcloud
new figure (default)

Parent of the object created by colorcloud, specified as a figure or uipanel object. If you do not
specify a valid object, then the colorcloud function creates a new figure window.

BackgroundColor — Background color
[0.94 0.94 0.94] (default) | RGB triplet | color name | short color name

Background color to the color cloud, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'BackgroundColor','r'

 colorcloud

1-551

Example: 'BackgroundColor','green'
Example: 'BackgroundColor',[0 0.4470 0.7410]

WireFrameColor — Color of wire frame
'black' (default) | 'none' | RGB triplet | color name | short color name

Color of the wire frame, specified as an RGB triplet, a color name, a short color name, or 'none'. If
you specify the value 'none', then colorcloud deletes the wire frame.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'WireFrameColor','r'
Example: 'WireFrameColor','green'
Example: 'WireFrameColor',[0.8500 0.3250 0.0980]

OrientationAxesColor — Color of orientation axes and labels
'black' (default) | 'none' | RGB triplet | color name | short color name

Color of the orientation axes and labels, specified as an RGB triplet, a color name, a short color name,
or 'none'. If you specify the value 'none', then colorcloud deletes the labels.

1 Functions

1-552

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'OrientationAxesColor','r'
Example: 'OrientationAxesColor','green'
Example: 'OrientationAxesColor',[0.9290 0.6940 0.1250]

Output Arguments
hPanel — Color gamut point cloud
uipanel object

Color gamut point cloud, returned as a uipanel object.

See Also
Color Thresholder

Topics
“Understanding Color Spaces and Color Space Conversion”

 colorcloud

1-553

Introduced in R2016b

1 Functions

1-554

conndef
Create connectivity array

Syntax
conn = conndef(num_dims,type)

Description
conn = conndef(num_dims,type) returns the pixel connectivity array defined by type for
num_dims dimensions. Several Image Processing Toolbox functions use conndef to create the
default connectivity input argument.

Examples

Create 2-D Connectivity Array with Minimal Connectivity

Create a 2-D connectivity array.

conn = conndef(2,'minimal')

conn = 3×3

 0 1 0
 1 1 1
 0 1 0

Create 2-D Connectivity Array with Maximal Connectivity

Create a 2-D connectivity array.

conn = conndef(2,'maximal')

conn = 3×3

 1 1 1
 1 1 1
 1 1 1

Create 3-D Connectivity Array with Minimal Connectivity

Create a 3-D connectivity array.

conndef(3,'minimal')

 conndef

1-555

ans =
ans(:,:,1) =

 0 0 0
 0 1 0
 0 0 0

ans(:,:,2) =

 0 1 0
 1 1 1
 0 1 0

ans(:,:,3) =

 0 0 0
 0 1 0
 0 0 0

Input Arguments
num_dims — Number of dimensions
positive integer

Number of dimensions, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

type — Type of neighborhood connectivity
'minimal' | 'maximal'

Type of neighborhood connectivity, specified as 'minimal' or 'maximal'

Value Description
'minimal' Defines a neighborhood whose neighbors are touching the central element on an

(N-1)-dimensional surface, for the N-dimensional case.
'maximal' Defines a neighborhood including neighbors that touch the central element in

any way; it is ones(repmat(3,1,NUM_DIMS)).

Data Types: char | string

Output Arguments
conn — Pixel connectivity
3-by-3-by...-3 logical array

Pixel connectivity, returned as a 3-by-3-....-by-3 logical array. conn is symmetric about its center
element. See “Specifying Custom Connectivities” for more information.

1 Functions

1-556

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• conndef supports the generation of C code (requires MATLAB Coder). For more information, see
“Code Generation for Image Processing”.

• When generating code, the num_dims and type arguments must be compile-time constants.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• When generating code, the num_dims and type arguments must be compile-time constants.

See Also

Introduced before R2006a

 conndef

1-557

contains
Determine if image contains points in world coordinate system

Syntax
TF = contains(R,xWorld,yWorld)
TF = contains(R,xWorld,yWorld,zWorld)

Description
TF = contains(R,xWorld,yWorld) returns a logical array TF. Each element TF(k) is true if and
only if the corresponding point (xWorld(k),yWorld(k)) falls within the bounds of an image associated
with 2-D spatial referencing object R.

TF = contains(R,xWorld,yWorld,zWorld) indicates whether each point falls within the bounds
of an image associated with 3-D spatial referencing object R.

Examples

Check If Coordinates Fall Within 2-D Image Bounds

Read a 2-D image into the workspace.

I = imread('cameraman.tif');

Create an imref2d spatial referencing object associated with the image.

R = imref2d(size(I))

R =
 imref2d with properties:

 XWorldLimits: [0.5000 256.5000]
 YWorldLimits: [0.5000 256.5000]
 ImageSize: [256 256]
 PixelExtentInWorldX: 1
 PixelExtentInWorldY: 1
 ImageExtentInWorldX: 256
 ImageExtentInWorldY: 256
 XIntrinsicLimits: [0.5000 256.5000]
 YIntrinsicLimits: [0.5000 256.5000]

Check if certain world coordinates are in the image.

res = contains(R,[5 8 8],[5 10 257])

res = 1x3 logical array

 1 1 0

1 Functions

1-558

This result indicates that the points (5,5) and (8,10) are within the image bounds, and that the point
(8, 257) is outside the image bounds. This conclusion is consistent with the XWorldLimits and
YWorldLimits properties of the spatial referencing object R.

Check If Coordinates Fall Within 3-D Image Bounds

Read a 3-D image into the workspace. This image consists of 27 frames of 128-by-128 pixel images.

load mri;
D = squeeze(D);

Create an imref3d spatial referencing object associated with the image.

R = imref3d(size(D))

R =
 imref3d with properties:

 XWorldLimits: [0.5000 128.5000]
 YWorldLimits: [0.5000 128.5000]
 ZWorldLimits: [0.5000 27.5000]
 ImageSize: [128 128 27]
 PixelExtentInWorldX: 1
 PixelExtentInWorldY: 1
 PixelExtentInWorldZ: 1
 ImageExtentInWorldX: 128
 ImageExtentInWorldY: 128
 ImageExtentInWorldZ: 27
 XIntrinsicLimits: [0.5000 128.5000]
 YIntrinsicLimits: [0.5000 128.5000]
 ZIntrinsicLimits: [0.5000 27.5000]

Check if certain 3-D world coordinates are in the image.

res = contains(R,[5 6 6 8],[5 10 10 257],[1 27.5 28 1])

res = 1x4 logical array

 1 1 0 0

This result indicates that the points (5,5,1) and (6,10,27.5) are within the image bounds. The points
(6,10,28) and (8,257,1) are outside the image bounds. This conclusion is consistent with the
XWorldLimits, YWorldLimits, and ZWorldLimits properties of the spatial referencing object R.

Input Arguments
R — Spatial referencing object
imref2d or imref3d object

Spatial referencing object, specified as an imref2d or imref3d object. R is associated with an
image.

 contains

1-559

xWorld — Coordinates along the x-dimension in the world coordinate system
numeric scalar or vector

Coordinates along the x-dimension in the world coordinate system, specified as a numeric scalar or
vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

yWorld — Coordinates along the y-dimension in the world coordinate system
numeric scalar or vector

Coordinates along the y-dimension in the world coordinate system, specified as a numeric scalar or
vector. yWorld is the same length as xWorld.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

zWorld — Coordinates along the z-dimension in the world coordinate system
numeric scalar or vector

Coordinates along the z-dimension in the world coordinate system, specified as a numeric scalar or
vector. zWorld is the same length as xWorld and yWorld.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
TF — Flag indicating whether coordinates exist within the bounds of the image
logical scalar or vector

Flag indicating whether coordinates exist within the bounds of the image, returned as a logical scalar
or vector. TF is the same length as the input coordinate vectors xWorld, yWorld, and (when
relevant) zWorld.
Data Types: logical

See Also
imref2d | imref3d

Introduced in R2013a

1 Functions

1-560

convmtx2
2-D convolution matrix

Syntax
T = convmtx2(H,m,n)
T = convmtx2(H,[m n])

Description
T = convmtx2(H,m,n) returns the convolution matrix T for the matrix H. If X is an m-by-n matrix,
then reshape(T*X(:),size(H)+[m n]-1) is the same as conv2(X,H).

T = convmtx2(H,[m n]) returns the convolution matrix, where the dimensions m and n are a two-
element vector.

Examples

Create a Convolution Matrix

Show that, for the convolution matrix T for the matrix H, if X is an m-by-n matrix, then
reshape(T*X(:),size(H)+[m n]-1) is the same as conv2(X,H)

Description of first code block

H = ones(3,3)/9; % averaging filter 3-by-3
M = 5;
X = magic(M);
T = convmtx2(H,M,M);
Y1 = reshape(T*X(:), size(H)+[5 5]-1)

Y1 = 7×7

 1.8889 4.5556 4.6667 3.6667 2.6667 2.5556 1.6667
 4.4444 7.6667 8.5556 6.5556 6.7778 5.8889 3.4444
 4.8889 8.7778 11.1111 10.8889 12.8889 10.5556 5.8889
 4.1111 6.6667 11.0000 13.0000 15.0000 10.6667 4.5556
 2.7778 6.7778 13.1111 15.1111 14.8889 8.5556 3.7778
 2.3333 5.6667 10.5556 10.7778 8.7778 3.8889 1.3333
 1.2222 3.2222 6.0000 5.0000 4.0000 1.2222 1.0000

Y2 = conv2(X,H)

Y2 = 7×7

 1.8889 4.5556 4.6667 3.6667 2.6667 2.5556 1.6667
 4.4444 7.6667 8.5556 6.5556 6.7778 5.8889 3.4444
 4.8889 8.7778 11.1111 10.8889 12.8889 10.5556 5.8889
 4.1111 6.6667 11.0000 13.0000 15.0000 10.6667 4.5556
 2.7778 6.7778 13.1111 15.1111 14.8889 8.5556 3.7778

 convmtx2

1-561

 2.3333 5.6667 10.5556 10.7778 8.7778 3.8889 1.3333
 1.2222 3.2222 6.0000 5.0000 4.0000 1.2222 1.0000

isequal(Y1,Y2) % They are the same.

ans = logical
 0

Input Arguments
H — Input matrix
numeric array

Input matrix, specified as a numeric array.
Data Types: double

m — Rows in convolution matrix
numeric scalar

Rows in convolution matrix, specified as a numeric scalar.
Data Types: double

n — Columns in convolution matrix
numeric scalar

Columns in convolution matrix, specified as a numeric scalar.
Data Types: double

[m n] — Dimensions of convolution matrix
numeric scalar

Dimensions of convolution matrix, specified as a two-element vector of the form [m n], where m is
the number of rows and n is the number of columns.
Data Types: double

Output Arguments
T — Convolution matrix
numeric array

Convolution matrix, returned as a numeric array. The output matrix T is of class sparse. The number
of nonzero elements in T is no larger than prod(size(H))*m*n.

See Also
conv2 | convmtx

Introduced before R2006a

1 Functions

1-562

corner
Find corner points in image

Note corner is not recommended. Use detectHarrisFeatures or detectMinEigenFeatures in
Computer Vision Toolbox™ instead.

Syntax
C = corner(I)
C = corner(I,method)
C = corner(I,N)
C = corner(I,method,N)
C = corner(___ ,Name,Value)

Description
C = corner(I) detects corners in image I and returns their coordinates in matrix C.

C = corner(I,method) detects corners in image I using the specified method.

C = corner(I,N) detects corners in image I and returns a maximum of N corners.

C = corner(I,method,N) detects corners using the specified method and maximum number of
corners.

C = corner(___ ,Name,Value) specifies parameters and corresponding values that control
various aspects of the corner detection algorithm.

Examples

Find Corner Points in Checkerboard Image

I = checkerboard(50,2,2);
C = corner(I);
imshow(I)
hold on
plot(C(:,1),C(:,2),'r*');

 corner

1-563

Input Arguments
I — Grayscale or binary image
m-by-n numeric matrix

Grayscale or binary image, specified as an m-by-n numeric matrix.

method — Corner detection algorithm
'Harris' (default) | 'MinimumEigenvalue'

Corner detection method, specified as 'Harris' for the Harris corner detector, or
'MinimumEigenvalue' for Shi & Tomasi's minimum eigenvalue method.

N — Maximum number of corners
200 (default) | positive integer

Maximum number of corners that the corner function can return, specified as a positive integer.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: corner(I,'QualityLevel',0.2) specifies the minimum quality level of corners in
image I as 0.2.

FilterCoefficients — Filter coefficients
numeric vector

Filter coefficients for the separable smoothing filter, specified as the comma-separated pair consisting
of 'FilterCoefficients' and a numeric vector. The vector, V, must have odd length and a
minimum length of 3. The outer product, V*V', gives the full filter kernel. The default filter
coefficients are given by fspecial('gaussian',[5 1],1.5).

1 Functions

1-564

QualityLevel — Minimum accepted quality
0.01 (default) | numeric scalar

Minimum accepted quality of corners, specified as the comma-separated pair consisting of
'QualityLevel' and a numeric scalar in the range (0, 1). For a quality level Q, the toolbox rejects
candidate corners with corner metric values less than Q * max(corner metric). Use larger values
of Q to remove erroneous corners.

SensitivityFactor — Sensitivity factor
0.04 (default) | numeric scalar

Sensitivity factor used in the Harris detection algorithm, specified as the comma-separated pair
consisting of 'SensitivityFactor' and a numeric scalar in the range (0, 0.25). The smaller the
sensitivity factor, the more likely the algorithm is to detect sharp corners. Use this parameter with
the 'Harris' method only.

Output Arguments
C — Coordinates of corner points
p-by-2 matrix

x and y coordinates of the corner points detected in image I, returned as a p-by-2 matrix.
Data Types: double

Tips
The corner and cornermetric functions both detect corners in images. For most applications, use
the streamlined corner function to find corners in one step. If you want greater control over corner
selection, use the cornermetric function to compute a corner metric matrix and then write your
own algorithm to find peak values.

Algorithms
The corner function performs nonmaxima suppression on candidate corners, and corners are at
least two pixels apart.

Introduced in R2010b

 corner

1-565

cornermetric
(Not recommended) Create corner metric matrix from image

Note cornermetric is not recommended. Use detectHarrisFeatures or
detectMinEigenFeatures and the cornerPoints object in Computer Vision Toolbox™ instead.
For more information, see “Compatibility Considerations”.

Syntax
C = cornermetric(I)
C = cornermetric(I,method)
C = cornermetric(___ ,Name,Value)

Description
C = cornermetric(I) creates a corner metric matrix by detecting corner features in the input
image I.

C = cornermetric(I,method) creates a corner metric matrix by detecting corner features in the
input image I. The corner detection method specified by method is used for finding the corner
features.

C = cornermetric(___ ,Name,Value)specifies options using one or more name-value arguments
in addition to the input arguments from any of the previous syntaxes.

Examples

Find Corner Features in a Binary Image

Read an input image into the workspace.

I = imread('circles.png');

Generate a corner metric matrix. Specify the filter coefficients. The corner detection method takes
the default value 'Harris'.

filter = [0.25 0.5 0.25];
C = cornermetric(I,'FilterCoefficients',filter);

Use imregionalmax to detect corner features (pixels) from the corner metric matrix.

corner_peaks = imregionalmax(C);

Set the value of the detected corner pixels to [255 0 0].

corner_idx = find(corner_peaks == true);
[r,g,b] = deal(I);
r(corner_idx) = 255;
g(corner_idx) = 0;

1 Functions

1-566

b(corner_idx) = 0;
RGB = cat(3,r,g,b);

Adjust the corner metric matrix for viewing.

C_adjusted = imadjust(C);

Display the original image, adjusted corner metric and the detected corner features as a montage.
The detected corner features are displayed as red color pixels with RGB value as [255 0 0].

montage({I,C_adjusted,RGB},'Size',[1 3])
title('Original Image | Adjusted Corner Metric Matrix | Detected Corner Features');

Find Corner Features in a Grayscale Image

Read an input image into the workspace.

I = imread('bag.png');

Generate a corner metric matrix. Specify the method as 'MinimumEigenvalue'.

C = cornermetric(I,'MinimumEigenvalue');

Use imregionalmax to detect corner features (pixels) from the corner metric matrix.

corner_peaks = imregionalmax(C);

Set the value of the detected corner pixels to [255 0 0].

corner_idx = find(corner_peaks == true);
[r g b] = deal(I);
r(corner_idx) = 255;
g(corner_idx) = 0;
b(corner_idx) = 0;
RGB = cat(3,r,g,b);

Adjust the corner metric matrix for viewing.

 cornermetric

1-567

C_adjusted = imadjust(C);

Display the original image, adjusted corner metric and the detected corner features as a montage.
The detected corner features are displayed as red color pixels with RGB value as [255 255 0].

montage({I,C_adjusted,RGB},'Size',[1 3])
title('Original Image | Adjusted Corner Metric Matrix | Detected Corner Features');

Input Arguments
I — Input image
2-D binary image | 2-D grayscale image

Input image, specified as a 2-D binary image or 2-D grayscale image of size m-by-n.
Data Types: single | double | uint8 | uint16 | uint32 | int8 | int16 | int32 | logical

method — Corner detection method
'Harris' (default) | 'MinimumEigenvalue'

Corner detection method, specified as either 'Harris' or 'MinimumEigenvalue'. If the method is:

• 'Harris', the function creates corner metric matrix by using the Harris corner detector.
• 'MinimumEigenvalue', the function creates corner metric matrix by using the Shi and Tomasi's

minimum eigenvalue approach.

If method is not specified, the default value set as 'Harris' and the function uses Harris corner
detector for detecting corner features.
Data Types: char | string

1 Functions

1-568

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: cornermetric(I,'SensitivityFactor',0.1)

FilterCoefficients — Coefficients of 1-D spatial filter mask
[0.1201 0.2339 0.2921 0.2339 0.1201] (default) | n-element vector

Coefficients of 1-D spatial filter mask, specified as a comma-separated pair consisting of
'FilterCoefficients' and an n-element vector. The value of n must be odd and greater than or
equal to 3. By default, the 1-D spatial filter mask is a 5-element vector and the default filter
coefficients are computed using fspecial('gaussian',[5 1],1.5).

SensitivityFactor — Sensitivity factor
0.04 (default) | numeric scalar in the range (0, 0.25)

Sensitivity factor, specified as a comma-separated pair consisting of 'SensitivityFactor' and a
numeric scalar in the interval (0, 0.25). For smaller values of sensitivity factor, the algorithm is more
likely to detect sharper corners.

Note The name-value pair 'SensitivityFactor' is valid only if the input method is 'Harris'.

Output Arguments
C — Corner metric matrix
m-by-n matrix

Corner metric matrix, returned as a m-by-n matrix of the same size as the input image I.
Data Types: double

Tips
The corner and cornermetric functions both detect corners in images. For most applications, use
the streamlined corner function to find corners in one step. If you want greater control over corner
selection, use the cornermetric function to compute a corner metric matrix. Then, write your own
algorithm to find peak values in corner metric matrix.

Compatibility Considerations
cornermetric is not recommended
Not recommended starting in R2016a

cornermetric is not recommended. Instead, use the detectHarrisFeatures or
detectMinEigenFeatures and the cornerPoints object in Computer Vision Toolbox.

Use detectHarrisFeatures to find corners in an image by using the Harris corner detector
method. Use detectMinEigenFeatures to find corners in an image by using Shi and Tomasi's
minimum eigenvalue method. The detectHarrisFeatures and detectMinEigenFeatures
functions return the cornerPoints object to which the detected corner points are stored.

 cornermetric

1-569

See Also
edge | corner

Introduced in R2008b

1 Functions

1-570

corr2
2-D correlation coefficient

Syntax
R = corr2(A,B)

Description
R = corr2(A,B) returns the 2-D correlation coefficient R between arrays A and B.

Examples

Compute the correlation coefficient

Compute the correlation coefficient between an image and the same image processed with a median
filter.

I = imread('pout.tif');
J = medfilt2(I);
R = corr2(I,J)

R = 0.9959

Input Arguments
A — First input array
numeric array | logical array

First input array, specified as a numeric or logical array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

B — Second input array
numeric array | logical array

Second input array, specified as a numeric or logical array. B has the same size as the first input array,
A.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Output Arguments
R — Correlation coefficient
numeric scalar

Correlation coefficient, returned as a numeric scalar.

 corr2

1-571

Data Types: double

Algorithms
corr2 computes the correlation coefficient using

r =
∑
m
∑
n

(Amn− A)(Bmn− B)

∑
m
∑
n

Amn− A 2 ∑
m
∑
n

Bmn− B 2

where A = mean2(A), and B = mean2(B).

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on a GPU”.

See Also
std2 | corrcoef

Introduced before R2006a

1 Functions

1-572

cp2tform
(Not recommended) Infer spatial transformation from control point pairs

Note cp2tform is not recommended. Use fitgeotrans instead.

Syntax
tform = cp2tform(movingPoints,fixedPoints,transformationType)
tform = cp2tform(movingPoints,fixedPoints,'polynomial',degree)
tform = cp2tform(movingPoints,fixedPoints,'lwm',n)
tform = cp2tform(movingPoints,fixedPoints,'piecewise linear')
[tform,usedMP,usedFP,badMP,badFP] = cp2tform(movingPoints,
fixedPoints,'piecewise linear')

tform = cp2tform(cpstruct,transformationType, ___)
[tform,usedMP,usedFP] = cp2tform(cpstruct,transformationType, ___)

Description
tform = cp2tform(movingPoints,fixedPoints,transformationType) infers a spatial
transformation from control point pairs and returns this transformation as a tform structure. Some
of the transformation types have optional additional parameters, shown in the following syntaxes.

tform = cp2tform(movingPoints,fixedPoints,'polynomial',degree) lets you specify the
order of the polynomials to use.

tform = cp2tform(movingPoints,fixedPoints,'lwm',n) creates a mapping by inferring a
polynomial at each control point using neighboring control points. The mapping at any location
depends on a weighted average of these polynomials. You can optionally specify the number of points,
n, used to infer each polynomial. The n closest points are used to infer a polynomial of order 2 for
each control point pair.

tform = cp2tform(movingPoints,fixedPoints,'piecewise linear') creates a Delaunay
triangulation of the fixed control points, and maps corresponding moving control points to the fixed
control points. The mapping is linear (affine) for each triangle and continuous across the control
points but not continuously differentiable as each triangle has its own mapping.

[tform,usedMP,usedFP,badMP,badFP] = cp2tform(movingPoints,
fixedPoints,'piecewise linear') returns in usedMP and usedFP the control points that were
used for the piecewise linear transformation. This syntax also returns in badMP and badFP the
control points that were eliminated because they were middle vertices of degenerate fold-over
triangles.

tform = cp2tform(cpstruct,transformationType, ___) uses a cpstruct structure to store
the control point coordinates of the moving and fixed images.

[tform,usedMP,usedFP] = cp2tform(cpstruct,transformationType, ___) also returns in
usedMP and usedFP the control points that were used for the transformation. Unmatched and
predicted points are not used. See cpstruct2pairs.

 cp2tform

1-573

Examples
Use Control Points to Create Nonreflective Similarity Transformation Structure

Transform an image, use the cp2tform function to return the transformation, and compare the angle
and scale of the tform to the angle and scale of the original transformation:

I = checkerboard;
J = imrotate(I,30);
fixedPoints = [11 11; 41 71];
movingPoints = [14 44; 70 81];
cpselect(J,I,movingPoints,fixedPoints);

t = cp2tform(movingPoints,fixedPoints,'nonreflective similarity');

Recover angle and scale by checking how a unit vector parallel to the x-axis is rotated and stretched.

u = [0 1];
v = [0 0];
[x, y] = tformfwd(t,u,v);
dx = x(2) - x(1);
dy = y(2) - y(1);
angle = (180/pi) * atan2(dy, dx)
scale = 1 / sqrt(dx^2 + dy^2)

Input Arguments
movingPoints — Control points in the moving image
m-by-2 matrix

Control points in the moving image, specified as an m-by-2 matrix. Each row specifies the [x y]
coordinates of a control point.
Example: [11 11; 41 71]
Data Types: double

fixedPoints — Control points in the fixed image
m-by-2 matrix

Control points in the fixed image, specified as an m-by-2 matrix. Each row specifies the [x y]
coordinates of a control point.
Example: [14 44; 70 81]
Data Types: double

transformationType — Type of transformation
'nonreflective similarity' | 'similarity' | 'affine' | 'projective' | 'polynomial' |
'piecewise linear' | 'lwm'

Type of transformation, specified as one of the following, listed in order of increasing complexity. The
cp2tform function requires a minimum number of control point pairs to infer a structure of each
transform type.

1 Functions

1-574

Transformation Type Description Minimum
Number of
Control Point
Pairs

Example

'nonreflective
similarity'

Use this transformation when shapes in the
moving image are unchanged, but the image is
distorted by some combination of translation,
rotation, and scaling. Straight lines remain
straight, and parallel lines are still parallel.

2

'similarity' Same as 'nonreflective similarity' with
the addition of optional reflection.

3

'affine' Use this transformation when shapes in the
moving image exhibit shearing. Straight lines
remain straight, and parallel lines remain
parallel, but rectangles become parallelograms.

3

'projective' Use this transformation when the scene appears
tilted. Straight lines remain straight, but
parallel lines converge toward vanishing points
that might or might not fall within the image.

4

'polynomial' Use this transformation when objects in the
image are curved. The higher the order of the
polynomial, the better the fit, but the result can
contain more curves than the fixed image.

You can specify the degree of the polynomial.

6 (order 2)

10 (order 3)

15 (order 4)

'piecewise linear' Use this transformation when parts of the image
appear distorted differently.

4

'lwm' Use this transformation (local weighted mean),
when the distortion varies locally and piecewise
linear is not sufficient.

You can specify the number n of points to use in
the local weighed mean calculation.

6 (12
recommended)

Data Types: char

cpstruct — Preselected control points
structure

Preselected control points, specified as a structure. cpstruct contains information about the x- and
y-coordinates of all control points in the moving and fixed images, including unpaired and predicted
control points. cpstruct2pairs eliminates unmatched and predicted control points, and returns the
set of valid control point pairs.

cpstruct is a structure produced by the Control Point Selection tool (cpselect) when you choose
the Export Points to Workspace option. For more information, see “Export Control Points to the
Workspace”.
Data Types: struct

 cp2tform

1-575

degree — Degree of the polynomial
3 (default) | 2 | 4

Degree of the polynomial transformation, specified as the integer 2, 3, or 4.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

n — Number of points to use in local weighted mean calculation
12 (default) | positive integer

Number of points to use in local weighted mean calculation, specified as a positive integer. n can be
as small as 6, but making n small risks generating ill-conditioned polynomials

Output Arguments
tform — Transformation
TFORM structure

Transformation, returned as a TFORM structure.

usedMP — Used moving points
n-by-2 matrix

Moving control points that were used to infer the spatial transformation, returned as an n-by-2
matrix. Unmatched and predicted points are not used.

usedFP — Used fixed points
n-by-2 matrix

Fixed control points that were used to infer the spatial transformation, returned as an n-by-2 matrix.
Unmatched and predicted points are not used.

badMP — Eliminated moving points
p-by-2 matrix

Moving control points that were eliminated because they were determined to be outliers, returned as
a p-by-2 matrix.

badFP — Eliminated fixed points
p-by-2 matrix

Fixed control points that were eliminated because they were determined to be outliers, returned as a
p-by-2 matrix.

Tips
• When transformtype is 'nonreflective similarity', 'similarity', 'affine',

'projective', or 'polynomial', and movingPoints and fixedPoints (or cpstruct) have
the minimum number of control points needed for a particular transformation, cp2tform finds the
coefficients exactly.

• If movingPoints and fixedPoints have more than the minimum number of control points, a
least-squares solution is found. See mldivide.

• When either movingPoints or fixedPoints has a large offset with respect to their origin
(relative to range of values that it spans), cp2tform shifts the points to center their bounding box

1 Functions

1-576

on the origin before fitting a tform structure. This enhances numerical stability and is handled
transparently by wrapping the origin-centered tform within a custom tform that automatically
applies and undoes the coordinate shift as needed. As a result, fields(T) can give different
results for different coordinate inputs, even for the same transformation type.

Algorithms
cp2tform uses the following general procedure:

1 Use valid pairs of control points to infer a spatial transformation or an inverse mapping from
output space (x,y) to input space (x,y) according to transformtype.

2 Return the tform structure containing spatial transformation.

The procedure varies depending on the transformtype.

Nonreflective Similarity

Nonreflective similarity transformations can include a rotation, a scaling, and a translation. Shapes
and angles are preserved. Parallel lines remain parallel. Straight lines remain straight.

Let

sc = scale*cos(angle)
ss = scale*sin(angle)

[u v] = [x y 1] * [sc -ss
 ss sc
 tx ty]

Solve for sc, ss, tx, and ty.

Similarity

Similarity transformations can include rotation, scaling, translation, and reflection. Shapes and
angles are preserved. Parallel lines remain parallel. Straight lines remain straight.

Let

sc = s*cos(theta)
ss = s*sin(theta)

 [sc -a*-ss
 [u v] = [x y 1] * ss a*sc
 tx ty]

Solve for sc, ss, tx, ty, and a. If a = -1, reflection is included in the transformation. If a = 1,
reflection is not included in the transformation.

Affine

In an affine transformation, the x and y dimensions can be scaled or sheared independently and there
can be a translation. Parallel lines remain parallel. Straight lines remain straight. Nonreflective
similarity transformations are a subset of affine transformations.

For an affine transformation,

 cp2tform

1-577

[u v] = [x y 1] * Tinv

Tinv is a 3-by-2 matrix. Solve for the six elements of Tinv:

t_affine = cp2tform(movingPoints,fixedPoints,'affine');

The coefficients of the inverse mapping are stored in t_affine.tdata.Tinv.

At least three control-point pairs are needed to solve for the six unknown coefficients.

Projective

In a projective transformation, quadrilaterals map to quadrilaterals. Straight lines remain straight.
Affine transformations are a subset of projective transformations.

For a projective transformation,

[up vp wp] = [x y w] * Tinv

where

u = up/wp
v = vp/wp

Tinv is a 3-by-3 matrix.

Assuming

Tinv = [A D G;
 B E H;
 C F I];
u = (Ax + By + C)/(Gx + Hy + I)
v = (Dx + Ey + F)/(Gx + Hy + I)

Solve for the nine elements of Tinv:

t_proj = cp2tform(movingPoints,fixedPoints,'projective');

The coefficients of the inverse mapping are stored in t_proj.tdata.Tinv.

At least four control-point pairs are needed to solve for the nine unknown coefficients.

Note An affine or projective transformation can also be expressed like this, for a 3-by-2 Tinv:

[u v]' = Tinv' * [x y 1]'

Or, like this, for a 3-by-3 Tinv:

[u v 1]' = Tinv' * [x y 1]'

Polynomial

In a polynomial transformation, polynomial functions of x and y determine the mapping.

1 Functions

1-578

Second-Order Polynomials
For a second-order polynomial transformation,

[u v] = [1 x y x*y x^2 y^2] * Tinv

Both u and v are second-order polynomials of x and y. Each second-order polynomial has six terms. To specify
all coefficients, Tinv has size 6-by-2.

t_poly_ord2 = cp2tform(movingPoints,fixedPoints,'polynomial');

The coefficients of the inverse mapping are stored in t_poly_ord2.tdata.

At least six control-point pairs are needed to solve for the 12 unknown coefficients.

Third-Order Polynomials
For a third-order polynomial transformation:

[u v] = [1 x y x*y x^2 y^2 y*x^2 x*y^2 x^3 y^3] * Tinv

Both u and v are third-order polynomials of x and y. Each third-order polynomial has 10 terms. To specify all
coefficients, Tinv has size 10-by-2.

t_poly_ord3 = cp2tform(movingPoints, fixedPoints,'polynomial',3);

The coefficients of the inverse mapping are stored in t_poly_ord3.tdata.

At least ten control-point pairs are needed to solve for the 20 unknown coefficients.

Fourth-Order Polynomials
For a fourth-order polynomial transformation:

[u v] = [1 x y x*y x^2 y^2 y*x^2 x*y^2 x^3 y^3 x^3*y x^2*y^2 x*y^3 x^4 y^4] * Tinv

Both u and v are fourth-order polynomials of x and y. Each fourth-order polynomial has 15 terms. To specify all
coefficients, Tinv has size 15-by-2.

t_poly_ord4 = cp2tform(movingPoints, fixedPoints,'polynomial',4);

The coefficients of the inverse mapping are stored in t_poly_ord4.tdata.

At least 15 control-point pairs are needed to solve for the 30 unknown coefficients.

Piecewise Linear

In a piecewise linear transformation, linear (affine) transformations are applied separately to each
triangular region of the image[1].

1 Find a Delaunay triangulation of the fixed control points.
2 Using the three vertices of each triangle, infer an affine mapping from fixed to moving

coordinates.

Note At least four control-point pairs are needed. Four pairs result in two triangles with distinct
mappings.

 cp2tform

1-579

Local Weighted Mean

For each control point in fixedPoints:

1 Find the N closest control points.
2 Use these N points and their corresponding points in movingPoints to infer a second-order

polynomial.
3 Calculate the radius of influence of this polynomial as the distance from the center control point

to the farthest point used to infer the polynomial (using fixedPoints)[2].

Note At least six control-point pairs are needed to solve for the second-order polynomial. Ill-
conditioned polynomials might result if too few pairs are used.

References
[1] Goshtasby, Ardeshir, "Piecewise linear mapping functions for image registration," Pattern

Recognition, Vol. 19, 1986, pp. 459-466.

[2] Goshtasby, Ardeshir, "Image registration by local approximation methods," Image and Vision
Computing, Vol. 6, 1988, pp. 255-261.

See Also
cpcorr | cpselect | cpstruct2pairs

Introduced before R2006a

1 Functions

1-580

cpcorr
Tune control point locations using cross-correlation

Syntax
movingPointsAdjusted = cpcorr(movingPoints,fixedPoints,moving,fixed)

Description
movingPointsAdjusted = cpcorr(movingPoints,fixedPoints,moving,fixed) adjusts the
position of moving control points, movingPoints, with respect to fixed control points,
fixedPoints, using normalized cross-correlation between the moving image moving and the fixed
image fixed. The cpcorr function returns the adjusted moving control points in
movingPointsAdjusted.

Examples

Fine-Tune Control-Point Locations using Cross Correlation

Read two images into the workspace.

moving = imread('onion.png');
fixed = imread('peppers.png');

Define sets of control points for both images.

movingPoints = [118 42;99 87];
fixedPoints = [190 114;171 165];

Display the images, and display the control points in white. The position of the moving points is
slightly offset from the position of the fixed points.

imshow(fixed)
hold on
plot(fixedPoints(:,1),fixedPoints(:,2),'xw')
title('Fixed Image')

 cpcorr

1-581

figure
imshow(moving)
hold on
plot(movingPoints(:,1),movingPoints(:,2),'xw')
title('Moving Image')

Adjust the moving control points using cross correlation.

1 Functions

1-582

movingPointsAdjusted = cpcorr(movingPoints,fixedPoints, ...
 moving(:,:,1),fixed(:,:,1))

movingPointsAdjusted = 2×2

 115.9000 39.1000
 97.0000 89.9000

Display the adjusted moving points in yellow. Compared to the original moving points (in white), the
adjusted points more closely match the positions of the fixed points.

plot(movingPointsAdjusted(:,1),movingPointsAdjusted(:,2),'xy')

Input Arguments
movingPoints — Coordinates of control points in image to be transformed
m-by-2 matrix

Coordinates of control points in the image to be transformed, specified as an m-by-2 matrix. The two
columns represent the x- and y-coordinates of the control points, respectively, in the intrinsic
coordinate system of the image.
Example: [127 93; 74 59]
Data Types: double

fixedPoints — Coordinates of control points in reference image
p-by-2 matrix

Coordinates of control points in the reference image, specified as an p-by-2 matrix. The two columns
represent the x- and y-coordinates of the control points, respectively, in the intrinsic coordinate
system of the image.
Example: [323 195; 269 161]
Data Types: double

moving — Image to be registered
numeric array

 cpcorr

1-583

Image to be registered, specified as a numeric array.

fixed — Reference image in target orientation
numeric array

Reference image in the target orientation, specified as a numeric array.

Output Arguments
movingPointsAdjusted — Adjusted coordinates of control points in the image to be
transformed
numeric matrix

Adjusted coordinates of control points in the image to be transformed, returned as a numeric matrix
of the same size as movingPoints.
Data Types: double

Tips
• The moving and fixed images must have the same scale for cpcorr to be effective.
• If cpcorr cannot correlate a pair of control points, movingPointsAdjusted contains the same

coordinates as movingPoints for that pair.
• cpcorr cannot adjust a point if any of these conditions occur:

• points are too near the edge of either image
• regions of images around points contain Inf or NaN
• region around a point in moving image has zero standard deviation
• regions of images around points are poorly correlated

Algorithms
cpcorr only moves the position of a control point by up to four pixels. Adjusted coordinates are
accurate up to one-tenth of a pixel. cpcorr is designed to get subpixel accuracy from the image
content and coarse control point selection.

Extended Capabilities
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
cpselect | fitgeotrans | normxcorr2 | imwarp

Topics
“Control Point Selection Procedure”

1 Functions

1-584

“Image Coordinate Systems”

Introduced before R2006a

 cpcorr

1-585

cpselect
Control Point Selection tool

Syntax
cpselect(moving,fixed)
cpselect(moving,fixed,initialMovingPoints,initialFixedPoints)
cpselect(moving,fixed,cpstruct_in)
h = cpselect(___)
h = cpselect(___ ,'Wait',false)
[selectedMovingPoints,selectedFixedPoints] = cpselect(___ ,'Wait',true)

Description
cpselect(moving,fixed) starts the Control Point Selection tool that enables you to select control
points in two related images. moving is the image to be warped, which brings it into the coordinate
system of the fixed image.

When the Control Point Selection tool is open, you can add, move, and delete control points
interactively with the mouse. When you are done modifying the control points, export them to the
workspace by selecting Export Points to Workspace from the File menu. The tool can return the
coordinates of valid selected pairs of moving and fixed control points in two numeric vectors. The tool
can also return all selected control points and indexing information in a cpstruct structure that
saves the state of the tool so that you can restart the tool later. For more information about using the
tool, see “Control Point Selection Procedure”.

cpselect(moving,fixed,initialMovingPoints,initialFixedPoints) starts the Control
Point Selection tool with an initial set of valid moving and fixed control point pairs,
initialMovingPoints and initialFixedPoints.

cpselect(moving,fixed,cpstruct_in) starts the Control Point Selection tool with an initial set
of control points and indexing information that are stored in cpstruct_in. Use this syntax to restart
the Control Point Selection tool from a previously saved state.

h = cpselect(___) returns a handle h to the Control Point Selection tool. You can use the
close(h) command to close the tool from the command line.

h = cpselect(___ ,'Wait',false) returns a handle h to the Control Point Selection tool. You
can use the close(h) syntax to close the tool from the command line. In contrast to setting 'Wait'
as true, this syntax lets you run cpselect at the same time as you run other programs in MATLAB.

[selectedMovingPoints,selectedFixedPoints] = cpselect(___ ,'Wait',true) takes
control of the MATLAB command line until you finish selecting control points. When you have finished
selecting control points, return to the workspace by closing the tool. cpselect returns the
coordinates of valid selected pairs of moving and fixed control points in selectedMovingPoints
and selectedFixedPoints.

Examples

1 Functions

1-586

Start Control Point Selection Tool with Saved Images

Read the image westconcordorthophoto.png into the workspace. This image is an orthophoto
that has already been registered to the ground.

fixed = imread('westconcordorthophoto.png');

Read the image westconcordaerial.png into the workspace. This image was taken from an
airplane and is distorted relative to the orthophoto.

moving = imread('westconcordaerial.png');

Call cpselect, specifying the names of the image you want to register and the reference image. You
can now add, move, and delete control points interactively with the mouse. When you are done
adding control points, export them to the workspace by selecting Export Points to Workspace from
the File menu.

cpselect('westconcordaerial.png','westconcordorthophoto.png');

Open Control Point Selection Tool with Predefined Control Points

Create a sample reference image. This image is the fixed image.

 cpselect

1-587

I = checkerboard;

Create a rotated and stretched copy of the sample image. This image is the moving image to be
aligned with the fixed image.

J = imresize(I,'Scale',[1 1.3]);
moving = imrotate(J,30);

Specify the (x,y) coordinates of three corresponding control points for the fixed and moving images.

fixedPoints = [10.7 30.6; 40.5 50.6; 20.6 10.7];
movingPoints = [21.6 64.2; 71.1 70.3; 28.7 48.3];

Open the Control Point Selection tool, specifying the sample fixed and moving images and the two
sets of saved control points. You can now continue adding, moving, and deleting control points
interactively with the mouse. When you are done modifying the control points, export them to the
workspace by selecting Export Points to Workspace from the File menu.

h = cpselect(moving,I,movingPoints,fixedPoints);

Close the Control Point Selection tool programmatically by using the close function.

close(h)

1 Functions

1-588

Input Arguments
moving — Input image to be aligned
grayscale image | truecolor image | binary image | character vector | string

Input image to be aligned, specified as a grayscale, truecolor, or binary image, or a character vector
or string that specifies the file name of an image of those types.

Image Type Supported Data Types
Grayscale uint8, uint16, int16, single, or double
Truecolor uint8, uint16, single, or double
Binary logical

Data Types: single | double | int16 | uint8 | uint16 | logical | char | string

fixed — Reference image
grayscale image | truecolor image | binary image | character vector | string

Reference image, specified as a grayscale, truecolor, or binary image, or a character vector or string
that specifies the file name of an image of those types.

Image Type Supported Data Types
Grayscale uint8, uint16, int16, single, or double
Truecolor uint8, uint16, single, or double
Binary logical

Data Types: single | double | int16 | uint8 | uint16 | logical | char | string

cpstruct_in — Preselected control points
structure

Preselected control points, specified as a cpstruct structure. cpstruct_in contains information
about x- and y-coordinates of all control points in the moving and fixed images, including unpaired
and predicted control points. cpstruct_in also contains indexing information that allows the
Control Point Selection tool to restore the state of the control points.

Create a cpstruct by exporting points from the Control Point Selection tool, described in “Export
Control Points to the Workspace”.
Data Types: struct

initialMovingPoints — Preselected control points on moving image
m-by-2 numeric array

Preselected control points on the moving image, specified as an m-by-2 numeric array. The two
columns represent the x- and y-coordinates of the control points.
Data Types: double

initialFixedPoints — Preselected control points on fixed image
m-by-2 numeric array

Preselected control points on the fixed image, specified as an m-by-2 numeric array. The two columns
represent the x- and y-coordinates of the control points.

 cpselect

1-589

Data Types: double

Output Arguments
h — Control Point Selection tool
handle

Control Point Selection tool, returned as a handle.

selectedMovingPoints — Selected control points on moving image
p-by-2 numeric array

Selected control points on the moving image, specified as a p-by-2 numeric array. The two columns
represent the x- and y-coordinates of the control points, respectively, in the intrinsic coordinate
system of the image.
Data Types: double

selectedFixedPoints — Selected control points on fixed image
p-by-2 numeric array

Selected control points on the fixed image, specified as a p-by-2 numeric array. The two columns
represent the x- and y-coordinates of the control points, respectively, in the intrinsic coordinate
system of the image.
Data Types: double

Tips
• When calling cpselect in a script, specify the 'Wait' option as true. The 'Wait' option causes

cpselect to block the MATLAB command line until control points have been selected and
returned. If you do not use the 'Wait' option, cpselect returns control immediately and your
script continues without allowing time for control point selection. Additionally, without the
'Wait' option, cpselect does not return the control points as return values.

Algorithms
cpselect uses the following general procedure for control-point prediction.

1 Find all valid pairs of control points.
2 Infer a spatial transformation between moving and fixed control points using a method that

depends on the number of valid control point pairs.

Transformation Type Minimum Number of Control Point Pairs
Nonreflective similarity 2
Affine 3
Projective 4

3 Apply the spatial transformation to the new point. This transformation generates the predicted
point.

4 Display the predicted point.

1 Functions

1-590

See Also
cpcorr | fitgeotrans | imwarp | cpstruct2pairs

Topics
“Register Images with Projection Distortion Using Control Points”
“Control Point Selection Procedure”
“Export Control Points to the Workspace”
“Image Coordinate Systems”

Introduced before R2006a

 cpselect

1-591

cpstruct2pairs
Extract valid control point pairs from cpstruct structure

Syntax
[movingPoints,fixedPoints] = cpstruct2pairs(cpstruct_in)

Description
[movingPoints,fixedPoints] = cpstruct2pairs(cpstruct_in) extracts the valid control
point pairs from cpstruct_in, returning two arrays movingPoints and fixedPoints.

Examples

Convert cpstruct to Sets of Control Point Pairs

Read an aerial photograph and an orthoregistered image into the workspace.

aerial = imread('westconcordaerial.png');
ortho = imread('westconcordorthophoto.png');

Load some preselected control points for these images.

load westconcordpoints
whos

 Name Size Bytes Class Attributes

 aerial 394x369x3 436158 uint8
 fixedPoints 4x2 64 double
 movingPoints 4x2 64 double
 ortho 366x364 133224 uint8

Open the Control Point Selection tool, specifying the two images along with the predefined control
points.

cpselect(aerial,ortho,movingPoints,fixedPoints);

Create the cpstruct structure. Using the Control Point Selection tool, select Export Points to
Workspace from the File menu to save the points to the workspace. On the Export Points to
Workspace dialog box, check the Structure with all points check box, and clear Moving points of
valid pairs and Fixed points of valid pairs. Click OK. Close the Control Point Selection tool.

Use cpstruct2pairs to extract the moving and fixed points from the cpstruct.

[mPoints,fPoints] = cpstruct2pairs(cpstruct);

Compare the stored set of points with the set of points you exported.

fixedPoints, fpoints

1 Functions

1-592

fixedPoints =

 164.5639 113.2890
 353.5325 130.0798
 143.4046 284.8935
 353.5325 311.9810

fpoints =

 164.5639 113.2890
 353.5325 130.0798
 143.4046 284.8935
 353.5325 311.9810

The two sets of points are identical, which indicates that all points in the stored set of points belong
to valid control point pairs.

Input Arguments
cpstruct_in — Preselected control points
structure

Preselected control points, specified as a structure (cpstruct). cpstruct_in contains information
about the x- and y-coordinates of all control points in the moving and fixed images, including
unpaired and predicted control points. cpstruct2pairs eliminates unmatched and predicted
control points, and returns the set of valid control point pairs.

cpstruct_in is a structure produced by the Control Point Selection tool (cpselect) when you
choose the Export Points to Workspace option. For more information, see “Export Control Points to
the Workspace”.
Data Types: struct

Output Arguments
movingPoints — Control point pairs from moving image being aligned
m-by-2 numeric array

Control point pairs from image being aligned, returned as an m-by-2 numeric array. The two columns
represent the x- and y-coordinates of the control points, respectively, in the intrinsic coordinate
system of the image.
Data Types: double

fixedPoints — Control point pairs from reference image
m-by-2 numeric array

Control point pairs from reference image, returned as an m-by-2 numeric array. The two columns
represent the x- and y-coordinates of the control points, respectively, in the intrinsic coordinate
system of the image.
Data Types: double

 cpstruct2pairs

1-593

Extended Capabilities
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
cpselect | fitgeotrans

Topics
“Control Point Selection Procedure”
“Export Control Points to the Workspace”
“Image Coordinate Systems”

Introduced before R2006a

1 Functions

1-594

cycleGANGenerator
Create CycleGAN generator network for image-to-image translation

Syntax
net = cycleGANGenerator(inputSize)
net = cycleGANGenerator(inputSize,Name,Value)

Description
net = cycleGANGenerator(inputSize) creates a CycleGAN generator network for input of size
inputSize. For more information about the network architecture, see “CycleGAN Generator
Network” on page 1-600.

This function requires Deep Learning Toolbox.

net = cycleGANGenerator(inputSize,Name,Value) modifies aspects of the CycleGAN
network using name-value arguments.

Examples

Create CycleGAN Generator

Specify the network input size for RGB images of size 256-by-256.

inputSize = [256 256 3];

Create a CycleGAN generator that generates RGB images of the input size.

net = cycleGANGenerator(inputSize)

net =
 dlnetwork with properties:

 Layers: [72x1 nnet.cnn.layer.Layer]
 Connections: [80x2 table]
 Learnables: [94x3 table]
 State: [0x3 table]
 InputNames: {'inputLayer'}
 OutputNames: {'fActivation'}
 Initialized: 1

Display the network.

analyzeNetwork(net)

 cycleGANGenerator

1-595

Create CycleGAN Generator with Six Residual Blocks

Specify the network input size for RGB images of size 128-by-128 pixels.

inputSize = [128 128 3];

Create a CycleGAN generator with six residual blocks. Add the prefix "cycleGAN6_" to all layer
names.

net = cycleGANGenerator(inputSize,"NumResidualBlocks",6, ...
 "NamePrefix","cycleGAN6_")

net =
 dlnetwork with properties:

 Layers: [54x1 nnet.cnn.layer.Layer]
 Connections: [59x2 table]
 Learnables: [70x3 table]
 State: [0x3 table]
 InputNames: {'cycleGAN6_inputLayer'}
 OutputNames: {'cycleGAN6_fActivation'}
 Initialized: 1

Display the network.

analyzeNetwork(net)

Input Arguments
inputSize — Network input size
3-element vector of positive integers

Network input size, specified as a 3-element vector of positive integers. inputSize has the form [H
W C], where H is the height, W is the width, and C is the number of channels.
Example: [28 28 3] specifies an input size of 28-by-28 pixels for a 3-channel image.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'NumFiltersInFirstBlock',32 creates a network with 32 filters in the first convolution
layer

NumDownsamplingBlocks — Number of downsampling blocks
2 (default) | positive integer

Number of downsampling blocks in the network encoder module, specified as a positive integer. In
total, the network downsamples the input by a factor of 2^NumDownsamplingBlocks. The decoder
module consists of the same number of upsampling blocks.

NumFiltersInFirstBlock — Number of filters in first convolution layer
64 (default) | positive even integer

1 Functions

1-596

Number of filters in the first convolution layer, specified as a positive even integer.

NumOutputChannels — Number of output channels
"auto" (default) | positive integer

Number of output channels, specified as "auto" or a positive integer. When you specify "auto", the
number of output channels is the same as the number of input channels.

FilterSizeInFirstAndLastBlocks — Filter size in first and last convolution layers
7 (default) | positive odd integer | 2-element vector of positive odd integers

Filter size in the first and last convolution layers, specified as a positive odd integer or 2-element
vector of positive odd integers of the form [height width]. When you specify the filter size as a scalar,
the filter has identical height and width.

FilterSizeInIntermediateBlocks — Filter size in intermediate convolution layers
3 (default) | 2-element vector of positive odd integers | positive odd integer

Filter size in intermediate convolution layers, specified as a positive odd integer or 2-element vector
of positive odd integers of the form [height width]. The intermediate convolution layers are the
convolution layers excluding the first and last convolution layer. When you specify the filter size as a
scalar, the filter has identical height and width. Typical values are between 3 and 7.

NumResidualBlocks — Number of residual blocks
9 (default) | positive integer

Number of residual blocks, specified as a positive integer. Typically, this value is set to 6 for images of
size 128-by-128 and 9 for images of size 256-by-256 or larger.

ConvolutionPaddingValue — Style of padding
"symmetric-exclude-edge" (default) | "replicate" | "symmetric-include-edge" | numeric
scalar

Style of padding used in the network, specified as one of these values.

PaddingValue Description Example
Numeric scalar Pad with the specified numeric

value
3 1 4
1 5 9
2 6 5

2 2 2 2 2 2 2
2 2 2 2 2 2 2
2 2 3 1 4 2 2
2 2 1 5 9 2 2
2 2 2 6 5 2 2
2 2 2 2 2 2 2
2 2 2 2 2 2 2

 cycleGANGenerator

1-597

PaddingValue Description Example
'symmetric-include-edge' Pad using mirrored values of the

input, including the edge values
3 1 4
1 5 9
2 6 5

5 1 1 5 9 9 5
1 3 3 1 4 4 1
1 3 3 1 4 4 1
5 1 1 5 9 9 5
6 2 2 6 5 5 6
6 2 2 6 5 5 6
5 1 1 5 9 9 5

'symmetric-exclude-edge' Pad using mirrored values of the
input, excluding the edge values

3 1 4
1 5 9
2 6 5

5 6 2 6 5 6 2
9 5 1 5 9 5 1
4 1 3 1 4 1 3
9 5 1 5 9 5 1
5 6 2 6 5 6 2
9 5 1 5 9 5 1
4 1 3 1 4 1 3

'replicate' Pad using repeated border
elements of the input

3 1 4
1 5 9
2 6 5

3 3 3 1 4 4 4
3 3 3 1 4 4 4
3 3 3 1 4 4 4
1 1 1 5 9 9 9
2 2 2 6 5 5 5
2 2 2 6 5 5 5
2 2 2 6 5 5 5

UpsampleMethod — Method used to upsample activations
"transposedConv" (default) | "bilinearResize" | "pixelShuffle"

Method used to upsample activations, specified as one of these values:

• "transposedConv" — Use a transposedConv2dLayer with a stride of [2 2]
• "bilinearResize" — Use a convolution2dLayer with a stride of [1 1] followed by a

resize2dLayer with a scale of [2 2]
• "pixelShuffle" — Use a convolution2dLayer with a stride of [1 1] followed by a

depthToSpace2dLayer with a block size of [2 2]

Data Types: char | string

ConvolutionWeightsInitializer — Weight initialization used in convolution layers
"narrow-normal" (default) | "glorot" | "he" | function

Weight initialization used in convolution layers, specified as "glorot", "he", "narrow-normal", or
a function handle. For more information, see “Specify Custom Weight Initialization Function” (Deep
Learning Toolbox).

ActivationLayer — Activation function
"relu" (default) | "leakyRelu" | "elu" | layer object

Activation function to use in the network, specified as one of these values. For more information and
a list of available layers, see “Activation Layers” (Deep Learning Toolbox).

1 Functions

1-598

• "relu" — Use a reluLayer
• "leakyRelu" — Use a leakyReluLayer with a scale factor of 0.2
• "elu" — Use an eluLayer
• A layer object

FinalActivationLayer — Activation function after final convolution
"tanh" (default) | "none" | "sigmoid" | "softmax" | layer object

Activation function after the final convolution layer, specified as one of these values. For more
information and a list of available layers, see “Output Layers” (Deep Learning Toolbox).

• "tanh" — Use a tanhLayer
• "sigmoid" — Use a sigmoidLayer
• "softmax" — Use a softmaxLayer
• "none" — Do not use a final activation layer
• A layer object

NormalizationLayer — Normalization operation
"instance" (default) | "none" | "batch" | layer object

Normalization operation to use after each convolution, specified as one of these values. For more
information and a list of available layers, see “Normalization, Dropout, and Cropping Layers” (Deep
Learning Toolbox).

• "instance" — Use an instanceNormalizationLayer
• "batch" — Use a batchNormalizationLayer
• "none" — Do not use a normalization layer
• A layer object

Dropout — Probability of dropout
0 (default) | number in the range [0, 1]

Probability of dropout, specified as a number in the range [0, 1]. If you specify a value of 0, then the
network does not include dropout layers. If you specify a value greater than 0, then the network
includes a dropoutLayer in each residual block.

NamePrefix — Prefix to all layer names
"" (default) | string | character vector

Prefix to all layer names in the network, specified as a string or character vector.
Data Types: char | string

Output Arguments
net — CycleGAN generator network
dlnetwork object

CycleGAN generator network, returned as a dlnetwork object.

 cycleGANGenerator

1-599

More About
CycleGAN Generator Network

A cycleGAN generator network consists of an encoder module followed by a decoder module. The
default network follows the architecture proposed by Zhu et. al. [1].

The encoder module downsamples the input by a factor of 2^NumDownsamplingBlocks. The
encoder module consists of an initial block of layers, NumDownsamplingBlocks downsampling
blocks, and NumResidualBlocks residual blocks. The decoder module upsamples the input by a
factor of 2^NumDownsamplingBlocks. The decoder module consists of NumDownsamplingBlocks
upsampling blocks and a final block.

The table describes the blocks of layers that comprise the encoder and decoder modules.

Block Type Layers Diagram of Default Block
Initial block • An imageInputLayer.

• A convolution2dLayer with a
stride of [1 1] and a filter size of
FilterSizeInFirstAndLastBlo
cks.

• An optional normalization layer,
specified by the
NormalizationLayer name-value
argument.

• An activation layer specified by the
ActivationLayer name-value
argument.

Downsampling
block

• A convolution2dLayer with a
stride of [2 2] to perform
downsampling. The convolution
layer has a filter size of
FilterSizeInIntermediateBlo
cks.

• An optional normalization layer,
specified by the
NormalizationLayer name-value
argument.

• An activation layer specified by the
ActivationLayer name-value
argument.

1 Functions

1-600

Block Type Layers Diagram of Default Block
Residual block • A convolution2dLayer with a

stride of [1 1] and a filter size of
FilterSizeInIntermediateBlo
cks.

• An optional normalization layer,
specified by the
NormalizationLayer name-value
argument.

• An activation layer specified by the
ActivationLayer name-value
argument.

• An optional dropoutLayer. By
default, residual blocks omit a
dropout layer. Include a dropout
layer by specifying the Dropout
name-value argument as a value in
the range (0, 1].

• A second convolution2dLayer.
• An optional second normalization

layer.
• An additionLayer that provides a

skip connection between every
block.

Upsampling block • An upsampling layer that upsamples
by a factor of 2 according to the
UpsampleMethod name-value
argument. The convolution layer
has a filter size of
FilterSizeInIntermediateBlo
cks.

• An optional normalization layer,
specified by the
NormalizationLayer name-value
argument.

• An activation layer specified by the
ActivationLayer name-value
argument.

Final block • A convolution2dLayer with a
stride of [1 1] and a filter size of
FilterSizeInFirstAndLastBlo
cks.

• An optional activation layer
specified by the
FinalActivationLayer name-
value argument.

 cycleGANGenerator

1-601

References
[1] Zhu, Jun-Yan, Taesung Park, Phillip Isola, and Alexei A. Efros. "Unpaired Image-to-Image

Translation Using Cycle-Consistent Adversarial Networks." In 2017 IEEE International
Conference on Computer Vision (ICCV), 2242–2251. Venice: IEEE, 2017. https://
ieeexplore.ieee.org/document/8237506.

[2] Zhu, Jun-Yan, Taesung Park, and Tongzhou Wang. "CycleGAN and pix2pix in PyTorch." https://
github.com/junyanz/pytorch-CycleGAN-and-pix2pix.

See Also
patchGANDiscriminator

Topics
“Get Started with GANs for Image-to-Image Translation”
“Create Modular Neural Networks”
“List of Deep Learning Layers” (Deep Learning Toolbox)

Introduced in R2021a

1 Functions

1-602

https://ieeexplore.ieee.org/document/8237506
https://ieeexplore.ieee.org/document/8237506
https://ieeexplore.ieee.org/document/8237506
https://ieeexplore.ieee.org/document/8237506

dct2
2-D discrete cosine transform

Syntax
B = dct2(A)
B = dct2(A,m,n)
B = dct2(A,[m n])

Description
B = dct2(A) returns the two-dimensional discrete cosine transform of A. The matrix B contains the
discrete cosine transform coefficients B(k1,k2).

B = dct2(A,m,n) and

B = dct2(A,[m n]) pad the matrix A with 0s to size m-by-n before applying the transformation. If m
or n is smaller than the corresponding dimension of A, then dct2 crops A before the transformation.

Examples

Remove High Frequencies in Image using 2-D DCT

Read an image into the workspace, then convert the image to grayscale.

RGB = imread('autumn.tif');
I = im2gray(RGB);

Perform a 2-D DCT of the grayscale image using the dct2 function.

J = dct2(I);

Display the transformed image using a logarithmic scale. Notice that most of the energy is in the
upper left corner.

imshow(log(abs(J)),[])
colormap parula
colorbar

 dct2

1-603

Set values less than magnitude 10 in the DCT matrix to zero.

J(abs(J) < 10) = 0;

Reconstruct the image using the inverse DCT function idct2. Rescale the values to the range [0, 1]
expected of images of data type double.

K = idct2(J);
K = rescale(K);

Display the original grayscale image alongside the processed image. The processed image has fewer
high frequency details, such as in the texture of the trees.

montage({I,K})
title('Original Grayscale Image (Left) and Processed Image (Right)');

1 Functions

1-604

Input Arguments
A — Input matrix
2-D numeric matrix

Input matrix, specified as a 2-D numeric matrix.

m — Number of image rows
size(A,1) (default) | positive integer

Number of image rows, specified as a positive integer. dct2 pads image A with 0s or truncates image
A so that it has m rows. By default, m is equal to size(A,1).

n — Number of image columns
size(A,2) (default) | positive integer

Number of image columns, specified as a positive integer. dct2 pads image A with 0s or truncates
image A so that it has n columns. By default, n is equal to size(A,2)

Output Arguments
B — Transformed matrix
m-by-n numeric matrix

Transformed matrix using a two-dimensional discrete cosine transform, returned as an m-by-n
numeric matrix.
Data Types: double

More About
Discrete Cosine Transform

The discrete cosine transform (DCT) is closely related to the discrete Fourier transform. It is a
separable linear transformation; that is, the two-dimensional transform is equivalent to a one-
dimensional DCT performed along a single dimension followed by a one-dimensional DCT in the other
dimension. The definition of the two-dimensional DCT for an input image A and output image B is

Bpq = αpαq ∑
m = 0

M − 1
∑

n = 0

N − 1
Amncosπ(2m + 1)p

2M cosπ(2n + 1)q
2N ,

0 ≤ p ≤ M − 1
0 ≤ q ≤ N − 1

where

αp =

1
M , p = 0

2
M , 1 ≤ p ≤ M − 1

and

αq =

1
N , q = 0

2
N , 1 ≤ q ≤ N‐1

 dct2

1-605

M and N are the row and column size of A, respectively.

Tips
• If you apply the DCT to real data, the result is also real. The DCT tends to concentrate

information, making it useful for image compression applications.
• To invert the DCT transformation, use idct2.

References
[1] Jain, Anil K., Fundamentals of Digital Image Processing, Englewood Cliffs, NJ, Prentice Hall, 1989,

pp. 150–153.

[2] Pennebaker, William B., and Joan L. Mitchell, JPEG: Still Image Data Compression Standard, Van
Nostrand Reinhold, 1993.

See Also
fft2 | idct2 | ifft2

Introduced before R2006a

1 Functions

1-606

dctmtx
Discrete cosine transform matrix

Syntax
D = dctmtx(n)

Description
D = dctmtx(n) returns the n-by-n discrete cosine transform (DCT) matrix, which you can use to
perform a 2-D DCT on an image.

Examples

Calculate Discrete Cosine Transform Matrix

Read an image into the workspace and cast it to class double.

A = im2double(imread('rice.png'));
imshow(A)

Calculate the discrete cosine transform matrix.

D = dctmtx(size(A,1));

 dctmtx

1-607

Multiply the input image A by D to get the DCT of the columns of A, and by D' to get the inverse DCT
of the columns of A.

dct = D*A*D';
imshow(dct)

Input Arguments
n — Size of DCT matrix
positive integer

Size of DCT matrix, specified as a positive integer.
Data Types: double

Output Arguments
D — DCT matrix
numeric matrix

DCT matrix, returned as a numeric matrix of size n-by-n.
Data Types: double

Tips
• If you have an n-by-n image, A, then D*A is the DCT of the columns of A and D'*A is the inverse

DCT of the columns of A.

1 Functions

1-608

• The two-dimensional DCT of A can be computed as D*A*D'. This computation is sometimes faster
than using dct2, especially if you are computing a large number of small DCTs, because D needs
to be determined only once.

For example, in JPEG compression, the DCT of each 8-by-8 block is computed. To perform this
computation, use dctmtx to determine D, and then calculate each DCT using D*A*D' (where A is
each 8-by-8 block). This is faster than calling dct2 for each individual block.

See Also
dct2

Introduced before R2006a

 dctmtx

1-609

decompose
Return sequence of decomposed structuring elements

Syntax
SEQ = decompose(SE)

Description
SEQ = decompose(SE) returns an array of structuring elements, SEQ, that are the decomposition of
the structuring element SE. SEQ is equivalent to SE, but the elements of SEQ cannot be decomposed
further.

Examples

View Decomposition of Structuring Element

Create a disk-shaped structuring element.

se = strel('square',5)

se =
strel is a square shaped structuring element with properties:

 Neighborhood: [5x5 logical]
 Dimensionality: 2

Extract the decomposition of the structuring element.

seq = decompose(se)

seq =
 2x1 strel array with properties:

 Neighborhood
 Dimensionality

To see that dilating sequentially with the decomposed structuring elements really does form a 5-by-5
square, use imdilate with the full option.

imdilate(1,seq,'full')

ans = 5×5

 1 1 1 1 1
 1 1 1 1 1
 1 1 1 1 1
 1 1 1 1 1
 1 1 1 1 1

1 Functions

1-610

Extract Decomposition of Structuring Element

Create a ball-shaped structuring element.

se = offsetstrel('ball',5, 6.5)

se =
offsetstrel is a ball shaped offset structuring element with properties:

 Offset: [11x11 double]
 Dimensionality: 2

Obtain the decomposition of the structuring element.

seq = decompose(se)

seq =
 1x8 offsetstrel array with properties:

 Offset
 Dimensionality

Input Arguments
SE — Structuring element
strel or offsetstrel object

Structuring element, specified as a strel or offsetstrel object.

Output Arguments
SEQ — Sequence of structuring elements
array of strel or offsetstrel objects

Sequence of structuring elements that approximate the desired shape, returned as an array of strel
or offsetstrel objects.

See Also
Topics
“Structuring Elements”

Introduced before R2006a

 decompose

1-611

deconvblind
Deblur image using blind deconvolution

Syntax
[J,psfr] = deconvblind(I,psfi)
[J,psfr] = deconvblind(I,psfi,iter)
[J,psfr] = deconvblind(I,psfi,iter,dampar)
[J,psfr] = deconvblind(I,psfi,iter,dampar,weight)
[J,psfr] = deconvblind(I,psfi,iter,dampar,weight,readout)
[J,psfr] = deconvblind(___ ,fun)

Description
[J,psfr] = deconvblind(I,psfi) deconvolves image I using the maximum likelihood algorithm
and an initial estimate of the point-spread function (PSF), psfi. The deconvblind function returns
both the deblurred image J and a restored PSF, psfr.

To improve the restoration, deconvblind supports several optional parameters, described below.
Use [] as a placeholder if you do not specify an intermediate parameter.

[J,psfr] = deconvblind(I,psfi,iter) specifies the number of iterations, iter.

[J,psfr] = deconvblind(I,psfi,iter,dampar) controls noise amplification by suppressing
iterations for pixels that deviate a small amount compared to the noise, specified by the damping
threshold dampar. By default, no damping occurs.

[J,psfr] = deconvblind(I,psfi,iter,dampar,weight) specifies which pixels in the input
image I are considered in the restoration. The value of an element in the weight array determines
how much the pixel at the corresponding position in the input image is considered. For example, to
exclude a pixel from consideration, assign it a value of 0 in the weight array. You can adjust the
weight value assigned to each pixel according to the amount of flat-field correction.

[J,psfr] = deconvblind(I,psfi,iter,dampar,weight,readout) specifies the additive
noise (such as background and foreground noise) and the variance of the read-out camera noise,
readout.

[J,psfr] = deconvblind(___ ,fun), where fun is a handle to a function that describes
additional constraints on the PSF. fun is called at the end of each iteration. For more information
about function handles, see “Create Function Handle”.

Examples

Deblur an Image Using Blind Deconvolution

Create a sample image with noise.

% Set the random number generator back to its default settings for
% consistency in results.

1 Functions

1-612

rng default;

I = checkerboard(8);
PSF = fspecial('gaussian',7,10);
V = .0001;
BlurredNoisy = imnoise(imfilter(I,PSF),'gaussian',0,V);

Create a weight array to specify which pixels are included in processing.

WT = zeros(size(I));
WT(5:end-4,5:end-4) = 1;
INITPSF = ones(size(PSF));

Perform blind deconvolution.

[J P] = deconvblind(BlurredNoisy,INITPSF,20,10*sqrt(V),WT);

Display the results.

subplot(221);imshow(BlurredNoisy);
title('A = Blurred and Noisy');
subplot(222);imshow(PSF,[]);
title('True PSF');
subplot(223);imshow(J);
title('Deblurred Image');
subplot(224);imshow(P,[]);
title('Recovered PSF');

 deconvblind

1-613

Input Arguments
I — Blurry image
numeric array | cell array

Blurry image, specified as a numeric array of any dimension. You can also specify the image as a cell
array to enable interrupted iterations. For more information, see “Tips” on page 1-615.
Data Types: single | double | int16 | uint8 | uint16

psfi — Initial estimate of PSF
numeric array

Initial estimate of PSF, specified as a numeric array. The PSF restoration is affected strongly by the
size of the initial guess psfi and less by the values it contains. For this reason, specify an array of 1s
as your psfi.

You can also specify psfi as a cell array to enable interrupted iterations. For more information, see
“Tips” on page 1-615.
Data Types: single | double | int16 | uint8 | uint16

iter — Number of iterations
10 (default) | positive integer

Number of iterations, specified as a positive integer.
Data Types: double

dampar — Threshold for damping
0 (default) | numeric scalar

Threshold for damping, specified as a numeric scalar. Damping occurs for pixels whose deviation
between iterations is less than the threshold. dampar has the same data type as I.

weight — Weight of each pixel
numeric array

Weight value of each pixel, specified as a numeric array with values in the range [0, 1]. weight has
the same size as the input image, I. By default, all elements in weight have the value 1, so all pixels
are considered equally in the restoration.
Data Types: double

readout — Noise
0 (default) | numeric scalar | numeric array

Noise, specified as a numeric scalar or numeric array. The value of readout corresponds to the
additive noise (such as noise from the foreground and background) and the variance of the read-out
camera noise. readout has the same data type as I.

fun — Function handle
handle

Function handle, specified as a handle. fun must accept the PSF as its first argument. The function
must return one argument: a PSF that is the same size as the original PSF and that satisfies the
positivity and normalization constraints.

1 Functions

1-614

Output Arguments
J — Deblurred image
numeric array | 1-by-4 cell array

Deblurred image, returned as a numeric array or a 1-by-4 cell array. J (or J{1} when J is a cell
array) has the same data type as I. For more information about returning J as a cell array for
interrupted iterations, see “Tips” on page 1-615.

psfr — Restored PSF
array of positive numbers | 1-by-4 cell array

Restored PSF, returned as an array of positive numbers or a 1-by-4 cell array. psfr has the same size
as the initial estimate of the PSF, psfi, and it is normalized so the sum of elements is 1. For more
information about returning psfr as a cell array for interrupted iterations, see “Tips” on page 1-
615.
Data Types: double

Tips
• You can use deconvblind to perform a deconvolution that starts where a previous deconvolution

stopped. To use this feature, pass the input image I and the initial guess at the PSF, psfi, as cell
arrays: {I} and {psfi}. When you do, the deconvblind function returns the output image J
and the restored point-spread function, psfr, as cell arrays, which can then be passed as the
input arrays into the next deconvblind call. The output cell array J contains four elements:

J{1} contains I, the original image.

J{2} contains the result of the last iteration.

J{3} contains the result of the next-to-last iteration.

J{4} is an array generated by the iterative algorithm.
• The output image J could exhibit ringing introduced by the discrete Fourier transform used in the

algorithm. To reduce the ringing, use I = edgetaper(I,psfi) before calling deconvblind.

References
[1] D.S.C. Biggs and M. Andrews, Acceleration of iterative image restoration algorithms, Applied

Optics, Vol. 36, No. 8, 1997.

[2] R.J. Hanisch, R.L. White, and R.L. Gilliland, Deconvolutions of Hubble Space Telescope Images
and Spectra, Deconvolution of Images and Spectra, Ed. P.A. Jansson, 2nd ed., Academic Press,
CA, 1997.

[3] Timothy J. Holmes, et al, Light Microscopic Images Reconstructed by Maximum Likelihood
Deconvolution, Handbook of Biological Confocal Microscopy, Ed. James B. Pawley, Plenum
Press, New York, 1995.

See Also
deconvlucy | deconvreg | deconvwnr | edgetaper | imnoise | otf2psf | padarray | psf2otf

 deconvblind

1-615

Topics
“Deblurring Images Using the Blind Deconvolution Algorithm”
“Image Deblurring”
“Adapt Blind Deconvolution for Various Image Distortions”

Introduced before R2006a

1 Functions

1-616

deconvlucy
Deblur image using Lucy-Richardson method

Syntax
J = deconvlucy(I,psf)
J = deconvlucy(I,psf,iter)
J = deconvlucy(I,psf,iter,dampar)
J = deconvlucy(I,psf,iter,dampar,weight)
J = deconvlucy(I,psf,iter,dampar,weight,readout)
J = deconvlucy(I,psf,iter,dampar,weight,readout,subsample)

Description
J = deconvlucy(I,psf) restores image I that was degraded by convolution with a point-spread
function (PSF), psf, and possibly by additive noise. The algorithm is based on maximizing the
likelihood that the resulting image J is an instance of the original image I under Poisson statistics.

To improve the restoration, deconvlucy supports several optional parameters, described below. Use
[] as a placeholder if you do not specify an intermediate parameter.

J = deconvlucy(I,psf,iter) specifies the number of iterations, iter.

J = deconvlucy(I,psf,iter,dampar) controls noise amplification by suppressing iterations for
pixels that deviate a small amount compared to the noise, specified by the damping threshold
dampar. By default, no damping occurs.

J = deconvlucy(I,psf,iter,dampar,weight) specifies which pixels in the input image I are
considered in the restoration. The value of an element in the weight array determines how much the
pixel at the corresponding position in the input image is considered. For example, to exclude a pixel
from consideration, assign it a value of 0 in the weight array. You can adjust the weight value
assigned to each pixel according to the amount of flat-field correction.

J = deconvlucy(I,psf,iter,dampar,weight,readout) specifies the additive noise (such as
background or foreground noise) and variance of the read-out camera noise, readout.

J = deconvlucy(I,psf,iter,dampar,weight,readout,subsample) uses subsampling when
the PSF is given on a grid that is subsample times finer than the image.

Examples

Remove Gaussian Blur Using deconvlucy

Read and display a pristine image that does not have blur or noise. This example optionally crops the
image to a size of 256-by-256 with the top-left (x,y) coordinate at (2,50).

I = imread('board.tif');
I = imcrop(I,[2 50 255 255]);

 deconvlucy

1-617

Use deconvlucy to restore the blurred and noisy image. Specify the PSF used to create the blur and
decrease the number of iterations to 5.

luc1 = deconvlucy(blurred_noisy,PSF,5);
imshow(luc1)
title('Restored Image')

 deconvlucy

1-619

Remove Blur Using Several deconvlucy Optional Syntaxes

Create a sample image and blur it.

I = checkerboard(8);
PSF = fspecial('gaussian',7,10);
V = .0001;
BlurredNoisy = imnoise(imfilter(I,PSF),'gaussian',0,V);

Create a weight array and call deconvlucy using several optional parameters.

WT = zeros(size(I));
WT(5:end-4,5:end-4) = 1;
J1 = deconvlucy(BlurredNoisy,PSF);
J2 = deconvlucy(BlurredNoisy,PSF,20,sqrt(V));
J3 = deconvlucy(BlurredNoisy,PSF,20,sqrt(V),WT);

Display the results.

subplot(221);imshow(BlurredNoisy);
title('A = Blurred and Noisy');
subplot(222);imshow(J1);
title('deconvlucy(A,PSF)');
subplot(223);imshow(J2);
title('deconvlucy(A,PSF,NI,DP)');
subplot(224);imshow(J3);
title('deconvlucy(A,PSF,NI,DP,WT)');

1 Functions

1-620

Input Arguments
I — Blurry image
numeric array | cell array

Blurry image, specified as a numeric array of any dimension. You can also specify the image as a cell
array to enable interrupted iterations. For more information, see “Tips” on page 1-622.
Data Types: single | double | int16 | uint8 | uint16

psf — PSF
numeric array

PSF, specified as a numeric array.
Data Types: single | double | int16 | uint8 | uint16

iter — Number of iterations
10 (default) | positive integer

Number of iterations, specified as a positive integer.
Data Types: double

dampar — Threshold for damping
0 (default) | numeric scalar

Threshold for damping, specified as a numeric scalar. Damping occurs for pixels whose deviation
between iterations is less than the threshold. dampar has the same data type as I.

weight — Weight of each pixel
numeric array

Weight value of each pixel, specified as a numeric array with values in the range [0, 1]. weight has
the same size as the input image, I. By default, all elements in weight have the value 1, so all pixels
are considered equally in the restoration.
Data Types: double

readout — Noise
0 (default) | numeric scalar | numeric array

Noise, specified as a numeric scalar or numeric array. The value of readout corresponds to the
additive noise (such as noise from the foreground and background) and the variance of the read-out
camera noise. readout has the same data type as I.

subsample — Subsampling
1 (default) | positive scalar

Subsampling, specified as a positive scalar.
Data Types: double

 deconvlucy

1-621

Output Arguments
J — Deblurred image
numeric array | 1-by-4 cell array

Deblurred image, returned as a numeric array or a 1-by-4 cell array. J (or J{1} when J is a cell
array) has the same data type as I. For more information about returning J as a cell array for
interrupted iterations, see “Tips” on page 1-622.

Tips
• You can use deconvlucy to perform a deconvolution that starts where a previous deconvolution

stopped. To use this feature, pass the input image I as a cell array, {I}. When you do, the
deconvlucy function returns the output image J as a cell array, which you can then pass as the
input array into the next deconvlucy call. The output cell array J contains four elements:

J{1} contains I, the original image.

J{2} contains the result of the last iteration.

J{3} contains the result of the next-to-last iteration.

J{4} is an array generated by the iterative algorithm.
• The output image J could exhibit ringing introduced by the discrete Fourier transform used in the

algorithm. To reduce the ringing, use I = edgetaper(I,psf) before calling deconvlucy.
• deconvlucy converts the PSF to double without normalization.
• deconvlucy may return values in the output image that are beyond the range of the input image.

References
[1] D.S.C. Biggs and M. Andrews, Acceleration of iterative image restoration algorithms, Applied

Optics, Vol. 36, No. 8, 1997.

[2] R.J. Hanisch, R.L. White, and R.L. Gilliland, Deconvolutions of Hubble Space Telescope Images
and Spectra, Deconvolution of Images and Spectra, Ed. P.A. Jansson, 2nd ed., Academic Press,
CA, 1997.

See Also
deconvblind | deconvreg | deconvwnr | edgetaper | otf2psf | padarray | psf2otf

Topics
“Deblurring Images Using the Lucy-Richardson Algorithm”
“Image Deblurring”
“Adapt the Lucy-Richardson Deconvolution for Various Image Distortions”

Introduced before R2006a

1 Functions

1-622

deconvreg
Deblur image using regularized filter

Syntax
J = deconvreg(I,psf)
J = deconvreg(I,psf,np)
J = deconvreg(I,psf,np,lrange)
J = deconvreg(I,psf,np,lrange,regop)
[J,lagra] = deconvreg(___)

Description
J = deconvreg(I,psf) deconvolves image I using the regularized filter algorithm, returning
deblurred image J. The assumption is that the image I was created by convolving a true image with a
point-spread function (PSF), psf, and possibly by adding noise. The algorithm is a constrained
optimum in the sense of least square error between the estimated and the true images under
requirement of preserving image smoothness.

J = deconvreg(I,psf,np) specifies the additive noise power, np.

J = deconvreg(I,psf,np,lrange) specifies the range, lrange, where the search for the optimal
solution is performed. The algorithm finds an optimal Lagrange multiplier lagra within the lrange
range.

J = deconvreg(I,psf,np,lrange,regop) constrains the deconvolution using regularization
operator regop. The default regularization operator is the Laplacian operator, to retain the image
smoothness.

[J,lagra] = deconvreg(___) outputs the value of the Lagrange multiplier, lagra in addition to
the restored image, J.

Examples

Deblur Image Using Regularized Filter

Create sample image.

I = checkerboard(8);

Create PSF and use it to create a blurred and noisy version of the input image.

PSF = fspecial('gaussian',7,10);
V = .01;
BlurredNoisy = imnoise(imfilter(I,PSF),'gaussian',0,V);
NOISEPOWER = V*prod(size(I));

Deblur the image.

[J LAGRA] = deconvreg(BlurredNoisy,PSF,NOISEPOWER);

 deconvreg

1-623

Display the various versions of the image.

subplot(221); imshow(BlurredNoisy);
title('A = Blurred and Noisy');
subplot(222); imshow(J);
title('[J LAGRA] = deconvreg(A,PSF,NP)');
subplot(223); imshow(deconvreg(BlurredNoisy,PSF,[],LAGRA/10));
title('deconvreg(A,PSF,[],0.1*LAGRA)');
subplot(224); imshow(deconvreg(BlurredNoisy,PSF,[],LAGRA*10));
title('deconvreg(A,PSF,[],10*LAGRA)');

Input Arguments
I — Blurry image
numeric array

Blurry image, specified as a numeric array of any dimension.
Data Types: single | double | int16 | uint8 | uint16

psf — PSF
numeric array

PSF, specified as a numeric array.
Data Types: double

1 Functions

1-624

np — Noise power
0 (default) | numeric scalar

Noise power, specified as a numeric scalar.
Data Types: double

lrange — Search range
[1e-9 1e9] (default) | numeric scalar | 2-element numeric vector

Search range, specified as a numeric scalar or a 2-element numeric vector. If lrange is a scalar, then
the algorithm assumes that lagra is equal to lrange. If you specify lagra, then the function
ignores the np value
Data Types: double

regop — Regularization operator
numeric array

Regularization operator, specified as a numeric array. The regop array dimensions must not exceed
the dimensions of the image, I. Any nonsingleton dimensions must correspond to the nonsingleton
dimensions of psf.
Data Types: double

Output Arguments
J — Deblurred image
numeric array

Deblurred image, returned as a numeric array. J has the same data type as I.

lagra — Lagrange multiplier
numeric scalar

Lagrange multiplier, returned as a numeric scalar.

Tips
• The output image J could exhibit ringing introduced by the discrete Fourier transform used in the

algorithm. To reduce the ringing, use I = edgetaper(I,psf) before calling deconvreg.

References
[1] Gonzalez, R. C., and R. E. Woods. Digital Image Processing. Addison-Wesley Publishing Company,

Inc., 1992.

See Also
deconvblind | deconvlucy | deconvwnr | edgetaper | otf2psf | padarray | psf2otf

Topics
“Deblur Images Using Regularized Filter”
“Image Deblurring”

 deconvreg

1-625

Introduced before R2006a

1 Functions

1-626

deconvwnr
Deblur image using Wiener filter

Syntax
J = deconvwnr(I,psf,nsr)
J = deconvwnr(I,psf,ncorr,icorr)
J = deconvwnr(I,psf)

Description
J = deconvwnr(I,psf,nsr) deconvolves image I using the Wiener filter algorithm, returning
deblurred image J. psf is the point-spread function (PSF) with which I was convolved. nsr is the
noise-to-signal power ratio of the additive noise. The algorithm is optimal in a sense of least mean
square error between the estimated and the true images.

J = deconvwnr(I,psf,ncorr,icorr) deconvolves image I, where ncorr is the autocorrelation
function of the noise and icorr is the autocorrelation function of the original image.

J = deconvwnr(I,psf) deconvolves image I using the Wiener filter algorithm with no estimated
noise. In the absence of noise, a Wiener filter is equivalent to an ideal inverse filter.

Examples

Deblur Image Using Wiener Filter

Read image into the workspace and display it.

I = im2double(imread('cameraman.tif'));
imshow(I);
title('Original Image (courtesy of MIT)');

 deconvwnr

1-627

Simulate a motion blur.

LEN = 21;
THETA = 11;
PSF = fspecial('motion', LEN, THETA);
blurred = imfilter(I, PSF, 'conv', 'circular');
figure, imshow(blurred)

1 Functions

1-628

Simulate additive noise.

noise_mean = 0;
noise_var = 0.0001;
blurred_noisy = imnoise(blurred, 'gaussian', ...
 noise_mean, noise_var);
figure, imshow(blurred_noisy)
title('Simulate Blur and Noise')

Try restoration assuming no noise.

estimated_nsr = 0;
wnr2 = deconvwnr(blurred_noisy, PSF, estimated_nsr);
figure, imshow(wnr2)
title('Restoration of Blurred, Noisy Image Using NSR = 0')

 deconvwnr

1-629

Try restoration using a better estimate of the noise-to-signal-power ratio.

estimated_nsr = noise_var / var(I(:));
wnr3 = deconvwnr(blurred_noisy, PSF, estimated_nsr);
figure, imshow(wnr3)
title('Restoration of Blurred, Noisy Image Using Estimated NSR');

1 Functions

1-630

Input Arguments
I — Blurry image
numeric array

Blurry image, specified as a numeric array of any dimension.
Data Types: single | double | int16 | uint8 | uint16

psf — Point-spread function
numeric array

Point-spread function, specified as a numeric array.
Data Types: double

nsr — Noise-to-signal ratio
0 | nonnegative scalar

Noise-to-signal ratio, specified as a nonnegative scalar or numeric array of the same size as the
image, I. If nsr is an array, then it represents the spectral domain. Specifying 0 for the nsr is
equivalent to creating an ideal inverse filter.
Data Types: double

ncorr — Autocorrelation function of the noise
numeric array

Autocorrelation function of the noise, specified as a numeric array of any size or dimension, not
exceeding the original image.

• If the dimensionality of ncorr matches the dimensionality of the image I, then the values
correspond to the autocorrelation within each dimension.

• If ncorr is a vector and psf is also a vector, then the values in ncorr represent the
autocorrelation function in the first dimension.

• If ncorr is a vector and psf is an array, then the 1-D autocorrelation function is extrapolated by
symmetry to all non-singleton dimensions of psf.

• If ncorr is a scalar, then the value represents the power of the image noise.

Data Types: double

icorr — Autocorrelation function of the image
numeric array

Autocorrelation function of the image, specified as a numeric array of any size or dimension, not
exceeding the original image.

• If the dimensionality of icorr matches the dimensionality of the image I, then the values
correspond to the autocorrelation within each dimension.

• If icorr is a vector and psf is also a vector, then the values in icorr represent the
autocorrelation function in the first dimension.

• If icorr is a vector and psf is an array, then the 1-D autocorrelation function is extrapolated by
symmetry to all non-singleton dimensions of psf.

 deconvwnr

1-631

• If icorr is a scalar, then the value represents the power of the image noise.

Data Types: double

Output Arguments
J — Deblurred image
numeric array

Deblurred image, returned as a numeric array. J has the same data type as I.

Tips
• The output image J could exhibit ringing introduced by the discrete Fourier transform used in the

algorithm. To reduce the ringing, use I = edgetaper(I,psf) before calling deconvwnr.

References
[1] Gonzalez, R. C., and R. E. Woods. Digital Image Processing. Addison-Wesley Publishing Company,

Inc., 1992.

See Also
deconvblind | deconvlucy | deconvreg | edgetaper | otf2psf | padarray | psf2otf

Topics
“Deblur Images Using a Wiener Filter”
“Image Deblurring”

Introduced before R2006a

1 Functions

1-632

decorrstretch
Apply decorrelation stretch to multichannel image

Syntax
S = decorrstretch(A)
S = decorrstretch(A,Name,Value)

Description
S = decorrstretch(A) applies a decorrelation stretch to RGB or multispectral image A and
returns the result in S. The mean and variance in each band of S are the same as in A.

The primary purpose of decorrelation stretch is visual enhancement. Decorrelation stretching is a
way to enhance the color differences in an image.

S = decorrstretch(A,Name,Value) uses name-value pairs to control aspects of the
decorrelation stretch, such as the target mean and standard deviation of each band.

Examples

Highlight Color Differences in Forest Scene

This example shows how to use decorrelation stretching to highlight elements in a forest image by
exaggerating the color differences.

Read an image into the workspace.

[X, map] = imread('forest.tif');

Apply decorrelation stretching using decorrstretch.

S = decorrstretch(ind2rgb(X,map),'tol',0.01);

Display the original image and the enhanced image.

figure
imshow(X,map)
title('Original Image')

 decorrstretch

1-633

figure
imshow(S)
title('Enhanced Image')

1 Functions

1-634

Input Arguments
A — Image to be enhanced
RGB image | multispectral image

Image to be enhanced, specified as an RGB image or multispectral image of size m-by-n-by-nBands.
For an RGB image, nBands = 3.
Data Types: single | double | int16 | uint8 | uint16

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Mode','covariance'

Mode — Decorrelation method
'correlation' (default) | 'covariance'

Decorrelation method, specified as the comma-separated pair consisting of 'Mode' and of the
following values.

• 'correlation' — Uses the eigen decomposition of the band-to-band correlation matrix.
• 'covariance' — Uses the eigen decomposition of the band-to-band covariance matrix.

 decorrstretch

1-635

Data Types: char | string

TargetMean — Target mean values
real scalar | vector of length nBands

Target mean values of the output bands, specified as the comma-separated pair consisting of
'TargetMean' and a real scalar or vector of length nBands. By default, TargetMean is an 1-by-
nBands vector containing the sample mean of each band, which preserves the band-wise means
before and after the decorrelation stretch.

TargetMean must be of class double, but uses the same values as the pixels in the input image. For
example, if A is class uint8, then 127.5 would be a reasonable value. If values need to be clamped
to the standard range of the input/output image class, it can impact the results.
Data Types: double

TargetSigma — Target standard deviation values
positive scalar | vector of length nBands

Target standard deviation values of the output bands, specified as the comma-separated pair
consisting of 'TargetSigma' and a positive scalar or vector of length nBands. By default,
TargetSigma is an 1-by-nBands vector containing the sample standard deviation of each band,
which preserves the band-wise variance before and after the decorrelation stretch. The target
standard deviation is ignored for uniform (zero-variance) bands.

TargetSigma must be class double, but uses the same values as the pixels in the input image. For
example, if A is of class uint8, then 50.0 would be a reasonable value.
Data Types: double

Tol — Linear contrast stretch
numeric scalar | 2-element numeric vector

Linear contrast stretch following the decorrelation stretch, specified as the comma-separated pair
consisting of 'Tol' and a numeric scalar or 2-element numeric vector of class double. Specifying a
value of Tol overrides the value of TargetMean or TargetSigma. If you do not specify Tol, then by
default decorrstretch does not perform linear contrast stretch.

Tol has the same meaning as in stretchlim, where Tol = [LOW_FRACT HIGH_FRACT] specifies
the fraction of the image to saturate at low and high intensities. If you specify Tol as a scalar value,
then LOW_FRACT = Tol and HIGH_FRACT = 1 - Tol, saturating equal fractions at low and high
intensities.

Small adjustments to Tol can strongly affect the visual appearance of the output.
Data Types: double

SampleSubs — Subset of A used to compute the band-means, covariance, and correlation
cell array containing two arrays of pixel subscripts {rowsubs, colsubs}

Subset of A used to compute the band-means, covariance, and correlation, specified as a cell array
containing two arrays of pixel subscripts {rowsubs, colsubs}. rowsubs and colsubs are vectors
or matrices of matching size that contain row and column subscripts, respectively.

1 Functions

1-636

Use this option to reduce the amount of computation, to keep invalid or non-representative pixels
from affecting the transformation, or both. For example, you can use rowsubs and colsubs to
exclude areas of cloud cover. If not specified, decorrstretch uses all the pixels in A.
Data Types: double

Output Arguments
S — Decorrelation stretched image
numeric array

Decorrelation stretched image, returned as a numeric array of the same size and class as the input
image, A.

Tips
• The results of a straight decorrelation (without the contrast stretch option) may include values

that fall outside the numerical range supported by the class uint8 or uint16 (negative values, or
values exceeding 255 or 65535, respectively). In these cases, decorrstretch clamps its output
to the supported range.

• For class double, decorrstretch clamps the output only when you provide a value for Tol,
specifying a linear contrast stretch followed by clamping to the interval [0 1].

• The optional parameters do not interact, except that a linear stretch usually alters both the band-
wise means and band-wise standard deviations. Thus, while you can specify TargetMean and
TargetSigma along with Tol, their effects will be modified.

Algorithms
A decorrelation stretch is a linear, pixel-wise operation in which the specific parameters depend on
the values of actual and desired (target) image statistics. The vector a containing the value of a given
pixel in each band of the input image A is transformed into the corresponding pixel b in output image
B as follows:

b = T * (a - m) + m_target.

a and b are nBands-by-1 vectors, T is an nBands-by-nBands matrix, and m and m_target are
nBands-by-1 vectors such that

• m contains the mean of each band in the image, or in a subset of image pixels that you specify
• m_target contains the desired output mean in each band. The default choice is m_target = m.

The linear transformation matrix T depends on the following:

• The band-to-band sample covariance of the image, or of a subset of the image that you specify (the
same subset as used for m), represented by matrix Cov

• A desired output standard deviation in each band. This is conveniently represented by a diagonal
matrix, SIGMA_target. The default choice is SIGMA_target = SIGMA, where SIGMA is the
diagonal matrix containing the sample standard deviation of each band. SIGMA should be
computed from the same pixels that were used for m and Cov, which means simply that:

SIGMA(k,k) = sqrt(Cov(k,k), k = 1,..., nBands).

 decorrstretch

1-637

Cov, SIGMA, and SIGMA_target are nBands-by-nBands, as are the matrices Corr, LAMBDA, and V,
defined below.

The first step in computing T is to perform an eigen-decomposition of either the covariance matrix
Cov or the correlation matrix

Corr = inv(SIGMA) * Cov * inv(SIGMA).

• In the correlation-based method, Corr is decomposed: Corr = V LAMBDA V'.
• In the covariance-based method, Cov is decomposed: Cov = V LAMBDA V'.

LAMBDA is a diagonal matrix of eigenvalues and V is the orthogonal matrix that transforms either
Corr or Cov to LAMBDA.

The next step is to compute a stretch factor for each band, which is the inverse square root of the
corresponding eigenvalue. It is convenient to define a diagonal matrix S containing the stretch
factors, such that:

S(k,k) = 1 / sqrt(LAMBDA(k,k)).

Finally, matrix T is computed from either

T = SIGMA_target V S V' inv(SIGMA) (correlation-based method)

or

T = SIGMA_target V S V' (covariance-based method).

The two methods yield identical results if the band variances are uniform.

Substituting T into the expression for b:

b = m_target + SIGMA_target V S V' inv(SIGMA) * (a - m)

or

b = m_target + SIGMA_target V S V' * (a - m)

and reading from right to left, you can see that the decorrelation stretch:

1 Removes a mean from each band
2 Normalizes each band by its standard deviation (correlation-based method only)
3 Rotates the bands into the eigenspace of Corr or Cov
4 Applies a stretch S in the eigenspace, leaving the image decorrelated and normalized in the

eigenspace
5 Rotates back to the original band-space, where the bands remain decorrelated and normalized
6 Rescales each band according to SIGMA_target
7 Restores a mean in each band.

See Also
stretchlim | imadjust

1 Functions

1-638

Introduced before R2006a

 decorrstretch

1-639

deltaE
Color difference based on CIE76 standard

Syntax
dE = deltaE(I1,I2)
dE = deltaE(I1,I2,'isInputLab',isLab)

Description
dE = deltaE(I1,I2) calculates the color difference between two RGB images or sets of colors
using the CIE76 standard.

dE = deltaE(I1,I2,'isInputLab',isLab) also specifies whether the input color data is in the
RGB color space or the L*a*b* color space.

Examples

Calculate Color Difference of Two Colors using CIE76 Standard

Specify two RGB color values.

pureRed = uint8([255 0 0]);
darkRed = uint8([255 10 50]);

Calculate the color difference of the colors.

dE = deltaE(pureRed,darkRed)

dE = single
 18.6206

Calculate Color Difference of RGB Images

Read a color image into the workspace.

I1 = imread('peppers.png');
imshow(I1)

1 Functions

1-640

Alter the local color contrast in the image.

I2 = localcontrast(I1);
imshow(I2)

 deltaE

1-641

Calculate the color difference of the images.

dE = deltaE(I1,I2);

Display the color difference as an image. The maximum value of dE exceeds the range [0, 1] expected
of images of data type single, so display the image using the full display range of the data. Bright
pixels indicate a large color difference and therefore a larger amount of contrast enhancement.

imshow(dE,[])

1 Functions

1-642

Calculate Color Difference of L*a*b* Images

Read and display an image of tissue stained with hemotoxylin and eosin (H&E).

he = imread('hestain.png');
imshow(he)

 deltaE

1-643

Convert the image to the L*a*b* color space.

lab = rgb2lab(he);

Make a copy of the image, then increase the signal of the a* channel. Red tones in the image become
more saturated while the image overall brightness and the blue tones are unchanged.

lab2 = lab;
scaleFactor = 1.2;
lab2(:,:,2) = scaleFactor*lab(:,:,2);

Calculate the color difference of the original and enhanced image in the L*a*b* color space.

dE = imcolordiff(lab,lab2,'isInputLab',true);

Display the color difference as an image. Scale the display range to match the range of pixel values in
dE. Bright regions indicate the greatest color difference and correspond with the pink regions of
tissue.

imshow(dE,[])

1 Functions

1-644

Input Arguments
I1 — First set of color data
m-by-n-by-3 numeric array | c-by-3 numeric matrix

First set of color data, specified as an m-by-n-by-3 numeric array representing an image or a c-by-3
numeric matrix representing a set of c colors. I1 and I2 must be the same size with values in the
same color space.

By default, the deltaE function interprets the color data as RGB color values. To calculate the color
difference in the L*a*b* color space, specify the isLab argument as true. L*a*b* color values can be
of data type single or double only.
Data Types: single | double | uint8 | uint16

I2 — Second set of color data
m-by-n-by-3 numeric array | c-by-3 numeric matrix

Second set of color data, specified as an m-by-n-by-3 numeric array representing an image or a c-by-3
numeric matrix representing a set of c colors. I1 and I2 must be the same size with values in the
same color space.

By default, the deltaE function interprets the color data as RGB color values. To calculate the color
difference in the L*a*b* color space, specify the isLab argument as true. L*a*b* color values can be
of data type single or double only.
Data Types: single | double | uint8 | uint16

isLab — Color values are in L*a*b* color space
false or 0 (default) | true or 1

Color values are in the L*a*b* color space, specified as a numeric or logical 0 (false) or 1 (true).

 deltaE

1-645

Output Arguments
dE — Color difference
m-by-n matrix | c-element column vector

Color difference (delta E), returned as one of the following.

• An m-by-n matrix when the input color data I1 and I2 represent images
• A c-element column vector when I1 and I2 represent a set of c colors

If I1 or I2 is of data type double, then dE is of data type double. Otherwise, dE is of data type
single.
Data Types: single | double

Tips
• To improve the accuracy of the color difference calculation, use the imcolordiff function. This

function follows the CIE94 and CIEDE2000 standards and offers parameters to improve
perceptual uniformity for different applications.

See Also
imcolordiff | colorangle | measureColor

Topics
“Understanding Color Spaces and Color Space Conversion”

Introduced in R2020b

1 Functions

1-646

demosaic
Convert Bayer pattern encoded image to truecolor image

Syntax
RGB = demosaic(I,sensorAlignment)

Description
RGB = demosaic(I,sensorAlignment) converts the Bayer pattern encoded image, I, to the
truecolor image, RGB, using gradient-corrected linear interpolation. sensorAlignment specifies the
Bayer pattern.

A Bayer filter mosaic, or color filter array, refers to the arrangement of color filters that let each
sensor in a single-sensor digital camera record only red, green, or blue data. The patterns emphasize
the number of green sensors to mimic the human eye's greater sensitivity to green light. The
demosaic function uses interpolation to convert the two-dimensional Bayer-encoded image into the
truecolor image.

Examples

Convert a Bayer Pattern Encoded Image To an RGB Image

Convert a Bayer pattern encoded image that was photographed by a camera with a sensor alignment
of 'bggr' .

I = imread('mandi.tif');
J = demosaic(I,'bggr');
imshow(I);

 demosaic

1-647

figure, imshow(J);

1 Functions

1-648

Input Arguments
I — Bayer-pattern encoded image
M-by-N array of intensity values

Bayer-pattern encoded image, specified as an M-by-N array of intensity values. I must have at least 5
rows and 5 columns.
Data Types: uint8 | uint16 | uint32

sensorAlignment — Bayer pattern
'gbrg' | 'grbg' | 'bggr' | 'rggb'

Bayer pattern, specified as one of the values in the following table. Each value represents the order of
the red, green, and blue sensors by describing the four pixels in the upper-left corner of the image
(left-to-right, top-to-bottom).

 demosaic

1-649

Pattern 2–by-2 Sensor Alignment
'gbrg'

'grbg'

'bggr'

'rggb'

Data Types: char | string

Output Arguments
RGB — RGB image
M-by-N-by-3 numeric array

RGB image, returned as an M-by-N-by-3 numeric array the same class as I.

References
[1] Malvar, H.S., L. He, and R. Cutler, High quality linear interpolation for demosaicing of Bayer-

patterned color images. ICASPP, Volume 34, Issue 11, pp. 2274-2282, May 2004.

1 Functions

1-650

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• demosaic supports the generation of C code (requires MATLAB Coder). For more information,
see “Code Generation for Image Processing”.

• sensorAlignment must be a compile-time constant.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• sensorAlignment must be a compile-time constant.

See Also

Introduced in R2007b

 demosaic

1-651

depthToSpace
Rearrange dlarray data from depth dimension into spatial blocks

Syntax
Y = depthToSpace(X,blockSize)
Y = depthToSpace(X,blockSize,Name,Value)

Description
Y = depthToSpace(X,blockSize) rearranges data of the formatted dlarray object, X, from the
depth dimension into spatial blocks of size blockSize.

Given an input feature map of size [H W C*height*width] and blocks of size [height width], the
output feature map size is [H*height W*width C].

This function requires Deep Learning Toolbox.

Y = depthToSpace(X,blockSize,Name,Value) modifies aspects of the depth-to-space
rearranging operation using name-value arguments. If X is an unformatted dlarray, then you must
specify the DataFormat name-value pair argument.

Examples

Rearrange Formatted dlarray Data from Depth to Spatial Dimension

Create a numeric array of height 2 and width 2 that simulates the depthwise concatenation of blocks
of size 2-by-2.

X = reshape(1:48,2,2,12);

Create a dlarray object that contains the numeric data, specifying the format of the data as 'SSC'
(spatial, spatial, channel).

X = dlarray(X,'SSC')

X =
 2(S) x 2(S) x 12(C) dlarray

(:,:,1) =

 1 3
 2 4

(:,:,2) =

 5 7
 6 8

1 Functions

1-652

(:,:,3) =

 9 11
 10 12

(:,:,4) =

 13 15
 14 16

(:,:,5) =

 17 19
 18 20

(:,:,6) =

 21 23
 22 24

(:,:,7) =

 25 27
 26 28

(:,:,8) =

 29 31
 30 32

(:,:,9) =

 33 35
 34 36

(:,:,10) =

 37 39
 38 40

(:,:,11) =

 41 43
 42 44

(:,:,12) =

 45 47

 depthToSpace

1-653

 46 48

 2(S) x 2(S) x 12(C) dlarray

Specify a 2-by-2 block size for reordering input activations.

blockSize = 2;

Rearrange blocks of data from the depth dimension to the spatial dimensions.

Z = depthToSpace(X,blockSize)

Z =
 4(S) x 4(S) x 3(C) dlarray

(:,:,1) =

 1 13 3 15
 25 37 27 39
 2 14 4 16
 26 38 28 40

(:,:,2) =

 5 17 7 19
 29 41 31 43
 6 18 8 20
 30 42 32 44

(:,:,3) =

 9 21 11 23
 33 45 35 47
 10 22 12 24
 34 46 36 48

Rearrange Unformatted Data from Depth to Spatial Dimensions

Create a numeric array of height 2 and width 2 that simulates the depthwise concatenation of blocks
of size 2-by-2.

X = reshape(1:48,2,2,12);

Create an unformatted dlarray object that contains the numeric data.

dlX = dlarray(X);

Specify a 2-by-2 block size for reordering input activations.

blockSize = 2;

1 Functions

1-654

Rearrange blocks of data from the depth dimension to the spatial dimensions, specifying the data
format. Order the data by column, row, and then depth.

dlZ = depthToSpace(dlX,blockSize,"DataFormat","SSC","Mode","CRD")

dlZ =
 4x4x3 dlarray

(:,:,1) =

 1 5 3 7
 9 13 11 15
 2 6 4 8
 10 14 12 16

(:,:,2) =

 17 21 19 23
 25 29 27 31
 18 22 20 24
 26 30 28 32

(:,:,3) =

 33 37 35 39
 41 45 43 47
 34 38 36 40
 42 46 44 48

Input Arguments
X — Deep learning data to rearrange
dlarray object

Deep learning data to rearrange, specified as a dlarray object.

blockSize — Block size to reorder input activation
positive integer | vector of two positive integers

Block size to reorder the input activation, specified as a positive integer or vector of two positive
integers of the form [h w], where h is the height and w is the width. When you specify blockSize
as a scalar, the function uses the same value for both dimensions.
Example: [2 4] specifies blocks of height 2 and width 4.
Example: 32 specifies blocks of height and width 32.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

 depthToSpace

1-655

Example: 'DataFormat',"SSC" specifies an array with two spatial dimensions and one channel
dimension, appropriate for 2-D RGB image data.

DataFormat — Dimension labels
"SSCB" (default) | string scalar | character vector

Dimension labels when the input deep learning data X is unlabeled, specified as a string scalar or
character vector. The number of labels must match the number of dimensions of the input data, X.
Each character in 'DataFormat' must be one of these labels:

• S — Spatial
• C — Channel
• B — Batch observations

The "T" (time or sequence) and "U" (unspecified) labels are not supported. Do not specify the
'DataFormat' argument when the input deep learning data is a formatted dlarray object.
Example: "SSCB" indicates the array has two spatial dimensions, one channel dimension, and one
batch dimension.
Data Types: char | string

Mode — Order of rearranged dimensions
"DCR" (default) | "CRD"

Order of rearranged dimensions from the input deep learning data X, specified as "DCR" or "CRD".
When you specify "DCR", the function orders data by depth, column, and then row. When you specify
"CRD", the function orders data by column, row, and then depth.
Data Types: char | string

Output Arguments
Y — Rearranged deep learning data
dlarray object

Rearranged deep learning data, returned as a dlarray object.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on a GPU”.

See Also
spaceToDepth | dlresize

Topics
“List of Functions with dlarray Support” (Deep Learning Toolbox)

Introduced in R2021a

1 Functions

1-656

denoiseImage
Denoise image using deep neural network

Syntax
B = denoiseImage(A,net)

Description
B = denoiseImage(A,net) estimates denoised image B from noisy image A using a denoising deep
neural network specified by net.

This function requires that you have Deep Learning Toolbox.

Examples

Remove Image Noise Using Pretrained Neural Network

Load the pretrained denoising convolutional neural network, 'DnCNN'.

net = denoisingNetwork('DnCNN');

Load a grayscale image into the workspace, then create a noisy version of the image.

I = imread('cameraman.tif');
noisyI = imnoise(I,'gaussian',0,0.01);

Display the two images as a montage.

montage({I,noisyI})
title('Original Image (Left) and Noisy Image (Right)')

 denoiseImage

1-657

Remove noise from the noisy image, then display the result.

denoisedI = denoiseImage(noisyI,net);
imshow(denoisedI)
title('Denoised Image')

1 Functions

1-658

Input Arguments
A — Noisy image
2-D image | stack of 2-D images

Noisy image, specified as a single 2-D image or a stack of 2-D images. A can be:

• A 2-D grayscale image with size m-by-n.
• A 2-D multichannel image with size m-by-n-by-c, where c is the number of image channels. For

example, c is 3 for RGB images, and 4 for four-channel images such as RGB images with an
infrared channel.

• A stack of equally-sized 2-D images. In this case, A has size m-by-n-by-c-by-p, where p is the
number of images in the stack.

Data Types: single | double | uint8 | uint16

net — Denoising deep neural network
SeriesNetwork object

Denoising deep neural network, specified as a SeriesNetwork object. The network should be
trained to handle images with the same channel format as A.

Output Arguments
B — Denoised image
2-D image | stack of 2-D images

Denoised image, returned as a single 2-D image or a stack of 2-D images. B has the same size and
data type as A.

See Also
denoisingNetwork | dnCNNLayers | denoisingImageDatastore

Topics
“Train and Apply Denoising Neural Networks”

Introduced in R2017b

 denoiseImage

1-659

denoisingImageDatastore
Denoising image datastore

Description
Use a denoisingImageDatastore object to generate batches of noisy image patches and
corresponding noise patches from images in an ImageDatastore. The patches are used to train a
denoising deep neural network.

This object requires that you have Deep Learning Toolbox.

Note When you use a denoising image datastore as a source of training data, the datastore adds
random noise to the image patches for each epoch, so that each epoch uses a slightly different data
set. The actual number of training images at each epoch is increased by a factor of
PatchesPerImage. The noisy image patches and corresponding noise patches are not stored in
memory.

Creation

Syntax
dnimds = denoisingImageDatastore(imds)
dnimds = denoisingImageDatastore(imds,Name,Value)

Description

dnimds = denoisingImageDatastore(imds) creates a denoising image datastore, dnimds using
images from image datastore imds. To generate noisy image patches, the denoising image datastore
randomly crops pristine images from imds then adds zero-mean Gaussian white noise with a
standard deviation of 0.1 to the image patches.

dnimds = denoisingImageDatastore(imds,Name,Value) uses name-value pairs to specify the
two-dimensional image patch size or to set the PatchesPerImage, GaussianNoiseLevel,
ChannelFormat, and DispatchInBackground properties. You can specify multiple name-value
pairs. Enclose each argument or property name in quotes.

For example, denoisingImageDatastore(imds,'PatchesPerImage',40) creates a denoising
image datastore and randomly generates 40 noisy patches from each image in the image datastore,
imds.

Input Arguments

imds — Image datastore
ImageDatastore object

Image datastore, specified as an ImageDatastore object.

1 Functions

1-660

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: denoisingImageDatastore(imds,'patchSize',48) creates a denoising image
datastore that has a square patch size of 48 pixels.

patchSize — Patch size
50 (default) | scalar | 2-element vector

Patch size, specified as the comma-separated pair consisting of 'patchSize' and a scalar or 2-
element vector with positive integer values. This argument sets the first two elements of the
PatchSize property.

• If 'patchSize' is a scalar, then the patches are square.
• If 'patchSize' is a 2-element vector of the form [r c], then the first element specifies the

number of rows in the patch, and the second element specifies the number of columns.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Properties
ChannelFormat — Channel format
'grayscale' (default) | 'rgb'

Channel format, specified as 'grayscale' or 'rgb'.
Data Types: char

DispatchInBackground — Dispatch observations in background
false (default) | true

Dispatch observations in the background during training, prediction, and classification, specified as
false or true. To use background dispatching, you must have Parallel Computing Toolbox. If
DispatchInBackground is true and you have Parallel Computing Toolbox, then
denoisingImageDatastore asynchronously reads patches, adds noise, and queues patch pairs.

GaussianNoiseLevel — Gaussian noise standard deviation
0.1 (default) | scalar | 2-element vector

Gaussian noise standard deviation as a fraction of the image class maximum, specified as a scalar or
2-element vector with values in the range [0, 1].

• If GaussianNoiseLevel is a scalar, then the standard deviation of the added zero-mean
Gaussian white noise is identical for all image patches.

• If GaussianNoiseLevel is a 2-element vector, then it specifies a range of standard deviations
[stdmin stdmax]. The standard deviation of the added zero-mean Gaussian white noise is unique
for each image patch, and is randomly sampled from a uniform distribution with the range [stdmin
stdmax].

Data Types: single | double

 denoisingImageDatastore

1-661

MiniBatchSize — Number of observations in each batch
128 | positive integer

Number of observations that are returned in each batch. You can change the value of
MiniBatchSize only after you create the datastore. For training, prediction, or classification, the
MiniBatchSize property is set to the mini-batch size defined in trainingOptions.

NumObservations — Total number of observations in the datastore
positive integer

This property is read-only.

Total number of observations in the denoising image datastore. The number of observations is the
length of one training epoch.

PatchesPerImage — Number of random patches per image
512 (default) | positive integer

Number of random patches per image, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

PatchSize — Patch size
[50 50 1] (default) | 3-element vector of positive integers

This property is read-only.

Patch size, specified as a 3-element vector of positive integers. If you create a denoising image
datastore by specifying a 'patchSize' name-value pair argument, then the first two elements of the
PatchSize property are set according to the value of the patchSize argument.

The ChannelFormat property determines the third element of the PatchSize property.

• If ChannelFormat is 'Grayscale', then all color images are converted to grayscale and the
third element of PatchSize is 1.

• If ChannelFormat is 'RGB', then grayscale images are replicated to simulate an RGB image and
the third element of PatchSize is 3.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Object Functions
combine Combine data from multiple datastores
hasdata Determine if data is available to read
partitionByIndex Partition denoisingImageDatastore according to indices
preview Preview subset of data in datastore
read Read data from denoisingImageDatastore
readall Read all data in datastore
readByIndex Read data specified by index from denoisingImageDatastore
reset Reset datastore to initial state
shuffle Shuffle data in datastore
transform Transform datastore
isPartitionable Determine whether datastore is partitionable
isShuffleable Determine whether datastore is shuffleable

1 Functions

1-662

Examples

Create Denoising Image Datastore

Get an image datastore. The datastore in this example contains color images.

setDir = fullfile(toolboxdir('images'),'imdata');
imds = imageDatastore(setDir,'FileExtensions',{'.jpg'});

Create a denoisingImageDatastore object that creates many patches from each image in the
image datastore, and adds Gaussian noise to the patches. Set the optional PatchesPerImage,
PatchSize, GaussianNoiseLevel, and ChannelFormat properties of the
denoisingImageDatastore using name-value pairs. When you set the ChannelFormat property to
'grayscale', the denoisingImageDatastore converts all color images to grayscale.

dnds = denoisingImageDatastore(imds,...
 'PatchesPerImage',512,...
 'PatchSize',50,...
 'GaussianNoiseLevel',[0.01 0.1],...
 'ChannelFormat','grayscale')

dnds =
 denoisingImageDatastore with properties:

 PatchesPerImage: 512
 PatchSize: [50 50 1]
 GaussianNoiseLevel: [0.0100 0.1000]
 ChannelFormat: 'grayscale'
 MiniBatchSize: 128
 NumObservations: 19456
 DispatchInBackground: 0

Tips
• Training a deep neural network for a range of Gaussian noise standard deviations is a much more
difficult problem than training a network for a single Gaussian noise standard deviation. You
should create more patches compared to a single noise level case, and training might take more
time.

• To visualize the data in a denoising image datastore, you can use the preview function, which
returns a subset of data in a table. The input variable contains the noisy image patches and the
response variable contains the corresponding noise patches. Visualize all of the noisy image
patches or noise patches in the same figure by using the montage function. For example, this code
displays data in a denoising image datastore called dnimds.

minibatch = preview(dnimds);
montage(minibatch.input)
figure
montage(minibatch.response)

• Each time images are read from the denoising image datastore, a different random amount of
Gaussian noise is added to each image.

 denoisingImageDatastore

1-663

See Also
denoiseImage | denoisingNetwork | dnCNNLayers | trainNetwork

Topics
“Train and Apply Denoising Neural Networks”

Introduced in R2018a

1 Functions

1-664

partitionByIndex
Partition denoisingImageDatastore according to indices

Syntax
dnimds2 = partitionByIndex(dnimds,ind)

Description
dnimds2 = partitionByIndex(dnimds,ind) partitions a subset of observations in a denoising
image datastore, dnimds, into a new datastore, dnimds2. The desired observations are specified by
indices, ind.

Input Arguments
dnimds — Denoising image datastore
denoisingImageDatastore

Denoising image datastore, specified as a denoisingImageDatastore object.

ind — Indices
vector of positive integers

Indices of observations, specified as a vector of positive integers.

Output Arguments
dnimds2 — Output datastore
denoisingImageDatastore object

Output datastore, returned as a denoisingImageDatastore object containing a subset of files from
dnimds.

See Also
denoisingImageDatastore | read | readall | readByIndex

Introduced in R2018a

 partitionByIndex

1-665

read
Read data from denoisingImageDatastore

Syntax
data = read(dnimds)
[data,info] = read(dnimds)

Description
data = read(dnimds) returns a batch of data from a denoising image datastore, dnimds.
Subsequent calls to the read function continue reading from the endpoint of the previous call.

[data,info] = read(dnimds) also returns information about the extracted data, including
metadata, in info.

Input Arguments
dnimds — Denoising image datastore
denoisingImageDatastore

Denoising image datastore, specified as a denoisingImageDatastore object. The datastore
specifies a MiniBatchSize number of observations in each batch, and a numObservations total
number of observations.

Output Arguments
data — Output data
table

Output data, returned as a table with MiniBatchSize number of rows.

For the last batch of data in the datastore dnimds, if numObservations is not cleanly divisible by
MiniBatchSize, then read returns a partial batch containing all the remaining observations in the
datastore.

info — Information about read data
structure array

Information about read data, returned as a structure array. The structure array can contain the
following fields.

Field Name Description
CurrentFileIndices Current read index of the denoising image datastore.

See Also
denoisingImageDatastore | read (Datastore) | readByIndex | readall

1 Functions

1-666

Introduced in R2018a

 read

1-667

readByIndex
Read data specified by index from denoisingImageDatastore

Syntax
data = readByIndex(dnimds,ind)
[data,info] = readByIndex(dnimds,ind)

Description
data = readByIndex(dnimds,ind) returns a subset of observations from a denoising image
datastore, dnimds. The desired observations are specified by indices, ind.

[data,info] = readByIndex(dnimds,ind) also returns information about the observations,
including metadata, in info.

Input Arguments
dnimds — Denoising image datastore
denoisingImageDatastore

Denoising image datastore, specified as a denoisingImageDatastore object.

ind — Indices
vector of positive integers

Indices of observations, specified as a vector of positive integers.

Output Arguments
data — Observations from datastore
table

Observations from the datastore, returned as a table with length(ind) number of rows.

info — Information about read data
structure array

Information about read data, returned as a structure array. The structure array can contain the
following fields.

Field Name Description
CurrentFileIndices Numeric vector containing the indices of all read files

of the denoising image datastore.

See Also
denoisingImageDatastore | read | readall | partitionByIndex

1 Functions

1-668

Introduced in R2018a

 readByIndex

1-669

denoisingImageSource
(To be removed) Create denoising image datastore

Note denoisingImageSource will be removed in a future release. Use
denoisingImageDatastore instead. For more information, see Compatibility Considerations.

Syntax
dnimds = denoisingImageSource(imds)
dnimds = denoisingImageSource(imds,Name,Value)

Description
dnimds = denoisingImageSource(imds) creates a denoising image datastore, dnimds, that
generates pairs of randomly cropped pristine and noisy image patches from images in image
datastore imds.

dnimds = denoisingImageSource(imds,Name,Value) sets properties on page 1-661 of the
denoising image datastore using name-value pairs. You can specify multiple name-value pairs.
Enclose each argument name in quotes.

Examples
Create Denoising Image Datastore Using denoisingImageSource

Get an image datastore. This datastore contains RGB images.

setDir = fullfile(toolboxdir('images'),'imdata');
imds = imageDatastore(setDir,'FileExtensions',{'.jpg'});

Create a denoisingImageDatastore object using the denoisingImageSource function. The
image datastore creates many patches from each image in the datastore, and adds Gaussian noise to
the patches. Set the optional PatchesPerImage, PatchSize, GaussianNoiseLevel, and
ChannelFormat properties of the denoisingImageDatastore using name-value pairs.

dnimds = denoisingImageSource(imds,...
 'PatchesPerImage',512,...
 'PatchSize',50,...
 'GaussianNoiseLevel',[0.01 0.1],...
 'ChannelFormat','RGB')

dnimds =
 denoisingImageDatastore with properties:

 PatchesPerImage: 512
 PatchSize: [50 50 3]
 GaussianNoiseLevel: [0.0100 0.1000]
 ChannelFormat: 'rgb'
 MiniBatchSize: 128
 NumObservations: 18944

1 Functions

1-670

 DispatchInBackground: 0

Input Arguments
imds — Image datastore
ImageDatastore object

Image datastore, specified as an ImageDatastore object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'PatchSize',48 creates a denoising image datastore that has a square patch size of 48
pixels.

PatchSize — Patch size
50 (default) | scalar | 2-element vector

Patch size, specified as the comma-separated pair consisting of 'patchSize' and a scalar or 2-
element vector with positive integer values. This argument sets the first two elements of the
PatchSize on page 1-0 property of the returned denoising image datastore, dnimds.

• When 'PatchSize' is a scalar, the patches are square
• When 'PatchSize' is a 2-element vector of the form [r c], the first element specifies the number

of rows in the patch, and the second element specifies the number of columns

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

PatchesPerImage — Number of random patches per image
512 (default) | positive integer

Number of random patches per image, specified as the comma-separated pair consisting of
'PatchesPerImage' and a positive integer. This argument sets the PatchesPerImage on page
1-0 property of the returned denoising image datastore, dnimds.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

GaussianNoiseLevel — Gaussian noise standard deviation
0.1 (default) | scalar | 2-element vector

Gaussian noise standard deviation as a fraction of the image class maximum, specified as the comma-
separated pair consisting of 'GaussianNoiseLevel' and a scalar or 2-element vector with values in
the range [0, 1]. This argument sets the GaussianNoiseLevel on page 1-0 property of the
returned denoising image datastore, dnimds.

• If GaussianNoiseLevel is a scalar, then the standard deviation of the added zero-mean
Gaussian white noise is identical for all image patches.

• If GaussianNoiseLevel is a 2-element vector, then it specifies a range of standard deviations
[stdmin stdmax]. The standard deviation of the added zero-mean Gaussian white noise is unique
for each image patch, and is randomly sampled from a uniform distribution with the range [stdmin
stdmax].

 denoisingImageSource

1-671

Data Types: single | double

ChannelFormat — Channel format
'Grayscale' (default) | 'RGB'

Channel format, specified as the comma-separated pair consisting of 'ChannelFormat' and
'Grayscale' or 'RGB'. This argument sets the ChannelFormat on page 1-0 property of the
returned denoising image datastore, dnimds.
Data Types: char

BackgroundExecution — Preprocess training patches in parallel
false (default) | true

Preprocess training patches in parallel, specified as the comma-separated pair consisting of
'BackgroundExecution' and true or false. This argument sets the DispatchInBackground
on page 1-0 property of the returned denoising image datastore, dnimds. If
BackgroundExecution is true and you have Parallel Computing Toolbox, then the denoising image
datastore asynchronously reads patches, adds noise, and queues patch pairs.
Data Types: char

Output Arguments
dnimds — Denoising image datastore
denoisingImageDatastore object

Denoising image datastore, returned as an denoisingImageDatastore object.

Compatibility Considerations
denoisingImageSource object is removed

In R2017b, you could create a denoisingImageSource object for training deep learning networks.
Starting in R2018a, the denoisingImageSource object has been removed. Use a
denoisingImageDatastore object instead.

A denoisingImageDatastore has additional properties and methods to assist with data
preprocessing. Unlike denoisingImageSource, which could be used for training only, you can use a
denoisingImageDatastore for both training and prediction.

To create a denoisingImageDatastore object, you can use either the
denoisingImageDatastore function (recommended) or the denoisingImageSource function.

denoisingImageSource function will be removed
Not recommended starting in R2018a

The denoisingImageSource function will be removed in a future release. Create a
denoisingImageDatastore using the denoisingImageDatastore function instead.

To update your code, change instances of the function name denoisingImageSource to
denoisingImageDatastore. You do not need to change the input arguments.

1 Functions

1-672

See Also
denoisingImageDatastore

Introduced in R2017b

 denoisingImageSource

1-673

denoisingNetwork
Get image denoising network

Syntax
net = denoisingNetwork(modelName)

Description
net = denoisingNetwork(modelName) returns a pretrained image denoising deep neural
network specified by modelName.

This function requires that you have Deep Learning Toolbox.

Examples

Get Pretrained Image Denoising Network

Get the pretrained image denoising convolutional neural network, 'DnCNN'.

net = denoisingNetwork('DnCNN')

net =
 SeriesNetwork with properties:

 Layers: [59x1 nnet.cnn.layer.Layer]
 InputNames: {'InputLayer'}
 OutputNames: {'FinalRegressionLayer'}

See denoiseImage for an example of how to denoise an image using the pretrained network.

Input Arguments
modelName — Name of neural network
'DnCnn'

Name of pretrained denoising deep neural network, specified as the character vector 'DnCnn'. This
is the only pretrained denoising network currently available, and it is trained for grayscale images
only.
Data Types: char | string

Output Arguments
net — Denoising deep neural network
SeriesNetwork object

Pretrained denoising deep neural network, returned as a SeriesNetwork object.

1 Functions

1-674

References
[1] Zhang, K., W. Zuo, Y. Chen, D. Meng, and L. Zhang. "Beyond a Gaussian Denoiser: Residual

Learning of Deep CNN for Image Denoising." IEEE Transactions on Image Processing. Vol.
26, Number 7, Feb. 2017, pp. 3142-3155.

See Also
denoiseImage | dnCNNLayers | denoisingImageDatastore

Topics
“Train and Apply Denoising Neural Networks”

Introduced in R2017b

 denoisingNetwork

1-675

dice
Sørensen-Dice similarity coefficient for image segmentation

Syntax
similarity = dice(BW1,BW2)
similarity = dice(L1,L2)
similarity = dice(C1,C2)

Description
similarity = dice(BW1,BW2) computes the Sørensen-Dice similarity coefficient between binary
images BW1 and BW2.

similarity = dice(L1,L2) computes the Dice index for each label in label images L1 and L2.

similarity = dice(C1,C2) computes the Dice index for each category in categorical images C1
and C2.

Examples

Compute Dice Similarity Coefficient for Binary Segmentation

Read an image with an object to segment. Convert the image to grayscale, and display the result.

A = imread('hands1.jpg');
I = im2gray(A);
figure
imshow(I)
title('Original Image')

1 Functions

1-676

Use active contours (snakes) to segment the hand.

mask = false(size(I));
mask(25:end-25,25:end-25) = true;
BW = activecontour(I, mask, 300);

Read in the ground truth segmentation.

BW_groundTruth = imread('hands1-mask.png');

Compute the Dice index of the active contours segmentation against the ground truth.

similarity = dice(BW, BW_groundTruth);

Display the masks on top of each other. Colors indicate differences in the masks.

figure
imshowpair(BW, BW_groundTruth)
title(['Dice Index = ' num2str(similarity)])

 dice

1-677

Compute Dice Similarity Coefficient for Multi-Region Segmentation

This example shows how to segment an image into multiple regions. The example then computes the
Dice similarity coefficient for each region.

Read an image with several regions to segment.

RGB = imread('yellowlily.jpg');

Create scribbles for three regions that distinguish their typical color characteristics. The first region
classifies the yellow flower. The second region classifies the green stem and leaves. The last region
classifies the brown dirt in two separate patches of the image. Regions are specified by a 4-element
vector, whose elements indicate the x- and y-coordinate of the upper left corner of the ROI, the width
of the ROI, and the height of the ROI.

region1 = [350 700 425 120]; % [x y w h] format
BW1 = false(size(RGB,1),size(RGB,2));
BW1(region1(2):region1(2)+region1(4),region1(1):region1(1)+region1(3)) = true;

region2 = [800 1124 120 230];
BW2 = false(size(RGB,1),size(RGB,2));
BW2(region2(2):region2(2)+region2(4),region2(1):region2(1)+region2(3)) = true;

region3 = [20 1320 480 200; 1010 290 180 240];
BW3 = false(size(RGB,1),size(RGB,2));
BW3(region3(1,2):region3(1,2)+region3(1,4),region3(1,1):region3(1,1)+region3(1,3)) = true;
BW3(region3(2,2):region3(2,2)+region3(2,4),region3(2,1):region3(2,1)+region3(2,3)) = true;

Display the seed regions on top of the image.

1 Functions

1-678

imshow(RGB)
hold on
visboundaries(BW1,'Color','r');
visboundaries(BW2,'Color','g');
visboundaries(BW3,'Color','b');
title('Seed Regions')

 dice

1-679

Segment the image into three regions using geodesic distance-based color segmentation.

1 Functions

1-680

L = imseggeodesic(RGB,BW1,BW2,BW3,'AdaptiveChannelWeighting',true);

Load a ground truth segmentation of the image.

L_groundTruth = double(imread('yellowlily-segmented.png'));

Visually compare the segmentation results with the ground truth.

figure
montage({label2rgb(L),label2rgb(L_groundTruth)})
title('Comparison of Segmentation Results (Left) and Ground Truth (Right)')

Compute the Dice similarity index for each segmented region. The Dice similarity index is noticeably
smaller for the second region. This result is consistent with the visual comparison of the
segmentation results, which erroneously classifies the dirt in the lower right corner of the image as
leaves.

similarity = dice(L, L_groundTruth)

similarity = 3×1

 0.9396
 0.7247
 0.9139

 dice

1-681

Input Arguments
BW1 — First binary image
logical array

First binary image, specified as a logical array of any dimension.
Data Types: logical

BW2 — Second binary image
logical array

Second binary image, specified as a logical array of the same size as BW1.
Data Types: logical

L1 — First label image
array of nonnegative integers

First label image, specified as an array of nonnegative integers, of any dimension.
Data Types: double

L2 — Second label image
array of nonnegative integers

Second label image, specified as an array of nonnegative integers, of the same size as L1.
Data Types: double

C1 — First categorical image
categorical array

First categorical image, specified as a categorical array of any dimension.
Data Types: category

C2 — Second categorical image
categorical array

Second categorical image, specified as a categorical array of the same size as C1.
Data Types: category

Output Arguments
similarity — Dice similarity coefficient
numeric scalar | numeric vector

Dice similarity coefficient, returned as a numeric scalar or numeric vector with values in the range [0,
1]. A similarity of 1 means that the segmentations in the two images are a perfect match. If the
input arrays are:

• binary images, similarity is a scalar.
• label images, similarity is a vector, where the first coefficient is the Dice index for label 1, the

second coefficient is the Dice index for label 2, and so on.

1 Functions

1-682

• categorical images, similarity is a vector, where the first coefficient is the Dice index for the
first category, the second coefficient is the Dice index for the second category, and so on.

Data Types: double

More About
Dice Similarity Coefficient

The Dice similarity coefficient of two sets A and B is expressed as:

dice(A,B) = 2 * | intersection(A,B) | / (| A | + | B |)
where |A| represents the cardinal of set A. The Dice index can also be expressed in terms of true
positives (TP), false positives (FP) and false negatives (FN) as:

dice(A,B) = 2 * TP / (2 * TP + FP + FN)

The Dice index is related to the Jaccard index according to:
dice(A,B) = 2 * jaccard(A,B) / (1 + jaccard(A,B))

See Also
jaccard | bfscore

Introduced in R2017b

 dice

1-683

dicomanon
Anonymize DICOM file

Syntax
dicomanon(file_in,file_out)
dicomanon(___ ,'keep',fields)
dicomanon(___ ,'update',attributes)
dicomanon(___ ,Name,Value)

Description
dicomanon(file_in,file_out) removes confidential medical information from the DICOM file
file_in and creates a new file file_out with the modified values. Image data and other attributes
are unmodified.

dicomanon(___ ,'keep',fields) modifies all of the confidential data except for those listed in
fields. This syntax is useful for keeping metadata that does not uniquely identify the patient but is
useful for diagnostic purposes (such as PatientAge and PatientSex).

Note Keeping certain fields might compromise patient confidentiality.

dicomanon(___ ,'update',attributes) modifies the confidential data and updates particular
confidential data listed in attributes. Use this syntax to preserve the Study/Series/Image hierarchy
or to replace a specific value with a more generic property (such as removing PatientBirthDate
but keeping a computed PatientAge).

dicomanon(___ ,Name,Value) uses name-value pairs to provide additional options to the parser.

Examples

Remove All Confidential Metadata from DICOM File

Create a version of a DICOM file with all the personal information removed.

dicomanon('US-PAL-8-10x-echo.dcm','US-PAL-anonymized.dcm');

Create a version of a DICOM file with personal information removed, keeping certain fields that could
be useful for training.

dicomanon('US-PAL-8-10x-echo.dcm','US-PAL-anonymized.dcm','keep',...
 {'PatientAge','PatientSex','StudyDescription'})

Anonymize a series of images, keeping the hierarchy.

values.StudyInstanceUID = dicomuid;
values.SeriesInstanceUID = dicomuid;

1 Functions

1-684

d = dir('*.dcm');
for p = 1:numel(d)
 dicomanon(d(p).name, sprintf('anon%d.dcm', p), ...
 'update', values)
end

Input Arguments
file_in — Name of DICOM file to read
character vector | string scalar

Name of DICOM file to read, specified as a character vector or string scalar.
Data Types: char | string

file_out — Name of anonymized DICOM file to write
character vector | string scalar

Name of anonymized DICOM file to write, specified as a character vector or string scalar.
Data Types: char | string

fields — Names of fields to preserve
cell array

Names of the fields to preserve, specified as a cell array of field names.

attributes — Names of the attributes to preserve
structure

Names of the attributes to preserve, specified as a structure whose fields are attribute names. The
structure values are the attribute values to preserve.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: dicomanon('CT-MONO2-16-ankle.dcm','CT-MONO2-16-
ankle_anon.dcm','UseVRHeuristic',false)

WritePrivate — Write nonstandard attributes to the anonymized file
false (default) | true

Write nonstandard attributes to the anonymized file, specified as the comma-separated pair
consisting of 'WritePrivate' and false or true.

When set to true, then dicomanon includes private extensions in the file, which could compromise
patient confidentiality.
Data Types: logical

UseVRHeuristic — Read noncompliant DICOM files that switch VR modes incorrectly
true (default) | false

 dicomanon

1-685

Read noncompliant DICOM files that switch value representation (VR) modes incorrectly, specified as
the comma-separated pair consisting of 'UseVRHeuristic' and true or false.

When 'UseVRHeuristic' is true (the default), then dicomanon instructs the parser to use a
heuristic to help read certain noncompliant files which switch value representation (VR) modes
incorrectly. A small number of compliant files will not be read correctly. dicomanon displays a
warning if the heuristic is employed. Set 'UseVRHeuristic' to false to read these compliant files.
Compliant files are always written.
Data Types: logical

Tips
• For information about the fields that will be modified or removed, see DICOM Supplement 55 from

https://www.dicomstandard.org/.

See Also
dicominfo | dicomdict | dicomdisp | dicomwrite | dicomlookup | dicomread | dicomuid

Introduced before R2006a

1 Functions

1-686

https://www.dicomstandard.org/

dicomCollection
Gather details about related series of DICOM files

Syntax
collection = dicomCollection(directory)
collection = dicomCollection(directory,'IncludeSubfolders',TF)
collection = dicomCollection(DICOMDIR)

Description
collection = dicomCollection(directory) gathers details about the DICOM files contained
in directory and returns them in the table collection. The dicomCollection function
aggregates details by DICOM series, using the value of the SeriesInstanceUID metadata field in
each file to determine series membership. A DICOM series is a logically related set of images from an
imaging operation.

collection = dicomCollection(directory,'IncludeSubfolders',TF) recursively
searches for DICOM files below directory when TF is true (the default). When TF is false,
dicomCollection only within directory.

collection = dicomCollection(DICOMDIR) gathers details about the DICOM files referenced
in the DICOM directory file DICOMDIR. A DICOM directory file (DICOMDIR) is a special DICOM file
that serves as a directory to a collection of DICOM files stored on removable media, such as CD/DVD
ROMs.

Examples

Gather Details from DICOM Files in Sample Image Folder

Gather information about the DICOM files in the Image Processing Toolbox sample image folder.
details = dicomCollection(fullfile(matlabroot,'toolbox/images/imdata'))

details =

 5×14 table

 StudyDateTime SeriesDateTime PatientName PatientSex Modality Rows Columns Channels Frames StudyDescription SeriesDescription StudyInstanceUID SeriesInstanceUID Filenames
 ____________________ ______________________ _______________ __________ ________ ____ _______ ________ ______ ________________ _________________ __ __ __

 s1 30-Apr-1993 11:27:24 [30-Apr-1993 11:27:24] "Anonymized" "" "CT" 512 512 1 1 "RT ANKLE" "" "1.2.840.113619.2.1.1.322987881.621.736170080.681" "1.2.840.113619.2.1.2411.1031152382.365.736169244" ["C:\Temp\matlab\toolbox\images\imdata\CT-MONO2-16-ankle.dcm"]
 s2 14-Dec-2013 15:47:31 [14-Dec-2013 15:54:33] "GORBERG MITZI" "F" "MR" 512 512 1 22 "CSP" "AX T2" "1.2.840.113619.2.244.3596.11880862.13689.1386517653.214" "1.2.840.113619.2.244.3596.11880862.13689.1386517653.217" [22×1 string]
 s3 03-Oct-2011 19:18:11 [03-Oct-2011 18:59:02] "" "M" "MR" 512 512 1 1 "RIGHT KNEE" "" "1.3.6.1.4.1.9590.100.1.2.320418845013189618318250681693358291211" "1.3.6.1.4.1.9590.100.1.2.287740981712351622214874344032214809569" ["C:\Temp\matlab\toolbox\images\imdata\knee1.dcm"]
 s4 03-Oct-2011 19:18:11 [03-Oct-2011 19:05:04] "" "M" "MR" 512 512 1 1 "RIGHT KNEE" "" "1.3.6.1.4.1.9590.100.1.2.320498134711034521212730362051554545799" "1.3.6.1.4.1.9590.100.1.2.316302984111738034326701385064023497963" ["C:\Temp\matlab\toolbox\images\imdata\knee2.dcm"]
 s5 30-Jan-1994 11:25:01 [] "Anonymized" "" "US" 430 600 1 10 "Echocardiogram" "PS LAX MR & AI" "999.999.3859744" "999.999.94827453" ["C:\Temp\matlab\toolbox\images\imdata\US-PAL-8-10x-echo.dcm"]

Gather Details about DICOM Files from DICOMDIR File

Gather information about DICOM files in a folder from a DICOMDIR file.
details = dicomCollection(fullfile(matlabroot,'toolbox/images/imdata/DICOMDIR'))

 dicomCollection

1-687

details =

 4×14 table

 StudyDateTime SeriesDateTime PatientName PatientSex Modality Rows Columns Channels Frames StudyDescription SeriesDescription StudyInstanceUID SeriesInstanceUID Filenames
 ____________________ ______________ ____________ __________ ________ ____ _______ ________ ______ ________________ _________________ ________________ __

 s1 30-Apr-1993 11:27:24 '' "Anonymized" "" "CT" 512 512 1 1 "RT ANKLE" "" "" "1.2.840.113619.2.1.2411.1031152382.365.736169244" "C:\Temp\matlab\toolbox\images\imdata\CT-MONO2-16-ankle.dcm"
 s2 30-Jan-1994 11:25:01 '' "Anonymized" "" "US" 430 600 1 10 "Echocardiogram" "" "" "999.999.94827453" "C:\Temp\matlab\toolbox\images\imdata\US-PAL-8-10x-echo.dcm"
 s3 03-Oct-2011 19:18:11 '' "" "" "MR" 512 512 1 1 "RIGHT KNEE" "" "" "1.3.6.1.4.1.9590.100.1.2.287740981712351622214874344032214809569" "C:\Temp\matlab\toolbox\images\imdata\knee1.dcm"
 s4 03-Oct-2011 19:18:11 '' "" "" "MR" 512 512 1 1 "RIGHT KNEE" "" "" "1.3.6.1.4.1.9590.100.1.2.316302984111738034326701385064023497963" "C:\Temp\matlab\toolbox\images\imdata\knee2.dcm"

Input Arguments
directory — Folder containing DICOM files
string scalar | character vector

Name of a folder containing DICOM files, specified as a string scalar or character vector.
Example: details = dicomCollection(fullfile(matlabroot,'toolbox/images/
imdata'))

Data Types: char | string

DICOMDIR — DICOM directory file
character vector | string scalar

DICOM directory file, specified as a string scalar or character vector.

A DICOM directory file (DICOMDIR) is a special DICOM file that serves as a directory to a collection
of DICOM files stored on removable media, such as CD/DVD ROMs. When devices write DICOM files
to removable media, they typically write a DICOMDIR file on the disk to serve as a list of the disk
contents.
Example: details = dicomCollection(fullfile(matlabroot,'toolbox/images/imdata/
DICOMDIR'))

Data Types: char | string

Output Arguments
collection — Metadata from DICOM files
table

Metadata from DICOM files, returned as a table. The dicomCollection function aggregates the
information by DICOM series.

See Also
dicominfo | dicomread | dicomreadVolume | DICOM Browser

Introduced in R2017b

1 Functions

1-688

dicomContours
Extract ROI data from DICOM-RT structure set

Description
The dicomcontours object extracts and stores region of interest (ROI) data from the metadata in
DICOM-RT structure set files. You can use these Object Functions on page 1-690 to add, delete,
display, modify, and create masks from this ROI data.

Creation

Syntax
contour = dicomContours(info)

Description

contour = dicomContours(info) creates a dicomCountours object that stores ROI data from
the structure set and ROI contour modules of DICOM metadata info.

Input Arguments

info — DICOM metadata
structure array

DICOM metadata, specified as a structure array. The metadata must correspond to a valid RT
structure set file. You can use the dicominfo function to read metadata from DICOM-RT structure
set files.
Data Types: struct

Properties
ROIs — ROI data
table

This property is read-only.

ROI data, returned as an M-by-5 table, where M is the number of ROI sequences defined in the
DICOM metadata. The entries in each row of the table defines a ROI sequence. The table has these
variables.

Column Variables Description
Number Identification number of the ROI, specified as a

scalar integer. The number references the ROI
number in the structure set ROI sequence.

 dicomContours

1-689

Column Variables Description
Name Name of the ROI, specified as a cell array of

character vectors or string scalars. The name
references the ROI name in the structure set ROI
sequence.

ContourData Points defining a contour in the ROI, specified as
a cell array. Each cell contains an N-by-3 matrix
of the form (x, y, z). These coordinates define a
contour in the patient based coordinate system. N
is the number of points in a contour.

GeometricType Geometric type of the contour, specified as a
character vector or a cell array of character
vectors. The value for geometric type can be any
of the following:

• POINT
• OPEN_PLANAR
• OPEN_NONPLANAR
• CLOSED_PLANAR

Color Display color of the ROI, specified as an RGB
triplet [r, g, b] with values in the range [0, 255].

Data Types: table

Object Functions
addContour Add ROI sequence to ROI data
convertToInfo Write ROI data to DICOM metadata
createMask Create volumetric mask from dicomContours object
deleteContour Delete ROI sequence from ROI data
plotContour Plot ROI contour data in DICOM-RT structure set

Examples

Extract ROI data from DICOM RT-Structure Set

Read DICOM metadata from DICOM-RT structure set files by using dicominfo function.

info = dicominfo('rtstruct.dcm');

Extract ROI data from the structure set and ROI contour modules of the DICOM metadata. The
output is a dicomContours object that stores the extracted ROI data.

contour = dicomContours(info);

Display the details of the dicomContours object.

contour

contour =
 dicomContours with properties:

1 Functions

1-690

 ROIs: [2x5 table]

Display the ROIs property of the dicomContours object. The ROIs property is a table and contains
the extracted ROI data.

contour.ROIs

ans=2×5 table
 Number Name ContourData GeometricType Color
 ______ _________________ ___________ _____________ ____________

 1 {'Body_Contour' } {90x1 cell} {90x1 cell} {3x1 double}
 2 {'Tumor_Contour'} {21x1 cell} {21x1 cell} {3x1 double}

See Also
Functions
dicominfo | dicomwrite

Introduced in R2020a

 dicomContours

1-691

addContour
Add ROI sequence to ROI data

Syntax
contourOut = addContour(contourIn,number,name,contourData,geometry)
contourOut = addContour(___ ,color)

Description
contourOut = addContour(contourIn,number,name,contourData,geometry) adds a user-
defined region of interest (ROI) sequence to the ROIs property of the dicomContours object. Then,
you can use the convertToInfo function to export the new ROI data to the structure set and ROI
contour modules of the DICOM metadata.

contourOut = addContour(___ ,color) also specifies the color for the contour data added to
the input dicomContours object.

Examples

Add ROI Sequence

This example shows how to add a ROI sequence to the ROI data extracted from the structure set and
ROI contour modules of the DICOM metadata.

Read DICOM metadata from DICOM-RT structure set files.

info = dicominfo('rtstruct.dcm');

Extract ROI data from the structure set and ROI contour modules of the DICOM metadata. The
output is a dicomContours object that stores the extracted ROI data.

contourIn = dicomContours(info);

Display the ROIs property of the dicomContours object.

contourIn.ROIs

ans=2×5 table
 Number Name ContourData GeometricType Color
 ______ _________________ ___________ _____________ ____________

 1 {'Body_Contour' } {90x1 cell} {90x1 cell} {3x1 double}
 2 {'Tumor_Contour'} {21x1 cell} {21x1 cell} {3x1 double}

Load another ROI contour data to the workspace. The contour data contains the 3-D coordinates of
the contours in the ROI.

load('contours')

1 Functions

1-692

To create a ROI sequence that contain the new ROI contour data, specify its attributes. The attributes
are

• ROI number
• User-defined name for the ROI
• Geometric type of the contours
• Color of the ROI

Assign a unique ROI number for the ROI sequence. The ROI name can be any user-defined name. All
points in the new ROI contour data is coplanar and the last point is connected to the first point.
Hence, specify the geometric type as 'Closed_planar'.

number = 3;
name = 'Organ';
geometricType = 'Closed_planar';

Specify the color of the ROI. if you do not specify color, the default value for color in the ROIs
property is set to [].

color = [0;127;127];

Add the new ROI sequence to the ROIs property of dicomContours object. The output is also a
dicomContours object containing the new ROI sequence as well as the original ones.

contourOut = addContour(contourIn,number,name,contours,geometricType,color)

contourOut =
 dicomContours with properties:

 ROIs: [3x5 table]

Display the details of the new dicomContours object by viewing its ROIs property. You can use the
convertToInfo function to export the modified ROI data to DICOM metadata.

contourOut.ROIs

ans=3×5 table
 Number Name ContourData GeometricType Color
 ______ _________________ ___________ _____________ ____________

 1 {'Body_Contour' } {90x1 cell} {90x1 cell} {3x1 double}
 2 {'Tumor_Contour'} {21x1 cell} {21x1 cell} {3x1 double}
 3 {'Organ' } {21x1 cell} {21x1 cell} {3x1 double}

Input Arguments
contourIn — Input ROI data
dicomContours object

Input ROI data, specified as a dicomContours object.

number — ROI number
scalar

 addContour

1-693

ROI number, specified as a scalar integer. ROI number references the user-defined identification
number for the ROI.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

name — User-defined name for the ROI
character vector | string scalar

User-defined name for the ROI, specified as a character vector or string scalar.
Data Types: char | string

contourData — 3-D coordinates of contours in the ROI
cell array of N-by-3 matrices

3-D coordinates of contours in the ROI, specified as a cell array of N-by-3 matrices. The column
elements in each row are the (x, y, z) triplets defining a contour in the patient based coordinate
system.
Data Types: cell

geometry — Geometric type of the contour
'Point' | 'Open_planar' | 'Open_nonplanar' | 'Closed_planar'

Geometric type of the contour, specified as one of these values:

• 'Point'
• 'Open_Planar'
• 'Open_nonplanar'
• 'Closed_planar'

Data Types: char | string

color — Display color for the ROI
three-element vector

Display color for the ROI, specified as a three-element vector whose elements specify the intensities
of the red, green, and blue components of the color. The intensities must be in the range [0, 255].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
contourOut — Output ROI data
dicomContours object

Output ROI data, returned as a dicomContours object. The ROIs property of the output object
contains both the input ROI and the user-defined ROI sequence.

See Also
Objects
dicomContours

1 Functions

1-694

Functions
plotContour | createMask | deleteContour | convertToInfo

Introduced in R2020a

 addContour

1-695

convertToInfo
Write ROI data to DICOM metadata

Syntax
info = convertToInfo(contour)

Description
info = convertToInfo(contour) creates metadata for a DICOM-RT structure set file by using
the region of interest (ROI) data in the dicomContours object. The function parses the ROIs
property of the dicomContours object. Then, it writes to the structure set and ROI contour modules
of the existing DICOM metadata appropriately.

Examples

Export ROI Data to DICOM-RT Structure Set

This example shows how to add a ROI contour sequence to an existing ROI data and export the new
ROI data to DICOM-RT structure set format.

Read DICOM metadata from DICOM-RT structure set files.

info = dicominfo('rtstruct.dcm');

Extract ROI data from the structure set and ROI contour modules of DICOM metadata. The output is
a dicomContours object that stores the extracted ROI data.

contourIn = dicomContours(info);

Display the ROIs property of the dicomContours object.

contourIn.ROIs

ans=2×5 table
 Number Name ContourData GeometricType Color
 ______ _________________ ___________ _____________ ____________

 1 {'Body_Contour' } {90x1 cell} {90x1 cell} {3x1 double}
 2 {'Tumor_Contour'} {21x1 cell} {21x1 cell} {3x1 double}

Load another ROI contour data to the workspace. The contour data contains the 3-D coordinates of
the contours in the ROI.

load('contours')

To create a ROI sequence that contain the new ROI contour data, specify its attributes. The attributes
are

1 Functions

1-696

• ROI number
• User-defined name for the ROI
• Geometric type of the contours

Assign a unique ROI number for the ROI sequence. The ROI name can be any user-defined name. All
points in the new ROI contour data is coplanar and the last point is connected to the first point.
Hence, specify the geometric type as 'Closed_planar'.

number = 3;
name = 'Organ';
geometricType = 'Closed_planar';

Add the new ROI sequence to the ROIs property of dicomContours object. The output is also a
dicomContours object containing the new ROI sequence as well as the original ones.

contourOut = addContour(contourIn,number,name,contours,geometricType);
contourOut.ROIs

ans=3×5 table
 Number Name ContourData GeometricType Color
 ______ _________________ ___________ _____________ ____________

 1 {'Body_Contour' } {90x1 cell} {90x1 cell} {3x1 double}
 2 {'Tumor_Contour'} {21x1 cell} {21x1 cell} {3x1 double}
 3 {'Organ' } {21x1 cell} {21x1 cell} {0x0 double}

Export the modified ROI data to DICOM metadata.

info = convertToInfo(contourOut);

Write the metadata to a DICOM-RT structure set file by using the dicomwrite function. If the
DICOM image associated with the ROI contour data is not available, set the first input argument
value in dicomwrite function to empty. Set the 'CreateMode' parameter to 'copy' in order to copy
the metadata to a new DICOM-RT structure set file rtfile.dcm.

dicomwrite([],'rtfile.dcm',info,'CreateMode','copy');

Input Arguments
contour — ROI data
dicomContours object

ROI data, specified as a dicomContours object.

Output Arguments
info — DICOM metadata
structure array

DICOM metadata, returned as a structure array.

 convertToInfo

1-697

See Also
Objects
dicomContours

Functions
addContour | createMask | plotContour | deleteContour

Introduced in R2020a

1 Functions

1-698

createMask
Create volumetric mask from dicomContours object

Syntax
BW = createMask(rtContours,ROIindex,Spatial)

Description
BW = createMask(rtContours,ROIindex,Spatial) returns the 3-D logical mask BW, a voxel
representation of the ROI specified by ROIindex, in the dicomContours object, rtContours.
ROIindex specifies the contour in rtContours to be densified. Spatial specifies location,
resolution, and orientation of the 3-D data.

Examples

Create Mask of dicomContours Object

Use dicomInfo and imref3d to create a mask of a dicomContours object.

Read the metadata of a DICOM-RT Structure Set.

info = dicominfo('rtstruct.dcm');

Construct a dicomContours object.

rtContours = dicomContours(info);

Display all the ROI information as a table.

rtContours.ROIs

ans=2×5 table
 Number Name ContourData GeometricType Color
 ______ _________________ ___________ _____________ ____________

 1 {'Body_Contour' } {90×1 cell} {90×1 cell} {3×1 double}
 2 {'Tumor_Contour'} {21×1 cell} {21×1 cell} {3×1 double}

Plot the contours of all ROIs using plotContours. This object function plots the contours in world
coordinates. Use this plot to define world coordinate limit boundaries for an imref3d object to create
a dense mask within.

plotContour(rtContours)

Create an imref3d object with same world limits as the plot from plotContours so that the image
is in the same space as the contours.

referenceInfo = imref3d([128,128,50],xlim,ylim,zlim);

 createMask

1-699

Create a 3-D logical mask of the first contour ('Body_Contour') in the rtContours. Specify the
imref3d object

contourIndex = 1;
rtMask = createMask(rtContours, contourIndex, referenceInfo);

View this mask using the Volume Viewer

volshow(rtMask);

Input Arguments
rtContours — DICOM contours
dicomContours object

DICOM contours, specified as a dicomContours object.
Data Types: dicomContours

ROIindex — ROI in DICOM contours object
numeric integer | char array | string scalar

ROI in DICOM contours object, specified by number or by name in the ROIs table in the
dicomContours object.

1 Functions

1-700

ROI Identifier Type Example
Number Numeric integer identifying a row of

the ROIs table in the rtContours
object. Number is the first column in
the ROIs table.

rtMask =
createMask(rtContours,1,
spatialInfo)

Name Name identifying an ROI in the ROIs
table in the rtContours object,
specified as a char array or string
scalar. Name is the second column in
the ROIs table.

rtMask =
createMask(rtContours,'Bo
dy_Contour',spatialInfo)

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

Spatial — Spatial referencing information
struct | imref3d object

Spatial referencing information, specified as a Spatial struct returned by dicomreadVolume or an
imref3d object. Spatial referencing information provides the location, resolution, and orientation of
the 3-D coordinate data.
Data Types: struct | imref3d

Output Arguments
BW — Logical mask
3-D logical array

Logical mask, returned as a 3-D logical array.

See Also
dicomContours | addContour | dicominfo | dicomreadVolume | imref3d | plotContour |
deleteContour | convertToInfo

Introduced in R2020b

 createMask

1-701

deleteContour
Delete ROI sequence from ROI data

Syntax
contourOut = deleteContour(contourIn,number)

Description
contourOut = deleteContour(contourIn,number) deletes one or more region of interest
(ROI) sequence extracted from a DICOM-RT structure set file. Specify the sequence to delete by its
ROI number number.

Use deleteContour function to delete ROI sequence from the ROIs property of the
dicomContours object. Then, you can use the convertToInfo function to export the new ROI data
to the structure set and ROI contour modules of DICOM metadata.

Examples

Delete ROI Sequence from ROI Data

Read DICOM metadata from DICOM-RT structure set files.

info = dicominfo('rtstruct.dcm');

Extract ROI data from the structure set and ROI contour modules of DICOM metadata. The output is
a dicomContours object that stores the extracted ROI data.

contourIn = dicomContours(info);

Display the ROIs property of the dicomContours object.

contourIn.ROIs

ans=2×5 table
 Number Name ContourData GeometricType Color
 ______ _________________ ___________ _____________ ____________

 1 {'Body_Contour' } {90x1 cell} {90x1 cell} {3x1 double}
 2 {'Tumor_Contour'} {21x1 cell} {21x1 cell} {3x1 double}

Delete ROI sequence specified by ROI number 2.

contourOut = deleteContour(contourIn,2)

contourOut =
 dicomContours with properties:

 ROIs: [1x5 table]

1 Functions

1-702

Display the ROIs property of the output dicomContours object. You can use the convertToInfo
function to export the modified ROI data to a DICOM-RT structure set file.

contourOut.ROIs

ans=1×5 table
 Number Name ContourData GeometricType Color
 ______ ________________ ___________ _____________ ____________

 1 {'Body_Contour'} {90x1 cell} {90x1 cell} {3x1 double}

Input Arguments
contourIn — Input ROI data
dicomContours object

Input ROI data, specified as a dicomContours object.

number — ROI number
scalar | vector

ROI number, specified as a scalar or vector. Specifying a vector of ROI numbers deletes multiple ROI
sequences.

The ROI number is the identification number of the ROI in the ROIs property of the dicomContours
object.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
contourOut — Output ROI data
dicomContours object

Output ROI data, returned as a dicomContours object.

See Also
Objects
dicomContours

Functions
addContour | createMask | plotContour | convertToInfo

Introduced in R2020a

 deleteContour

1-703

plotContour
Plot ROI contour data in DICOM-RT structure set

Syntax
plotContour(contour)
plotContour(contour,number)
plotContour(___ ,ax)
h = plotContour(___)

Description
plotContour(contour) plots one or more region of interest (ROI) contour data stored in the
dicomContours object.

plotContour(contour,number) plots only the ROI contour data with the specified ROI number
number.

plotContour(___ ,ax) plots ROI contour data in the axes specified by ax. The option ax can
precede any of the input argument combinations in the previous syntaxes.

h = plotContour(___) returns the graphics object handles for the plot. You can use h to query
and modify the properties of the plot. h is a group object. For more information on group object
properties, see Group Properties

Examples

Plot ROI Contour Data in DICOM-RT Structure Set

Read DICOM metadata from DICOM-RT structure set files.

info = dicominfo('rtstruct.dcm');

Extract ROI data from the structure set and ROI contour modules of DICOM metadata. The output is
a dicomContours object that stores the extracted ROI data.

contour = dicomContours(info);

Display the ROIs property of the dicomContours object.

contour.ROIs

ans=2×5 table
 Number Name ContourData GeometricType Color
 ______ _________________ ___________ _____________ ____________

 1 {'Body_Contour' } {90x1 cell} {90x1 cell} {3x1 double}
 2 {'Tumor_Contour'} {21x1 cell} {21x1 cell} {3x1 double}

Plot all the ROI contour data in the object.

1 Functions

1-704

figure
plotContour(contour)

You can also plot a specific ROI contour data, selecting it by its ROI number. Plot ROI contour data
specified by ROI number 1.

figure
plotContour(contour,1)

 plotContour

1-705

Specify Axes for Plotting ROI Contour Data

Read DICOM metadata from DICOM-RT structure set files.

info = dicominfo('rtstruct.dcm');

Extract ROI data from the structure set and ROI contour modules of DICOM metadata. The output is
a dicomContours object that stores the extracted ROI data.

contour = dicomContours(info);

Create a 2-by-2 tiled chart layout to display multiple plots on a figure window.

figure('Position',[1 1 700 700])
tiledlayout(2,2)

Create an axes object by using the nexttile function. The axes span across first two columns of the
tiled chart layout. Plot all the ROI contour data on these axes.

ax1 = nexttile(1,[1,2]);
plotContour(contour,ax1)
title('ROI Contour Data')

Create a second axes object and plot ROI contour data specified by ROI number 1.

1 Functions

1-706

ax2 = nexttile;
plotContour(contour,1,ax2)
title('ROI Contour Data of ROI Number 1')

Create a third axes object and plot ROI contour data specified by ROI number 2.

ax3 = nexttile;
plotContour(contour,2,ax3)
title('ROI Contour Data of ROI Number 2')

 plotContour

1-707

Add Text Description to ROI Contour Data Plot

Read DICOM metadata from DICOM-RT structure set files.

info = dicominfo('rtstruct.dcm');

Extract ROI data from the structure set and ROI contour modules of DICOM metadata. The output is
a dicomContours object that stores the extracted ROI data.

contour = dicomContours(info);

Plot the ROI contour data and get the parent axes. The returned parent axes is a hggroup object with
separate handles for each ROI contour plot.

h = plotContour(contour)

h =
 2x1 Group array:

 Group (Body_Contour)
 Group (Tumor_Contour)

Add text descriptions for each ROI contour plot by using the returned handles.

text(290,0,-400,'\leftarrow ROI number 1','Parent',h(1))
text(90,0,-500,'\leftarrow ROI number 2','FontWeight','Bold','Parent',h(2))

1 Functions

1-708

Input Arguments
contour — ROI data
dicomContours object

ROI data, specified as dicomContours object.

number — ROI number
scalar | vector

ROI number, specified as a scalar or vector. Specifying a vector plots multiple contour sequences.

The ROI number is the identification number of the ROI in the ROIs property of the dicomContours
object.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ax — Target axes
handle

Target axes, specified as a handle object returned by axes or gca.

Output Arguments
h — Graphics object handle
hggroup object

Graphics object handle, returned as hggroup object or an array of hggroup objects. If you specify
ax, h is a child of the axes ax. Otherwise, h is a child of the current axes.

See Also
Objects
dicomContours | hggroup

Functions
addContour | createMask | deleteContour | convertToInfo

Introduced in R2020a

 plotContour

1-709

dicomdict
Get or set active DICOM data dictionary

Syntax
dictionaryOut = dicomdict('get')
dicomdict('set',dictionaryIn)
dicomdict('factory')

Description
dictionaryOut = dicomdict('get') returns the name of the active Digital Imaging and
Communications in Medicine (DICOM) data dictionary file.

dicomdict('set',dictionaryIn) sets the file specified by input dictionaryIn as the active
DICOM data dictionary. If the file is not found in the specified path, the function returns an error.

dicomdict('factory') restores the active DICOM data dictionary to its default value. The default
value is a file in the MATLAB path:

fullfile(matlabroot,'toolbox','images','iptformats','dicom-dict.txt')

Examples

Get and Set Active DICOM Data Dictionary

Find the default active DICOM data dictionary.

dictionaryOut = dicomdict('get')

dictionaryOut =
'B:\matlab\toolbox\images\iptformats\dicom-dict.txt'

Specify the path to a new file to set as the active DICOM data dictionary.

dictionaryIn = 'dicomdictnew.txt';
dicomdict('set',dictionaryIn)

Check if the active DICOM data dictionary is updated to 'dicomdictnew'.

dictionaryOut1 = dicomdict('get')

dictionaryOut1 =
'C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\30\tpcd5c3b11\images-ex49312738\dicomdictnew.txt'

Reset the active DICOM data dictionary to the default value and verify the same.

dicomdict('factory')
dictionaryOut2 = dicomdict('get')

dictionaryOut2 =
'B:\matlab\toolbox\images\iptformats\dicom-dict.txt'

1 Functions

1-710

Input Arguments
dictionaryIn — DICOM data dictionary file
character vector | string scalar

DICOM data dictionary file of type .txt to be set as active, specified as a character vector or string
scalar.
Data Types: char | string

Output Arguments
dictionaryOut — Active DICOM data dictionary file
fullfile(matlabroot,'toolbox','images','iptformats','dicom-dict.txt') (default) |
character vector | string scalar

Active DICOM data dictionary file of type .txt, returned as a character vector or string scalar. The
default value is:

fullfile(matlabroot,'toolbox','images','iptformats','dicom-dict.txt')

See Also
dicomanon | dicominfo | dicomdisp | dicomwrite | dicomlookup | dicomread | dicomuid

Introduced before R2006a

 dicomdict

1-711

dicomdisp
Display DICOM file structure

Syntax
dicomdisp(filename)
dicomdisp(___ ,Name,Value)

Description
dicomdisp(filename) reads the metadata from the compliant DICOM file specified in the string
scalar or character vector filename and displays the metadata at the command prompt. dicomdisp
can be helpful when debugging issues with DICOM files.

dicomdisp(___ ,Name,Value) reads the metadata using name-value pairs to control aspects of
the operation.

Examples

Display Metadata from DICOM File

Display the metadata in a DICOM file.

dicomdisp('CT-MONO2-16-ankle.dcm')

File: C:\Temp\matlab\toolbox\images\imdata\CT-MONO2-16-ankle.dcm (525436 bytes)
Read on an IEEE little-endian machine.
File begins with group 0002 metadata at byte 132.
Transfer syntax: 1.2.840.10008.1.2 (Implicit VR Little Endian).
DICOM Information object: 1.2.840.10008.5.1.4.1.1.7 (Secondary Capture Image Storage).

Location Level Tag VR Size Name Data
--
0000132 0 (0002,0000) UL 4 bytes - FileMetaInformationGroupLength *Binary*
0000144 0 (0002,0001) OB 2 bytes - FileMetaInformationVersion *Binary*
0000158 0 (0002,0002) UI 26 bytes - MediaStorageSOPClassUID [1.2.840.10008.5.1.4.1.1.7]
0000192 0 (0002,0003) UI 50 bytes - MediaStorageSOPInstanceUID [1.2.840.113619.2.1.2411.1031152382.365.1.736169244]
0000250 0 (0002,0010) UI 18 bytes - TransferSyntaxUID [1.2.840.10008.1.2]
0000276 0 (0002,0012) UI 18 bytes - ImplementationClassUID [1.2.840.113619.6.5]
0000302 0 (0002,0013) SH 6 bytes - ImplementationVersionName [1_2_5]
0000316 0 (0002,0016) AE 12 bytes - SourceApplicationEntityTitle [CTN_STORAGE]
0000336 0 (0008,0000) UL 4 bytes - IdentifyingGroupLength *Binary*
0000348 0 (0008,0008) CS 20 bytes - ImageType [DERIVED\SECONDARY\3D]
0000376 0 (0008,0016) UI 26 bytes - SOPClassUID [1.2.840.10008.5.1.4.1.1.7]
0000410 0 (0008,0018) UI 50 bytes - SOPInstanceUID [1.2.840.113619.2.1.2411.1031152382.365.1.736169244]
0000468 0 (0008,0020) DA 10 bytes - StudyDate [1993.04.30]
0000486 0 (0008,0021) DA 10 bytes - SeriesDate [1993.04.30]
0000504 0 (0008,0023) DA 10 bytes - ContentDate [1993.04.30]
0000522 0 (0008,0030) TM 8 bytes - StudyTime [11:27:24]
0000538 0 (0008,0031) TM 8 bytes - SeriesTime [11:27:24]
0000554 0 (0008,0033) TM 8 bytes - ContentTime [11:27:24]
0000570 0 (0008,0060) CS 2 bytes - Modality [CT]
0000580 0 (0008,0064) CS 4 bytes - ConversionType [WSD]
0000592 0 (0008,0070) LO 18 bytes - Manufacturer [GE MEDICAL SYSTEMS]
0000618 0 (0008,0080) LO 18 bytes - InstitutionName [JFK IMAGING CENTER]
0000644 0 (0008,0090) PN 10 bytes - ReferringPhysicianName [Anonymized]
0000662 0 (0008,1010) SH 8 bytes - StationName [CT01OC0]

1 Functions

1-712

0000678 0 (0008,1030) LO 8 bytes - StudyDescription [RT ANKLE]
0000694 0 (0008,1060) PN 10 bytes - PhysicianReadingStudy [Anonymized]
0000712 0 (0008,1070) PN 10 bytes - OperatorName [Anonymized]
0000730 0 (0008,1090) LO 12 bytes - ManufacturerModelName [GENESIS_ZEUS]
0000750 0 (0010,0000) UL 4 bytes - PatientGroupLength *Binary*
0000762 0 (0010,0010) PN 10 bytes - PatientName [Anonymized]
0000780 0 (0018,0000) UL 4 bytes - AcquisitionGroupLength *Binary*
0000792 0 (0018,1020) LO 2 bytes - SoftwareVersion [03]
0000802 0 (0020,0000) UL 4 bytes - RelationshipGroupLength *Binary*
0000814 0 (0020,000D) UI 48 bytes - StudyInstanceUID [1.2.840.113619.2.1.1.322987881.621.736170080.681]
0000870 0 (0020,000E) UI 48 bytes - SeriesInstanceUID [1.2.840.113619.2.1.2411.1031152382.365.736169244]
0000926 0 (0020,0011) IS 4 bytes - SeriesNumber [365]
0000938 0 (0020,0013) IS 2 bytes - InstanceNumber [1]
0000948 0 (0028,0000) UL 4 bytes - ImagePresentationGroupLength *Binary*
0000960 0 (0028,0002) US 2 bytes - SamplesPerPixel *Binary*
0000970 0 (0028,0004) CS 12 bytes - PhotometricInterpretation [MONOCHROME2]
0000990 0 (0028,0010) US 2 bytes - Rows *Binary*
0001000 0 (0028,0011) US 2 bytes - Columns *Binary*
0001010 0 (0028,0100) US 2 bytes - BitsAllocated *Binary*
0001020 0 (0028,0101) US 2 bytes - BitsStored *Binary*
0001030 0 (0028,0102) US 2 bytes - HighBit *Binary*
0001040 0 (0028,0103) US 2 bytes - PixelRepresentation *Binary*
0001050 0 (0028,0106) US 2 bytes - SmallestImagePixelValue *Binary*
0001060 0 (0028,0120) US 2 bytes - PixelPaddingValue *Binary*
0001070 0 (0028,1050) DS 4 bytes - WindowCenter [1024]
0001082 0 (0028,1051) DS 4 bytes - WindowWidth [4095]
0001094 0 (0028,1052) DS 6 bytes - RescaleIntercept [-1024]
0001108 0 (0028,1053) DS 2 bytes - RescaleSlope [1]
0001118 0 (0028,1054) LO 2 bytes - RescaleType [US]
0001128 0 (7FE0,0000) UL 4 bytes - PixelDataGroupLength *Binary*
0001140 0 (7FE0,0010) OW 524288 bytes - PixelData []

Input Arguments
filename — Name of DICOM file
character vector | string scalar

Name of DICOM file, specified as a string scalar or character vector .
Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: dicomdisp('CT-MONO2-16-ankle.dcm','UseVRHeuristic',false)

dictionary — Name of DICOM data dictionary
dicom-dict.txt (default) | string scalar | character vector

Name of DICOM data dictionary, specified as a string scalar or character vector. When specified,
dicomdisp uses the data dictionary to read the DICOM file. The file must be on the MATLAB search
path.
Data Types: char | string

UseVRHeuristic — Read noncompliant DICOM files that switch VR modes incorrectly
true (default) | false

Read noncompliant DICOM files that switch value representation (VR) modes incorrectly, specified as
the Boolean value true or false. When set to true, dicomdisp uses a heuristic to help read

 dicomdisp

1-713

certain noncompliant DICOM files which switch value representation (VR) modes incorrectly. When
dicomdisp uses this heuristic, it displays a warning. When set to true (the default), dicomdisp
might not read some compliant DICOM files correctly. To read these compliant files, set
UseVRHeuristic to false.
Data Types: logical

See Also
dicominfo | dicomread | dicomwrite | dicomdict | dicomuid | dicomanon | dicomlookup

Topics
“Specify Value Representation”

Introduced in R2015a

1 Functions

1-714

dicomfind
Find location and value of target attribute in DICOM metadata

Syntax
attributeinfo = dicomfind(info,attribute)
attributeinfo = dicomfind(filename,attribute)

Description
attributeinfo = dicomfind(info,attribute) finds the location and value of the DICOM
metadata field attribute of the DICOM metadata structure info. To extract the DICOM metadata
structure from a DICOM file, use dicominfo. You can use dicomfind to help find values for
metadata items that are deeply nested in the info structure.

attributeinfo = dicomfind(filename,attribute) finds the value of the metadata element
attribute of the DICOM file filename.

Examples

Find Location and Value of DICOM Metadata in Info Structure

Create a DICOM metadata structure, info, by using the dicominfo function.

info = dicominfo("rtstruct.dcm");

Find the value and location in the info structure of the ROINumber metadata field. The dicomfind
function returns the results in a table with two columns: Location and Value.

ROINumber = dicomfind(info,"ROINumber")

ROINumber=2×2 table
 Location Value
 __ _____

 {'StructureSetROISequence.Item_1.ROINumber'} {[1]}
 {'StructureSetROISequence.Item_2.ROINumber'} {[2]}

Find Location and Value of DICOM Metadata in DICOM File

Find the value of the ROINumber metadata field and its location in the DICOM metadata structure.
Specify the name of the metadata field and the name of the DICOM file. The function returns the
results in a table with two columns: Location and Value.

ROINumber = dicomfind("rtstruct.dcm","ROINumber")

ROINumber=2×2 table
 Location Value

 dicomfind

1-715

 __ _____

 {'StructureSetROISequence.Item_1.ROINumber'} {[1]}
 {'StructureSetROISequence.Item_2.ROINumber'} {[2]}

Input Arguments
info — DICOM metadata
structure

DICOM metadata, specified as a structure. You can extract the DICOM metadata structure from a
DICOM file by using the dicominfo function.
Data Types: struct

attribute — Name of DICOM metadata field
string scalar | character vector

Name of the DICOM metadata field, specified as a string scalar or character vector. The spelling and
capitalization of attribute must match the full name of a metadata field in the input DICOM
metadata structure, info.
Data Types: string | char

filename — Name of DICOM file
string scalar | character vector

Name of the DICOM file, specified as a string scalar or character vector.
Example: "rtstruct.dcm"
Data Types: string | char

Output Arguments
attributeinfo — Location and value of specified DICOM attribute
table

Location and value of the specified DICOM attribute, returned as a table with two columns:
Location and Value. The Location column lists the attribute name using dot notation, providing
its position within the nested DICOM metadata structure. The Value column lists the value assigned
for each instance of the attribute within the DICOM metadata structure.

See Also
dicomanon | dicomupdate | dicomreadVolume | dicomdict | dicomdisp | dicominfo |
dicomlookup | dicomwrite | dicomuid

Introduced in R2021b

1 Functions

1-716

dicominfo
Read metadata from DICOM message

Syntax
info = dicominfo(filename)
info = dicominfo(filename,'dictionary',D)
info = dicominfo(___ ,Name,Value)

Description
info = dicominfo(filename) reads the metadata from the compliant Digital Imaging and
Communications in Medicine (DICOM) file or Digital Imaging and Communication in Security
(DICOS) file, filename.

info = dicominfo(filename,'dictionary',D) reads the DICOM message by using the data
dictionary file, D.

info = dicominfo(___ ,Name,Value) provides additional options to the parser using
Name,Value pairs. You can specify multiple name-value pairs.

Examples

Read Metadata from DICOM Message

Read metadata from a DICOM message.

info = dicominfo('CT-MONO2-16-ankle.dcm')

info = struct with fields:
 Filename: 'B:\matlab\toolbox\images\imdata\CT-MONO2-16-ankle.dcm'
 FileModDate: '18-Dec-2000 12:06:43'
 FileSize: 525436
 Format: 'DICOM'
 FormatVersion: 3
 Width: 512
 Height: 512
 BitDepth: 16
 ColorType: 'grayscale'
 FileMetaInformationGroupLength: 192
 FileMetaInformationVersion: [2x1 uint8]
 MediaStorageSOPClassUID: '1.2.840.10008.5.1.4.1.1.7'
 MediaStorageSOPInstanceUID: '1.2.840.113619.2.1.2411.1031152382.365.1.736169244'
 TransferSyntaxUID: '1.2.840.10008.1.2'
 ImplementationClassUID: '1.2.840.113619.6.5'
 ImplementationVersionName: '1_2_5'
 SourceApplicationEntityTitle: 'CTN_STORAGE'
 IdentifyingGroupLength: 414
 ImageType: 'DERIVED\SECONDARY\3D'
 SOPClassUID: '1.2.840.10008.5.1.4.1.1.7'
 SOPInstanceUID: '1.2.840.113619.2.1.2411.1031152382.365.1.736169244'

 dicominfo

1-717

 StudyDate: '1993.04.30'
 SeriesDate: '1993.04.30'
 ContentDate: '1993.04.30'
 StudyTime: '11:27:24'
 SeriesTime: '11:27:24'
 ContentTime: '11:27:24'
 Modality: 'CT'
 ConversionType: 'WSD'
 Manufacturer: 'GE MEDICAL SYSTEMS'
 InstitutionName: 'JFK IMAGING CENTER'
 ReferringPhysicianName: [1x1 struct]
 StationName: 'CT01OC0'
 StudyDescription: 'RT ANKLE'
 NameOfPhysiciansReadingStudy: [1x1 struct]
 OperatorsName: [1x1 struct]
 ManufacturerModelName: 'GENESIS_ZEUS'
 PatientGroupLength: 18
 PatientName: [1x1 struct]
 AcquisitionGroupLength: 10
 SoftwareVersions: '03'
 RelationshipGroupLength: 134
 StudyInstanceUID: '1.2.840.113619.2.1.1.322987881.621.736170080.681'
 SeriesInstanceUID: '1.2.840.113619.2.1.2411.1031152382.365.736169244'
 SeriesNumber: 365
 InstanceNumber: 1
 ImagePresentationGroupLength: 168
 SamplesPerPixel: 1
 PhotometricInterpretation: 'MONOCHROME2'
 Rows: 512
 Columns: 512
 BitsAllocated: 16
 BitsStored: 16
 HighBit: 15
 PixelRepresentation: 1
 SmallestImagePixelValue: 0
 PixelPaddingValue: 0
 WindowCenter: 1024
 WindowWidth: 4095
 RescaleIntercept: -1024
 RescaleSlope: 1
 RescaleType: 'US'
 PixelDataGroupLength: 524296

Input Arguments
filename — Name of DICOM file
character vector | string scalar

Name of DICOM file, specified as a character vector or string scalar.
Data Types: char | string

D — Data dictionary file
'dicom-dict.mat' | character vector | string scalar

1 Functions

1-718

Data dictionary file, specified as a character vector or string scalar. The file in D must be on the
MATLAB search path. The default file is dicom-dict.mat.
Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: dicominfo('CT-MONO2-16-ankle.dcm','UseVRHeuristic',false)

UseVRHeuristic — Read noncompliant DICOM files that switch VR modes incorrectly
true (default) | false

Read noncompliant DICOM files that switch value representation (VR) modes incorrectly, specified as
the comma-separated pair consisting of 'UseVRHeuristic' and true or false.

When set to true (the default), dicomread uses a heuristic to help read certain noncompliant
DICOM files that switch VR modes incorrectly. dicomread displays a warning if the heuristic is used.
A small number of compliant files will not be read correctly. Set UseVRHeuristic to false to read
these compliant files.
Data Types: logical

UseDictionaryVR — Conform data types to data dictionary
false (default) | true

Conform data types in info to the data dictionary, regardless of what information is present in the
file. The default value is false, which uses the file's VR codes even if they differ from the data
dictionary. Most of the time it is unnecessary to set this field, since file contents and the data
dictionary almost always agree.

If the file and the data dictionary disagree and UseDictionaryVR is set to false (the default),
dicominfo issues a warning and you can experience errors passing info to dicomwrite. To resolve
these errors, specify UseDictionaryVR as true to use the VR codes from the data dictionary.
Data Types: logical

Output Arguments
info — DICOM metadata
struct

DICOM metadata, returned as a struct.

See Also
dicomanon | dicomdict | dicomdisp | dicomwrite | dicomlookup | dicomread | dicomuid

Introduced before R2006a

 dicominfo

1-719

dicomlookup
Find attribute in DICOM data dictionary

Syntax
nameOut = dicomlookup(group,element)
[groupOut,elementOut] = dicomlookup(name)

Description
nameOut = dicomlookup(group,element) looks into the current DICOM data dictionary for the
attribute with the specified group and element tags. dicomlookup returns the name of the
attribute.

[groupOut,elementOut] = dicomlookup(name) looks into the current DICOM data dictionary
for the attribute specified by name and returns the group and element tags associated with the
attribute.

Examples

Find Names of DICOM attributes Using Their Tags

Find the names of DICOM attributes using their tags.

name1 = dicomlookup('7FE0', '0010')

name1 =
'PixelData'

name2 = dicomlookup(40, 4)

name2 =
'PhotometricInterpretation'

Look up a DICOM attribute's tag (GROUP and ELEMENT) using its name.

[group, element] = dicomlookup('TransferSyntaxUID')

group = 2

element = 16

Examine the metadata of a DICOM file. This returns the same value even if the data dictionary
changes.

metadata = dicominfo('CT-MONO2-16-ankle.dcm');
metadata.(dicomlookup('0028', '0004'))

ans =
'MONOCHROME2'

1 Functions

1-720

Input Arguments
group — DICOM group tag
positive integer decimal | character vector | string scalar

DICOM group tag, specified as a positive integer decimal number or a character vector or string
scalar that contains a hexadecimal value.
Example: 40
Example: '7FE0' or "7FE0"
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

element — DICOM element tag
positive integer decimal | character vector | string scalar

DICOM group tag, specified as a positive integer decimal number or a character vector or string
scalar that contains a hexadecimal value. element and group must represent the same type of value:

• If group is a positive integer, then element is also a positive integer.

If group is a character vector or string scalar that contains a hexadecimal value, then element is
either a character vector or a string scalar that contains a hexadecimal value.

Example: 4
Example: '0010' or "0010"
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

name — DICOM attribute name
character vector | string scalar

DICOM attribute name, specified as a character vector or string scalar.
Example: 'PhotometricInterpretation' or "PhotometricInterpretation"
Data Types: char | string

Output Arguments
groupOut — Returned DICOM group tag
positive integer decimal

Returned DICOM group tag, returned as a positive integer decimal number.
Data Types: double

elementOut — Returned DICOM element tag
positive integer decimal

Returned DICOM group tag, returned as a positive integer decimal number.
Data Types: double

 dicomlookup

1-721

nameOut — Returned DICOM attribute name
character vector

Returned DICOM attribute name, returned as a character vector.
Data Types: char

See Also
dicomanon | dicomdict | dicomdisp | dicominfo | dicomwrite | dicomread | dicomuid

Introduced in R2006b

1 Functions

1-722

dicomread
Read DICOM image

Syntax
X = dicomread(filename)
X = dicomread(info)
X = dicomread(___ ,'frames',f)
X = dicomread(___ ,Name,Value)

[X,cmap] = dicomread(___)
[X,cmap,alpha] = dicomread(___)
[X,cmap,alpha,overlays] = dicomread(___)

Description
X = dicomread(filename) reads the image data from the compliant Digital Imaging and
Communications in Medicine (DICOM) file filename. To read a group of DICOM files that contain a
series of images that comprise a volume, use dicomreadVolume.

X = dicomread(info) reads DICOM image data from the message referenced in the DICOM
metadata structure info.

X = dicomread(___ ,'frames',f) reads only the frames specified by f from the image.

X = dicomread(___ ,Name,Value) reads DICOM image data using Name,Value pairs to
configure the parser.

[X,cmap] = dicomread(___) also returns the colormap, cmap.

[X,cmap,alpha] = dicomread(___) also returns alpha, an alpha channel matrix for X.

[X,cmap,alpha,overlays] = dicomread(___) also returns any overlays from the DICOM file.

Examples

Read DICOM Files

Read indexed image from DICOM file and display it using montage.

[X, map] = dicomread('US-PAL-8-10x-echo.dcm');
montage(X, map, 'Size', [2 5]);

 dicomread

1-723

Read image from DICOM file and display it using imshow.

info = dicominfo('CT-MONO2-16-ankle.dcm');
Y = dicomread(info);
figure
imshow(Y,[]);

1 Functions

1-724

Input Arguments
filename — Name of DICOM file
character vector | string scalar

Name of DICOM file, specified as a character vector or string scalar.
Data Types: char | string

info — DICOM metadata
struct

DICOM metadata, specified as a structure. The info structure is produced by the dicominfo
function.

 dicomread

1-725

f — Frames to read
'all' (default) | integer | vector of integers

Frames to read, specified as an integer scalar, a vector of integers, or 'all'. When f is numeric,
dicomread reads only the specified frame numbers from the image. By default, dicomread reads all
frames of the DICOM image.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: dicomread('CT-MONO2-16-ankle.dcm','UseVRHeuristic',false)

UseVRHeuristic — Read noncompliant DICOM files that switch VR modes incorrectly
true (default) | false

Read noncompliant DICOM files that switch value representation (VR) modes incorrectly, specified as
the comma-separated pair consisting of 'UseVRHeuristic' and true or false.

When set to true (the default), dicomread uses a heuristic to help read certain noncompliant
DICOM files that switch VR modes incorrectly. dicomread displays a warning if the heuristic is used.
A small number of compliant files will not be read correctly. Set UseVRHeuristic to false to read
these compliant files.
Data Types: logical

Output Arguments
X — DICOM image
m-by-n matrix | m-by-n-by-3 array | 4-D array

DICOM image, returned as one of the following.

• An m-by-n matrix representing a single-frame grayscale image or an indexed image
• An m-by-n-by-3 array representing a single-frame truecolor (RGB) image
• A 4-D array representing a multiframe image.

Data Types: int8 | int16 | uint8 | uint16

cmap — Colormap
c-by-3 matrix | []

Colormap associated with image X.

• If X is an indexed image, then cmap is returned as c-by-3 numeric matrix with values in the range
[0, 1]. Each row is a three-element RGB triplet that specifies the red, green, and blue components
of a single color of the colormap.

• If X is a grayscale or truecolor image, then cmap is empty ([]).

Data Types: double

alpha — Alpha channel matrix
m-byn matrix of nonnegative integers | 4-D array of nonnegative integers

1 Functions

1-726

Alpha channel matrix for image X, returned as an array of nonnegative integers. The values of alpha
are 0 if the pixel is opaque; otherwise they are row indices into cmap. The RGB value in cmap should
be substituted for the value in X to use alpha. alpha has the same height and width as X and is 4-D
for a multiframe image. alpha has the same data type as X.
Data Types: int8 | int16 | uint8 | uint16

overlays — Overlays
binary m-byn matrix | binary 4-D array | []

Overlays from the DICOM file. Each overlay is a 1-bit black and white image with the same height
and width as X. If multiple overlays are present in the file, then overlays is a 4-D multiframe image.
If no overlays are in the file, then overlays is empty ([]).
Data Types: logical

Tips
• This function reads imagery from files with one of these pixel formats:

• Little-endian, implicit VR, uncompressed
• Little-endian, explicit VR, uncompressed
• Big-endian, explicit VR, uncompressed
• JPEG (lossy or lossless)
• JPEG2000 (lossy or lossless)
• Run-length Encoding (RLE)
• GE implicit VR, LE with uncompressed BE pixels (1.2.840.113619.5.2)

See Also
dicomanon | dicomreadVolume | dicomdict | dicomdisp | dicominfo | dicomlookup |
dicomwrite | dicomuid

Introduced before R2006a

 dicomread

1-727

dicomreadVolume
Create 4-D volume from set of DICOM images

Syntax
V = dicomreadVolume(source)
V = dicomreadVolume(sourcetable)
V = dicomreadVolume(sourcetable,rowname)
V = dicomreadVolume(___ ,'MakeIsotropic',tf)
[V,spatial] = dicomreadVolume(___)
[V,spatial,dim] = dicomreadVolume(___)

Description
V = dicomreadVolume(source) creates a 4-D volume, V, from a set of Digital Imaging and
Communications in Medicine (DICOM) files specified by source. The dicomreadVolume function
identifies the correct order of the images and creates a 4-D volume.

Note If the input is a DICOM volume, then the function returns the volume data after checking the
order of the image slices in the input volume. When the image slices are not in the appropriate order,
the function corrects the order before returning the output.

V = dicomreadVolume(sourcetable) creates a 4-D DICOM volume from the input file listed in
sourcetable. The table must contain only one row that specifies the metadata for a DICOM volume.

V = dicomreadVolume(sourcetable,rowname) creates a 4-D DICOM volume from the input file
listed in rowname of the multirow table. Use this syntax when sourcetable contains multiple rows.

V = dicomreadVolume(___ ,'MakeIsotropic',tf) creates an isotropic 4-D DICOM volume
from the input DICOM image data using the input arguments in previous syntaxes. Use this syntax to
create an isotropic DICOM volume from a set of nonisotropic DICOM image data.

[V,spatial] = dicomreadVolume(___) also returns a structure, spatial, that describes the
location, resolution, and orientation of the input DICOM data.

[V,spatial,dim] = dicomreadVolume(___) also returns the dimension that has the largest
amount of offset between two adjacent slices in the input DICOM data.

Examples

Create Volumetric Image from DICOM Files

Load volume data from a folder containing DICOM image files. Use the squeeze function to remove
any singleton dimensions.

[V,spatial,dim] = dicomreadVolume(fullfile(matlabroot,'toolbox/images/imdata/dog'));
V = squeeze(V);

1 Functions

1-728

Display the 4-D DICOM volume. Generate a colormap and transparency map for magnetic resonance
(MR) images.

intensity = [0 20 40 120 220 1024];
alpha = [0 0 0.15 0.3 0.38 0.5];
color = ([0 0 0; 43 0 0; 103 37 20; 199 155 97; 216 213 201; 255 255 255])/ 255;
queryPoints = linspace(min(intensity),max(intensity),256);
alphamap = interp1(intensity,alpha,queryPoints)';
colormap = interp1(intensity,color,queryPoints);

Customize the display panel.

ViewPnl = uipanel(figure,'Title','4-D Dicom Volume');

View the volume with the custom colormap and transparency map.

volshow(V,'Colormap',colormap,'Alphamap',alphamap,'Parent',ViewPnl);

Display the returned spatial structure from dicomreadVolume. The structure contains spatial
information about the input DICOM image files.

spatial

spatial = struct with fields:
 PatientPositions: [22×3 double]
 PixelSpacings: [22×2 double]
 PatientOrientations: [2×3×22 double]

 dicomreadVolume

1-729

Display the dimension information from dicomreadVolume. The value specifies that the slice offset
is largest along the z-dimension.

dim

dim = 3

Create Isotropic 4-D DICOM Volume

Gather details about the DICOM files contained in a folder by using the dicomCollection function.
The function returns the details of the available DICOM metadata in the form of a table.

sourcetable = dicomCollection(fullfile(matlabroot,'toolbox/images/imdata'));

Display the table. The table has multiple rows, with each row containing the metadata for the DICOM
image sets present in the specified folder.

sourcetable

sourcetable=5×14 table
 StudyDateTime SeriesDateTime PatientName PatientSex Modality Rows Columns Channels Frames StudyDescription SeriesDescription StudyInstanceUID SeriesInstanceUID Filenames
 ____________________ ________________________ _______________ __________ ________ ____ _______ ________ ______ ________________ _________________ __ __ ___

 s1 30-Apr-1993 11:27:24 {[30-Apr-1993 11:27:24]} "Anonymized" "" "CT" 512 512 1 1 "RT ANKLE" "" "1.2.840.113619.2.1.1.322987881.621.736170080.681" "1.2.840.113619.2.1.2411.1031152382.365.736169244" {["Y:\jobarchive\Bdoc19b\2019_05_27_h05m12s43_job1128383_pass\matlab\toolbox\images\imdata\CT-MONO2-16-ankle.dcm"]}
 s2 14-Dec-2013 15:47:31 {[14-Dec-2013 15:54:33]} "GORBERG MITZI" "F" "MR" 512 512 1 22 "CSP" "AX T2" "1.2.840.113619.2.244.3596.11880862.13689.1386517653.214" "1.2.840.113619.2.244.3596.11880862.13689.1386517653.217" {22×1 string }
 s3 03-Oct-2011 19:18:11 {[03-Oct-2011 18:59:02]} "" "M" "MR" 512 512 1 1 "RIGHT KNEE" "" "1.3.6.1.4.1.9590.100.1.2.320418845013189618318250681693358291211" "1.3.6.1.4.1.9590.100.1.2.287740981712351622214874344032214809569" {["Y:\jobarchive\Bdoc19b\2019_05_27_h05m12s43_job1128383_pass\matlab\toolbox\images\imdata\knee1.dcm"]}
 s4 03-Oct-2011 19:18:11 {[03-Oct-2011 19:05:04]} "" "M" "MR" 512 512 1 1 "RIGHT KNEE" "" "1.3.6.1.4.1.9590.100.1.2.320498134711034521212730362051554545799" "1.3.6.1.4.1.9590.100.1.2.316302984111738034326701385064023497963" {["Y:\jobarchive\Bdoc19b\2019_05_27_h05m12s43_job1128383_pass\matlab\toolbox\images\imdata\knee2.dcm"]}
 s5 30-Jan-1994 11:25:01 {0×0 double } "Anonymized" "" "US" 430 600 1 10 "Echocardiogram" "PS LAX MR & AI" "999.999.3859744" "999.999.94827453" {["Y:\jobarchive\Bdoc19b\2019_05_27_h05m12s43_job1128383_pass\matlab\toolbox\images\imdata\US-PAL-8-10x-echo.dcm"]}

Construct a 4-D DICOM volume from a DICOM image set in the table. Specify the row name that
contains the desired DICOM image set. Set the name-value argument 'MakeIsotropic' to true in
order to create an isotropic volume. Use the squeeze function to remove any singleton dimensions.

V = dicomreadVolume(sourcetable,'s2','MakeIsotropic',true);
V = squeeze(V);

Display the isotropic 4-D DICOM volume by using the volshow function. Generate a colormap and
transparency map for MR images.

intensity = [0 20 40 120 220 1024];
alpha = [0 0 0.15 0.3 0.38 0.5];
color = ([0 0 0; 43 0 0; 103 37 20; 199 155 97; 216 213 201; 255 255 255])/255;
queryPoints = linspace(min(intensity),max(intensity),256);
alphamap = interp1(intensity,alpha,queryPoints)';
colormap = interp1(intensity,color,queryPoints);

Customize the display panel.

ViewPnl = uipanel(figure,'Position',[0 0 1 1],'Title','Isotropic 4-D Dicom Volume');

View the volume with the custom colormap and transparency map.

volshow(V,'Colormap',colormap,'Alphamap',alphamap,'CameraPosition',[3 3 4],'Parent',ViewPnl);

1 Functions

1-730

Input Arguments
source — Volume data folder or files
string | character vector | string array | cell array of character vectors

Volume data folder or files, specified as a string scalar, character vector, string array, or cell array of
character vectors.
Data Types: char | string

sourcetable — Collection of DICOM file metadata
table

Collection of DICOM file metadata, specified as a table returned by dicomCollection.
Data Types: table

rowname — Name of table row
string | character vector

Name of table row, specified as a string scalar or character vector. The name identifies one of the
rows in the multirow table specified in sourcetable.
Data Types: char | string

 dicomreadVolume

1-731

tf — Create isotropic volume
false (default) | true

Create isotropic volume, specified as one of these values.

• false or 0 — Create a 4-D DICOM volume from the input data.
• true or 1 — Create an isotropic 4-D DICOM volume.

The input can be either isotropic or nonisotropic DICOM data.

Output Arguments
V — 4-D DICOM volume
numeric array

4-D DICOM volume, returned as a numeric array.

The dimensions of V are [rows, columns, samples, slices], where samples is the number of color
channels per voxel. For example, grayscale volumes have one sample, and RGB volumes have three
samples. Use the squeeze function to remove any singleton dimensions, such as when the sample is
1.

spatial — Location, resolution, and orientation of input DICOM images
structure

Location, resolution, and orientation of slices collected from the metadata of input DICOM images,
returned as a structure with the following fields.

Spatial Structure

Fields Description
PatientPositions (x, y, z) triplet of the first pixel in each slice,

measured in millimeters from the origin of the
scanner coordinate system

PixelSpacings Distance between neighboring rows and columns
within each slice, in millimeters

PatientOrientations Pair of direction-cosine triplets that designate the
direction of the rows and columns in each slice
relative to the patient position

For more information about DICOM attributes, see part 3 of the DICOM standard, section C.7.6.2.

1 Functions

1-732

dim — Dimension with largest offset
1 | 2 | 3

Dimension with the largest offset, returned as 1, 2, or 3. The value denotes the dimension in a 3-D
coordinate system that has the largest amount of offset between adjacent slices in the input DICOM
data.

• If the largest offset is along the x dimension, then dim is 1.
• If the largest offset is along the y dimension, then dim is 2.
• If the largest offset is along the z dimension, then dim is 3.

See Also
dicominfo | dicomread | DICOM Browser | dicomCollection | tiffreadVolume

Introduced in R2017b

 dicomreadVolume

1-733

dicomuid
Generate DICOM globally unique identifier

Syntax
uid = dicomuid

Description
uid = dicomuid returns a new DICOM globally unique identifieruid. The function generates a new
value each time it is called. Therefore, two calls to dicomuid always return different values.

Examples

Generate DICOM Globally Unique Identifier

uid = dicomuid;

uid =

 '1.3.6.1.4.1.9590.100.1.2.175741451111074450825785263691655840705'

Output Arguments
uid — DICOM globally unique identifier
character vector

DICOM globally unique identifier, returned as a character vector.
Data Types: char

See Also
dicomanon | dicomdict | dicomdisp | dicominfo | dicomlookup | dicomread | dicomwrite

Introduced before R2006a

1 Functions

1-734

dicomupdate
Update value of target attribute in DICOM metadata

Syntax
newinfo = dicomupdate(info,attributeInfo)
newinfo = dicomupdate(info,attribute,value)

Description
newinfo = dicomupdate(info,attributeInfo) updates the values of the target attributes of
the DICOM metadata structure info, and returns the updated metadata structure, newinfo. The
attributeInfo argument specifies the locations and new values of the target attributes.

newinfo = dicomupdate(info,attribute,value) updates the value of a target attribute in a
DICOM metadata structure by specifying the name of the target attribute and the new value.

Examples

Update Field in DICOM Metadata Structure

Create the DICOM metadata structure by reading it from a DICOM file.

info = dicominfo("rtstruct.dcm");

Find the value of a metadata field and its location in the DICOM metadata structure. The dicomfind
function returns a table with two columns: Location and Value. Each element of the table is a cell
array.

ROINumber_info = dicomfind(info,"ROINumber")

ROINumber_info=2×2 table
 Location Value
 __ _____

 {'StructureSetROISequence.Item_1.ROINumber'} {[1]}
 {'StructureSetROISequence.Item_2.ROINumber'} {[2]}

Specify a new value for the Value field of the second ROInumber.

ROINumber_info.Value{2} = 4

ROINumber_info=2×2 table
 Location Value
 __ _____

 {'StructureSetROISequence.Item_1.ROINumber'} {[1]}
 {'StructureSetROISequence.Item_2.ROINumber'} {[4]}

 dicomupdate

1-735

Update the DICOM metadata structure info by specifying the table that contains the new value for
the second ROInumber field. The dicomupdate function creates a new, updated DICOM metadata
structure.

newInfo = dicomupdate(info,ROINumber_info);

Check that the newInfo structure contains the updated value.

ROINumber_info = dicomfind(newInfo,"ROINumber")

ROINumber_info=2×2 table
 Location Value
 __ _____

 {'StructureSetROISequence.Item_1.ROINumber'} {[1]}
 {'StructureSetROISequence.Item_2.ROINumber'} {[4]}

Update DICOM Metadata Structure with New Value

Create a DICOM metadata structure by using the dicominfo function.

info = dicominfo("rtstruct.dcm");

Find the value and location in the info structure of the ROINumber metadata field by using the
dicomfind function.

ROINumber = dicomfind(info,"ROINumber")

ROINumber=2×2 table
 Location Value
 __ _____

 {'StructureSetROISequence.Item_1.ROINumber'} {[1]}
 {'StructureSetROISequence.Item_2.ROINumber'} {[2]}

Update the ROINumber field in the DICOM metadata structure, info, by specifying the name of the
field and its new value.

newInfo = dicomupdate(info,ROINumber=4);

Check that the newInfo structure contains the updated field. Notice that the metadata structure
contains updated values for all instances of the specified attribute.

ROINumber_info = dicomfind(newInfo,"ROINumber")

ROINumber_info=2×2 table
 Location Value
 __ _____

 {'StructureSetROISequence.Item_1.ROINumber'} {[4]}
 {'StructureSetROISequence.Item_2.ROINumber'} {[4]}

1 Functions

1-736

Input Arguments
info — DICOM metadata
structure

DICOM metadata, specified as a structure. You can extract the DICOM metadata structure from a
DICOM file using the dicominfo function.
Data Types: struct

attributeInfo — Location and new value of target attribute
table

Location and new value of the target attribute, specified as a table.

attribute — Name of target DICOM metadata field
string scalar | character vector

Name of the target DICOM metadata field, specified as a string scalar or character vector.
Example: 'ROINumber'
Data Types: string | char

value — New value for DICOM metadata attribute
numeric array | character vector | string scalar

New value for the DICOM metadata attribute, specified as a numeric array, string scalar, or character
vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

Output Arguments
newinfo — Updated DICOM metadata
structure

Updated DICOM metadata, returned as a structure.

See Also
dicomanon | dicomfind | dicomreadVolume | dicomdict | dicomdisp | dicominfo |
dicomlookup | dicomwrite | dicomuid

Introduced in R2021b

 dicomupdate

1-737

dicomwrite
Write images as DICOM files

Syntax
dicomwrite(X,filename)
dicomwrite(X,cmap,filename)
dicomwrite(___ ,meta_struct)
dicomwrite(___ ,info)
dicomwrite(___ ,'ObjectType',IOD)
dicomwrite(___ ,'SOPClassUID',UID)
dicomwrite(___ ,Name,Value)
status = dicomwrite(___)

Description
dicomwrite(X,filename) writes the binary, grayscale, or truecolor image X to the file filename.
The dicomwrite function creates a Digital Imaging and Communications in Medicine (DICOM) file
or a Digital Imaging and Communication in Security (DICOS) file.

dicomwrite(X,cmap,filename) writes the indexed image X with colormap cmap.

dicomwrite(___ ,meta_struct) specifies optional metadata or file options in structure
meta_struct. The names of fields in meta_struct must be the names of DICOM file attributes or
options. The value of a field is the value you want to assign to the attribute or option.

dicomwrite(___ ,info) specifies metadata in the metadata structure info, which is produced by
the dicominfo function.

dicomwrite(___ ,'ObjectType',IOD) writes a file containing the necessary metadata for a
particular type of DICOM Information Object (IOD). For the supported IODs, dicomwrite verifies
that all required metadata attributes are present, creates missing attributes if necessary, and
specifies default values where possible. Using these supported IODs is the best way to ensure that
the files you create conform to the DICOM specification. For more information, see Tips on page 1-
742.

dicomwrite(___ ,'SOPClassUID',UID) writes a file containing the necessary metadata for a
particular type IOD, specified using a DICOM Unique Identifier (UID).

dicomwrite(___ ,Name,Value) writes to a DICOM file using name-value arguments to affect how
the file is written.

You can also use name-value arguments to specify optional metadata to write to the DICOM file. To
find a list of the DICOM attributes that you can specify, see the data dictionary file, dicom-
dict.txt, included with the Image Processing Toolbox software. Enclose each attribute name in
quotes.

status = dicomwrite(___) returns information about the metadata and the descriptions used to
generate the DICOM file. This syntax can be useful when you specify an info structure to the
dicomwrite function.

1 Functions

1-738

Examples

Write Data to DICOM File

Read a CT image from the sample DICOM file included with the toolbox.

X = dicomread('CT-MONO2-16-ankle.dcm');

Write the CT image to a file, creating a secondary capture image.

dicomwrite(X, 'sc_file.dcm');

Write the CT image, X, to a DICOM file along with its metadata. Use the dicominfo function to
retrieve metadata from a DICOM file.

metadata = dicominfo('CT-MONO2-16-ankle.dcm');
dicomwrite(X, 'ct_file.dcm', metadata);

Copy all metadata from one file to another. When you set the 'CreateMode' parameter to 'copy',
dicomwrite does not verify the metadata written to the file.

dicomwrite(X, 'ct_copy.dcm', metadata, 'CreateMode', 'copy');

Input Arguments
X — DICOM image
m-by-n matrix | m-by-n-by-3 array | m-by-n-by-numChannels-by-numFrames array

DICOM image, specified as one of the following.

• An m-by-n matrix representing a single-frame grayscale image or indexed image
• An m-by-n-by-3 array representing a single-frame truecolor (RGB) image
• An m-by-n-by-numChannels-by-numFrames array representing a multiframe image. numChannels

is 1 for grayscale images and 3 for truecolor images.

Note If input X is empty, then the dicomwrite function writes a DICOM file with empty image data.
The metadata attributes for the DICOM file are either set to default values or copied from
meta_struct if 'CreateMode' is 'Copy'.

Data Types: int8 | int16 | uint8 | uint16

cmap — Colormap
c-by-3 matrix | []

Colormap associated with indexed image X, specified as a c-by-3 numeric matrix with values in the
range [0, 1]. Each row is a three-element RGB triplet that specifies the red, green, and blue
components of a single color of the colormap.
Data Types: double

filename — Name of DICOM file
character vector | string scalar

 dicomwrite

1-739

Name of DICOM file to write to, specified as a character vector or string scalar.
Data Types: char | string

meta_struct — Optional metadata or file options
struct

Optional metadata or file options, specified as a struct. The names of fields in meta_struct must be
the names of DICOM file attributes or options. The value of a field is the value you want to assign to
the attribute or option.

info — Metadata produced by dicominfo function
structure

Metadata produced by the dicominfo function, specified as a structure.

IOD — DICOM Information Object
'Secondary Capture Image Storage' (default) | 'CT Image Storage' | 'MR Image
Storage'

DICOM Information Object, specified as 'Secondary Capture Image Storage', 'CT Image
Storage', or 'MR Image Storage'.
Data Types: char | string

UID — DICOM unique identifier
character vector | string scalar

DICOM unique identifier corresponding to an IOD, specified as a character vector or string scalar.
Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'CompressionMode','JPEG lossless'

CompressionMode — Compression mode
'None' (default) | 'JPEG lossless' | 'JPEG lossy' | ...

Compression mode to use when storing the image, specified as the comma-separated pair consisting
of 'CompressionMode' and one of the following.

• 'None'
• 'JPEG lossless'
• 'JPEG lossy'
• 'JPEG2000 lossy'
• 'JPEG2000 lossless'
• 'RLE'

CreateMode — Method used for creating data
'Create' (default) | 'Copy'

1 Functions

1-740

Method used for creating data to put in the new file, specified as the comma-separated pair
consisting of 'CreateMode' and one of the following.

• 'Create' — Verify input values and generate missing data values.
• 'Copy' — Copy all values from the input and do not generate missing values.

For help selecting a creation method, see Tips on page 1-742.

Dictionary — Name of DICOM data dictionary
character vector | string scalar

Name of DICOM data dictionary, specified as the comma-separated pair consisting of 'Dictionary'
and a character vector or string scalar. The default file is dicom-dict.mat.

Endian — Byte ordering
'ieee-le' (default) | 'ieee-be'

Byte ordering of the file, specified as the comma-separated pair consisting of 'Endian' and 'ieee-
le' or 'ieee-be'.

Note If VR is set to 'Implicit', then Endian must be 'ieee-le'. dicomwrite ignores this value
if CompressionMode or TransferSyntax is set.

MultiframeSingleFile — Write multiframe image to one file
true (default) | false

Write multiframe image to one file, specified as the comma-separated pair consisting of
'MultiframeSingleFile' and true or false. When true, one file is created regardless of how
many frames X contains. When false, one file is written for each frame in the image.
Data Types: logical

TransferSyntax — Transfer syntax
character vector | string scalar

Transfer syntax, specified as the comma-separated pair consisting of 'TransferSyntax' and a
character vector or string scalar. TransferSyntax is a UID that encodes values for the Endian, VR,
and CompressionMode options.

Note If you specify a transfer syntax, then dicomwrite ignores any values specified for the Endian,
VR, and CompressionMode options.

UseMetadataBitDepths — Preserve metadata values
false (default) | true

Preserve the metadata values 'BitStored', 'BitsAllocated', and'HighBit', specified as the
comma-separated pair consisting of 'UseMetadataBitDepths' and false or true. When true,
dicomwrite preserves existing values. When false (default), dicomwrite computes these values
based on the datatype of the pixel data. When CreateMode is 'Create', dicomwrite ignores this
field.
Data Types: logical

 dicomwrite

1-741

VR — Write two-letter value representation (VR) code to file
'implicit' (default) | 'explicit'

Write two-letter value representation (VR) code to file, specified as the comma-separated pair
consisting of 'VR' and one of the following.

• 'implicit' — Infer from data dictionary.
• 'explicit' — Write VR to file.

Note If you specify the Endian value as 'ieee-be', then you must specify VR as 'explicit'.

WritePrivate — Write private data to file
false (default) | true

Write private data to file, specified as the comma-separated pair consisting of 'WritePrivate' and
false or true.
Data Types: logical

Output Arguments
status — Status of attributes
struct | []

Status of attributes, returned as a structure. status contains information about the metadata and
the descriptions used to generate the DICOM file. If no metadata was specified, dicomwrite returns
an empty matrix ([]).

The status structure contains these fields.

Field Description
'BadAttribute' The attribute's internal description is bad. It might be missing

from the data dictionary or have incorrect data in its description.
'MissingCondition' The attribute is conditional but no condition has been provided

for when to use it.
'MissingData' No data was provided for an attribute that must appear in the file.
'SuspectAttribute' Data in the attribute does not match a list of enumerated values

in the DICOM specification.

Tips
• The DICOM format specification lists several Information Object Definitions (IODs) that can be

created. These IODs correspond to images and metadata produced by different real-world
modalities (for example, MR, X-ray, Ultrasound, etc.). For each type of IOD, the DICOM
specification defines the set of metadata that must be present and possible values for other
metadata.

• dicomwrite fully implements a limited number of IODs. For these IODs, dicomwrite verifies
that all required metadata attributes are present, creates missing attributes if necessary, and
specifies default values where possible. Using these supported IODs is the best way to ensure

1 Functions

1-742

that the files you create conform to the DICOM specification. This is dicomwrite default
behavior and corresponds to the CreateMode option value of 'Create'.

• To write DICOM files for IODs that dicomwrite doesn't implement, use the 'Copy' value for
the CreateMode option. In this mode, dicomwrite writes the image data to a file including
the metadata that you specify as a parameter, shown above in the info syntax. The purpose of
this option is to take metadata from an existing file of the same modality or IOD and use it to
create a new DICOM file with different image pixel data. If the image data is empty,
dicomwrite does not write image-related metadata attributes to the new DICOM file.

Note Because dicomwrite copies metadata to the file without verification in 'Copy' mode, it
is possible to create a DICOM file that does not conform to the DICOM standard. For example,
the file may be missing required metadata, contain superfluous metadata, or the metadata may
no longer correspond to the modality settings used to generate the original image. When using
'Copy' mode, make sure that the metadata you use is from the same modality and IOD. If the
copy you make is unrelated to the original image, use dicomuid to create new unique
identifiers for series and study metadata. See the IOD descriptions in Part 3 of the DICOM
specification for more information on appropriate IOD values.

See Also
dicomanon | dicomdict | dicomdisp | dicominfo | dicomlookup | dicomread | dicomuid

Topics
“Write Image Data to DICOM Files”
“Create New DICOM Series”
“Remove Confidential Information from DICOM File”

Introduced before R2006a

 dicomwrite

1-743

displayChart
Display test chart with overlaid regions of interest

Syntax
displayChart(chart)
displayChart(chart,Name,Value)

Description
displayChart(chart) displays an Imatest® eSFR chart [1] or an X-Rite ColorChecker Classic chart
[2] with ROIs overlaid on detected features of the chart.

displayChart(chart,Name,Value) controls aspects of the chart display using name-value
arguments.

Examples

Display Color Patch ROIs on an eSFR Chart

Read an image of an eSFR chart into the workspace.

I = imread('eSFRTestImage.jpg');

Create an esfrChart object that stores information about the test chart.

chart = esfrChart(I);

Display only the color patch ROIs. To accomplish this, turn off the display of slanted edge ROIs, gray
patch ROIs, and registration points.

displayChart(chart,'displayEdgeROIs',false,'displayGrayROIs',false,'displayRegistrationPoints',false);

1 Functions

1-744

Display Registration Points on ColorChecker Chart

Read an image of an X-Rite® ColorChecker® chart into the workspace.

I = imread('colorCheckerTestImage.jpg');

Create a colorChecker object by performing automatic chart detection on the image.

chart = colorChecker(I);

Display the chart with the detected corner registration points only. Turn off the display of the color
patch ROIs.

displayChart(chart,'displayColorROIs',false)

 displayChart

1-745

Input Arguments
chart — Test chart
esfrChart object | colorChecker object

Test chart, specified as an esfrChart object or a colorChecker object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'displayRegistrationPoints',false turns off the overlay of registration points on
the chart.

displayEdgeROIs — Display slanted edge ROIs
true or 1 (default) | false or 0

Display slanted edge ROIs, specified as the comma-separated pair consisting of
'displayEdgeROIs' and a numeric or logical 1 (true) or 0 (false). When displayEdgeROIs is
true, the 60 slanted-edge bounding boxes are overlaid on the image in pale yellow.

1 Functions

1-746

This argument is supported by eSFR test charts only.

displayGrayROIs — Display gray patch ROIs
true or 1 (default) | false or 0

Display gray patch ROIs, specified as the comma-separated pair consisting of 'displayGrayROIs'
and a numeric or logical 1 (true) or 0 (false). When displayGrayROIs is true, the 20 gray patch
bounding boxes are overlaid on the image in blue.

This argument is supported by eSFR test charts only.

displayColorROIs — Display color patch ROIs
true or 1 (default) | false or 0

Display color patch ROIs, specified as the comma-separated pair consisting of 'displayColorROIs'
and a numeric or logical 1 (true) or 0 (false). When displayColorROIs is true, the 16 color
patch bounding boxes are overlaid on the image in dark yellow.

displayRegistrationPoints — Display registration points
true or 1 (default) | false or 0

Display registration points, specified as the comma-separated pair consisting of
'displayRegistrationPoints' and a numeric or logical 1 (true) or 0 (false). When
displayRegistrationPoints is true, the four registration points are indicated with a red
diamond overlay.

Parent — Axes handle of displayed image object
axes handle

Axes handle of the displayed image object, specified as the comma-separated pair consisting of
'Parent' and an axes handle. Parent specifies the parent of the image object created by
displayChart.

References
[1] Imatest. "Esfr". https://www.imatest.com/mathworks/esfr/.

[2] X-Rite Photo and Video. "ColorChecker Classic". https://xritephoto.com/colorchecker-classic

See Also
Functions
measureSharpness | measureChromaticAberration | measureNoise | measureColor |
measureIlluminant

Objects
esfrChart | colorChecker

Introduced in R2017b

 displayChart

1-747

https://www.imatest.com/mathworks/esfr/
https://xritephoto.com/colorchecker-classic

displayColorPatch
Display measured and reference color as color patches

Syntax
displayColorPatch(colorTable)
displayColorPatch(colorTable,Name,Value)

Description
displayColorPatch(colorTable) displays measured and reference colors, colorTable, for
color patch regions of interest (ROIs) in a test chart. The measured color values are displayed as
squares surrounded by a thick boundary of the corresponding reference color.

displayColorPatch(colorTable,Name,Value) displays measured color values with additional
name-value arguments to control aspects of the display.

Examples

Display Color Patch Diagram from ColorChecker Chart

Read an image of an X-Rite® ColorChecker® chart into the workspace.

I = imread('colorCheckerTestImage.jpg');

Create a colorChecker object, then display the chart with ROI annotations.

chart = colorChecker(I);
displayChart(chart,'displayRegistrationPoints',false)

1 Functions

1-748

Measure the color in each color patch ROI.

colorTable = measureColor(chart);

On a color patch diagram, display the measured and reference colors and the color error (ΔE).

displayColorPatch(colorTable)

 displayColorPatch

1-749

Display Color Patch Diagram from Color Accuracy Measurements

This example shows how to display the color patch diagram from measurements of color accuracy on
an Imatest® eSFR chart.

Read an image of an eSFR chart into the workspace.

I = imread('eSFRTestImage.jpg');

Create an esfrChart object. Display the chart, highlighting the 16 color patches.

chart = esfrChart(I);
displayChart(chart,'displayEdgeROIs',false, ...
 'displayGrayROIs',false,'displayRegistrationPoints',false)

1 Functions

1-750

http://www.imatest.com/mathworks/esfr

Measure the color in all color patch ROIs.

colorTable = measureColor(chart);

Display the color accuracy measurements without the ROI index overlay. Each square color patch is
the measured color, and the thick surrounding border is the reference color for that ROI. The color
accuracy measurement is displayed as Delta_E, the Euclidean distance between measured and
reference colors in CIE 1976 L*a*b* color space. More accurate colors have a smaller Delta_E.

displayColorPatch(colorTable,'displayROIIndex',false)

 displayColorPatch

1-751

Input Arguments
colorTable — Color values
color table

Color values in each color patch, specified as an m-by-8 color table, where m is the number of
patches. The eight columns represent these variables:

1 Functions

1-752

Variable Description
ROI Index of the sampled ROI. The value of ROI is an integer in the range [1,

16]. The indices match the ROI numbers displayed by displayChart.
Measured_R Mean value of red channel pixels in an ROI. Measured_R is a scalar of the

same data type as chart.Image, which can be of type single, double,
uint8, or uint16.

Measured_G Mean value of green channel pixels in an ROI. Measured_G is a scalar of
the same data type as chart.Image.

Measured_B Mean value of blue channel pixels in an ROI. Measured_B is a scalar of the
same data type as chart.Image.

Reference_L Reference L* value corresponding to the ROI. Reference_L is a scalar of
type double.

Reference_a Reference a* value corresponding to the ROI. Reference_a is a scalar of
type double.

Reference_b Reference b* value corresponding to the ROI. Reference_b is a scalar of
type double.

Delta_E Euclidean color distance between the measured and reference color
values, as outlined in CIE 1976.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'displayROIIndex',false turns off the display of the ROI indices.

displayROIIndex — Display ROI index labels
true or 1 (default) | false or 0

Display ROI index labels, specified as the comma-separated pair consisting of 'displayROIIndex'
and a numeric or logical 1 (true) or 0 (false). When displayROIIndex is true, then
displayColorPatch overlays color patch ROI index labels on the displayed color patches. The
indices match the ROI numbers displayed by displayChart.

displayDeltaE — Display color error values
true or 1 (default) | false or 0

Display color error ("delta E") values, specified as the comma-separated pair consisting of
'displayDeltaE' and a numeric or logical 1 (true) or 0 (false). When displayDeltaE is true,
displayColorPatch overlays the color error values on the displayed color patches.

Parent — Axes handle of displayed image object
axes handle

Axes handle of the displayed image object, specified as the comma-separated pair consisting of
'Parent' and an axes handle. Parent specifies the parent of the image object created by
displayColorPatch.

 displayColorPatch

1-753

Tips
• To obtain a color table of the correct format from an esfrChart or colorChecker object, use

the measureColor function. You can also create your own color table containing measured and
reference colors for an arbitrary number of color ROIs.

• The reference L*a*b* values of a colorTable measured from a colorChecker object are for the
"After November 2014" version of the X-Rite ColorChecker chart. The white point of the reference
values is the CIE standard illuminant D50.

See Also
Functions
measureColor | plotChromaticity | displayChart

Objects
esfrChart | colorChecker

Topics
“Correct Colors Using Color Correction Matrix”

Introduced in R2017b

1 Functions

1-754

dlresize
Resize spatial dimensions of dlarray object

Syntax
Y = dlresize(X,'Scale',scale)
Y = dlresize(X,'OutputSize',outputSize)
Y = dlresize(___ ,Name,Value)

Description
Y = dlresize(X,'Scale',scale) resizes the spatial dimensions of the dlarray object X by a
scale factor scale.

This function requires Deep Learning Toolbox.

Y = dlresize(X,'OutputSize',outputSize) resizes the spatial dimensions of the dlarray
object X so that the spatial dimension sizes are equal to outputSize.

Y = dlresize(___ ,Name,Value) adjusts the resizing operation using name-value pair
arguments. If X is not a formatted dlarray, then you must specify the DataFormat name-value pair
argument.

Examples

Resize dlarray by Scale Factor

Read an RGB image.

A = imread('peppers.png');

Convert the image to data type single for use in a dlarray. Then, create a dlarray containing the
input image.

A = im2single(A);
dlarrayA = dlarray(A,'SSC');

Rescale the dlarray by a factor of 1.5 vertically.

dlarrayB = dlresize(dlarrayA,'Scale',[1.5 1]);

Extract the image data from the resized dlarray B by using the extractdata (Deep Learning
Toolbox) function.

B = extractdata(dlarrayB);

Display the original and resized images as a montage.

montage({A,B},"ThumbnailSize",size(B,[1 2]), ...
 "BorderSize",10,"BackgroundColor","white")

 dlresize

1-755

Input Arguments
X — Deep learning array to resize
dlarray object

Deep learning array to resize, specified as a dlarray object.

scale — Scale factor to resize input
positive number | vector of positive numbers

Scale factor to resize input, specified as a positive number or a vector of positive numbers of length
equal to the number of spatial dimensions in X. If scale is a scalar, then dlresize applies the same
scale factor to all spatial dimensions.

outputSize — Output size of resized input
vector of positive integers

Output size of resized input, specified as a vector of positive integers of length equal to the number of
spatial dimensions in X. You can specify one element as a positive integer and specify the other
elements as NaN, in which case the layer computes the other elements automatically to preserve the
aspect ratio of the input.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

1 Functions

1-756

Example: 'Method',linear

DataFormat — Dimension labels
string scalar | character vector

Dimension labels of the input dlarray object X, specified as the comma-separated pair consisting of
'DataFormat' and a string scalar or character vector. Each character must be one of these labels:

• S — Spatial
• C — Channel
• B — Batch observations
• T — Time or sequence
• U — Unspecified

If X is not a formatted dlarray, then you must specify the DataFormat name-value pair argument.
For more information, see dlarray.
Example: 'SSC' indicates the array has two spatial dimensions and one channel dimension,
appropriate for 2-D RGB image data.

Method — Interpolation method
"nearest" (default) | "linear"

Interpolation method, specified as the comma-separated pair consisting of 'Method' and "nearest"
for nearest neighbor interpolation or "linear" for bilinear interpolation.

GeometricTransformMode — Geometric transformation mode
"half-pixel" (default) | "asymmetric"

Geometric transformation mode to map points from input space to output space, specified as the
comma-separated pair consisting of 'GeometricTransformMode' and "half-pixel" or
"asymmetric".

NearestRoundingMode — Rounding mode for nearest neighbor interpolation
"round" (default) | "floor" | "onnx-10"

Rounding mode for nearest neighbor interpolation, specified as the comma-separated pair consisting
of 'NearestRoundingMode' and one of the following.

• "round" — use the same rounding behavior as the MATLAB round function.
• "floor" — use the same rounding behavior as the MATLAB floor function.
• "onnx-10" — reproduce the resizing behavior of the ONNX™ (Open Neural Network Exchange)

opset 10 Resize operator.

This argument is used when you specify the Method as 'nearest'.

Output Arguments
Y — Resized deep learning array
dlarray object

Resized deep learning array, returned as a dlarray object.

 dlresize

1-757

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on a GPU”.

See Also
dlarray | maxpool | dltranspconv

Introduced in R2020b

1 Functions

1-758

dnCNNLayers
Get denoising convolutional neural network layers

Syntax
layers = dnCNNLayers
layers = dnCNNLayers('NetworkDepth',networkDepth)

Description
layers = dnCNNLayers returns layers of the denoising convolutional neural network (DnCNN) for
grayscale images.

This function requires that you have Deep Learning Toolbox.

layers = dnCNNLayers('NetworkDepth',networkDepth) returns a denoising convolutional
neural network with networkDepth number of convolutional layers.

Examples

Get Layers of Image Denoising Network

Get layers of the image denoising convolutional neural network, 'DnCNN'. Request the default
number of layers, which returns 20 convolution layers.

layers = dnCNNLayers

layers =
 1x59 Layer array with layers:

 1 'InputLayer' Image Input 50x50x1 images
 2 'Conv1' Convolution 64 3x3x1 convolutions with stride [1 1] and padding [1 1 1 1]
 3 'ReLU1' ReLU ReLU
 4 'Conv2' Convolution 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 5 'BNorm2' Batch Normalization Batch normalization with 64 channels
 6 'ReLU2' ReLU ReLU
 7 'Conv3' Convolution 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 8 'BNorm3' Batch Normalization Batch normalization with 64 channels
 9 'ReLU3' ReLU ReLU
 10 'Conv4' Convolution 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 11 'BNorm4' Batch Normalization Batch normalization with 64 channels
 12 'ReLU4' ReLU ReLU
 13 'Conv5' Convolution 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 14 'BNorm5' Batch Normalization Batch normalization with 64 channels
 15 'ReLU5' ReLU ReLU
 16 'Conv6' Convolution 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 17 'BNorm6' Batch Normalization Batch normalization with 64 channels
 18 'ReLU6' ReLU ReLU
 19 'Conv7' Convolution 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 20 'BNorm7' Batch Normalization Batch normalization with 64 channels
 21 'ReLU7' ReLU ReLU

 dnCNNLayers

1-759

 22 'Conv8' Convolution 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 23 'BNorm8' Batch Normalization Batch normalization with 64 channels
 24 'ReLU8' ReLU ReLU
 25 'Conv9' Convolution 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 26 'BNorm9' Batch Normalization Batch normalization with 64 channels
 27 'ReLU9' ReLU ReLU
 28 'Conv10' Convolution 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 29 'BNorm10' Batch Normalization Batch normalization with 64 channels
 30 'ReLU10' ReLU ReLU
 31 'Conv11' Convolution 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 32 'BNorm11' Batch Normalization Batch normalization with 64 channels
 33 'ReLU11' ReLU ReLU
 34 'Conv12' Convolution 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 35 'BNorm12' Batch Normalization Batch normalization with 64 channels
 36 'ReLU12' ReLU ReLU
 37 'Conv13' Convolution 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 38 'BNorm13' Batch Normalization Batch normalization with 64 channels
 39 'ReLU13' ReLU ReLU
 40 'Conv14' Convolution 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 41 'BNorm14' Batch Normalization Batch normalization with 64 channels
 42 'ReLU14' ReLU ReLU
 43 'Conv15' Convolution 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 44 'BNorm15' Batch Normalization Batch normalization with 64 channels
 45 'ReLU15' ReLU ReLU
 46 'Conv16' Convolution 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 47 'BNorm16' Batch Normalization Batch normalization with 64 channels
 48 'ReLU16' ReLU ReLU
 49 'Conv17' Convolution 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 50 'BNorm17' Batch Normalization Batch normalization with 64 channels
 51 'ReLU17' ReLU ReLU
 52 'Conv18' Convolution 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 53 'BNorm18' Batch Normalization Batch normalization with 64 channels
 54 'ReLU18' ReLU ReLU
 55 'Conv19' Convolution 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 56 'BNorm19' Batch Normalization Batch normalization with 64 channels
 57 'ReLU19' ReLU ReLU
 58 'Conv20' Convolution 1 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 59 'FinalRegressionLayer' Regression Output mean-squared-error

You can train a custom image denoising network by providing these layers and a
denoisingImageDatastore to trainNetwork (Deep Learning Toolbox).

Input Arguments
networkDepth — Number of convolution layers
20 (default) | positive integer

Number of convolution layers, specified as a positive integer with value greater than or equal to 3.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Output Arguments
layers — Network layers
vector of Layer objects

1 Functions

1-760

Denoising convolutional neural network layers, returned as a vector of Layer objects.

Tips
• The DnCNN network can detect noise and other high-frequency image artifacts. For example, you

can train the DnCNN network to increase image resolution or remove JPEG compression artifacts.
The example “JPEG Image Deblocking Using Deep Learning” shows how to train a DnCNN to
reduce JPEG compression artifacts in an image.

References
[1] Zhang, K., W. Zuo, Y. Chen, D. Meng, and L. Zhang. "Beyond a Gaussian Denoiser: Residual

Learning of Deep CNN for Image Denoising." IEEE Transactions on Image Processing. Vol.
26, Issue 7, 2017, pp. 3142–3155.

See Also
denoiseImage | denoisingNetwork | denoisingImageDatastore | trainNetwork

Topics
“JPEG Image Deblocking Using Deep Learning”
“Train and Apply Denoising Neural Networks”

Introduced in R2017b

 dnCNNLayers

1-761

dpxinfo
Read metadata from DPX file

Syntax
metadata = dpxinfo(filename)

Description
metadata = dpxinfo(filename) reads information about the image contained in the DPX file
specified by filename. metadata is a structure containing the file details.

Digital Picture Exchange (DPX) is an ANSI standard file format commonly used for still-frame storage
in digital intermediate post-production facilities and film labs.

Examples

Read Metadata from DPX File

Read metadata from DPX file into the workspace.

m = dpxinfo('peppers.dpx')

m = struct with fields:
 Filename: 'B:\matlab\toolbox\images\imdata\peppers.dpx'
 FileModDate: '16-Mar-2015 09:57:26'
 FileSize: 892828
 Format: 'DPX'
 FormatVersion: '2.0'
 Width: 512
 Height: 384
 BitDepth: 36
 ColorType: 'R,G,B'
 FormatSignature: [88 80 68 83]
 ByteOrder: 'Little-endian'
 Orientation: 'Left-to-right, Top-to-bottom'
 NumberOfImageElements: 1
 DataSign: {'Unsigned'}
 AmplitudeTransferFunction: {'ITU-R 709-4'}
 Colorimetry: {'ITU-R 709-4'}
 ChannelBitDepths: 12
 PackingMethod: 0
 Encoding: {'None'}

Input Arguments
filename — Name of the DPX file
character vector | string scalar

1 Functions

1-762

Name of a DPX file, specified as a string scalar or character vector. filename can contain the
absolute path to the file, the name of a file on the MATLAB path, or a relative path.
Data Types: char | string

Output Arguments
metadata — Information about the DPX image data
structure

Information about the DPX image data, returned as a structure.

See Also
dpxread

Introduced in R2015b

 dpxinfo

1-763

dpxread
Read DPX image

Syntax
X = dpxread(filename)

Description
X = dpxread(filename) reads image data from the DPX file specified by filename, returning the
image X.

Digital Picture Exchange (DPX) is an ANSI standard file format commonly used for still-frame storage
in digital intermediate post-production facilities and film labs.

Examples

Read and Visualize 12-bit RGB Image

Read image from DPX file into the workspace.

RGB = dpxread('peppers.dpx');

Create a scale factor based on the data range of the image data. The image needs to be scaled to
span the 16-bit data range expected by imshow.

maxOfDataRange = 2^12 - 1;
scaleFactor = intmax('uint16') / maxOfDataRange;

Display the image.

figure
imshow(RGB * scaleFactor)

1 Functions

1-764

Input Arguments
filename — Name of the DPX file
character vector | string scalar

Name of a DPX file, specified as a string scalar or character vector. filename can contain the
absolute path to the file, the name of a file on the MATLAB path, or a relative path.
Example: RGB = dpxread('peppers.dpx');
Data Types: char | string

Output Arguments
X — Image data from DPX file
numeric array

Image data from DPX file, returned as a numeric array of class uint8 or uint16, depending on the
bit depth of the pixels in filename.

 dpxread

1-765

See Also
dpxinfo

Introduced in R2015b

1 Functions

1-766

drawassisted
Create customizable freehand ROI with assistance from object edges

Syntax
roi = drawassisted
roi = drawassisted(hImage)
roi = drawassisted(___ ,Name,Value)

Description
The drawassisted function creates a AssistedFreehand object that specifies the shape and
position of a freehand region of interest (ROI) that follows the contours of objects in the image. You
can create the ROI interactively by drawing the ROI over an image using the mouse, or
programmatically by using name-value arguments. You can also specify the initial appearance and
behavior of the ROI.

After you create the ROI, you can use object properties, object functions, and event notifications to
customize the shape, position, appearance, and behavior of the ROI. For more information about
using these capabilities, see “Tips” on page 1-778.

roi = drawassisted creates an AssistedFreehand object and enables interactive drawing of
the hand-drawn region-of-interest (ROI) on the current axes. The AssistedFreehand ROI uses the
edges in the underlying image to "assist" you as you draw the shape.

To draw the ROI, position the pointer on the image, click and release to place the first vertex
(waypoint), and then move the pointer to draw a line. As you move the pointer to draw the shape, the
line follows the contours of edges in the underlying image automatically. As you draw, click to place
vertices along the line. To finish the ROI and close the shape, double-click. For more information

 drawassisted

1-767

about using the ROI, including keyboard shortcuts and context menu options, see “Tips” on page 1-
778.

roi = drawassisted(hImage) creates the ROI on the image specified by hImage.

roi = drawassisted(___ ,Name,Value) modifies the appearance and behavior of the ROI using
one or more name-value pairs. Unspecified name-value pairs are set to default values.

Examples

Alpha Blend Source ROI into Target Image

Read an image into the workspace and display it.

im = imread('peppers.png');
imshow(im)

Draw an assisted freehand ROI.

h = drawassisted;

Create a mask of the ROI.

1 Functions

1-768

bw = createMask(h);

Create an alpha matrix that specifies the transparency of the source image at each pixel.

alphamat = imguidedfilter(single(bw),im,'DegreeOfSmoothing',2);

Display a target image.

target = imread('fabric.png');
imshow(target)

Resize the source image and the alpha matrix to the same size as the target image.

alphamat = imresize(alphamat,[size(target,1),size(target,2)]);
im = imresize(im,[size(target,1),size(target,2)]);

Alpha blend the source ROI into the target image.

fused = single(im).*alphamat + (1-alphamat).*single(target);
fused = uint8(fused);
imshow(fused)

 drawassisted

1-769

Set Up Listener for AssistedFreehand Events

Read an image into the workspace.

I = imread('cameraman.tif');

Display the image. Use the imshow return value to get a handle to the image displayed. To create an
AssistedFreehand ROI requires an underlying image.

img = imshow(I);

Draw an assisted freehand ROI on the image, with assistance from the underlying image.

roi = drawassisted(img,'Color','r');

1 Functions

1-770

Set up listeners for ROI moving events. When you move it, the ROI sends notifications of these events
and executes the callback function you specify.

addlistener(roi,'MovingROI',@allevents);
addlistener(roi,'ROIMoved',@allevents);

The allevents callback function displays the previous position and the current position of the ROI.

function allevents(src,evt)
 evname = evt.EventName;
 switch(evname)
 case{'MovingROI'}
 disp(['ROI moving previous position: ' mat2str(evt.PreviousPosition)]);
 disp(['ROI moving current position: ' mat2str(evt.CurrentPosition)]);
 case{'ROIMoved'}
 disp(['ROI moved previous position: ' mat2str(evt.PreviousPosition)]);
 disp(['ROI moved current position: ' mat2str(evt.CurrentPosition)]);
 end
end

Input Arguments
hImage — Image on which to draw ROI
Image object

Image on which to draw the ROI, specified as an Image object.

 drawassisted

1-771

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Color','y' creates a yellow colored AssistedFreehand object

Closed — Close freehand ROI
true (default) | false

Close the freehand ROI, specified the comma-separated pair consisting of 'Closed' and the logical
value true or false. If true (default), drawassisted closes the ROI by connecting the last
waypoint drawn to the first waypoint drawn.

Color — ROI color
[0 0.4470 0.7410] (default) | RGB triplet | color name | short color name

ROI color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'Color','r'

1 Functions

1-772

Example: 'Color','green'
Example: 'Color',[0 0.4470 0.7410]

ContextMenu — Context menu
ContextMenu object

Context menu that displays when you right-click the ROI, specified as a ContextMenu object. You can
create a custom context menu by using the uicontextmenu function and then configuring context
menu properties.

Deletable — Context menu provides option to delete the ROI
true (default) | false

Context menu provides an option to delete the ROI, specified as true or false. When the value is
true, you can delete the ROI interactively using the context menu. When the value is false, the
context menu option to delete the ROI is disabled.

In both cases, you can delete the ROI outside of the context menu by using the delete function.

FaceAlpha — Transparency of ROI face
0.2 (default) | number in the range [0, 1]

Transparency of the ROI face, specified as a number in the range [0, 1]. When the value is 1, the ROI
face is completely opaque. When the value is 0, the ROI face is completely transparent.

FaceSelectable — ROI face can capture clicks
true (default) | false

ROI face can capture clicks, specified as true or false. When true (default), the ROI face captures
mouse clicks. When false, the ROI face does not capture mouse clicks.

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as one of the values in
this table.

Value Description
'on' The object handle is always visible (default).
'off' The object handle is hidden at all times.
'callback' The object handle is visible from within callbacks

or functions invoked by callbacks, but not from
within functions invoked from the command line.

Image — Image on which to draw ROI
Image object

Image on which to draw the ROI, specified as an Image object.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'reshape' | 'translate'

Interactivity of the ROI, specified as one of the values in this table.

 drawassisted

1-773

Value Description
'all' The ROI is fully interactable (default).
'none' The ROI is not interactable, and no drag points

are visible.
'translate' The ROI can be translated (moved) within the

drawing area but not reshaped.
'reshape' The ROI can be reshaped but not translated.

Label — ROI label
'' (default) | character vector | string scalar

ROI label, specified as a character vector or string scalar. By default, the ROI has no label ('').

LabelAlpha — Transparency of text background
1 (default) | number in the range [0, 1]

Transparency of the text background, specified as a number in the range [0, 1]. When set to 1, the
text background is completely opaque. When set to 0, the text background is completely transparent.

LabelTextColor — Label text color
'black' (default) | RGB triplet | color name | short color name

Label text color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]

1 Functions

1-774

RGB Triplet Appearance
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'LabelTextColor','r'
Example: 'LabelTextColor','green'
Example: 'LabelTextColor',[0 0.4470 0.7410]

LabelVisible — Label visibility
'on' (default) | 'off' | 'hover'

Label visibility, specified as one of these values.

Value Description
'on' Label is visible when the ROI is visible.
'hover' Label is visible only when the mouse is hovering

over the ROI.
'off' Label is not visible.

LineWidth — Width of ROI border
positive number

Width of the ROI border, specified as a positive number in points. The default value is three times the
number of points per screen pixel, such that the border is three pixels wide.

MarkerSize — Marker size
positive number

Marker size, specified as a positive number in points. The default value is eight times the number of
points per screen pixel, such that markers are eight pixels in size.

Parent — ROI parent
Axes object | UIAxes object

ROI parent, specified as an Axes or UIAxes object. For information about using an ROI in a UIAxes,
including important limitations, see “Using ROIs in Apps Created with App Designer”.

Position — Position of ROI
n-by-2 numeric matrix

Position of the ROI, specified as an n-by-2 numeric matrix where n is the number of vertices or points
defining the ROI. Each row represents the [x y] coordinates of a vertex or point.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the logical value true or false.

 drawassisted

1-775

SelectedColor — Color of ROI when selected
'none' (default) | RGB triplet | color name | short color name

Color of the ROI when selected, specified as an RGB triplet, a color name, a short color name, or
'none'. If you specify 'none', then the value of Color defines the color of the ROI for all states,
selected or not.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'SelectedColor','r'
Example: 'SelectedColor','green'
Example: 'SelectedColor',[0 0.4470 0.7410]

Smoothing — Smooth edge of ROI
1 (default) | nonnegative number

Smooth edge of ROI after interactive placement, specified as a nonnegative number. The
drawassisted function uses the standard deviation of the Gaussian smoothing kernel to filter the x
and y coordinates of the ROI. This argument defines the filter size using the equation:
2*ceil(2*Smoothing) + 1. You can see the smoothing effect only after completing the drawing.

1 Functions

1-776

StripeColor — Color of ROI stripe
'none' (default) | RGB triplet | color name | short color name

Color of the ROI stripe, specified as an RGB triplet, a color name, a short color name, or 'none'. If
you specify 'none', then the ROI edge is a solid color specified by Color. Otherwise, the edge of the
ROI is striped, with colors alternating between the colors specified by Color and StripeColor.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'StripeColor','r'
Example: 'StripeColor','green'
Example: 'StripeColor',[0 0.4470 0.7410]

Tag — Tag to associate with ROI
'' (default) | character vector | string scalar

Tag to associate with the ROI, specified as a character vector or string scalar. Use the tag value to
find the ROI object in a hierarchy of objects using the findobj function.

UserData — Data to associate with ROI
any MATLAB data

 drawassisted

1-777

Data to associate with the ROI, specified as any MATLAB data. For example, you can specify a scalar,
vector, matrix, cell array, string, character array, table, or structure. The drawassisted object does
not use this data.

Visible — ROI visibility
'on' (default) | 'off' | on/off logical value

ROI visibility, specified as 'on' or 'off', or as a numeric or logical 1 (true) or 0 (false). A value of
'on' is equivalent to true, and 'off' is equivalent to false. The value is stored as an on/off logical
value of type OnOffSwitchState.

Value Description
'on' Display the ROI.
'off' Hide the ROI without deleting it. You still can

access the properties of an invisible ROI.

Waypoints — Position point is waypoint
n-by-1 logical vector

Position point is waypoint, specified as an n-by-1 logical vector where n is the number of points
defining the ROI. The length of Waypoints must match the number of rows of the Position name-
value argument. Elements in Waypoints with the value true identify points in the Position matrix
that are waypoints.

Waypoints appear as circular shapes on the ROI edge. You can use waypoints to reshape the ROI by
clicking and dragging the waypoint with the mouse. Moving waypoints modifies the freehand-drawn
region between the waypoint that you clicked and the adjacent waypoints.

Output Arguments
roi — Assisted freehand ROI
AssistedFreehand object

Assisted freehand ROI, returned as an AssistedFreehand object.

Tips
• This table describes how to perform common tasks with the AssistedFreehand ROI.

Behavior Keyboard shortcut
Cancel drawing the ROI. Press Esc. The function returns a valid ROI

object with an empty Position property.

1 Functions

1-778

Behavior Keyboard shortcut
Finish drawing (close) the ROI. Double-click, which adds a point at the pointer

position and draws a line connecting this point
to the first point drawn, closing the ROI.

Right-click, which draws a line connecting the
last point to the first point drawn.

Position the pointer over the first point and
click.

Press Enter, which draws a line connecting
the last point to the first point drawn.

Resize (reshape) the ROI. Position pointer over a waypoint and then
click and drag. No assistance (snapping to
edges) is available in this mode.

Add a waypoint. Position the pointer on an edge of the ROI,
right-click, and select Add Waypoint. You can
also position the pointer on an edge of the ROI
and double-click.

Remove a waypoint. Position the pointer on a waypoint, right-click,
and select Remove Waypoint.

Move the ROI. Position the pointer over the ROI. The pointer
changes to the fleur shape. Click and drag to
move the ROI.

Delete an ROI. Position the pointer on the ROI (not on a
vertex), right-click, and select Delete
Freehand from the context menu. You can
also delete the ROI programmatically using
the delete function.

• The drawassisted function creates an AssistedFreehand object. After you create the object,
you can modify the shape, position, appearance, and behavior of the ROI by using these object
capabilities.

Capability Support
Object properties ROI objects have properties that specify their

shape, position, appearance, and behavior.
After you create the ROI object, change
properties using dot notation.

For example, to change the color of the roi to
yellow, set its Color property:

roi.Color = 'yellow'

Object functions ROI objects have object functions that operate
on the ROIs. For example, if you want to pause
the MATLAB command line after creating an
ROI, use the wait function.

 drawassisted

1-779

Capability Support
Event notifications ROI objects can notify your code when certain

events occur, such as when the ROI is clicked
or when the ROI is being moved. To receive
event notifications, set up listeners. When the
ROI notifies your application through the
listener, it returns data specific to the event.
For example, with the ROIMoved event, the
ROI object returns its previous position and its
current position. You can specify a callback
function that executes when an event occurs.

For an example of using event listeners with the AssistedFreehand object, see “Set Up Listener
for AssistedFreehand Events” on page 1-770.

Compatibility Considerations
UIContextMenu name-value argument is not recommended
Not recommended starting in R2020a

Starting in R2020a, using the UIContextMenu name-value argument to assign a context menu to an
ROI object is not recommended. Use the ContextMenu name-value argument instead. The values are
the same.

There are no plans to remove support for the UIContextMenu name-value argument at this time.

See Also
AssistedFreehand | drawfreehand | drawpolygon | drawpolyline

Topics
“Create ROI Shapes”
“Using ROIs in Apps Created with App Designer”
“Use Wait Function After Drawing ROI”

Introduced in R2018b

1 Functions

1-780

drawcircle
Create customizable circular ROI

Syntax
roi = drawcircle
roi = drawcircle(ax)
roi = drawcircle(___ ,Name,Value)

Description
The drawcircle function creates a Circle object that specifies the size and position of a circular
region of interest (ROI). You can create the ROI interactively by drawing the ROI over an image using
the mouse, or programmatically by using name-value arguments. You can also specify the initial
appearance and behavior of the ROI.

After you create the ROI, you can use object properties, object functions, and event notifications to
customize the shape, position, appearance, and behavior of the ROI. For more information about
using these capabilities, see “Tips” on page 1-794.

roi = drawcircle creates a Circle ROI object and enables interactive drawing of the ROI on the
current axes.

To draw the ROI, position the pointer on the image. The cursor changes to a fleur shape. Click and
drag to draw the circular ROI. To finish the ROI, release the mouse button. For more information
about using the ROI, including keyboard shortcuts and context menu options, see “Tips” on page 1-
794.

roi = drawcircle(ax) creates the ROI on the axes specified by ax.

 drawcircle

1-781

roi = drawcircle(___ ,Name,Value) modifies the appearance and behavior of the ROI using
one or more name-value arguments.

Examples

Create Black Circular ROI

Read an image into the workspace and display it.

imshow(imread('peacock.jpg'))

Interactively draw a partially-opaque black circular ROI.

h = drawcircle('Color','k','FaceAlpha',0.4);

1 Functions

1-782

Change the stripe color of the ROI to magenta, then increase the opacity of the ROI.

h.StripeColor = 'magenta';
h.FaceAlpha = 0.8;

 drawcircle

1-783

Create Circular ROI Programmatically

Read an image into the workspace and display it.

I = imread('baby.jpg');
figure
imshow(I)

1 Functions

1-784

Draw a circular ROI on the image, Use the 'Center' name-value pair to specify the location of the
circle and the 'Radius' name-value pair to specify its size. Set the edge of the circle to be striped by
specifying the 'StripeColor' name-value pair.

h = drawcircle('Center',[1000,1000],'Radius',500,'StripeColor','red');

 drawcircle

1-785

Set Up Listener for Circle ROI Events

Read an image into the workspace.

I = imread('cameraman.tif');

1 Functions

1-786

Display the image.

imshow(I);

Draw a circular ROI on the image.

roi = drawcircle('Color','r');

Set up listeners for ROI moving events. When you move it, the ROI sends notifications of these events
and executes the callback function you specify.

addlistener(roi,'MovingROI',@allevents);
addlistener(roi,'ROIMoved',@allevents);

The allevents callback function displays the previous position and the current position of the ROI.

function allevents(src,evt)
 evname = evt.EventName;
 switch(evname)
 case{'MovingROI'}
 disp(['ROI moving previous position: ' mat2str(evt.PreviousPosition)]);
 disp(['ROI moving current position: ' mat2str(evt.CurrentPosition)]);
 case{'ROIMoved'}
 disp(['ROI moved previous position: ' mat2str(evt.PreviousPosition)]);
 disp(['ROI moved current position: ' mat2str(evt.CurrentPosition)]);
 end
end

Input Arguments
ax — Parent of ROI
gca (default) | Axes object | UIAxes object

 drawcircle

1-787

Parent of ROI, specified as an Axes object or a UIAxes object. For information about using an ROI in
a UIAxes, including important limitations, see “Using ROIs in Apps Created with App Designer”.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Color','y' creates a yellow colored Circle object

Center — Center of ROI
1-by-2 numeric vector

Center of the ROI, specified as a 1-by-2 numeric vector of the form [x y].

Color — ROI color
[0 0.4470 0.7410] (default) | RGB triplet | color name | short color name

ROI color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

1 Functions

1-788

Example: 'Color','r'
Example: 'Color','green'
Example: 'Color',[0 0.4470 0.7410]

ContextMenu — Context menu
ContextMenu object

Context menu that displays when you right-click the ROI, specified as a ContextMenu object. You can
create a custom context menu by using the uicontextmenu function and then configuring context
menu properties.

Deletable — Context menu provides option to delete the ROI
true (default) | false

Context menu provides an option to delete the ROI, specified as true or false. When the value is
true, you can delete the ROI interactively using the context menu. When the value is false, the
context menu option to delete the ROI is disabled.

In both cases, you can delete the ROI outside of the context menu by using the delete function.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | [x,y,w,h]

Area of the axes in which you can interactively place the ROI, specified as one of the values in this
table.

Value Description
'auto' The drawing area is the current axes limits

(default).
'unlimited' The drawing area has no boundary and ROIs can

be drawn or dragged to extend beyond the axes
limits.

[x,y,w,h] The drawing area is restricted to a rectangular
region beginning at (x,y), and extending to width
w and height h.

FaceAlpha — Transparency of ROI face
0.2 (default) | number in the range [0, 1]

Transparency of the ROI face, specified as a number in the range [0, 1]. When the value is 1, the ROI
face is completely opaque. When the value is 0, the ROI face is completely transparent.

FaceSelectable — ROI face can capture clicks
true (default) | false

ROI face can capture clicks, specified as true or false. When true (default), the ROI face captures
mouse clicks. When false, the ROI face does not capture mouse clicks.

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as one of the values in
this table.

 drawcircle

1-789

Value Description
'on' The object handle is always visible (default).
'off' The object handle is hidden at all times.
'callback' The object handle is visible from within callbacks

or functions invoked by callbacks, but not from
within functions invoked from the command line.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'reshape' | 'translate'

Interactivity of the ROI, specified as one of the values in this table.

Value Description
'all' The ROI is fully interactable (default).
'none' The ROI is not interactable, and no drag points

are visible.
'translate' The ROI can be translated (moved) within the

drawing area but not reshaped.
'reshape' The ROI can be reshaped but not translated.

Label — ROI label
'' (default) | character vector | string scalar

ROI label, specified as a character vector or string scalar. By default, the ROI has no label ('').

LabelAlpha — Transparency of text background
1 (default) | number in the range [0, 1]

Transparency of the text background, specified as a number in the range [0, 1]. When set to 1, the
text background is completely opaque. When set to 0, the text background is completely transparent.

LabelTextColor — Label text color
'black' (default) | RGB triplet | color name | short color name

Label text color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]

1 Functions

1-790

Color Name Short Name RGB Triplet Appearance
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'LabelTextColor','r'
Example: 'LabelTextColor','green'
Example: 'LabelTextColor',[0 0.4470 0.7410]

LabelVisible — Label visibility
'on' (default) | 'off' | 'hover'

Label visibility, specified as one of these values.

Value Description
'on' Label is visible when the ROI is visible.
'hover' Label is visible only when the mouse is hovering

over the ROI.
'off' Label is not visible.

LineWidth — Width of ROI border
positive number

Width of the ROI border, specified as a positive number in points. The default value is three times the
number of points per screen pixel, such that the border is three pixels wide.

MarkerSize — Marker size
positive number

Marker size, specified as a positive number in points. The default value is eight times the number of
points per screen pixel, such that markers are eight pixels in size.

Parent — ROI parent
Axes object | UIAxes object

 drawcircle

1-791

ROI parent, specified as an Axes or UIAxes object. For information about using an ROI in a UIAxes,
including important limitations, see “Using ROIs in Apps Created with App Designer”.

Radius — Radius of circle
nonnegative number

Radius of the circle, specified as a nonnegative number.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the logical value true or false.

SelectedColor — Color of ROI when selected
'none' (default) | RGB triplet | color name | short color name

Color of the ROI when selected, specified as an RGB triplet, a color name, a short color name, or
'none'. If you specify 'none', then the value of Color defines the color of the ROI for all states,
selected or not.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

1 Functions

1-792

Example: 'SelectedColor','r'
Example: 'SelectedColor','green'
Example: 'SelectedColor',[0 0.4470 0.7410]

StripeColor — Color of ROI stripe
'none' (default) | RGB triplet | color name | short color name

Color of the ROI stripe, specified as an RGB triplet, a color name, a short color name, or 'none'. If
you specify 'none', then the ROI edge is a solid color specified by Color. Otherwise, the edge of the
ROI is striped, with colors alternating between the colors specified by Color and StripeColor.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'StripeColor','r'
Example: 'StripeColor','green'
Example: 'StripeColor',[0 0.4470 0.7410]

Tag — Tag to associate with ROI
'' (default) | character vector | string scalar

 drawcircle

1-793

Tag to associate with the ROI, specified as a character vector or string scalar. Use the tag value to
find the ROI object in a hierarchy of objects using the findobj function.

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as any MATLAB data. For example, you can specify a scalar,
vector, matrix, cell array, string, character array, table, or structure. The drawcircle object does not
use this data.

Visible — ROI visibility
'on' (default) | 'off' | on/off logical value

ROI visibility, specified as 'on' or 'off', or as a numeric or logical 1 (true) or 0 (false). A value of
'on' is equivalent to true, and 'off' is equivalent to false. The value is stored as an on/off logical
value of type OnOffSwitchState.

Value Description
'on' Display the ROI.
'off' Hide the ROI without deleting it. You still can

access the properties of an invisible ROI.

Output Arguments
roi — Circular ROI
Circle object

Circular ROI, returned as a Circle object.

Tips
• The ROI supports the following interactivity, including keyboard shortcuts.

Behavior Keyboard shortcut
Cancel drawing the ROI. Press Esc. The function returns a valid ROI

object with an empty Position property.
Resize the ROI. Position the pointer over one of the vertices on

the circle and then click and drag. The aspect
ratio of the ROI remains constant (1:1).

Move the ROI. Position the pointer over the ROI. The pointer
changes to the fleur shape. Click and drag the
ROI.

Delete the ROI. Position the pointer over the ROI and right-
click to view its context menu. Select Delete
Circle from the menu. You can also delete the
ROI using the delete function.

• The drawcircle function creates a Circle object. After you create the object, you can modify
the shape, position, appearance, and behavior of the ROI by using these object capabilities.

1 Functions

1-794

Capability Support
Object properties ROI objects have properties that specify their

shape, position, appearance, and behavior.
After you create the ROI object, change
properties using dot notation.

For example, to change the color of the roi to
yellow, set its Color property:

roi.Color = 'yellow'

Object functions ROI objects have object functions that operate
on the ROIs. For example, if you want to pause
the MATLAB command line after creating an
ROI, use the wait function.

Event notifications ROI objects can notify your code when certain
events occur, such as when the ROI is clicked
or when the ROI is being moved. To receive
event notifications, set up listeners. When the
ROI notifies your application through the
listener, it returns data specific to the event.
For example, with the ROIMoved event, the
ROI object returns its previous position and its
current position. You can specify a callback
function that executes when an event occurs.

For an example of using event listeners with the Circle object, see “Set Up Listener for Circle
ROI Events” on page 1-786.

Compatibility Considerations
UIContextMenu name-value argument is not recommended
Not recommended starting in R2020a

Starting in R2020a, using the UIContextMenu name-value argument to assign a context menu to an
ROI object is not recommended. Use the ContextMenu name-value argument instead. The values are
the same.

There are no plans to remove support for the UIContextMenu name-value argument at this time.

See Also
Circle | drawellipse

Topics
“Create ROI Shapes”
“Using ROIs in Apps Created with App Designer”
“Use Wait Function After Drawing ROI”

Introduced in R2018b

 drawcircle

1-795

drawcrosshair
Create customizable crosshair ROI

Syntax
roi = drawcrosshair
roi = drawcrosshair(ax)
roi = drawcrosshair(___ ,Name,Value)

Description
The drawcrosshair function creates a Crosshair object that specifies the position of a crosshair
region of interest (ROI). You can create the ROI interactively by drawing the ROI over an image using
the mouse, or programmatically by using name-value arguments. You can also specify the initial
appearance and behavior of the ROI.

After you create the ROI, you can use object properties, object functions, and event notifications to
customize the shape, position, appearance, and behavior of the ROI. For more information about
using these capabilities, see “Tips” on page 1-807.

roi = drawcrosshair creates a Crosshair object and enables interactive drawing of the ROI on
the current axes. The crosshair ROI is made up of two perpendicular lines that are the full width and
height of the axes.

To draw the ROI, move the cursor over the axes and click. For more information about using the ROI,
including keyboard shortcuts and context menu options, see “Tips” on page 1-807.

roi = drawcrosshair(ax) begins interactive placement of an ROI in the axes specified by ax.

roi = drawcrosshair(___ ,Name,Value) customizes the appearance and behavior of the ROI
using one or more name-value pairs. Unspecified name-value pairs are set to the default value.

1 Functions

1-796

Examples

Create Crosshair ROI and Modify ROI Properties

This example shows how to create a crosshair ROI both interactively and programmatically.

Create Crosshair ROI

Read an image into the workspace and display it.

figure;
imshow('pears.png')

Create a crosshair ROI on the image using the drawcrosshair function interactively. Move the
cursor over the image anywhere and click to draw the ROI. Click on the ROI Center (the point where
the horizontal line crosses the vertical line) to move the ROI on the image.

h = drawcrosshair();

Create Crosshair ROI Programmatically

Read an image into the workspace and display it.

figure;
imshow('pears.png')

 drawcrosshair

1-797

Create a crosshair ROI on the image using the drawcrosshair function. Use Name/Value pair
arguments to specify the initial position of the ROI.

h = drawcrosshair('Position',[100 100]);

Modify Crosshair ROI Appearance Using Properties

Read an image into the workspace and display it.

figure;
imshow('pears.png')

Create a crosshair ROI on the image using the drawcrosshair function. Use Name/Value pair
arguments to specify the initial position of the ROI.

h = drawcrosshair('Position',[100 100]);

Use properties of the Crosshair object to change the lines in the ROI to be striped. The drawcrosshair
function returns a Crosshair object that supports many properties. Use the StripeColor property
to specify the stripe color.

h.StripeColor = 'green';

1 Functions

1-798

Display Value of Pixel Specified By Crosshair ROI

Read an image into the workspace and display it.

img = imread('coins.png');
hAx = gca;
imObj = imshow(img,'Parent',hAx);
imObj.Parent.Visible = 'on';

Create a crosshair ROI.

h = drawcrosshair('Parent',hAx,'Position',[50 50],'LineWidth',1,'Color','y');

 drawcrosshair

1-799

Use the addlistener object function to receive notification when the ROI moves. Specify the
callback function to execute when the event occurs. When you move the crosshair ROI, the code
displays the position of the crosshair in the title and displays the pixel value at the location in the ROI
label.

addlistener(h,'MovingROI',@(src,data)displayInfo(src,data,hAx,img));

This is the callback function that displays the value of the pixel specified by the crosshair ROI.

1 Functions

1-800

function displayInfo(src,data,hAx,img)
pos = ceil(data.CurrentPosition);
pixval = img(pos(2),pos(1));
src.Label = mat2str(pixval);
title(mat2str(pos));
end

Input Arguments
ax — Parent of ROI
gca (default) | Axes object | UIAxes object

Parent of ROI, specified as an Axes object or a UIAxes object. For information about using an ROI in
a UIAxes, including important limitations, see “Using ROIs in Apps Created with App Designer”.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Color','y' creates a yellow colored Crosshair object

Color — ROI color
[0 0.4470 0.7410] (default) | RGB triplet | color name | short color name

ROI color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]

 drawcrosshair

1-801

RGB Triplet Appearance
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'Color','r'
Example: 'Color','green'
Example: 'Color',[0 0.4470 0.7410]

ContextMenu — Context menu
ContextMenu object

Context menu that displays when you right-click the ROI, specified as a ContextMenu object. You can
create a custom context menu by using the uicontextmenu function and then configuring context
menu properties.

Deletable — Context menu provides option to delete the ROI
true (default) | false

Context menu provides an option to delete the ROI, specified as true or false. When the value is
true, you can delete the ROI interactively using the context menu. When the value is false, the
context menu option to delete the ROI is disabled.

In both cases, you can delete the ROI outside of the context menu by using the delete function.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | [x,y,w,h]

Area of the axes in which you can interactively place the ROI, specified as one of the values in this
table.

Value Description
'auto' The drawing area is the current axes limits

(default).
'unlimited' The drawing area has no boundary and ROIs can

be drawn or dragged to extend beyond the axes
limits.

[x,y,w,h] The drawing area is restricted to a rectangular
region beginning at (x,y), and extending to width
w and height h.

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as one of the values in
this table.

1 Functions

1-802

Value Description
'on' The object handle is always visible (default).
'off' The object handle is hidden at all times.
'callback' The object handle is visible from within callbacks

or functions invoked by callbacks, but not from
within functions invoked from the command line.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none'

Interactivity of the ROI, specified as one of the values in this table.

Value Description
'all' The ROI is fully interactable.
'none' The ROI is not interactable, and no drag points

are visible.

Label — ROI label
'' (default) | character vector | string scalar

ROI label, specified as a character vector or string scalar. By default, the ROI has no label ('').

LabelAlpha — Transparency of text background
1 (default) | number in the range [0, 1]

Transparency of the text background, specified as a number in the range [0, 1]. When set to 1, the
text background is completely opaque. When set to 0, the text background is completely transparent.

LabelTextColor — Label text color
'black' (default) | RGB triplet | color name | short color name

Label text color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]

 drawcrosshair

1-803

Color Name Short Name RGB Triplet Appearance
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'LabelTextColor','r'
Example: 'LabelTextColor','green'
Example: 'LabelTextColor',[0 0.4470 0.7410]

LabelVisible — Label visibility
'on' (default) | 'off' | 'hover'

Label visibility, specified as one of these values.

Value Description
'on' Label is visible when the ROI is visible.
'hover' Label is visible only when the mouse is hovering

over the ROI.
'off' Label is not visible.

LineWidth — Width of ROI border
positive number

Width of the ROI border, specified as a positive number in points. The default value is three times the
number of points per screen pixel, such that the border is three pixels wide.

Parent — ROI parent
Axes object | UIAxes object

ROI parent, specified as an Axes or UIAxes object. For information about using an ROI in a UIAxes,
including important limitations, see “Using ROIs in Apps Created with App Designer”.

Position — Position of ROI
1-by-2 numeric vector

Position of the ROI, specified as a 1-by-2 numeric vector of the form [x y]. The values x and y specify
coordinates where the horizontal line crosses the vertical line in the crosshair ROI.

Selected — Selection state of ROI
false (default) | true

1 Functions

1-804

Selection state of the ROI, specified as the logical value true or false.

SelectedColor — Color of ROI when selected
'none' (default) | RGB triplet | color name | short color name

Color of the ROI when selected, specified as an RGB triplet, a color name, a short color name, or
'none'. If you specify 'none', then the value of Color defines the color of the ROI for all states,
selected or not.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'SelectedColor','r'
Example: 'SelectedColor','green'
Example: 'SelectedColor',[0 0.4470 0.7410]

StripeColor — Color of ROI stripe
'none' (default) | RGB triplet | color name | short color name

Color of the ROI stripe, specified as an RGB triplet, a color name, a short color name, or 'none'. If
you specify 'none', then the ROI edge is a solid color specified by Color. Otherwise, the edge of the
ROI is striped, with colors alternating between the colors specified by Color and StripeColor.

 drawcrosshair

1-805

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'StripeColor','r'
Example: 'StripeColor','green'
Example: 'StripeColor',[0 0.4470 0.7410]

Tag — Tag to associate with ROI
'' (default) | character vector | string scalar

Tag to associate with the ROI, specified as a character vector or string scalar. Use the tag value to
find the ROI object in a hierarchy of objects using the findobj function.

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as any MATLAB data. For example, you can specify a scalar,
vector, matrix, cell array, string, character array, table, or structure. The drawcrosshair object does
not use this data.

Visible — ROI visibility
'on' (default) | 'off' | on/off logical value

1 Functions

1-806

ROI visibility, specified as 'on' or 'off', or as a numeric or logical 1 (true) or 0 (false). A value of
'on' is equivalent to true, and 'off' is equivalent to false. The value is stored as an on/off logical
value of type OnOffSwitchState.

Value Description
'on' Display the ROI.
'off' Hide the ROI without deleting it. You still can

access the properties of an invisible ROI.

Output Arguments
roi — Crosshair ROI
Crosshair object

Crosshair ROI, returned as a Crosshair object.

Tips
• This table describes how to perform common tasks with a crosshair ROI.

Task Description
Cancel the drawing operation. Start drawing the ROI and press Esc before

releasing the mouse. The function returns a
valid ROI object with an empty Position
property.

Move the ROI. Position the pointer over the ROI. The pointer
changes to a fleur shape. Click and drag to
move the ROI.

Delete the ROI. Position the pointer over the ROI and right-
click to view its context menu. Select Delete
Crosshair from the menu. You can also delete
the ROI using the delete function.

• The drawcrosshair function creates a Crosshair object. After you create the object, you can
modify the position, appearance, and behavior of the ROI by using these object capabilities.

Capability Support
Object properties ROI objects have properties that specify their

shape, position, appearance, and behavior.
After you create the ROI object, change
properties using dot notation.

For example, to change the color of the roi to
yellow, set its Color property:

roi.Color = 'yellow'

 drawcrosshair

1-807

Capability Support
Object functions ROI objects have object functions that operate

on the ROIs. For example, if you want to pause
the MATLAB command line after creating an
ROI, use the wait function.

Event notifications ROI objects can notify your code when certain
events occur, such as when the ROI is clicked
or when the ROI is being moved. To receive
event notifications, set up listeners. When the
ROI notifies your application through the
listener, it returns data specific to the event.
For example, with the ROIMoved event, the
ROI object returns its previous position and its
current position. You can specify a callback
function that executes when an event occurs.

For an example of using event listeners with the Crosshair object, see “Display Value of Pixel
Specified By Crosshair ROI” on page 1-799.

Compatibility Considerations
UIContextMenu name-value argument is not recommended
Not recommended starting in R2020a

Starting in R2020a, using the UIContextMenu name-value argument to assign a context menu to an
ROI object is not recommended. Use the ContextMenu name-value argument instead. The values are
the same.

There are no plans to remove support for the UIContextMenu name-value argument at this time.

See Also
Crosshair | drawline | drawpoint | drawpolyline

Topics
“Create ROI Shapes”

Introduced in R2019b

1 Functions

1-808

drawcuboid
Create customizable cuboidal ROI

Syntax
roi = drawcuboid
roi = drawcuboid(ax)
roi = drawcuboid(S)
roi = drawcuboid(___ ,Name,Value)

Description
The drawcuboid function creates a Cuboid object that specifies the shape and position of a cuboidal
region of interest (ROI). You can create the ROI interactively by drawing the ROI over an image using
the mouse, or programmatically by using name-value arguments. You can also specify the initial
appearance and behavior of the ROI.

After you create the ROI, you can use object properties, object functions, and event notifications to
customize the shape, position, appearance, and behavior of the ROI. For more information about
using these capabilities, see “Tips” on page 1-821.

roi = drawcuboid creates a Cuboid ROI object and enables interactive drawing of a cuboidal
region of interest (ROI) on the current axes.

To draw the ROI, call the drawcuboid function. The function draws a cuboidal ROI, centered in the
volume. Move the pointer onto the image. The cursor changes to a fleur shape. Move the ROI

 drawcuboid

1-809

anywhere on the image. To finish the ROI, click the mouse button. For more information about using
the ROI, including keyboard shortcuts and context menu options, see “Tips” on page 1-821.

roi = drawcuboid(ax) creates a Cuboid ROI object and enables interactive drawing of a cuboidal
region of interest (ROI) on the axes specified by ax.

roi = drawcuboid(S) creates a Cuboid ROI object and enables interactive drawing of a cuboidal
region of interest (ROI) on the Scatter object specified by S. During interactive placement, the
cuboid snaps to the nearest point defined by the Scatter object.

roi = drawcuboid(___ ,Name,Value) modifies the appearance of the ROI using one or more
name-value pairs.

Examples

Create Cuboid ROI on Scatter Plot

Create a 3-D scatter plot and interactively define a cuboid ROI over the data.

Define vectors for 3-D scatter data.

[x,y,z] = sphere(16);
X = [x(:)*.5 x(:)*.75 x(:)];
Y = [y(:)*.5 y(:)*.75 y(:)];
Z = [z(:)*.5 z(:)*.75 z(:)];

Specify the size and color of each marker.

S = repmat([1 .75 .5]*10,numel(x),1);
C = repmat([1 2 3],numel(x),1);

Create a 3-D scatter plot. Use view to the change the angle of the axes in the figure.

figure
hScatter = scatter3(X(:),Y(:),Z(:),S(:),C(:),'filled');
view(-60,60);

Begin placing a cuboid ROI on the axes. The ROI snaps to the nearest point defined by the scatter
plot. Adjust the size of the cuboid during interactive placement by using the scroll wheel.

drawcuboid(hScatter);

1 Functions

1-810

Set Up Listener for Cuboid ROI Events

Define vectors for 3-D scattered data.

[x,y,z] = sphere(16);
X = [x(:)*.5 x(:)*.75 x(:)];
Y = [y(:)*.5 y(:)*.75 y(:)];
Z = [z(:)*.5 z(:)*.75 z(:)];

Specify the size and color of each marker.

S = repmat([1 .75 .5]*10,numel(x),1);
C = repmat([1 2 3],numel(x),1);

Create a 3-D scatter plot and use view to change the angle of the axes in the figure.

figure
hScatter = scatter3(X(:),Y(:),Z(:),S(:),C(:),'filled');
view(-60,60);

 drawcuboid

1-811

Begin placing a cuboid in the axes that snaps to the nearest point from the scatter plot. Adjust the
size of the cuboid during interactive placement by using the scroll wheel.

roi = drawcuboid(hScatter,'Color','r');

Set up listeners for ROI moving events. When you move it, the ROI sends notifications of these events
and executes the callback function you specify.

addlistener(roi,'MovingROI',@allevents);
addlistener(roi,'ROIMoved',@allevents);

The allevents callback function displays the previous position and the current position of the ROI.

function allevents(src,evt)
 evname = evt.EventName;
 switch(evname)
 case{'MovingROI'}
 disp(['ROI moving previous position: ' mat2str(evt.PreviousPosition)]);
 disp(['ROI moving current position: ' mat2str(evt.CurrentPosition)]);
 case{'ROIMoved'}
 disp(['ROI moved previous position: ' mat2str(evt.PreviousPosition)]);
 disp(['ROI moved current position: ' mat2str(evt.CurrentPosition)]);
 end
end

1 Functions

1-812

Input Arguments
ax — Parent of ROI
gca (default) | Axes object | UIAxes object

Parent of ROI, specified as an Axes object or a UIAxes object. For information about using an ROI in
a UIAxes, including important limitations, see “Using ROIs in Apps Created with App Designer”.

S — Scatter plot
Scatter object

Scatter plot, specified as a Scatter object. The parent of the Scatter object becomes the parent of
the ROI. For more information, see scatter.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Color','y' creates a yellow colored Cuboid object

Color — ROI color
[0 0.4470 0.7410] (default) | RGB triplet | color name | short color name

ROI color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]

 drawcuboid

1-813

RGB Triplet Appearance
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'Color','r'
Example: 'Color','green'
Example: 'Color',[0 0.4470 0.7410]

ContextMenu — Context menu
ContextMenu object

Context menu that displays when you right-click the ROI, specified as a ContextMenu object. You can
create a custom context menu by using the uicontextmenu function and then configuring context
menu properties.

Deletable — Context menu provides option to delete the ROI
true (default) | false

Context menu provides an option to delete the ROI, specified as true or false. When the value is
true, you can delete the ROI interactively using the context menu. When the value is false, the
context menu option to delete the ROI is disabled.

In both cases, you can delete the ROI outside of the context menu by using the delete function.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | 1-by-6 numeric array

Area of the axes in which you can interactively place the ROI, specified as one of the values in this
table.

Value Description
'auto' The drawing area is a superset of the current

axes limits and a bounding box that surrounds
the ROI.

'unlimited' The drawing area has no boundary and ROIs can
be drawn or dragged to extend beyond the axes
limits.

[x,y,z,w,h,d] The drawing area is restricted to a region
beginning at (x,y,z), with width w, height h, and
depth d.

EdgeAlpha — Transparency of ROI edge
1 (default) | number in the range [0, 1]

Transparency of ROI edge, specified as a number in the range [0, 1]. When set to 1, the ROI edge is
completely opaque. When set to 0, the ROI edge is completely transparent.

1 Functions

1-814

FaceAlpha — Transparency of ROI faces
0.2 (default) | number in the range [0, 1]

Transparency of the ROI faces, specified as a number in the range [0, 1]. When the value is 1, the ROI
faces are completely opaque. When the value is 0, the ROI faces are completely transparent.

FaceAlphaOnHover — Transparency of ROI face directly underneath mouse pointer
0.4 (default) | number in the range [0, 1] | 'none'

Transparency of ROI face directly underneath the mouse pointer, specified as a number in the range
[0, 1] or 'none' to indicate no change to face transparency. When set to 1, the face under the mouse
pointer is fully opaque. When set to 0, the face is completely transparent.

FaceColorOnHover — Color of ROI face directly underneath mouse pointer
'none' (default) | RGB triplet | color name | short color name

Color of the ROI face directly underneath the mouse pointer, specified as an RGB triplet, a color
name, a short color name, or 'none'. If you specify the value 'none', then the face color does not
change on hover. (Hover means positioning the pointer over the surface of the cuboidal ROI.) When
you are not hovering over a face of the ROI, the value of Color determines the face color.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]

 drawcuboid

1-815

RGB Triplet Appearance
[0.6350 0.0780 0.1840]

Example: 'FaceColorOnHover','r'
Example: 'FaceColorOnHover','green'
Example: 'FaceColorOnHover',[0.8500 0.3250 0.0980]

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as one of the values in
this table.

Value Description
'on' The object handle is always visible (default).
'off' The object handle is hidden at all times.
'callback' The object handle is visible from within callbacks

or functions invoked by callbacks, but not from
within functions invoked from the command line.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'translate'

Interactivity of the ROI, specified as one of the values in this table.

Value Description
'all' The ROI is fully interactable.
'none' The ROI is not interactable, and no drag points

are visible.
'translate' The ROI can be translated (moved) within the

drawing area.

Label — ROI label
'' (default) | character vector | string scalar

ROI label, specified as a character vector or string scalar. By default, the ROI has no label ('').

LabelAlpha — Transparency of text background
1 (default) | number in the range [0, 1]

Transparency of the text background, specified as a number in the range [0, 1]. When set to 1, the
text background is completely opaque. When set to 0, the text background is completely transparent.

LabelTextColor — Label text color
'black' (default) | RGB triplet | color name | short color name

Label text color, specified as an RGB triplet, a color name, or a short color name.

1 Functions

1-816

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'LabelTextColor','r'
Example: 'LabelTextColor','green'
Example: 'LabelTextColor',[0 0.4470 0.7410]

LabelVisible — Label visibility
'on' (default) | 'off' | 'hover'

Label visibility, specified as one of these values.

Value Description
'on' Label is visible when the ROI is visible.
'hover' Label is visible only when the mouse is hovering

over the ROI.
'off' Label is not visible.

LineWidth — Width of ROI border
1 (default) | positive number

 drawcuboid

1-817

Width of the ROI border, specified as a positive number in points.

Parent — ROI parent
Axes object | UIAxes object

ROI parent, specified as an Axes or UIAxes object. For information about using an ROI in a UIAxes,
including important limitations, see “Using ROIs in Apps Created with App Designer”.

Position — Position of cuboid
1-by-6 numeric vector

Position of the cuboid, specified as a 1-by-6 numeric vector of the form [xmin, ymin, zmin, width,
height, depth].

Rotatable — Ability of cuboid to be rotated
'none' (default) | 'x' | 'y' | 'z' | 'all'

Ability of the cuboid to be rotated, specified as one of the values in this table.

Value Description
'all' ROI is fully rotatable.
'x' ROI can only be rotated about the x axis
'y' ROI can only be rotated about the y axis.
'z' ROI can only be rotated about the z axis.
'none' ROI is not rotatable.

RotationAngle — Angle of ROI rotation
[0 0 0] (default) | 1-by-3 numeric vector

Angle of ROI rotation, specified as a 1-by-3 numeric vector of the form [x_angle y_angle z_angle].
Rotation angle is measured in degrees about the x-, y-, and z-axis, respectively. Rotation is applied
about the ROI centroid in this order: z, y, x.

The value of RotationAngle does not impact the values in Position. Position represents the
cuboid before any rotation.

ScrollWheelDuringDraw — Ability of scroll wheel to adjust size
'allresize' (default) | 'xresize' | 'yresize' | 'zresize' | 'none'

Ability of the scroll wheel to adjust the size of the ROI, specified as one of the values in this table.

Value Description
'allresize' Scroll wheel impacts all ROI dimensions.
'xresize' Scroll wheel impacts only the x dimension.
'yresize' Scroll wheel impacts only the y dimension.
'zresize' Scroll wheel impacts only the z dimension.
'none' Scroll wheel has no effect.

Selected — Selection state of ROI
false (default) | true

1 Functions

1-818

Selection state of the ROI, specified as the logical value true or false.

SelectedColor — Color of ROI when selected
'none' (default) | RGB triplet | color name | short color name

Color of the ROI when selected, specified as an RGB triplet, a color name, a short color name, or
'none'. If you specify 'none', then the value of Color defines the color of the ROI for all states,
selected or not.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'SelectedColor','r'
Example: 'SelectedColor','green'
Example: 'SelectedColor',[0 0.4470 0.7410]

StripeColor — Color of ROI stripe
'none' (default) | RGB triplet | color name | short color name

Color of the ROI stripe, specified as an RGB triplet, a color name, a short color name, or 'none'. If
you specify 'none', then the ROI edge is a solid color specified by Color. Otherwise, the edge of the
ROI is striped, with colors alternating between the colors specified by Color and StripeColor.

 drawcuboid

1-819

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'StripeColor','r'
Example: 'StripeColor','green'
Example: 'StripeColor',[0 0.4470 0.7410]

Tag — Tag to associate with ROI
'' (default) | character vector | string scalar

Tag to associate with the ROI, specified as a character vector or string scalar. Use the tag value to
find the ROI object in a hierarchy of objects using the findobj function.

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as any MATLAB data. For example, you can specify a scalar,
vector, matrix, cell array, string, character array, table, or structure. The drawcuboid object does not
use this data.

Visible — ROI visibility
'on' (default) | 'off' | on/off logical value

1 Functions

1-820

ROI visibility, specified as 'on' or 'off', or as a numeric or logical 1 (true) or 0 (false). A value of
'on' is equivalent to true, and 'off' is equivalent to false. The value is stored as an on/off logical
value of type OnOffSwitchState.

Value Description
'on' Display the ROI.
'off' Hide the ROI without deleting it. You still can

access the properties of an invisible ROI.

Output Arguments
roi — Cuboidal ROI
Cuboid object

Cuboidal ROI, returned as a Cuboid object.

Tips
• The ROI supports the following interactivity, including keyboard shortcuts.

Behavior Keyboard shortcut
Fine-tune ROI size while drawing. Use the scroll wheel to make small changes to

the size of the ROI while drawing.
Stop drawing the ROI. Press Esc. The function returns a valid ROI

object with an empty Position field.
Resize (reshape) the ROI. Position the pointer on one of the visible faces

of the cuboid and click and drag the surface.
You might have to rotate the cuboid to select a
surface.

If you press the Shift, dragging the mouse
moves the ROI but does not change any of the
dimensions.

Move the ROI. Position the pointer on any of the visible
surfaces of the ROI and click and drag while
pressing Shift.

Position the pointer on any visible surface of
the ROI, right-click, and select Lock
Dimensions. Click and drag to move the ROI.

Delete the ROI. Position the pointer over the ROI and right-
click to view its context menu. Select Delete
Cuboid from the menu. You can also delete
the ROI using the delete object function.

• The drawcuboid function creates a Cuboid object. After you create the object, you can modify
the shape, position, appearance, and behavior of the ROI by using these object capabilities.

 drawcuboid

1-821

Capability Support
Object properties ROI objects have properties that specify their

shape, position, appearance, and behavior.
After you create the ROI object, change
properties using dot notation.

For example, to change the color of the roi to
yellow, set its Color property:

roi.Color = 'yellow'

Object functions ROI objects have object functions that operate
on the ROIs. For example, if you want to pause
the MATLAB command line after creating an
ROI, use the wait function.

Event notifications ROI objects can notify your code when certain
events occur, such as when the ROI is clicked
or when the ROI is being moved. To receive
event notifications, set up listeners. When the
ROI notifies your application through the
listener, it returns data specific to the event.
For example, with the ROIMoved event, the
ROI object returns its previous position and its
current position. You can specify a callback
function that executes when an event occurs.

For an example of using event listeners with the Cuboid object, see “Set Up Listener for Cuboid
ROI Events” on page 1-811.

Compatibility Considerations
UIContextMenu name-value argument is not recommended
Not recommended starting in R2020a

Starting in R2020a, using the UIContextMenu name-value argument to assign a context menu to an
ROI object is not recommended. Use the ContextMenu name-value argument instead. The values are
the same.

There are no plans to remove support for the UIContextMenu name-value argument at this time.

See Also
Cuboid | drawrectangle

Topics
“Create ROI Shapes”
“Use Wait Function After Drawing ROI”

Introduced in R2019a

1 Functions

1-822

drawellipse
Create customizable elliptical ROI

Syntax
roi = drawellipse
roi = drawellipse(ax)
roi = drawellipse(___ ,Name,Value)

Description
The drawellipse function creates an Ellipse object that specifies the shape and position of an
elliptical region of interest (ROI). You can create the ROI interactively by drawing the ROI over an
image using the mouse, or programmatically by using name-value arguments. You can also specify
the initial appearance and behavior of the ROI.

After you create the ROI, you can use object properties, object functions, and event notifications to
customize the shape, position, appearance, and behavior of the ROI. For more information about
using these capabilities, see “Tips” on page 1-837.

roi = drawellipse creates an Ellipse object and enables interactive drawing of an elliptical ROI
on the current axes.

To draw the ROI, position the pointer on the image. The cursor changes to a fleur shape. Click and
drag to draw the elliptical ROI. To finish the ROI, release the mouse button. For more information
about using the ROI, including keyboard shortcuts and context menu options, see “Tips” on page 1-
837.

roi = drawellipse(ax) creates the ROI in the axes specified by ax.

roi = drawellipse(___ ,Name,Value) modifies the appearance and behavior of the ROI using
one or more name-value arguments.

 drawellipse

1-823

Examples

Create Red Elliptical ROI

Read an image into the workspace and display it.

imshow(imread('llama.jpg'))

Interactively draw a red elliptical ROI.

h = drawellipse('Color','r');

1 Functions

1-824

Change the stripe color of the ROI to black, then increase the opacity of the ROI.

h.StripeColor = 'k';
h.FaceAlpha = 0.4;

 drawellipse

1-825

Create Elliptical ROI Programmatically

Read an image into the workspace and display it.

I = imread('baby.jpg');
figure
imshow(I)

1 Functions

1-826

Draw an elliptical ROI on the image. Use the 'Center' name-value pair to specify the location of the
ellipse and the 'SemiAxes' name-value pair to specify the shape of the ellipse. Set the edge of the
ellipse to be a striped red line by specifying the 'StripeColor' name-value pair.

h = drawellipse('Center',[1000,1000],'SemiAxes',[500,250],'StripeColor','r');

 drawellipse

1-827

Set Up Listener for Ellipse ROI Events

Read an image into the workspace.

I = imread('cameraman.tif');

1 Functions

1-828

Display the image.

imshow(I);

Draw a circular ROI on the image.

roi = drawellipse('Color','r');

Set up listeners for ROI moving events. When you move it, the ROI sends notifications of these events
and executes the callback function you specify.

addlistener(roi,'MovingROI',@allevents);
addlistener(roi,'ROIMoved',@allevents);

The allevents callback function displays the previous position and the current position of the ROI.

function allevents(src,evt)
 evname = evt.EventName;
 switch(evname)
 case{'MovingROI'}
 disp(['ROI moving previous position: ' mat2str(evt.PreviousPosition)]);
 disp(['ROI moving current position: ' mat2str(evt.CurrentPosition)]);
 case{'ROIMoved'}
 disp(['ROI moved previous position: ' mat2str(evt.PreviousPosition)]);
 disp(['ROI moved current position: ' mat2str(evt.CurrentPosition)]);
 end
end

Input Arguments
ax — Parent of ROI
gca (default) | Axes object | UIAxes object

 drawellipse

1-829

Parent of ROI, specified as an Axes object or a UIAxes object. For information about using an ROI in
a UIAxes, including important limitations, see “Using ROIs in Apps Created with App Designer”.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Color','y' creates a yellow colored Ellipse object

AspectRatio — Aspect ratio of ellipse
nonnegative number

Aspect ratio of the ellipse, specified as a nonnegative number. The aspect ratio is defined as
SemiAxes(1)/SemiAxes(2).

Center — Center of ROI
1-by-2 numeric vector

Center of the ROI, specified as a 1-by-2 numeric vector of the form [x y].

Color — ROI color
[0 0.4470 0.7410] (default) | RGB triplet | color name | short color name

ROI color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]

1 Functions

1-830

RGB Triplet Appearance
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'Color','r'
Example: 'Color','green'
Example: 'Color',[0 0.4470 0.7410]

ContextMenu — Context menu
ContextMenu object

Context menu that displays when you right-click the ROI, specified as a ContextMenu object. You can
create a custom context menu by using the uicontextmenu function and then configuring context
menu properties.

Deletable — Context menu provides option to delete the ROI
true (default) | false

Context menu provides an option to delete the ROI, specified as true or false. When the value is
true, you can delete the ROI interactively using the context menu. When the value is false, the
context menu option to delete the ROI is disabled.

In both cases, you can delete the ROI outside of the context menu by using the delete function.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | [x,y,w,h]

Area of the axes in which you can interactively place the ROI, specified as one of the values in this
table.

Value Description
'auto' The drawing area is the current axes limits

(default).
'unlimited' The drawing area has no boundary and ROIs can

be drawn or dragged to extend beyond the axes
limits.

[x,y,w,h] The drawing area is restricted to a rectangular
region beginning at (x,y), and extending to width
w and height h.

FaceAlpha — Transparency of ROI face
0.2 (default) | number in the range [0, 1]

Transparency of the ROI face, specified as a number in the range [0, 1]. When the value is 1, the ROI
face is completely opaque. When the value is 0, the ROI face is completely transparent.

FaceSelectable — ROI face can capture clicks
true (default) | false

 drawellipse

1-831

ROI face can capture clicks, specified as true or false. When true (default), the ROI face captures
mouse clicks. When false, the ROI face does not capture mouse clicks.

FixedAspectRatio — Aspect ratio remains constant
false (default) | true

Aspect ratio remains constant during interaction, specified as true or false. When the value is
true, the aspect ratio remains constant when you draw or resize the ROI. When the value is false,
you can change the aspect ratio when drawing or resizing the ROI.

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as one of the values in
this table.

Value Description
'on' The object handle is always visible (default).
'off' The object handle is hidden at all times.
'callback' The object handle is visible from within callbacks

or functions invoked by callbacks, but not from
within functions invoked from the command line.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'reshape' | 'translate'

Interactivity of the ROI, specified as one of the values in this table.

Value Description
'all' The ROI is fully interactable (default).
'none' The ROI is not interactable, and no drag points

are visible.
'translate' The ROI can be translated (moved) within the

drawing area but not reshaped.
'reshape' The ROI can be reshaped but not translated.

Label — ROI label
'' (default) | character vector | string scalar

ROI label, specified as a character vector or string scalar. By default, the ROI has no label ('').

LabelAlpha — Transparency of text background
1 (default) | number in the range [0, 1]

Transparency of the text background, specified as a number in the range [0, 1]. When set to 1, the
text background is completely opaque. When set to 0, the text background is completely transparent.

LabelTextColor — Label text color
'black' (default) | RGB triplet | color name | short color name

Label text color, specified as an RGB triplet, a color name, or a short color name.

1 Functions

1-832

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'LabelTextColor','r'
Example: 'LabelTextColor','green'
Example: 'LabelTextColor',[0 0.4470 0.7410]

LabelVisible — Label visibility
'on' (default) | 'off' | 'hover'

Label visibility, specified as one of these values.

Value Description
'on' Label is visible when the ROI is visible.
'hover' Label is visible only when the mouse is hovering

over the ROI.
'off' Label is not visible.

LineWidth — Width of ROI border
positive number

 drawellipse

1-833

Width of the ROI border, specified as a positive number in points. The default value is three times the
number of points per screen pixel, such that the border is three pixels wide.

MarkerSize — Marker size
positive number

Marker size, specified as a positive number in points. The default value is eight times the number of
points per screen pixel, such that markers are eight pixels in size.

Parent — ROI parent
Axes object | UIAxes object

ROI parent, specified as an Axes or UIAxes object. For information about using an ROI in a UIAxes,
including important limitations, see “Using ROIs in Apps Created with App Designer”.

RotationAngle — Rotation angle
0 (default) | number

Rotation angle of the ROI, specified as a number. The angle is measured in degrees in a clockwise
direction around the center of the ROI.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the logical value true or false.

SelectedColor — Color of ROI when selected
'none' (default) | RGB triplet | color name | short color name

Color of the ROI when selected, specified as an RGB triplet, a color name, a short color name, or
'none'. If you specify 'none', then the value of Color defines the color of the ROI for all states,
selected or not.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

1 Functions

1-834

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'SelectedColor','r'
Example: 'SelectedColor','green'
Example: 'SelectedColor',[0 0.4470 0.7410]

SemiAxes — Lengths of semiaxes of ellipse
1-by-2 numeric vector

Lengths of the semiaxis of the ellipse, specified as a 1-by-2 numeric vector of the form [semiaxis1
semiaxis2]. The drawellipse function assigns the length of the semiaxis that is closest to the x
direction to semiaxis1.

StripeColor — Color of ROI stripe
'none' (default) | RGB triplet | color name | short color name

Color of the ROI stripe, specified as an RGB triplet, a color name, a short color name, or 'none'. If
you specify 'none', then the ROI edge is a solid color specified by Color. Otherwise, the edge of the
ROI is striped, with colors alternating between the colors specified by Color and StripeColor.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

 drawellipse

1-835

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'StripeColor','r'
Example: 'StripeColor','green'
Example: 'StripeColor',[0 0.4470 0.7410]

Tag — Tag to associate with ROI
'' (default) | character vector | string scalar

Tag to associate with the ROI, specified as a character vector or string scalar. Use the tag value to
find the ROI object in a hierarchy of objects using the findobj function.

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as any MATLAB data. For example, you can specify a scalar,
vector, matrix, cell array, string, character array, table, or structure. The drawellipse object does
not use this data.

Visible — ROI visibility
'on' (default) | 'off' | on/off logical value

ROI visibility, specified as 'on' or 'off', or as a numeric or logical 1 (true) or 0 (false). A value of
'on' is equivalent to true, and 'off' is equivalent to false. The value is stored as an on/off logical
value of type OnOffSwitchState.

Value Description
'on' Display the ROI.
'off' Hide the ROI without deleting it. You still can

access the properties of an invisible ROI.

Output Arguments
roi — Elliptical ROI
Ellipse object

Elliptical ROI, returned as an Ellipse object.

1 Functions

1-836

Tips
• The ROI supports the following interactivity, including keyboard shortcuts.

Behavior Keyboard shortcut
Cancel drawing the ROI. Press Esc. The function returns a valid ROI

object with an empty Position property.
Fine-tune width of ellipse as you are drawing. As you draw the ellipse, use the scroll wheel

to make small changes to the width of the
ellipse.

Rotate the ROI. Position the pointer near a vertex. The pointer
changes to the rotate pointer. Click and rotate
the ROI on its center.

To make the rotation snap at 15 degree
angles, press Shift as you rotate.

Maintain aspect ratio while drawing. Hold the Shift key as you draw. Creates a
circular ROI.

To lock the aspect ratio, position the pointer
on the ROI, right-click, and select Fix Aspect
Ratio from the context menu

Resize (reshape) the ROI. Position pointer over a vertex and then click
and drag. To main the aspect ratio as you
resize, Hold the Shift key.

Move the ROI. Position the pointer over the ROI. The pointer
changes to the fleur shape. Click and drag to
move the ROI.

Delete the ROI. Position the pointer over the ROI and right-
click to view its context menu. Select Delete
Ellipse from the menu. You can also delete
the ROI using the delete function.

• The drawellipse function creates an Ellipse object. After you create the object, you can
modify the shape, position, appearance, and behavior of the ROI by using these object capabilities.

Capability Support
Object properties ROI objects have properties that specify their

shape, position, appearance, and behavior.
After you create the ROI object, change
properties using dot notation.

For example, to change the color of the roi to
yellow, set its Color property:

roi.Color = 'yellow'

Object functions ROI objects have object functions that operate
on the ROIs. For example, if you want to pause
the MATLAB command line after creating an
ROI, use the wait function.

 drawellipse

1-837

Capability Support
Event notifications ROI objects can notify your code when certain

events occur, such as when the ROI is clicked
or when the ROI is being moved. To receive
event notifications, set up listeners. When the
ROI notifies your application through the
listener, it returns data specific to the event.
For example, with the ROIMoved event, the
ROI object returns its previous position and its
current position. You can specify a callback
function that executes when an event occurs.

For an example of using event listeners with the Ellipse object, see “Set Up Listener for Ellipse
ROI Events” on page 1-828.

Compatibility Considerations
UIContextMenu name-value argument is not recommended
Not recommended starting in R2020a

Starting in R2020a, using the UIContextMenu name-value argument to assign a context menu to an
ROI object is not recommended. Use the ContextMenu name-value argument instead. The values are
the same.

There are no plans to remove support for the UIContextMenu name-value argument at this time.

See Also
Ellipse | drawcircle

Topics
“Create ROI Shapes”
“Using ROIs in Apps Created with App Designer”
“Use Wait Function After Drawing ROI”

Introduced in R2018b

1 Functions

1-838

drawfreehand
Create customizable freehand ROI

Syntax
h = drawfreehand
h = drawfreehand(ax)
h = drawfreehand(___ ,Name,Value)

Description
The drawfreehand function creates a Freehand object that specifies the shape and position of a
freehand region of interest (ROI). You can create the ROI interactively by drawing the ROI over an
image using the mouse, or programmatically by using name-value arguments. You can also specify
the initial appearance and behavior of the ROI.

After you create the ROI, you can use object properties, object functions, and event notifications to
customize the shape, position, appearance, and behavior of the ROI. For more information about
using these capabilities, see “Tips” on page 1-853.

h = drawfreehand creates a Freehand object and enables interactive drawing of a circular region-
of-interest (ROI) on the current axes.

To draw the ROI, position the pointer on the image. The cursor changes to a fleur shape. Click and
drag to draw the line. To finish the ROI, release the mouse button. For more information about using
the ROI, including keyboard shortcuts and context menu options, see “Tips” on page 1-853.

h = drawfreehand(ax) creates the ROI in the axes specified by ax.

h = drawfreehand(___ ,Name,Value) modifies the appearance and behavior of the ROI using
one or more name-value pairs.

 drawfreehand

1-839

Examples

Create Freehand ROI That Is Not Selectable

Read an image into the workspace and display it.

imshow(imread('yellowlily.jpg'))

1 Functions

1-840

Draw a freehand ROI.

 drawfreehand

1-841

h = drawfreehand;

1 Functions

1-842

Fill in the face of the freehand ROI and disable the ability to select the ROI. The ROI does not move
when you click and drag the mouse.

h.FaceAlpha = 1;
h.FaceSelectable = false;

 drawfreehand

1-843

1 Functions

1-844

Set Up Listener for Freehand ROI Events

Read an image into the workspace.

I = imread('cameraman.tif');

Display the image.

imshow(I);

Draw a freehand ROI on the image.

roi = drawfreehand('Color','r');

Set up listeners for ROI moving events. When you move it, the ROI sends notifications of these events
and executes the callback function you specify.

addlistener(roi,'MovingROI',@allevents);
addlistener(roi,'ROIMoved',@allevents);

The allevents callback function displays the previous position and the current position of the ROI.

function allevents(src,evt)
 evname = evt.EventName;
 switch(evname)
 case{'MovingROI'}
 disp(['ROI moving previous position: ' mat2str(evt.PreviousPosition)]);
 disp(['ROI moving current position: ' mat2str(evt.CurrentPosition)]);
 case{'ROIMoved'}
 disp(['ROI moved previous position: ' mat2str(evt.PreviousPosition)]);
 disp(['ROI moved current position: ' mat2str(evt.CurrentPosition)]);

 drawfreehand

1-845

 end
end

Input Arguments
ax — Parent of ROI
gca (default) | Axes object | UIAxes object

Parent of ROI, specified as an Axes object or a UIAxes object. For information about using an ROI in
a UIAxes, including important limitations, see “Using ROIs in Apps Created with App Designer”.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Color','y' creates a yellow colored Freehand object

Closed — Close freehand ROI
true (default) | false

Close the freehand ROI, specified as the comma-separated pair consisting of 'Closed' and the
logical value true or false. If true (default), drawfreehand closes the ROI by connecting the last
waypoint drawn to the first waypoint drawn.

Color — ROI color
[0 0.4470 0.7410] (default) | RGB triplet | color name | short color name

ROI color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

1 Functions

1-846

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'Color','r'
Example: 'Color','green'
Example: 'Color',[0 0.4470 0.7410]

ContextMenu — Context menu
ContextMenu object

Context menu that displays when you right-click the ROI, specified as a ContextMenu object. You can
create a custom context menu by using the uicontextmenu function and then configuring context
menu properties.

Deletable — Context menu provides option to delete the ROI
true (default) | false

Context menu provides an option to delete the ROI, specified as true or false. When the value is
true, you can delete the ROI interactively using the context menu. When the value is false, the
context menu option to delete the ROI is disabled.

In both cases, you can delete the ROI outside of the context menu by using the delete function.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | [x,y,w,h]

Area of the axes in which you can interactively place the ROI, specified as one of the values in this
table.

Value Description
'auto' The drawing area is the current axes limits

(default).
'unlimited' The drawing area has no boundary and ROIs can

be drawn or dragged to extend beyond the axes
limits.

[x,y,w,h] The drawing area is restricted to a rectangular
region beginning at (x,y), and extending to width
w and height h.

FaceAlpha — Transparency of ROI face
0.2 (default) | number in the range [0, 1]

 drawfreehand

1-847

Transparency of the ROI face, specified as a number in the range [0, 1]. When the value is 1, the ROI
face is completely opaque. When the value is 0, the ROI face is completely transparent.

FaceSelectable — ROI face can capture clicks
true (default) | false

ROI face can capture clicks, specified as true or false. When true (default), the ROI face captures
mouse clicks. When false, the ROI face does not capture mouse clicks.

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as one of the values in
this table.

Value Description
'on' The object handle is always visible (default).
'off' The object handle is hidden at all times.
'callback' The object handle is visible from within callbacks

or functions invoked by callbacks, but not from
within functions invoked from the command line.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'reshape' | 'translate'

Interactivity of the ROI, specified as one of the values in this table.

Value Description
'all' The ROI is fully interactable (default).
'none' The ROI is not interactable, and no drag points

are visible.
'translate' The ROI can be translated (moved) within the

drawing area but not reshaped.
'reshape' The ROI can be reshaped but not translated.

Label — ROI label
'' (default) | character vector | string scalar

ROI label, specified as a character vector or string scalar. By default, the ROI has no label ('').

LabelAlpha — Transparency of text background
1 (default) | number in the range [0, 1]

Transparency of the text background, specified as a number in the range [0, 1]. When set to 1, the
text background is completely opaque. When set to 0, the text background is completely transparent.

LabelTextColor — Label text color
'black' (default) | RGB triplet | color name | short color name

Label text color, specified as an RGB triplet, a color name, or a short color name.

1 Functions

1-848

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'LabelTextColor','r'
Example: 'LabelTextColor','green'
Example: 'LabelTextColor',[0 0.4470 0.7410]

LabelVisible — Label visibility
'on' (default) | 'off' | 'hover'

Label visibility, specified as one of these values.

Value Description
'on' Label is visible when the ROI is visible.
'hover' Label is visible only when the mouse is hovering

over the ROI.
'off' Label is not visible.

LineWidth — Width of ROI border
positive number

 drawfreehand

1-849

Width of the ROI border, specified as a positive number in points. The default value is three times the
number of points per screen pixel, such that the border is three pixels wide.

MarkerSize — Marker size
positive number

Marker size, specified as a positive number in points. The default value is eight times the number of
points per screen pixel, such that markers are eight pixels in size.

Multiclick — Control freehand drawing style during interactive placement
false (default) | true

Control the freehand drawing style during interactive placement, specified as the logical value true
or false. When the value is false, a single click and drag gesture completes the freehand ROI.
When the value is true, multiple click and drag gestures can be combined with straight edges to
make a more complex freehand ROI shape.

Parent — ROI parent
Axes object | UIAxes object

ROI parent, specified as an Axes or UIAxes object. For information about using an ROI in a UIAxes,
including important limitations, see “Using ROIs in Apps Created with App Designer”.

Position — Position of ROI
n-by-2 numeric matrix

Position of the ROI, specified as an n-by-2 numeric matrix where n is the number of vertices or points
defining the ROI. Each row represents the [x y] coordinates of a vertex or point.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the logical value true or false.

SelectedColor — Color of ROI when selected
'none' (default) | RGB triplet | color name | short color name

Color of the ROI when selected, specified as an RGB triplet, a color name, a short color name, or
'none'. If you specify 'none', then the value of Color defines the color of the ROI for all states,
selected or not.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]

1 Functions

1-850

Color Name Short Name RGB Triplet Appearance
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'SelectedColor','r'
Example: 'SelectedColor','green'
Example: 'SelectedColor',[0 0.4470 0.7410]

Smoothing — Smooth edge of ROI
1 (default) | nonnegative number

Smooth edge of ROI after interactive placement, specified as a nonnegative number. The
drawfreehand function uses the standard deviation of the Gaussian smoothing kernel to filter the x
and y coordinates of the ROI. This argument defines the filter size using the equation:
2*ceil(2*Smoothing) + 1. You can see the smoothing effect only after completing the drawing.

StripeColor — Color of ROI stripe
'none' (default) | RGB triplet | color name | short color name

Color of the ROI stripe, specified as an RGB triplet, a color name, a short color name, or 'none'. If
you specify 'none', then the ROI edge is a solid color specified by Color. Otherwise, the edge of the
ROI is striped, with colors alternating between the colors specified by Color and StripeColor.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]

 drawfreehand

1-851

Color Name Short Name RGB Triplet Appearance
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'StripeColor','r'
Example: 'StripeColor','green'
Example: 'StripeColor',[0 0.4470 0.7410]

Tag — Tag to associate with ROI
'' (default) | character vector | string scalar

Tag to associate with the ROI, specified as a character vector or string scalar. Use the tag value to
find the ROI object in a hierarchy of objects using the findobj function.

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as any MATLAB data. For example, you can specify a scalar,
vector, matrix, cell array, string, character array, table, or structure. The drawfreehand object does
not use this data.

Visible — ROI visibility
'on' (default) | 'off' | on/off logical value

ROI visibility, specified as 'on' or 'off', or as a numeric or logical 1 (true) or 0 (false). A value of
'on' is equivalent to true, and 'off' is equivalent to false. The value is stored as an on/off logical
value of type OnOffSwitchState.

Value Description
'on' Display the ROI.

1 Functions

1-852

Value Description
'off' Hide the ROI without deleting it. You still can

access the properties of an invisible ROI.

Waypoints — Position point is waypoint
n-by-1 logical vector

Position point is waypoint, specified as an n-by-1 logical vector where n is the number of points
defining the ROI. The length of Waypoints must match the number of rows of the Position name-
value argument. Elements in Waypoints with the value true identify points in the Position matrix
that are waypoints.

Waypoints appear as circular shapes on the ROI edge. You can use waypoints to reshape the ROI by
clicking and dragging the waypoint with the mouse. Moving waypoints modifies the freehand-drawn
region between the waypoint that you clicked and the adjacent waypoints.

Output Arguments
h — Freehand ROI
Freehand object

Freehand ROI, returned as an Freehand object.

Tips
• The ROI supports the following interactivity, including keyboard shortcuts.

Behavior Keyboard shortcut
Cancel drawing the ROI. Press Esc. The function returns a valid ROI

object with an empty Position property.
Finish drawing (close) the ROI. Double-click, which adds a point at the pointer

position and draws a line connecting this point
to the first point drawn, closing the ROI.

Right-click, which draws a line connecting the
last point to the first point drawn.

Position the pointer over the first point and
click.

Press Enter, which draws a line connecting
the last point to the first point drawn.

Resize (reshape) the ROI. Position pointer over a waypoint and then
click and drag. No assistance (snapping to
edges) is available in this mode.

Add a waypoint. Position the pointer on an edge of the ROI,
right-click, and select Add Waypoint. You can
also position the pointer on an edge of the ROI
and double-click.

 drawfreehand

1-853

Behavior Keyboard shortcut
Remove a waypoint. Position the pointer on a waypoint, right-click,

and select Remove Waypoint.
Move the ROI. Position the pointer over the ROI. The pointer

changes to the fleur shape. Click and drag to
move the ROI.

Delete an ROI. Position the pointer on the ROI (not on a
vertex), right-click, and select Delete
Freehand from the context menu. You can
also delete the ROI programmatically using
the delete function.

• The drawfreehand function creates a Freehand object. After you create the object, you can
modify the shape, position, appearance, and behavior of the ROI by using these object capabilities.

Capability Support
Object properties ROI objects have properties that specify their

shape, position, appearance, and behavior.
After you create the ROI object, change
properties using dot notation.

For example, to change the color of the roi to
yellow, set its Color property:

roi.Color = 'yellow'

Object functions ROI objects have object functions that operate
on the ROIs. For example, if you want to pause
the MATLAB command line after creating an
ROI, use the wait function.

Event notifications ROI objects can notify your code when certain
events occur, such as when the ROI is clicked
or when the ROI is being moved. To receive
event notifications, set up listeners. When the
ROI notifies your application through the
listener, it returns data specific to the event.
For example, with the ROIMoved event, the
ROI object returns its previous position and its
current position. You can specify a callback
function that executes when an event occurs.

For an example of using event listeners with the Freehand object, see “Set Up Listener for
Freehand ROI Events” on page 1-845.

Compatibility Considerations
UIContextMenu name-value argument is not recommended
Not recommended starting in R2020a

Starting in R2020a, using the UIContextMenu name-value argument to assign a context menu to an
ROI object is not recommended. Use the ContextMenu name-value argument instead. The values are
the same.

1 Functions

1-854

There are no plans to remove support for the UIContextMenu name-value argument at this time.

See Also
Freehand | drawassisted | drawpolygon | drawpolyline

Topics
“Create ROI Shapes”
“Using ROIs in Apps Created with App Designer”
“Use Wait Function After Drawing ROI”

Introduced in R2018b

 drawfreehand

1-855

drawline
Create customizable linear ROI

Syntax
roi = drawline
roi = drawline(ax)
roi = drawline(___ ,Name,Value)

Description
The drawline function creates a Line object that specifies the length and position of a line region of
interest (ROI). You can create the ROI interactively by drawing the ROI over an image using the
mouse, or programmatically by using name-value arguments. You can also specify the initial
appearance and behavior of the ROI.

After you create the ROI, you can use object properties, object functions, and event notifications to
customize the shape, position, appearance, and behavior of the ROI. For more information about
using these capabilities, see “Tips” on page 1-869.

roi = drawline creates a Line object and enables interactive drawing of a linear region-of-
interest (ROI) on the current axes.

To draw the ROI, position the pointer on the image. The cursor changes to a fleur shape. Click and
drag to draw the Line ROI. To finish the ROI, release the mouse button. For more information about
using the ROI, including keyboard shortcuts and context menu options, see “Tips” on page 1-869.

roi = drawline(ax) creates the ROI in the axes specified by ax.

roi = drawline(___ ,Name,Value) modifies the appearance and behavior of the ROI using one
or more name-value pairs. Unspecified name-value pairs are set to the default value.

1 Functions

1-856

Examples

Create Linear ROIs That Change Color When Selected

Read an image into the workspace and display it.

imshow(imread('car1.jpg'))

Draw two linear ROIs on the image. Use the 'SelectedColor' name-value pair to specify the color
of the ROI when selected.

h1 = drawline('SelectedColor','yellow');
h2 = drawline('SelectedColor','magenta');

 drawline

1-857

To turn the first line yellow, select the ROI programatically. You can also select an ROI by clicking it
with the mouse. Click the second ROI to turn it magenta.

h1.Selected = true;

1 Functions

1-858

Create Linear ROI Programmatically

Read an image into the workspace and display it.

I = imread('baby.jpg');
figure
imshow(I)

 drawline

1-859

Draw a linear ROI over the image. Use the 'Position' name-value pair to specify the location and
length of the linear ROI. Set the line to be striped red by specifying the 'StripeColor' name-value
pair.

h = drawline('Position',[500 500;500 1500],'StripeColor','r');

1 Functions

1-860

Set Up Listener for Line ROI Events

Read an image into the workspace.

I = imread('cameraman.tif');

 drawline

1-861

Display the image.

imshow(I);

Draw a Line ROI on the image.

roi = drawline('Color','r');

Set up listeners for ROI moving events. When you move it, the ROI sends notifications of these events
and executes the callback function you specify.

addlistener(roi,'MovingROI',@allevents);
addlistener(roi,'ROIMoved',@allevents);

The allevents callback function displays the previous position and the current position of the ROI.

function allevents(src,evt)
 evname = evt.EventName;
 switch(evname)
 case{'MovingROI'}
 disp(['ROI moving previous position: ' mat2str(evt.PreviousPosition)]);
 disp(['ROI moving current position: ' mat2str(evt.CurrentPosition)]);
 case{'ROIMoved'}
 disp(['ROI moved previous position: ' mat2str(evt.PreviousPosition)]);
 disp(['ROI moved current position: ' mat2str(evt.CurrentPosition)]);
 end
end

Input Arguments
ax — Parent of ROI
gca (default) | Axes object | UIAxes object

1 Functions

1-862

Parent of ROI, specified as an Axes object or a UIAxes object. For information about using an ROI in
a UIAxes, including important limitations, see “Using ROIs in Apps Created with App Designer”.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Color','y' creates a yellow colored Line object

Color — ROI color
[0 0.4470 0.7410] (default) | RGB triplet | color name | short color name

ROI color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'Color','r'
Example: 'Color','green'
Example: 'Color',[0 0.4470 0.7410]

 drawline

1-863

ContextMenu — Context menu
ContextMenu object

Context menu that displays when you right-click the ROI, specified as a ContextMenu object. You can
create a custom context menu by using the uicontextmenu function and then configuring context
menu properties.

Deletable — Context menu provides option to delete the ROI
true (default) | false

Context menu provides an option to delete the ROI, specified as true or false. When the value is
true, you can delete the ROI interactively using the context menu. When the value is false, the
context menu option to delete the ROI is disabled.

In both cases, you can delete the ROI outside of the context menu by using the delete function.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | [x,y,w,h]

Area of the axes in which you can interactively place the ROI, specified as one of the values in this
table.

Value Description
'auto' The drawing area is the current axes limits

(default).
'unlimited' The drawing area has no boundary and ROIs can

be drawn or dragged to extend beyond the axes
limits.

[x,y,w,h] The drawing area is restricted to a rectangular
region beginning at (x,y), and extending to width
w and height h.

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as one of the values in
this table.

Value Description
'on' The object handle is always visible (default).
'off' The object handle is hidden at all times.
'callback' The object handle is visible from within callbacks

or functions invoked by callbacks, but not from
within functions invoked from the command line.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'reshape' | 'translate'

Interactivity of the ROI, specified as one of the values in this table.

1 Functions

1-864

Value Description
'all' The ROI is fully interactable (default).
'none' The ROI is not interactable, and no drag points

are visible.
'translate' The ROI can be translated (moved) within the

drawing area but not reshaped.
'reshape' The ROI can be reshaped but not translated.

Label — ROI label
'' (default) | character vector | string scalar

ROI label, specified as a character vector or string scalar. By default, the ROI has no label ('').

LabelAlpha — Transparency of text background
1 (default) | number in the range [0, 1]

Transparency of the text background, specified as a number in the range [0, 1]. When set to 1, the
text background is completely opaque. When set to 0, the text background is completely transparent.

LabelTextColor — Label text color
'black' (default) | RGB triplet | color name | short color name

Label text color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]

 drawline

1-865

RGB Triplet Appearance
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'LabelTextColor','r'
Example: 'LabelTextColor','green'
Example: 'LabelTextColor',[0 0.4470 0.7410]

LabelVisible — Label visibility
'on' (default) | 'off' | 'hover'

Label visibility, specified as one of these values.

Value Description
'on' Label is visible when the ROI is visible.
'hover' Label is visible only when the mouse is hovering

over the ROI.
'off' Label is not visible.

LineWidth — Width of ROI border
positive number

Width of the ROI border, specified as a positive number in points. The default value is three times the
number of points per screen pixel, such that the border is three pixels wide.

MarkerSize — Marker size
positive number

Marker size, specified as a positive number in points. The default value is eight times the number of
points per screen pixel, such that markers are eight pixels in size.

Parent — ROI parent
Axes object | UIAxes object

ROI parent, specified as an Axes or UIAxes object. For information about using an ROI in a UIAxes,
including important limitations, see “Using ROIs in Apps Created with App Designer”.

Position — Position of ROI
2-by-2 numeric matrix

Position of the ROI, specified as a 2-by-2 numeric matrix. Each row represents the [x y] coordinates of
an endpoint of the line.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the logical value true or false.

1 Functions

1-866

SelectedColor — Color of ROI when selected
'none' (default) | RGB triplet | color name | short color name

Color of the ROI when selected, specified as an RGB triplet, a color name, a short color name, or
'none'. If you specify 'none', then the value of Color defines the color of the ROI for all states,
selected or not.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'SelectedColor','r'
Example: 'SelectedColor','green'
Example: 'SelectedColor',[0 0.4470 0.7410]

StripeColor — Color of ROI stripe
'none' (default) | RGB triplet | color name | short color name

Color of the ROI stripe, specified as an RGB triplet, a color name, a short color name, or 'none'. If
you specify 'none', then the ROI edge is a solid color specified by Color. Otherwise, the edge of the
ROI is striped, with colors alternating between the colors specified by Color and StripeColor.

 drawline

1-867

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'StripeColor','r'
Example: 'StripeColor','green'
Example: 'StripeColor',[0 0.4470 0.7410]

Tag — Tag to associate with ROI
'' (default) | character vector | string scalar

Tag to associate with the ROI, specified as a character vector or string scalar. Use the tag value to
find the ROI object in a hierarchy of objects using the findobj function.

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as any MATLAB data. For example, you can specify a scalar,
vector, matrix, cell array, string, character array, table, or structure. The drawline object does not
use this data.

Visible — ROI visibility
'on' (default) | 'off' | on/off logical value

1 Functions

1-868

ROI visibility, specified as 'on' or 'off', or as a numeric or logical 1 (true) or 0 (false). A value of
'on' is equivalent to true, and 'off' is equivalent to false. The value is stored as an on/off logical
value of type OnOffSwitchState.

Value Description
'on' Display the ROI.
'off' Hide the ROI without deleting it. You still can

access the properties of an invisible ROI.

Output Arguments
roi — Linear ROI
Line object

Linear ROI, returned as a Line object.

Tips
• The ROI supports the following interactivity, including keyboard shortcuts.

Behavior Keyboard shortcut
Make drawn line snap to 15 degree angles. Hold the Shift key while drawing.
Cancel drawing the ROI. Press Esc. The function returns a valid ROI

object with an empty Position property.
Resize the ROI. Position pointer over either endpoint and then

click and drag to resize the ROI. Hold the
Shift key while resizing to snap the line
drawn at 15 degree angles.

Move the ROI. Position the pointer over the ROI. The pointer
changes to the fleur shape. Then click and
drag the ROI.

Delete the ROI. Position the pointer anywhere on the ROI and
right-click. Select Delete Line from the
context menu. You can also delete the ROI
using the delete function.

• The drawline function creates a Line object. After you create the object, you can modify the
length, position, appearance, and behavior of the ROI by using these object capabilities.

Capability Support
Object properties ROI objects have properties that specify their

shape, position, appearance, and behavior.
After you create the ROI object, change
properties using dot notation.

For example, to change the color of the roi to
yellow, set its Color property:

roi.Color = 'yellow'

 drawline

1-869

Capability Support
Object functions ROI objects have object functions that operate

on the ROIs. For example, if you want to pause
the MATLAB command line after creating an
ROI, use the wait function.

Event notifications ROI objects can notify your code when certain
events occur, such as when the ROI is clicked
or when the ROI is being moved. To receive
event notifications, set up listeners. When the
ROI notifies your application through the
listener, it returns data specific to the event.
For example, with the ROIMoved event, the
ROI object returns its previous position and its
current position. You can specify a callback
function that executes when an event occurs.

For an example of using event listeners with the Line object, see “Set Up Listener for Line ROI
Events” on page 1-861.

Compatibility Considerations
UIContextMenu name-value argument is not recommended
Not recommended starting in R2020a

Starting in R2020a, using the UIContextMenu name-value argument to assign a context menu to an
ROI object is not recommended. Use the ContextMenu name-value argument instead. The values are
the same.

There are no plans to remove support for the UIContextMenu name-value argument at this time.

See Also
Line | drawcrosshair | drawpoint | drawpolyline

Topics
“Create ROI Shapes”
“Using ROIs in Apps Created with App Designer”
“Use Wait Function After Drawing ROI”

Introduced in R2018b

1 Functions

1-870

drawpoint
Create customizable point ROI

Syntax
roi = drawpoint
roi = drawpoint(ax)
roi = drawpoint(___ ,Name,Value)

Description
The drawpoint function creates a Point object that specifies the position of a point region of
interest (ROI). You can create the ROI interactively by drawing the ROI over an image using the
mouse, or programmatically by using name-value arguments. You can also specify the initial
appearance and behavior of the ROI.

After you create the ROI, you can use object properties, object functions, and event notifications to
customize the shape, position, appearance, and behavior of the ROI. For more information about
using these capabilities, see “Tips” on page 1-884.

roi = drawpoint creates a Point object and enables interactive drawing of a point region-of-
interest (ROI) on the current axes.

To draw the ROI, position the pointer on the image. The cursor changes to a fleur shape. Click to
draw the ROI. To finish the ROI, release the mouse button. For more information about using the ROI,
including keyboard shortcuts and context menu options, see “Tips” on page 1-884.

roi = drawpoint(ax) creates the ROI in the axes specified by ax.

roi = drawpoint(___ ,Name,Value) modifies the appearance and behavior of the ROI using one
or more name-value pairs. Unspecified name-value pairs are set to the default value.

Examples

 drawpoint

1-871

Create Point ROI Interactively

Read an image into the workspace and display it.

imshow(imread('parkavenue.jpg'))

Draw a point ROI on the image.

h = drawpoint;

1 Functions

1-872

Add a label to the ROI.

h.Label = '42 m';

 drawpoint

1-873

Create Point ROI Programmatically

Read image into the workspace and display it.

I = imread('baby.jpg');
figure
imshow(I)

1 Functions

1-874

Draw a point ROI on the image, using named parameters to specify the location.

h = drawpoint('Position',[500 500]);

 drawpoint

1-875

Set Up Listener for Point ROI Events

Read an image into the workspace.

I = imread('cameraman.tif');

1 Functions

1-876

Display the image.

imshow(I);

Draw a point ROI on the image.

roi = drawpoint('Color','r');

Set up listeners for ROI moving events. When you move it, the ROI sends notifications of these events
and executes the callback function you specify.

addlistener(roi,'MovingROI',@allevents);
addlistener(roi,'ROIMoved',@allevents);

The allevents callback function displays the previous position and the current position of the ROI.

function allevents(src,evt)
 evname = evt.EventName;
 switch(evname)
 case{'MovingROI'}
 disp(['ROI moving previous position: ' mat2str(evt.PreviousPosition)]);
 disp(['ROI moving current position: ' mat2str(evt.CurrentPosition)]);
 case{'ROIMoved'}
 disp(['ROI moved previous position: ' mat2str(evt.PreviousPosition)]);
 disp(['ROI moved current position: ' mat2str(evt.CurrentPosition)]);
 end
end

Input Arguments
ax — Parent of ROI
gca (default) | Axes object | UIAxes object

 drawpoint

1-877

Parent of ROI, specified as an Axes object or a UIAxes object. For information about using an ROI in
a UIAxes, including important limitations, see “Using ROIs in Apps Created with App Designer”.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Color','y' creates a yellow colored Point object

Color — ROI color
[0 0.4470 0.7410] (default) | RGB triplet | color name | short color name

ROI color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'Color','r'
Example: 'Color','green'
Example: 'Color',[0 0.4470 0.7410]

1 Functions

1-878

ContextMenu — Context menu
ContextMenu object

Context menu that displays when you right-click the ROI, specified as a ContextMenu object. You can
create a custom context menu by using the uicontextmenu function and then configuring context
menu properties.

Deletable — Context menu provides option to delete the ROI
true (default) | false

Context menu provides an option to delete the ROI, specified as true or false. When the value is
true, you can delete the ROI interactively using the context menu. When the value is false, the
context menu option to delete the ROI is disabled.

In both cases, you can delete the ROI outside of the context menu by using the delete function.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | [x,y,w,h]

Area of the axes in which you can interactively place the ROI, specified as one of the values in this
table.

Value Description
'auto' The drawing area is the current axes limits

(default).
'unlimited' The drawing area has no boundary and ROIs can

be drawn or dragged to extend beyond the axes
limits.

[x,y,w,h] The drawing area is restricted to a rectangular
region beginning at (x,y), and extending to width
w and height h.

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as one of the values in
this table.

Value Description
'on' The object handle is always visible (default).
'off' The object handle is hidden at all times.
'callback' The object handle is visible from within callbacks

or functions invoked by callbacks, but not from
within functions invoked from the command line.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'translate'

Interactivity of the ROI, specified as one of the values in this table.

 drawpoint

1-879

Value Description
'all' The ROI is fully interactable.
'none' The ROI is not interactable, and no drag points

are visible.
'translate' The ROI can be translated (moved) within the

drawing area.

Label — ROI label
'' (default) | character vector | string scalar

ROI label, specified as a character vector or string scalar. By default, the ROI has no label ('').

LabelAlpha — Transparency of text background
1 (default) | number in the range [0, 1]

Transparency of the text background, specified as a number in the range [0, 1]. When set to 1, the
text background is completely opaque. When set to 0, the text background is completely transparent.

LabelTextColor — Label text color
'black' (default) | RGB triplet | color name | short color name

Label text color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]

1 Functions

1-880

RGB Triplet Appearance
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'LabelTextColor','r'
Example: 'LabelTextColor','green'
Example: 'LabelTextColor',[0 0.4470 0.7410]

LabelVisible — Label visibility
'on' (default) | 'off' | 'hover'

Label visibility, specified as one of these values.

Value Description
'on' Label is visible when the ROI is visible.
'hover' Label is visible only when the mouse is hovering

over the ROI.
'off' Label is not visible.

LineWidth — Width of ROI border
positive number

Width of the ROI border, specified as a positive number in points. The default value is three times the
number of points per screen pixel, such that the border is three pixels wide.

MarkerSize — Marker size
positive number

Marker size, specified as a positive number in points. The default value is eight times the number of
points per screen pixel, such that markers are eight pixels in size.

Parent — ROI parent
Axes object | UIAxes object

ROI parent, specified as an Axes or UIAxes object. For information about using an ROI in a UIAxes,
including important limitations, see “Using ROIs in Apps Created with App Designer”.

Position — Position of ROI
1-by-2 numeric vector

Position of the ROI, specified as a 1-by-2 numeric vector that represents the [x y] coordinates of the
point.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the logical value true or false.

SelectedColor — Color of ROI when selected
'none' (default) | RGB triplet | color name | short color name

 drawpoint

1-881

Color of the ROI when selected, specified as an RGB triplet, a color name, a short color name, or
'none'. If you specify 'none', then the value of Color defines the color of the ROI for all states,
selected or not.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'SelectedColor','r'
Example: 'SelectedColor','green'
Example: 'SelectedColor',[0 0.4470 0.7410]

StripeColor — Color of ROI stripe
'none' (default) | RGB triplet | color name | short color name

Color of the ROI stripe, specified as an RGB triplet, a color name, a short color name, or 'none'. If
you specify 'none', then the ROI edge is a solid color specified by Color. Otherwise, the edge of the
ROI is striped, with colors alternating between the colors specified by Color and StripeColor.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

1 Functions

1-882

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'StripeColor','r'
Example: 'StripeColor','green'
Example: 'StripeColor',[0 0.4470 0.7410]

Tag — Tag to associate with ROI
'' (default) | character vector | string scalar

Tag to associate with the ROI, specified as a character vector or string scalar. Use the tag value to
find the ROI object in a hierarchy of objects using the findobj function.

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as any MATLAB data. For example, you can specify a scalar,
vector, matrix, cell array, string, character array, table, or structure. The drawpoint object does not
use this data.

Visible — ROI visibility
'on' (default) | 'off' | on/off logical value

ROI visibility, specified as 'on' or 'off', or as a numeric or logical 1 (true) or 0 (false). A value of
'on' is equivalent to true, and 'off' is equivalent to false. The value is stored as an on/off logical
value of type OnOffSwitchState.

 drawpoint

1-883

Value Description
'on' Display the ROI.
'off' Hide the ROI without deleting it. You still can

access the properties of an invisible ROI.

Output Arguments
roi — Point ROI
Point object

Point ROI, returned as a Point object.

Tips
• The ROI supports the following interactivity, including keyboard shortcuts.

Behavior Keyboard shortcut
Cancel drawing the ROI. Press Esc. The function returns a valid ROI

object with an empty Position property.
Move the ROI. Position the pointer over the ROI. The pointer

changes to a circle. Click and drag to move
the ROI.

Delete the ROI. Position the pointer anywhere on the ROI and
right-click. Select Delete Point from the
context menu. You can also delete the ROI
using the delete function.

• The drawpoint function creates a Point object. After you create the object, you can modify the
position, appearance, and behavior of the ROI by using these object capabilities.

Capability Support
Object properties ROI objects have properties that specify their

shape, position, appearance, and behavior.
After you create the ROI object, change
properties using dot notation.

For example, to change the color of the roi to
yellow, set its Color property:

roi.Color = 'yellow'

Object functions ROI objects have object functions that operate
on the ROIs. For example, if you want to pause
the MATLAB command line after creating an
ROI, use the wait function.

1 Functions

1-884

Capability Support
Event notifications ROI objects can notify your code when certain

events occur, such as when the ROI is clicked
or when the ROI is being moved. To receive
event notifications, set up listeners. When the
ROI notifies your application through the
listener, it returns data specific to the event.
For example, with the ROIMoved event, the
ROI object returns its previous position and its
current position. You can specify a callback
function that executes when an event occurs.

For an example of using event listeners with the Point object, see “Set Up Listener for Point ROI
Events” on page 1-876.

Compatibility Considerations
UIContextMenu name-value argument is not recommended
Not recommended starting in R2020a

Starting in R2020a, using the UIContextMenu name-value argument to assign a context menu to an
ROI object is not recommended. Use the ContextMenu name-value argument instead. The values are
the same.

There are no plans to remove support for the UIContextMenu name-value argument at this time.

See Also
Point | drawcircle | drawcrosshair

Topics
“Create ROI Shapes”
“Using ROIs in Apps Created with App Designer”
“Use Wait Function After Drawing ROI”

Introduced in R2018b

 drawpoint

1-885

drawpolygon
Create customizable polygonal ROI

Syntax
roi = drawpolygon
roi = drawpolygon(ax)
roi = drawpolygon(___ ,Name,Value)

Description
The drawpolygon function creates a Polygon object that specifies the shape and position of a
polygonal region of interest (ROI). You can create the ROI interactively by drawing the ROI over an
image using the mouse, or programmatically by using name-value arguments. You can also specify
the initial appearance and behavior of the ROI.

After you create the ROI, you can use object properties, object functions, and event notifications to
customize the shape, position, appearance, and behavior of the ROI. For more information about
using these capabilities, see “Tips” on page 1-899.

roi = drawpolygon creates a Polygon object and enables interactive drawing of a polygonal ROI
on the current axes.

To draw the ROI, position the pointer on the image. The cursor changes to a fleur shape. Click to
draw vertices of the polygon and drag to draw the lines between the vertices. To finish the ROI,
double-click the mouse button. For more information about using the ROI, including keyboard
shortcuts and context menu options, see “Tips” on page 1-899.

roi = drawpolygon(ax) creates the ROI on the axes specified by ax.

1 Functions

1-886

roi = drawpolygon(___ ,Name,Value) modifies the appearance and behavior of the ROI using
one or more name-value arguments.

Examples

Create Polygonal ROI Interactively

Read an image into the workspace and display it.

imshow(imread('strawberries.jpg'))

Draw a polygonal ROI on the image. Use the 'FaceAlpha' name-value pair to make the face of the
ROI transparent.

h = drawpolygon('FaceAlpha',0);

 drawpolygon

1-887

Change the color of the polygon outline by setting the 'Color' property of the ROI.

h.Color = 'yellow';

1 Functions

1-888

Create Polygonal ROI Programmatically

Read image into the workspace and display it.

I = imread('baby.jpg');
figure
imshow(I)

 drawpolygon

1-889

Draw a polygonal ROI over the image, using the Position parameter to specify the location of
vertices.

my_vertices = [500 500;400 600;400 700;500 800;600 800;700 700; 700 600];
h = drawpolygon('Position',my_vertices);

1 Functions

1-890

Set Up Listener for Polygon ROI Events

Read an image into the workspace.

I = imread('cameraman.tif');

 drawpolygon

1-891

Display the image.

imshow(I);

Draw a polygonal ROI on the image.

roi = drawpolygon('Color','r');

Set up listeners for ROI moving events. When you move it, the ROI sends notifications of these events
and executes the callback function you specify.

addlistener(roi,'MovingROI',@allevents);
addlistener(roi,'ROIMoved',@allevents);

The allevents callback function displays the previous position and the current position of the ROI.

function allevents(src,evt)
 evname = evt.EventName;
 switch(evname)
 case{'MovingROI'}
 disp(['ROI moving previous position: ' mat2str(evt.PreviousPosition)]);
 disp(['ROI moving current position: ' mat2str(evt.CurrentPosition)]);
 case{'ROIMoved'}
 disp(['ROI moved previous position: ' mat2str(evt.PreviousPosition)]);
 disp(['ROI moved current position: ' mat2str(evt.CurrentPosition)]);
 end
end

Input Arguments
ax — Parent of ROI
gca (default) | Axes object | UIAxes object

1 Functions

1-892

Parent of ROI, specified as an Axes object or a UIAxes object. For information about using an ROI in
a UIAxes, including important limitations, see “Using ROIs in Apps Created with App Designer”.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Color','y' creates a yellow colored Polygon object

Color — ROI color
[0 0.4470 0.7410] (default) | RGB triplet | color name | short color name

ROI color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'Color','r'
Example: 'Color','green'
Example: 'Color',[0 0.4470 0.7410]

 drawpolygon

1-893

ContextMenu — Context menu
ContextMenu object

Context menu that displays when you right-click the ROI, specified as a ContextMenu object. You can
create a custom context menu by using the uicontextmenu function and then configuring context
menu properties.

Deletable — Context menu provides option to delete the ROI
true (default) | false

Context menu provides an option to delete the ROI, specified as true or false. When the value is
true, you can delete the ROI interactively using the context menu. When the value is false, the
context menu option to delete the ROI is disabled.

In both cases, you can delete the ROI outside of the context menu by using the delete function.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | [x,y,w,h]

Area of the axes in which you can interactively place the ROI, specified as one of the values in this
table.

Value Description
'auto' The drawing area is the current axes limits

(default).
'unlimited' The drawing area has no boundary and ROIs can

be drawn or dragged to extend beyond the axes
limits.

[x,y,w,h] The drawing area is restricted to a rectangular
region beginning at (x,y), and extending to width
w and height h.

FaceAlpha — Transparency of ROI face
0.2 (default) | number in the range [0, 1]

Transparency of the ROI face, specified as a number in the range [0, 1]. When the value is 1, the ROI
face is completely opaque. When the value is 0, the ROI face is completely transparent.

FaceSelectable — ROI face can capture clicks
true (default) | false

ROI face can capture clicks, specified as true or false. When true (default), the ROI face captures
mouse clicks. When false, the ROI face does not capture mouse clicks.

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as one of the values in
this table.

Value Description
'on' The object handle is always visible (default).

1 Functions

1-894

Value Description
'off' The object handle is hidden at all times.
'callback' The object handle is visible from within callbacks

or functions invoked by callbacks, but not from
within functions invoked from the command line.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'reshape' | 'translate'

Interactivity of the ROI, specified as one of the values in this table.

Value Description
'all' The ROI is fully interactable (default).
'none' The ROI is not interactable, and no drag points

are visible.
'translate' The ROI can be translated (moved) within the

drawing area but not reshaped.
'reshape' The ROI can be reshaped but not translated.

Label — ROI label
'' (default) | character vector | string scalar

ROI label, specified as a character vector or string scalar. By default, the ROI has no label ('').

LabelAlpha — Transparency of text background
1 (default) | number in the range [0, 1]

Transparency of the text background, specified as a number in the range [0, 1]. When set to 1, the
text background is completely opaque. When set to 0, the text background is completely transparent.

LabelTextColor — Label text color
'black' (default) | RGB triplet | color name | short color name

Label text color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]

 drawpolygon

1-895

Color Name Short Name RGB Triplet Appearance
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'LabelTextColor','r'
Example: 'LabelTextColor','green'
Example: 'LabelTextColor',[0 0.4470 0.7410]

LabelVisible — Label visibility
'on' (default) | 'off' | 'hover'

Label visibility, specified as one of these values.

Value Description
'on' Label is visible when the ROI is visible.
'hover' Label is visible only when the mouse is hovering

over the ROI.
'off' Label is not visible.

LineWidth — Width of ROI border
positive number

Width of the ROI border, specified as a positive number in points. The default value is three times the
number of points per screen pixel, such that the border is three pixels wide.

MarkerSize — Marker size
positive number

Marker size, specified as a positive number in points. The default value is eight times the number of
points per screen pixel, such that markers are eight pixels in size.

Parent — ROI parent
Axes object | UIAxes object

ROI parent, specified as an Axes or UIAxes object. For information about using an ROI in a UIAxes,
including important limitations, see “Using ROIs in Apps Created with App Designer”.

1 Functions

1-896

Position — Position of ROI
n-by-2 numeric matrix

Position of the ROI, specified as an n-by-2 numeric matrix where n is the number of vertices or points
defining the ROI. Each row represents the [x y] coordinates of a vertex or point.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the logical value true or false.

SelectedColor — Color of ROI when selected
'none' (default) | RGB triplet | color name | short color name

Color of the ROI when selected, specified as an RGB triplet, a color name, a short color name, or
'none'. If you specify 'none', then the value of Color defines the color of the ROI for all states,
selected or not.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'SelectedColor','r'
Example: 'SelectedColor','green'

 drawpolygon

1-897

Example: 'SelectedColor',[0 0.4470 0.7410]

StripeColor — Color of ROI stripe
'none' (default) | RGB triplet | color name | short color name

Color of the ROI stripe, specified as an RGB triplet, a color name, a short color name, or 'none'. If
you specify 'none', then the ROI edge is a solid color specified by Color. Otherwise, the edge of the
ROI is striped, with colors alternating between the colors specified by Color and StripeColor.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'StripeColor','r'
Example: 'StripeColor','green'
Example: 'StripeColor',[0 0.4470 0.7410]

Tag — Tag to associate with ROI
'' (default) | character vector | string scalar

Tag to associate with the ROI, specified as a character vector or string scalar. Use the tag value to
find the ROI object in a hierarchy of objects using the findobj function.

1 Functions

1-898

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as any MATLAB data. For example, you can specify a scalar,
vector, matrix, cell array, string, character array, table, or structure. The drawpolygon object does
not use this data.

Visible — ROI visibility
'on' (default) | 'off' | on/off logical value

ROI visibility, specified as 'on' or 'off', or as a numeric or logical 1 (true) or 0 (false). A value of
'on' is equivalent to true, and 'off' is equivalent to false. The value is stored as an on/off logical
value of type OnOffSwitchState.

Value Description
'on' Display the ROI.
'off' Hide the ROI without deleting it. You still can

access the properties of an invisible ROI.

Output Arguments
roi — Polygonal ROI
Polygon object

Polygonal ROI, returned as an Polygon object.

Tips
• The ROI supports the following interactivity, including keyboard shortcuts.

Behavior Keyboard shortcut
Make drawn line snap at 15 degree angles. Hold the Shift key while drawing.
Finish drawing (close) the ROI. Double-click, which adds a new vertex at the

pointer position and draws a line to the first
vertex to close the polygon.

Press Enter, which adds a new vertex at the
pointer position and draws a line to the first
vertex to close the polygon.

Right-click, which does not add a new vertex
but closes the polygon from the previous
vertex.

Position pointer over the first vertex and click.
Cancel drawing the ROI. Press Esc. The function returns a valid ROI

object with an empty Position property.

 drawpolygon

1-899

Behavior Keyboard shortcut
Add a new vertex to the ROI. Position the pointer over the edge of the ROI

and double-click.

Position the pointer over the edge of the ROI,
right-click, and select Add Vertex from the
context menu.

Remove the most recently added vertex but
keep drawing.

Press Backspace. The function redraws the
line from the previous vertex to the current
position of the pointer. You can only back up to
the first vertex you drew.

Resize (reshape) the ROI Position pointer over a vertex and then click
and drag.

Add a new vertex to the ROI and then click
and drag.

Remove a vertex. The ROI redraws the line
connecting the two neighboring vertices.

Move the ROI. Position the pointer over the ROI (not on a
vertex). The pointer changes to a fleur shape.
Click and drag to move the ROI.

Delete the ROI. Position the pointer anywhere on the ROI and
right-click. Select Delete Polygon from the
context menu. You can also delete the ROI
using the delete function.

• The drawpolygon function creates a Polygon object. After you create the object, you can modify
the shape, position, appearance, and behavior of the ROI by using these object capabilities.

Capability Support
Object properties ROI objects have properties that specify their

shape, position, appearance, and behavior.
After you create the ROI object, change
properties using dot notation.

For example, to change the color of the roi to
yellow, set its Color property:

roi.Color = 'yellow'

Object functions ROI objects have object functions that operate
on the ROIs. For example, if you want to pause
the MATLAB command line after creating an
ROI, use the wait function.

1 Functions

1-900

Capability Support
Event notifications ROI objects can notify your code when certain

events occur, such as when the ROI is clicked
or when the ROI is being moved. To receive
event notifications, set up listeners. When the
ROI notifies your application through the
listener, it returns data specific to the event.
For example, with the ROIMoved event, the
ROI object returns its previous position and its
current position. You can specify a callback
function that executes when an event occurs.

For an example of using event listeners with the Polygon object, see “Set Up Listener for Polygon
ROI Events” on page 1-891.

Compatibility Considerations
UIContextMenu name-value argument is not recommended
Not recommended starting in R2020a

Starting in R2020a, using the UIContextMenu name-value argument to assign a context menu to an
ROI object is not recommended. Use the ContextMenu name-value argument instead. The values are
the same.

There are no plans to remove support for the UIContextMenu name-value argument at this time.

See Also
Polygon | drawpolyline | drawrectangle | drawassisted | drawfreehand

Topics
“Create ROI Shapes”
“Using ROIs in Apps Created with App Designer”
“Use Wait Function After Drawing ROI”

Introduced in R2018b

 drawpolygon

1-901

drawpolyline
Create customizable polyline ROI

Syntax
roi = drawpolyline
roi = drawpolyline(ax)
roi = drawpolyline(___ ,Name,Value)

Description
The drawpolyline function creates a Polyline object that specifies the shape and position of a
polyline region of interest (ROI). You can create the ROI interactively by drawing the ROI over an
image using the mouse, or programmatically by using name-value arguments. You can also specify
the initial appearance and behavior of the ROI.

After you create the ROI, you can use object properties, object functions, and event notifications to
customize the shape, position, appearance, and behavior of the ROI. For more information about
using these capabilities, see “Tips” on page 1-915.

roi = drawpolyline creates a Polyline ROI object and enables interactive drawing of the ROI
on the current axes.

To draw the ROI, position the pointer on the image. The cursor changes to a fleur shape. Click to
draw vertices of the polyline and drag to draw the lines between the vertices. To finish the ROI,
double-click the mouse button. For more information about using the ROI, including keyboard
shortcuts and context menu options, see “Tips” on page 1-915.

roi = drawpolyline(ax) creates the ROI in the axes specified by ax.

roi = drawpolyline(___ ,Name,Value) modifies the appearance and behavior of the ROI using
one or more name-value pairs. Unspecified name-value pairs are set to the default value.

1 Functions

1-902

Examples

Create Polyline ROI Interactively

Read an image into the workspace and display it.

imshow(imread('westconcordaerial.png'))

Draw the polyline ROI on the image. Use the 'Color' name-value pair to specify the color of the
line.

h = drawpolyline('Color','green');

 drawpolyline

1-903

Decrease the width of the edge of the ROI by setting the LineWidth property.

h.LineWidth = 1;

1 Functions

1-904

Create Polygonal ROI Programmatically

Read image into the workspace and display it.

I = imread('baby.jpg');
figure
imshow(I)

 drawpolyline

1-905

Draw a polygonal ROI over the image, using named parameters to specify the location and shape. The
example also specifies that the edge of the polygon is a striped.

h = drawpolyline('Position',[500 500;400 600;400 700;500 800;600 800;700 700; 700 600]);

1 Functions

1-906

Set Up Listener for Polyline ROI Events

Read an image into the workspace.

I = imread('cameraman.tif');

 drawpolyline

1-907

Display the image.

imshow(I);

Draw a Polyline ROI on the image.

roi = drawpolyline('Color','r');

Set up listeners for ROI moving events. When you move it, the ROI sends notifications of these events
and executes the callback function you specify.

addlistener(roi,'MovingROI',@allevents);
addlistener(roi,'ROIMoved',@allevents);

The allevents callback function displays the previous position and the current position of the ROI.

function allevents(src,evt)
 evname = evt.EventName;
 switch(evname)
 case{'MovingROI'}
 disp(['ROI moving previous position: ' mat2str(evt.PreviousPosition)]);
 disp(['ROI moving current position: ' mat2str(evt.CurrentPosition)]);
 case{'ROIMoved'}
 disp(['ROI moved previous position: ' mat2str(evt.PreviousPosition)]);
 disp(['ROI moved current position: ' mat2str(evt.CurrentPosition)]);
 end
end

Input Arguments
ax — Parent of ROI
gca (default) | Axes object | UIAxes object

1 Functions

1-908

Parent of ROI, specified as an Axes object or a UIAxes object. For information about using an ROI in
a UIAxes, including important limitations, see “Using ROIs in Apps Created with App Designer”.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Color','y' creates a yellow colored Polyline object

Color — ROI color
[0 0.4470 0.7410] (default) | RGB triplet | color name | short color name

ROI color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'Color','r'
Example: 'Color','green'
Example: 'Color',[0 0.4470 0.7410]

 drawpolyline

1-909

ContextMenu — Context menu
ContextMenu object

Context menu that displays when you right-click the ROI, specified as a ContextMenu object. You can
create a custom context menu by using the uicontextmenu function and then configuring context
menu properties.

Deletable — Context menu provides option to delete the ROI
true (default) | false

Context menu provides an option to delete the ROI, specified as true or false. When the value is
true, you can delete the ROI interactively using the context menu. When the value is false, the
context menu option to delete the ROI is disabled.

In both cases, you can delete the ROI outside of the context menu by using the delete function.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | [x,y,w,h]

Area of the axes in which you can interactively place the ROI, specified as one of the values in this
table.

Value Description
'auto' The drawing area is the current axes limits

(default).
'unlimited' The drawing area has no boundary and ROIs can

be drawn or dragged to extend beyond the axes
limits.

[x,y,w,h] The drawing area is restricted to a rectangular
region beginning at (x,y), and extending to width
w and height h.

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as one of the values in
this table.

Value Description
'on' The object handle is always visible (default).
'off' The object handle is hidden at all times.
'callback' The object handle is visible from within callbacks

or functions invoked by callbacks, but not from
within functions invoked from the command line.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'reshape' | 'translate'

Interactivity of the ROI, specified as one of the values in this table.

1 Functions

1-910

Value Description
'all' The ROI is fully interactable (default).
'none' The ROI is not interactable, and no drag points

are visible.
'translate' The ROI can be translated (moved) within the

drawing area but not reshaped.
'reshape' The ROI can be reshaped but not translated.

Label — ROI label
'' (default) | character vector | string scalar

ROI label, specified as a character vector or string scalar. By default, the ROI has no label ('').

LabelAlpha — Transparency of text background
1 (default) | number in the range [0, 1]

Transparency of the text background, specified as a number in the range [0, 1]. When set to 1, the
text background is completely opaque. When set to 0, the text background is completely transparent.

LabelTextColor — Label text color
'black' (default) | RGB triplet | color name | short color name

Label text color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]

 drawpolyline

1-911

RGB Triplet Appearance
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'LabelTextColor','r'
Example: 'LabelTextColor','green'
Example: 'LabelTextColor',[0 0.4470 0.7410]

LabelVisible — Label visibility
'on' (default) | 'off' | 'hover'

Label visibility, specified as one of these values.

Value Description
'on' Label is visible when the ROI is visible.
'hover' Label is visible only when the mouse is hovering

over the ROI.
'off' Label is not visible.

LineWidth — Width of ROI border
positive number

Width of the ROI border, specified as a positive number in points. The default value is three times the
number of points per screen pixel, such that the border is three pixels wide.

MarkerSize — Marker size
positive number

Marker size, specified as a positive number in points. The default value is eight times the number of
points per screen pixel, such that markers are eight pixels in size.

Parent — ROI parent
Axes object | UIAxes object

ROI parent, specified as an Axes or UIAxes object. For information about using an ROI in a UIAxes,
including important limitations, see “Using ROIs in Apps Created with App Designer”.

Position — Position of ROI
n-by-2 numeric matrix

Position of the ROI, specified as an n-by-2 numeric matrix where n is the number of vertices or points
defining the ROI. Each row represents the [x y] coordinates of a vertex or point.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the logical value true or false.

1 Functions

1-912

SelectedColor — Color of ROI when selected
'none' (default) | RGB triplet | color name | short color name

Color of the ROI when selected, specified as an RGB triplet, a color name, a short color name, or
'none'. If you specify 'none', then the value of Color defines the color of the ROI for all states,
selected or not.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'SelectedColor','r'
Example: 'SelectedColor','green'
Example: 'SelectedColor',[0 0.4470 0.7410]

StripeColor — Color of ROI stripe
'none' (default) | RGB triplet | color name | short color name

Color of the ROI stripe, specified as an RGB triplet, a color name, a short color name, or 'none'. If
you specify 'none', then the ROI edge is a solid color specified by Color. Otherwise, the edge of the
ROI is striped, with colors alternating between the colors specified by Color and StripeColor.

 drawpolyline

1-913

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'StripeColor','r'
Example: 'StripeColor','green'
Example: 'StripeColor',[0 0.4470 0.7410]

Tag — Tag to associate with ROI
'' (default) | character vector | string scalar

Tag to associate with the ROI, specified as a character vector or string scalar. Use the tag value to
find the ROI object in a hierarchy of objects using the findobj function.

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as any MATLAB data. For example, you can specify a scalar,
vector, matrix, cell array, string, character array, table, or structure. The drawpolyline object does
not use this data.

Visible — ROI visibility
'on' (default) | 'off' | on/off logical value

1 Functions

1-914

ROI visibility, specified as 'on' or 'off', or as a numeric or logical 1 (true) or 0 (false). A value of
'on' is equivalent to true, and 'off' is equivalent to false. The value is stored as an on/off logical
value of type OnOffSwitchState.

Value Description
'on' Display the ROI.
'off' Hide the ROI without deleting it. You still can

access the properties of an invisible ROI.

Output Arguments
roi — Polyline ROI
Polyline object

Polyline ROI, returned as an Polyline object.

Tips
• The ROI supports the following interactivity, including keyboard shortcuts.

Behavior Keyboard shortcut
Make drawn line snap at 15 degree angles. Hold the Shift key while drawing.
Finish drawing the ROI. Double-click, which adds a final new vertex at

the pointer position.

Right-click, which adds a final new vertex at
the pointer position.

Press Enter, which adds a final new vertex at
the pointer position..

Cancel drawing the ROI. Press Esc. The function returns a valid ROI
object with an empty Position property.

Add a new vertex to the ROI. Position the pointer over the polygon and
double-click. You can also position the pointer
over the ROI, right-click, and choose Add
Vertex.

Remove a vertex from the ROI. Position the pointer over the ROI, right-click,
and choose Delete Vertex.

Remove the most recently added vertex but
keep drawing.

Press Backspace. The function redraws the
line from the previous vertex to the current
position of the pointer. You can only back up to
the first vertex you drew.

 drawpolyline

1-915

Behavior Keyboard shortcut
Resize (reshape) the ROI. Position pointer over a vertex and then click

and drag.

Add a new vertex and then click and drag.

Remove a vertex and the shape of the ROI
adjusts.

Move the ROI. Position the pointer over the line, not on a
vertex. The pointer changes to the fleur shape.
Click and drag the ROI.

Delete the ROI. Position the pointer anywhere on the ROI and
right-click. Select Delete Polyline from the
context menu. You can also delete the ROI
using the delete function.

• The drawpolyline function creates a Polyline object. After you create the object, you can
modify the shape, position, appearance, and behavior of the ROI by using these object capabilities.

Capability Support
Object properties ROI objects have properties that specify their

shape, position, appearance, and behavior.
After you create the ROI object, change
properties using dot notation.

For example, to change the color of the roi to
yellow, set its Color property:

roi.Color = 'yellow'

Object functions ROI objects have object functions that operate
on the ROIs. For example, if you want to pause
the MATLAB command line after creating an
ROI, use the wait function.

Event notifications ROI objects can notify your code when certain
events occur, such as when the ROI is clicked
or when the ROI is being moved. To receive
event notifications, set up listeners. When the
ROI notifies your application through the
listener, it returns data specific to the event.
For example, with the ROIMoved event, the
ROI object returns its previous position and its
current position. You can specify a callback
function that executes when an event occurs.

For an example of using event listeners with the Polyline object, see “Set Up Listener for
Polyline ROI Events” on page 1-907.

Compatibility Considerations
UIContextMenu name-value argument is not recommended
Not recommended starting in R2020a

1 Functions

1-916

Starting in R2020a, using the UIContextMenu name-value argument to assign a context menu to an
ROI object is not recommended. Use the ContextMenu name-value argument instead. The values are
the same.

There are no plans to remove support for the UIContextMenu name-value argument at this time.

See Also
Polyline | drawcrosshair | drawline | drawpolygon

Topics
“Use Polyline to Create Angle Measurement Tool”
“Create ROI Shapes”
“Using ROIs in Apps Created with App Designer”
“Use Wait Function After Drawing ROI”

Introduced in R2018b

 drawpolyline

1-917

drawrectangle
Create customizable rectangular ROI

Syntax
roi = drawrectangle
roi = drawrectangle(ax)
roi = drawrectangle(___ ,Name,Value)

Description
The drawrectangle function creates a Rectangle object that specifies the shape and position of a
rectangular region of interest (ROI). You can create the ROI interactively by drawing the ROI over an
image using the mouse, or programmatically by using name-value arguments. You can also specify
the initial appearance and behavior of the ROI.

After you create the ROI, you can use object properties, object functions, and event notifications to
customize the shape, position, appearance, and behavior of the ROI. For more information about
using these capabilities, see “Tips” on page 1-931.

roi = drawrectangle creates a Rectangle object and enables interactive drawing of the ROI on
the current axes.

To draw the ROI, position the pointer on the image. The cursor changes to a fleur shape. Click and
drag to draw the rectangular ROI. To finish the ROI, release the mouse button. For more information
about using the ROI, including keyboard shortcuts and context menu options, see “Tips” on page 1-
931.

roi = drawrectangle(ax) creates the ROI in the axes specified by ax.

roi = drawrectangle(___ ,Name,Value) modifies the appearance and behavior of the ROI
using one or more name-value pairs. Unspecified name-value pairs are set to the default value.

1 Functions

1-918

Examples

Draw Nested Rectangular ROIs

Read an image into the workspace and display it.

imshow(imread('baby.jpg'))

Draw a red rectangular ROI with the label 'OuterRectangle'.

r1 = drawrectangle('Label','OuterRectangle','Color',[1 0 0]);

Draw another rectangular ROI, restricting the drawing area to the area inside the first rectangle.

r2 = drawrectangle('Label','InnerRectangle','DrawingArea',r1.Position);

 drawrectangle

1-919

Create Rectangular ROI Programmatically

Read image into the workspace and display it.

1 Functions

1-920

I = imread('baby.jpg');
figure
imshow(I)

Draw a rectangular ROI over the image, using named parameters to specify the location and size of
the rectangle. The example also specifies that the edge of the rectangle is a striped line.

h = drawrectangle('Position',[500,500,1000,1000],'StripeColor','r');

 drawrectangle

1-921

Set Up Listener for Rectangle ROI Events

Read an image into the workspace.

I = imread('cameraman.tif');

1 Functions

1-922

Display the image.

imshow(I);

Draw a rectangular ROI on the image.

roi = drawrectangle('Color','r');

Set up listeners for ROI moving events. When you move it, the ROI sends notifications of these events
and executes the callback function you specify.

addlistener(roi,'MovingROI',@allevents);
addlistener(roi,'ROIMoved',@allevents);

The allevents callback function displays the previous position and the current position of the ROI.

function allevents(src,evt)
 evname = evt.EventName;
 switch(evname)
 case{'MovingROI'}
 disp(['ROI moving previous position: ' mat2str(evt.PreviousPosition)]);
 disp(['ROI moving current position: ' mat2str(evt.CurrentPosition)]);
 case{'ROIMoved'}
 disp(['ROI moved previous position: ' mat2str(evt.PreviousPosition)]);
 disp(['ROI moved current position: ' mat2str(evt.CurrentPosition)]);
 end
end

Input Arguments
ax — Parent of ROI
gca (default) | Axes object | UIAxes object

 drawrectangle

1-923

Parent of ROI, specified as an Axes object or a UIAxes object. For information about using an ROI in
a UIAxes, including important limitations, see “Using ROIs in Apps Created with App Designer”.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Color','y' creates a yellow colored Rectangle object

AspectRatio — Aspect ratio of rectangle
nonnegative number

Aspect ratio of the rectangle, specified as a nonnegative number. The aspect ratio is defined as
height/width.

Color — ROI color
[0 0.4470 0.7410] (default) | RGB triplet | color name | short color name

ROI color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]

1 Functions

1-924

RGB Triplet Appearance
[0.6350 0.0780 0.1840]

Example: 'Color','r'
Example: 'Color','green'
Example: 'Color',[0 0.4470 0.7410]

ContextMenu — Context menu
ContextMenu object

Context menu that displays when you right-click the ROI, specified as a ContextMenu object. You can
create a custom context menu by using the uicontextmenu function and then configuring context
menu properties.

Deletable — Context menu provides option to delete the ROI
true (default) | false

Context menu provides an option to delete the ROI, specified as true or false. When the value is
true, you can delete the ROI interactively using the context menu. When the value is false, the
context menu option to delete the ROI is disabled.

In both cases, you can delete the ROI outside of the context menu by using the delete function.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | [x,y,w,h]

Area of the axes in which you can interactively place the ROI, specified as one of the values in this
table.

Value Description
'auto' The drawing area is the current axes limits

(default).
'unlimited' The drawing area has no boundary and ROIs can

be drawn or dragged to extend beyond the axes
limits.

[x,y,w,h] The drawing area is restricted to a rectangular
region beginning at (x,y), and extending to width
w and height h.

FaceAlpha — Transparency of ROI face
0.2 (default) | number in the range [0, 1]

Transparency of the ROI face, specified as a number in the range [0, 1]. When the value is 1, the ROI
face is completely opaque. When the value is 0, the ROI face is completely transparent.

FaceSelectable — ROI face can capture clicks
true (default) | false

ROI face can capture clicks, specified as true or false. When true (default), the ROI face captures
mouse clicks. When false, the ROI face does not capture mouse clicks.

 drawrectangle

1-925

FixedAspectRatio — Aspect ratio remains constant
false (default) | true

Aspect ratio remains constant during interaction, specified as true or false. When the value is
true, the aspect ratio remains constant when you draw or resize the ROI. When the value is false,
you can change the aspect ratio when drawing or resizing the ROI.

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as one of the values in
this table.

Value Description
'on' The object handle is always visible (default).
'off' The object handle is hidden at all times.
'callback' The object handle is visible from within callbacks

or functions invoked by callbacks, but not from
within functions invoked from the command line.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'translate'

Interactivity of the ROI, specified as one of the values in this table.

Value Description
'all' The ROI is fully interactable.
'none' The ROI is not interactable, and no drag points

are visible.
'translate' The ROI can be translated (moved) within the

drawing area.

Label — ROI label
'' (default) | character vector | string scalar

ROI label, specified as a character vector or string scalar. By default, the ROI has no label ('').

LabelAlpha — Transparency of text background
1 (default) | number in the range [0, 1]

Transparency of the text background, specified as a number in the range [0, 1]. When set to 1, the
text background is completely opaque. When set to 0, the text background is completely transparent.

LabelTextColor — Label text color
'black' (default) | RGB triplet | color name | short color name

Label text color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

1 Functions

1-926

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'LabelTextColor','r'
Example: 'LabelTextColor','green'
Example: 'LabelTextColor',[0 0.4470 0.7410]

LabelVisible — Visibility of ROI label
'on' (default) | 'hover' | 'inside' | 'off'

Visibility of the ROI label, specified as one of these values.

Value Description
'on' Label is visible when the ROI is visible, and the

Label property is nonempty (default).
'hover' Label is visible only when the mouse hovers over

the ROI.
'inside' Label is visible only when there is adequate space

inside the ROI to display it.
'off' Label is not visible.

LineWidth — Width of ROI border
positive number

 drawrectangle

1-927

Width of the ROI border, specified as a positive number in points. The default value is three times the
number of points per screen pixel, such that the border is three pixels wide.

MarkerSize — Marker size
positive number

Marker size, specified as a positive number in points. The default value is eight times the number of
points per screen pixel, such that markers are eight pixels in size.

Parent — ROI parent
Axes object | UIAxes object

ROI parent, specified as an Axes or UIAxes object. For information about using an ROI in a UIAxes,
including important limitations, see “Using ROIs in Apps Created with App Designer”.

Position — Position of ROI
1-by-4 numeric vector

Position of the ROI, specified as a 1-by-4 numeric vector of the form [xmin, ymin, width, height]. xmin
and ymin specify the coordinates of the upper left corner of the rectangle. width and height specify
the width and height of the rectangle and must be nonnegative.

Rotatable — Ability of ROI to be rotated
false (default) | true

Ability of the ROI to be rotated, specified as true or false. When the value is true, you can rotate
the rectangle by clicking near the markers at the corners. When the value is false, you cannot
rotate the rectangle.

RotationAngle — Rotation angle
0 (default) | number

Rotation angle of the ROI, specified as a number. The angle is measured in degrees in a clockwise
direction around the center of the ROI.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the logical value true or false.

SelectedColor — Color of ROI when selected
'none' (default) | RGB triplet | color name | short color name

Color of the ROI when selected, specified as an RGB triplet, a color name, a short color name, or
'none'. If you specify 'none', then the value of Color defines the color of the ROI for all states,
selected or not.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

1 Functions

1-928

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'SelectedColor','r'
Example: 'SelectedColor','green'
Example: 'SelectedColor',[0 0.4470 0.7410]

StripeColor — Color of ROI stripe
'none' (default) | RGB triplet | color name | short color name

Color of the ROI stripe, specified as an RGB triplet, a color name, a short color name, or 'none'. If
you specify 'none', then the ROI edge is a solid color specified by Color. Otherwise, the edge of the
ROI is striped, with colors alternating between the colors specified by Color and StripeColor.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]

 drawrectangle

1-929

Color Name Short Name RGB Triplet Appearance
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'StripeColor','r'
Example: 'StripeColor','green'
Example: 'StripeColor',[0 0.4470 0.7410]

Tag — Tag to associate with ROI
'' (default) | character vector | string scalar

Tag to associate with the ROI, specified as a character vector or string scalar. Use the tag value to
find the ROI object in a hierarchy of objects using the findobj function.

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as any MATLAB data. For example, you can specify a scalar,
vector, matrix, cell array, string, character array, table, or structure. The drawrectangle object does
not use this data.

Visible — ROI visibility
'on' (default) | 'off' | on/off logical value

ROI visibility, specified as 'on' or 'off', or as a numeric or logical 1 (true) or 0 (false). A value of
'on' is equivalent to true, and 'off' is equivalent to false. The value is stored as an on/off logical
value of type OnOffSwitchState.

Value Description
'on' Display the ROI.
'off' Hide the ROI without deleting it. You still can

access the properties of an invisible ROI.

1 Functions

1-930

Output Arguments
roi — Rectangular ROI
Rectangle object

Rectangular ROI, returned as a Rectangle object.

Tips
• The ROI supports the following interactivity, including keyboard shortcuts.

Behavior Keyboard shortcut
Cancel drawing the ROI. Press Esc. The function returns a valid ROI

object with an empty Position property.
Resize (reshape) the ROI. Position pointer over a vertex and then click

and drag. The rectangle has vertices at each
corner and at the midpoint of each side. To
preserve the aspect ratio while resizing, press
the Shift key. To lock the aspect ratio, use the
Fix Aspect Ratio in the right-click context
menu.

Move the ROI. Position the pointer over the ROI. The pointer
changes to the fleur shape. Click and drag the
ROI.

Delete the ROI. Position the pointer anywhere on the ROI and
right-click. Select Delete Rectangle from the
context menu. You can also delete the ROI
using the delete function.

• The drawrectangle function creates a Rectangle object. After you create the object, you can
modify the shape, position, appearance, and behavior of the ROI by using these object capabilities.

Capability Support
Object properties ROI objects have properties that specify their

shape, position, appearance, and behavior.
After you create the ROI object, change
properties using dot notation.

For example, to change the color of the roi to
yellow, set its Color property:

roi.Color = 'yellow'

Object functions ROI objects have object functions that operate
on the ROIs. For example, if you want to pause
the MATLAB command line after creating an
ROI, use the wait function.

 drawrectangle

1-931

Capability Support
Event notifications ROI objects can notify your code when certain

events occur, such as when the ROI is clicked
or when the ROI is being moved. To receive
event notifications, set up listeners. When the
ROI notifies your application through the
listener, it returns data specific to the event.
For example, with the ROIMoved event, the
ROI object returns its previous position and its
current position. You can specify a callback
function that executes when an event occurs.

For an example of using event listeners with the Rectangle object, see “Set Up Listener for
Rectangle ROI Events” on page 1-922.

Compatibility Considerations
UIContextMenu name-value argument is not recommended
Not recommended starting in R2020a

Starting in R2020a, using the UIContextMenu name-value argument to assign a context menu to an
ROI object is not recommended. Use the ContextMenu name-value argument instead. The values are
the same.

There are no plans to remove support for the UIContextMenu name-value argument at this time.

See Also
Rectangle | drawcuboid | drawpolygon

Topics
“Rotate Image Interactively Using Rectangle ROI”
“Create ROI Shapes”
“Using ROIs in Apps Created with App Designer”
“Use Wait Function After Drawing ROI”

Introduced in R2018b

1 Functions

1-932

edge
Find edges in grayscale image

Syntax
BW = edge(I)
BW = edge(I,method)
BW = edge(I,method,threshold)
BW = edge(I,method,threshold,direction)
BW = edge(___ ,'nothinning')
BW = edge(I,method,threshold,sigma)
BW = edge(I,method,threshold,h)

[BW,threshOut] = edge(___)
[BW,threshOut,Gv,Gh] = edge(___)

Description
BW = edge(I) returns a binary image BW containing 1s where the function finds edges in the
grayscale or binary image I and 0s elsewhere. By default, edge uses the Sobel edge detection
method.

BW = edge(I,method) detects edges in image I using the edge-detection algorithm specified by
method.

BW = edge(I,method,threshold) returns all edges that are stronger than threshold.

BW = edge(I,method,threshold,direction) specifies the orientation of edges to detect. The
Sobel and Prewitt methods can detect edges in the vertical direction, horizontal direction, or both.
The Roberts method can detect edges at angles of 45° from horizontal, 135° from horizontal, or both.
This syntax is valid only when method is 'Sobel', 'Prewitt', or 'Roberts'.

BW = edge(___ ,'nothinning') skips the edge-thinning stage, which can improve performance.
This syntax is valid only when method is 'Sobel', 'Prewitt', or 'Roberts'.

BW = edge(I,method,threshold,sigma) specifies sigma, the standard deviation of the filter.
This syntax is valid only when method is 'log' or 'Canny'.

BW = edge(I,method,threshold,h) detects edges using the 'zerocross' method with a filter,
h, that you specify. This syntax is valid only when method is 'zerocross'.

[BW,threshOut] = edge(___) also returns the threshold value.

[BW,threshOut,Gv,Gh] = edge(___) also returns the directional gradient magnitudes. For the
Sobel and Prewitt methods, Gv and Gh correspond to the vertical and horizontal gradients. For the
Roberts methods, Gv and Gh correspond to the gradient at angles of 45° and 135° from horizontal,
respectively. This syntax is valid only when method is 'Sobel', 'Prewitt', or 'Roberts'.

Examples

 edge

1-933

Compare Edge Detection Using Canny and Prewitt Methods

Read a grayscale image into the workspace and display it.

I = imread('circuit.tif');
imshow(I)

Find edges using the Canny method.

BW1 = edge(I,'Canny');

Find edges using the Prewitt method.

BW2 = edge(I,'Prewitt');

Display both results side-by-side.

imshowpair(BW1,BW2,'montage')

1 Functions

1-934

Input Arguments
I — Input image
2-D grayscale image | 2-D binary image

Input image, specified as a 2-D grayscale image or 2-D binary image.

For the 'approxcanny' method, images of data type single or double must be normalized to the
range [0, 1]. If I has values outside the range [0, 1], then you can use the rescale function to
rescale values to the expected range.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

method — Edge detection method
'Sobel' (default) | 'Prewitt' | 'Roberts' | 'log' | 'zerocross' | 'Canny' | 'approxcanny'

Edge detection method, specified as one of the following.

Method Description
'Sobel' Finds edges at those points where the gradient of the image I is maximum,

using the Sobel approximation to the derivative.
'Prewitt' Finds edges at those points where the gradient of I is maximum, using the

Prewitt approximation to the derivative.
'Roberts' Finds edges at those points where the gradient of I is maximum, using the

Roberts approximation to the derivative.

 edge

1-935

Method Description
'log' Finds edges by looking for zero-crossings after filtering I with a Laplacian

of Gaussian (LoG) filter.
'zerocross' Finds edges by looking for zero-crossings after filtering I with a filter that

you specify, h
'Canny' Finds edges by looking for local maxima of the gradient of I. The edge

function calculates the gradient using the derivative of a Gaussian filter.
This method uses two thresholds to detect strong and weak edges,
including weak edges in the output if they are connected to strong edges.
By using two thresholds, the Canny method is less likely than the other
methods to be fooled by noise, and more likely to detect true weak edges.

'approxcanny' Finds edges using an approximate version of the Canny edge detection
algorithm that provides faster execution time at the expense of less precise
detection. Floating point images are expected to be normalized to the
range [0, 1].

threshold — Sensitivity threshold
numeric scalar | 2-element vector | []

Sensitivity threshold, specified as a numeric scalar for any method, or a 2-element vector for the
'Canny' and 'approxcanny' methods. edge ignores all edges that are not stronger than
threshold. For more information about this parameter, see “Algorithm” on page 1-938.

• If you do not specify threshold, or if you specify an empty array ([]), then edge chooses the
value or values automatically.

• For the 'log' and 'zerocross' methods, if you specify the threshold value 0, then the output
image has closed contours because it includes all the zero-crossings in the input image.

• The 'Canny' and 'approxcanny' methods use two thresholds. edge disregards all edges with
edge strength below the lower threshold, and preserves all edges with edge strength above the
higher threshold. You can specify threshold as a 2-element vector of the form [low high] with
low and high values in the range [0 1]. You can also specify threshold as a numeric scalar,
which edge assigns to the higher threshold. In this case, edge uses threshold*0.4 as the lower
threshold.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

direction — Direction of edges to detect
'both' (default) | 'horizontal' | 'vertical'

Direction of edges to detect, specified as 'horizontal', 'vertical', or 'both'. The direction
argument is only valid when the method is 'Sobel', 'Prewitt', or 'Roberts'.

Note If you select the Roberts method, then the 'horizontal' direction actually detects edges at
an angle of 135° from horizontal, and the 'vertical' direction detects edges at an angle of 45°
from horizontal.

Data Types: char | string

h — Filter
numeric matrix

1 Functions

1-936

Filter, specified as a numeric matrix. The h argument is supported by the 'zerocross' method only.
Data Types: double

sigma — Standard deviation of the filter
numeric scalar

Standard deviation of the filter, specified as a numeric scalar. The sigma argument is supported by
the 'Canny' and 'log' methods only.

Method Description
'Canny' Scalar value that specifies the standard deviation of the Gaussian filter.

The default is sqrt(2). edge chooses the size of the filter
automatically, based on sigma.

'log' (Laplacian of
Gaussian)

Scalar value that specifies the standard deviation of the Laplacian of
Gaussian filter. The default is 2. The size of the filter is n-by-n, where
n=ceil(sigma*3)*2+1.

Data Types: double

Output Arguments
BW — Output binary image
logical array

Output binary image, returned as a logical array of the same size as I, with 1s where the function
finds edges in I and 0s elsewhere.

threshOut — Calculated threshold
numeric scalar | 2-element vector | []

Calculated threshold value used in the computation, returned as a 2-element vector for the 'Canny'
method, an empty vector ([]) for the 'approxcanny' method, or a numeric scalar for all other edge
detection methods.

Gv — Vertical gradient
numeric array

Vertical gradient, returned as a numeric array of the same size as I.

Note If you select the Roberts method, then edge returns the gradient calculated at an angle of 45°
from horizontal.

Gh — Horizontal gradient
numeric array

Horizontal gradient, returned as a numeric array of the same size as I.

Note If you select the Roberts method, then edge returns the gradient calculated at an angle of
135° from horizontal.

 edge

1-937

Algorithms
• For the gradient-magnitude edge detection methods (Sobel, Prewitt, and Roberts), edge uses

threshold to threshold the calculated gradient magnitude.
• For the zero-crossing methods, including Laplacian of Gaussian, edge uses threshold as a

threshold for the zero-crossings. In other words, a large jump across zero is an edge, while a small
jump is not.

• The Canny method applies two thresholds to the gradient: a high threshold for low edge sensitivity
and a low threshold for high edge sensitivity. edge starts with the low sensitivity result and then
grows it to include connected edge pixels from the high sensitivity result. This helps fill in gaps in
the detected edges.

• In all cases, edge chooses the default threshold heuristically, depending on the input data. The
best way to vary the threshold is to run edge once, capturing the calculated threshold as the
second output argument. Then, starting from the value calculated by edge, adjust the threshold
higher to detect fewer edge pixels, or lower to detect more edge pixels.

Compatibility Considerations
edge Uses New Algorithm for Canny Method
Behavior changed in R2011a

The function edge changed in Version 7.2 (R2011a). Previous versions of the Image Processing
Toolbox used a different algorithm for the Canny method. If you need the same results produced by
the previous implementation, use the following syntax: BW = edge(I,'canny_old',___)

References
[1] Canny, John, "A Computational Approach to Edge Detection," IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. PAMI-8, No. 6, 1986, pp. 679-698.

[2] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood Cliffs, NJ, Prentice Hall,
1990, pp. 478-488.

[3] Parker, James R., Algorithms for Image Processing and Computer Vision, New York, John Wiley &
Sons, Inc., 1997, pp. 23-29.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• edge supports the generation of C code (requires MATLAB Coder). Note that if you choose the
generic MATLAB Host Computer target platform, edge generates code that uses a precompiled,
platform-specific shared library. Use of a shared library preserves performance optimizations but
limits the target platforms for which code can be generated. For more information, see “Types of
Code Generation Support in Image Processing Toolbox”.

• The method, direction, and sigma arguments must be compile-time constants.
• The 'approxcanny' method is not supported.

1 Functions

1-938

• The Gv and Gh output arguments are not supported.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The method, direction, and sigma arguments must be compile-time constants.
• The 'approxcanny' method is not supported.
• The Gv and Gh output arguments are not supported.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The 'Canny' and 'approxcanny' methods are not supported.

For more information, see “Image Processing on a GPU”.

See Also
fspecial | imgradient | imgradientxy

Introduced before R2006a

 edge

1-939

edge3
Find edges in 3-D intensity volume

Syntax
BW = edge3(V,'approxcanny',thresh)
BW = edge3(V,'approxcanny',thresh,sigma)
BW = edge3(V,'Sobel',thresh)
BW = edge3(V,'Sobel',thresh,'nothinning')

Description
BW = edge3(V,'approxcanny',thresh) returns the edges found in the intensity or a binary
volume V using the approximate Canny method. The approximate Canny method finds edges by
looking for local maxima of the gradient of V. edge3 calculates the gradient using the derivative of a
Gaussian smoothed volume.

The approximate Canny method uses two thresholds to detect strong and weak edges, and includes
the weak edges in the output only if they are connected to strong edges. This method is more likely
than the Sobel method to detect true weak edges.

BW = edge3(V,'approxcanny',thresh,sigma) returns the edges found in the intensity or
binary volume V, where sigma specifies the standard deviation of the Gaussian smoothing filter.
edge3 chooses the size of the filter automatically, based on sigma.

BW = edge3(V,'Sobel',thresh) accepts an intensity or a binary volume V and returns a binary
volume BW with 1s where the function finds edges in V and 0s elsewhere.

The Sobel method finds edges using the Sobel approximation to the derivative. It returns edges at
those points where the gradient of V is maximum. edge3 ignores all edges that are not stronger than
thresh.

BW = edge3(V,'Sobel',thresh,'nothinning') speeds up the operation of the algorithm by
skipping the additional edge-thinning stage. By default, or when 'thinning' is specified, edge3
applies edge thinning.

Examples

Detect Edges of MRI Volume Using Approximate Canny Method

Load volumetric data and remove any singleton dimensions.

load mri
V = squeeze(D);

View the volume using volshow.

volshow(V);

1 Functions

1-940

Detect edges in the volume using edge3 with the approximate Canny method.

BW = edge3(V,'approxcanny',0.6);

View the detected edges using volshow.

volshow(BW);

 edge3

1-941

Input Arguments
V — Input volume
3-D numeric array

Input volume, specified as a 3-D numeric array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

thresh — Sensitivity threshold
numeric scalar | 2-element numeric row vector

Sensitivity threshold, specified as one of the following.

Method Threshold value
Canny Numeric scalar
Approximate Canny 2-element numeric row vector. The first element

is the low threshold, and the second element is
the high threshold, [lowthresh highthresh]
Numeric scalar representing the high threshold.
edge3 sets the low threshold as 0.4*thresh.

Sobel Numeric scalar

1 Functions

1-942

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

sigma — Standard deviation of the Gaussian filter
sqrt(2) | numeric scalar | 1-by-3 numeric vector

Standard deviation of the Gaussian filter, specified as a numeric scalar for isotropic volumes or a 1-
by-3 numeric vector of the form [SigmaX SigmaY SigmaZ] for anisotropic volumes that have
different scales in each direction.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Output Arguments
BW — Detected edges
3-D numeric array

Detected edges, returned as a 3-D numeric array of the same size as V. Pixel values of 1 indicate
edges and pixel values of 0 indicate flat regions.

See Also
edge

Introduced in R2017b

 edge3

1-943

edgetaper
Taper discontinuities along image edges

Syntax
J = edgetaper(I,PSF)

Description
J = edgetaper(I,PSF) blurs the edges of the input image I using the point spread function PSF.

The output image J is the weighted sum of the original image I and its blurred version. The
weighting array, determined by the autocorrelation function of PSF, makes J equal to I in its central
region, and equal to the blurred version of I near the edges.

The edgetaper function reduces the ringing effect in image deblurring methods that use the
discrete Fourier transform, such as deconvwnr, deconvreg, and deconvlucy.

Examples

Blur the Edges of an Image
original = imread('cameraman.tif');
PSF = fspecial('gaussian',60,10);
edgesTapered = edgetaper(original,PSF);
figure, imshow(original,[]);

1 Functions

1-944

figure, imshow(edgesTapered,[]);

Input Arguments
I — Input image
numeric array

Input image, specified as a numeric array.
Data Types: single | double | int16 | uint8 | uint16

PSF — Point spread function
numeric array

Point spread function, specified as a numeric array. The size of the PSF cannot exceed half of the
image size in any dimension.
Data Types: single | double | int16 | uint8 | uint16

Output Arguments
J — Weighted sum of original image and its blurred version
numeric array

Weighted sum of original image and its blurred version, returned as a numeric array the same size
and class as I. The weighting array, determined by the autocorrelation function of PSF, makes J
equal to I in its central region, and equal to the blurred version of I near the edges.

 edgetaper

1-945

See Also
deconvlucy | deconvreg | deconvwnr | otf2psf | padarray | psf2otf

Introduced before R2006a

1 Functions

1-946

encoderDecoderNetwork
Create encoder-decoder network

Syntax
net = encoderDecoderNetwork(inputSize,encoder,decoder)
net = encoderDecoderNetwork(inputSize,encoder,decoder,Name,Value)

Description
net = encoderDecoderNetwork(inputSize,encoder,decoder) connects an encoder network
and a decoder network to create an encoder-decoder network, net.

This function requires Deep Learning Toolbox.

net = encoderDecoderNetwork(inputSize,encoder,decoder,Name,Value) modifies
aspects of the encoder-decoder network using name-value arguments.

Examples

Create U-Net Network from Encoder and Decoder Blocks

Create the encoder module consisting of four encoder blocks.

encoderBlock = @(block) [
 convolution2dLayer(3,2^(5+block),"Padding",'same')
 reluLayer
 convolution2dLayer(3,2^(5+block),"Padding",'same')
 reluLayer
 maxPooling2dLayer(2,"Stride",2)];
encoder = blockedNetwork(encoderBlock,4,"NamePrefix","encoder_");

Create the decoder module consisting of four decoder blocks.

decoderBlock = @(block) [
 transposedConv2dLayer(2,2^(10-block),'Stride',2)
 convolution2dLayer(3,2^(10-block),"Padding",'same')
 reluLayer
 convolution2dLayer(3,2^(10-block),"Padding",'same')
 reluLayer];
decoder = blockedNetwork(decoderBlock,4,"NamePrefix","decoder_");

Create the bridge layers.

bridge = [
 convolution2dLayer(3,1024,"Padding",'same')
 reluLayer
 convolution2dLayer(3,1024,"Padding",'same')
 reluLayer
 dropoutLayer(0.5)];

 encoderDecoderNetwork

1-947

Specify the network input size.

inputSize = [224 224 3];

Create the U-Net network by connecting the encoder module, bridge, and decoder module and
adding skip connections.

unet = encoderDecoderNetwork(inputSize,encoder,decoder, ...
 "OutputChannels",3, ...
 "SkipConnections","concatenate", ...
 "LatentNetwork",bridge)

unet =
 dlnetwork with properties:

 Layers: [55x1 nnet.cnn.layer.Layer]
 Connections: [62x2 table]
 Learnables: [46x3 table]
 State: [0x3 table]
 InputNames: {'encoderImageInputLayer'}
 OutputNames: {'encoderDecoderFinalConvLayer'}
 Initialized: 1

Display the network.

analyzeNetwork(unet)

Create U-Net from Pretrained GoogLeNet

Create a GAN encoder network with four downsampling operations from a pretrained GoogLeNet
network.

depth = 4;
[encoder,outputNames] = pretrainedEncoderNetwork('googlenet',depth);

Determine the input size of the encoder network.

inputSize = encoder.Layers(1).InputSize;

Determine the output size of the activation layers in the encoder network by creating a sample data
input and then calling forward, which returns the activations.

exampleInput = dlarray(zeros(inputSize),'SSC');
exampleOutput = cell(1,length(outputNames));
[exampleOutput{:}] = forward(encoder,exampleInput,'Outputs',outputNames);

Determine the number of channels in the decoder blocks as the length of the third channel in each
activation.

numChannels = cellfun(@(x) size(extractdata(x),3),exampleOutput);
numChannels = fliplr(numChannels(1:end-1));

Define a function that creates an array of layers for one decoder block.

decoderBlock = @(block) [
 transposedConv2dLayer(2,numChannels(block),'Stride',2)

1 Functions

1-948

 convolution2dLayer(3,numChannels(block),'Padding','same')
 reluLayer
 convolution2dLayer(3,numChannels(block),'Padding','same')
 reluLayer];

Create the decoder module with the same number of upsampling blocks as there are downsampling
blocks in the encoder module.

decoder = blockedNetwork(decoderBlock,depth);

Create the U-Net network by connecting the encoder module and decoder module and adding skip
connections.

net = encoderDecoderNetwork([224 224 3],encoder,decoder, ...
 'OutputChannels',3,'SkipConnections','concatenate')

net =
 dlnetwork with properties:

 Layers: [139x1 nnet.cnn.layer.Layer]
 Connections: [167x2 table]
 Learnables: [116x3 table]
 State: [0x3 table]
 InputNames: {'data'}
 OutputNames: {'encoderDecoderFinalConvLayer'}
 Initialized: 1

Display the network.

analyzeNetwork(net)

Input Arguments
inputSize — Network input size
3-element vector of positive integers

Network input size, specified as a 3-element vector of positive integers. inputSize has the form [H
W C], where H is the height, W is the width, and C is the number of channels.
Example: [28 28 3] specifies an input size of 28-by-28 pixels for a 3-channel image.

encoder — Encoder network
dlnetwork object

Encoder network, specified as a dlnetwork object.

decoder — Decoder network
dlnetwork object

Decoder network, specified as a dlnetwork object. The network must have a single input and a
single output.

 encoderDecoderNetwork

1-949

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'SkipConnections',"concatenate" specifies the type of skip connection between the
encoder and decoder networks as concatenation.

LatentNetwork — Network connecting encoder and decoder
[] (default) | layer object | array of layer objects

Network connecting the encoder and decoder, specified as a layer or array of layers.

FinalNetwork — Network connected to output of decoder
[] (default) | layer object | array of layer objects

Network connected to the output of the decoder, specified as a layer or array of layers. If you specify
the 'OutputChannels' argument, then the final network is connected after the final 1-by-1
convolution layer of the decoder.

OutputChannels — Number of output channels
[] (default) | positive integer

Number of output channels of the decoder network, specified as a positive integer. If you specify this
argument, then the final layer of the decoder performs a 1-by-1 convolution operation with the
specified number of channels.

SkipConnectionNames — Names of pairs of encoder/decoder layers
"auto" (default) | M-by-2 string array

Names of pairs of encoder/decoder layers whose activations are merged by skip connections,
specified as one of these values.

• "auto" — The encoderDecoderNetwork function determines the names of pairs of encoder/
decoder layers automatically.

• M-by-2 string array — The first column is the name of the encoder layer and the second column is
the name of the respective decoder layer.

When you specify the 'SkipConnections' argument as "none", the encoderDecoderNetwork
function ignores the value of 'SkipConnectionNames'.
Data Types: char | string

SkipConnections — Type of skip connection
"none" (default) | "auto" | "concatenate"

Type of skip connection between the encoder and decoder networks, specified as "none", "auto", or
"concatenate".
Data Types: char | string

Output Arguments
net — Encoder/decoder network
dlnetwork object

1 Functions

1-950

Encoder/decoder network, returned as a dlnetwork object.

See Also
blockedNetwork | pretrainedEncoderNetwork

Topics
“Create Modular Neural Networks”
“Get Started with GANs for Image-to-Image Translation”

Introduced in R2021a

 encoderDecoderNetwork

1-951

entropy
Entropy of grayscale image

Syntax
e = entropy(I)

Description
e = entropy(I) returns e, a scalar value representing the entropy of grayscale image I.

Examples

Calculate Entropy of Grayscale Image

Read image into the workspace.

I = imread('circuit.tif');

Calculate the entropy.

J = entropy(I)

J = 6.9439

Input Arguments
I — Grayscale image
numeric array

Grayscale image, specified as a numeric array of any dimension.
Data Types: double | uint8 | uint16 | uint32 | logical

Output Arguments
e — Entropy
numeric scalar

Entropy of image I, returned as a numeric scalar.
Data Types: double

More About
Entropy

Entropy is a statistical measure of randomness that can be used to characterize the texture of the
input image.

1 Functions

1-952

Entropy is defined as -sum(p.*log2(p)), where p contains the normalized histogram counts
returned from imhist.

Tips
• By default, entropy uses two bins for logical arrays and 256 bins for uint8, uint16, or double

arrays. entropy converts any class other than logical to uint8 for the histogram count
calculation so that the pixel values are discrete and directly correspond to a bin value.

References
[1] Gonzalez, R. C., R. E. Woods, and S. L. Eddins. Digital Image Processing Using MATLAB. New

Jersey, Prentice Hall, 2003, Chapter 11.

See Also
imhist | entropyfilt

Introduced before R2006a

 entropy

1-953

entropyfilt
Local entropy of grayscale image

Syntax
J = entropyfilt(I)
J = entropyfilt(I,nhood)

Description
J = entropyfilt(I) returns the array J, where each output pixel contains the entropy value of
the 9-by-9 neighborhood around the corresponding pixel in the input image I.

For pixels on the borders of I, entropyfilt uses symmetric padding. In symmetric padding, the
values of padding pixels are a mirror reflection of the border pixels in I.

J = entropyfilt(I,nhood) performs entropy filtering of the input image I using the
neighborhood nhood.

Examples

Perform Entropy Filtering

This example shows how to perform entropy filtering using entropyfilt. Brighter pixels in the
filtered image correspond to neighborhoods in the original image with higher entropy.

Read an image into the workspace.

I = imread('circuit.tif');

Perform entropy filtering using entropyfilt.

J = entropyfilt(I);

Show the original image and the processed image.

imshow(I)
title('Original Image')

1 Functions

1-954

figure
imshow(J,[])
title('Result of Entropy Filtering')

 entropyfilt

1-955

Input Arguments
I — Image to be filtered
numeric array

Image to be filtered, specified as a numeric array of any dimension. If the input image has more than
two dimensions (ndims(I)>2), such as for an RGB image, then entropyfilt filters all 2-D planes
along the higher dimensions.
Data Types: double | uint8 | uint16 | uint32 | logical

nhood — Neighborhood
true(9) (default) | numeric array | logical array

Neighborhood, specified as a numeric or logical array containing 0s and 1s. The size of nhood must
be odd in each dimension.

By default, entropyfilt uses the neighborhood true(9). The center element of the neighborhood
is floor((size(nhood) + 1)/2).

To specify neighborhoods of other shapes, such as a disk, use the strel function to create a
structuring element object of the desired shape. Then, extract the neighborhood from the structuring
element object’s neighborhood property.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Output Arguments
J — Filtered image
numeric array

Filtered image, returned as a numeric array the same size as the input image I.
Data Types: double

More About
Entropy

Entropy is a statistical measure of randomness that can be used to characterize the texture of the
input image.

Entropy is defined as -sum(p.*log2(p)), where p contains the normalized histogram counts
returned from imhist.

Tips
• By default, entropyfilt uses two bins for logical arrays. entropyfilt converts any other class

to uint8 for the histogram count calculation and uses 256 bins so that the pixel values are
discrete and directly correspond to a bin value.

1 Functions

1-956

References
[1] Gonzalez, R. C., R. E. Woods, and S. L. Eddins. Digital Image Processing Using MATLAB. New

Jersey, Prentice Hall, 2003, Chapter 11.

See Also
entropy | imhist | rangefilt | stdfilt

Topics
“What Is Image Filtering in the Spatial Domain?”

Introduced before R2006a

 entropyfilt

1-957

esfrChart
Imatest edge spatial frequency response (eSFR) test chart

Description
An esfrChart object stores the positions and measurements of regions of interest (ROIs) of Imatest
edge spatial frequency response (eSFR) test charts [1], [2].

The esfrChart object supports the Enhanced and Extended versions of the eSFR test chart. These
test charts are based on the ISO 12233:2014 standard test chart, and they have extra visual features
such as color ROIs and additional slanted edge ROIs. The esfrChart object also accepts versions of
the Enhanced and Extended eSFR test charts with additional background wedges.

Creation

Syntax
chart = esfrChart(A)
chart = esfrChart(A,'Sensitivity',s)
chart = esfrChart(A,'RegistrationPoints',p)
chart = esfrChart(___ ,Name,Value)

Description

chart = esfrChart(A) creates an esfrChart object from an image of a test chart, A. The
esfrChart object performs automatic detection of the chart position and style.

chart = esfrChart(A,'Sensitivity',s) creates an esfrChart object using sensitivity s
during the automatic chart detection.

chart = esfrChart(A,'RegistrationPoints',p) creates an esfrChart object by specifying
the position, p, of registration points.

chart = esfrChart(___ ,Name,Value) refines the automatic chart detection using one or more
name-value arguments.

Input Arguments

A — Test chart image
m-by-n-by-3 numeric array | m-by-n numeric matrix

Test chart image, specified as an m-by-n-by-3 numeric array representing an RGB image or an m-by-n
numeric matrix representing a grayscale image. This argument sets the Image property.

If you specify a grayscale image, then the esfrChart object simulates a color image by replicating
the pixel intensity values across the three color channels. In this case, color measurements returned
by the measureColor function are meaningless.
Data Types: single | double | uint8 | uint16

1 Functions

1-958

s — Sensitivity
0.5 (default) | numeric scalar in the range [0, 1]

Sensitivity of chart detection, specified as a numeric scalar in the range [0, 1]. If you set a high
sensitivity value, then the esfrChart object detects more points of interest with which to register
the test chart image.
Data Types: single | double

p — Position of registration points
4-by-2 numeric matrix

Position of registration points used to orient the image, specified as a 4-by-2 numeric matrix. The four
rows correspond to the top-left, top-right, bottom-right, and bottom-left registration points,
respectively. The two columns represent pixel coordinates in [x, y] format. This argument sets the
RegistrationPoints property.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Style','Extended'

Style — Style of test chart
'Extended' | 'Enhanced' | 'WedgeExtended' | 'WedgeEnhanced'

Style of test chart, specified as 'Enhanced', 'Extended', 'WedgeEnhanced', or
'WedgeExtended'. If you do not specify a chart style, then by default the esfrChart object
estimates the chart style based on the number and position of points of interest. This argument sets
the Style property.
Data Types: char | string

CameraParameters — Camera parameters
cameraParameters object

Camera parameters used to compensate for distortion, specified as a cameraParameters object.
Use of this argument requires Computer Vision Toolbox.

RefinePoints — Refine position of slanted edge ROIs
true or 1 (default) | false or 0

Refine the position of slanted edge ROIs, specified as a numeric or logical 1 (true) or 0 (false).

The esfrChart object first performs an initial estimate of ROI positions with respect to the
registration points, RegistrationPoints. When you specify 'RefinePoints' as true, the object then
refines the slanted edge ROI positions using localized information about the image content. When
false, the object does not refine the slanted edge ROI positions.

Properties
Image — Test chart image
m-by-n-by-3 numeric array

 esfrChart

1-959

Test chart image, specified as an m-by-n-by-3 numeric array.
Data Types: single | double | uint8 | uint16

SlantedEdgeROIs — Position and intensity values of slanted edges
60-by-1 vector of structures

Position and intensity values of slanted edges, specified as a 60-by-1 vector of structures. Each
element in the vector corresponds to one ROI and contains these fields:

Field Description
ROI A 1-by-4 vector specifying the spatial extent of the ROI. The vector has the

form [X Y Width Height]. X and Y are the coordinates of the top-left
corner of the ROI. Width and Height are the width and height of the ROI,
in pixels. ROI is of data type double.

ROIIntensity Array of intensity values within the ROI, in RGB format. The array has
dimensions Height-by-Width-by-3. The data type of ROIIntensity
matches the data type of the Image property.

The esfrChart object excludes some slanted edge ROIs in the 'Enhanced' and 'WedgeEnhanced'
style test charts.

• When the chart style is 'Enhanced', the esfrChart object excludes four ROIs, with indices 1,
19, 41, and 59.

• When the chart style is 'Enhanced', the esfrChart object excludes twelve ROIs, with indices 1,
2, 4, 18, 19, 20, 41, 42, 44, 58, 59, and 60.

For the excluded ROIs, the value of the ROI field is [NaN NaN NaN NaN] and the value of the
ROIIntensity field is an empty array, [].

GrayROIs — Position and intensity values of gray patches
20-by-1 vector of structures

Position and intensity values of gray patches, specified as a 20-by-1 vector of structures. Each
element in the vector corresponds to one ROI and contains these fields:

Field Description
ROI A 1-by-4 vector specifying the spatial extent of the ROI. The vector has the

form [X Y Width Height]. X and Y are the coordinates of the top-left
corner of the ROI. Width and Height are the width and height of the ROI,
in pixels. ROI is of data type double.

ROIIntensity Array of intensity values within the ROI, in RGB format. The array has
dimensions Height-by-Width-by-3. The data type of ROIIntensity
matches the data type of the Image property.

ColorROIs — Position and intensity values of color patches
16-by-1 vector of structures

Position and intensity values of color patches, specified as a 16-by-1 vector of structures. Each
element in the vector corresponds to one ROI and contains these fields:

1 Functions

1-960

Field Description
ROI A 1-by-4 vector specifying the spatial extent of the ROI. The vector has the

form [X Y Width Height]. X and Y are the coordinates of the top-left
corner of the ROI. Width and Height are the width and height of the ROI,
in pixels. ROI is of data type double.

ROIIntensity Array of intensity values within the ROI, in RGB format. The array has
dimensions Height-by-Width-by-3. The data type of ROIIntensity
matches the data type of the Image property.

RegistrationPoints — Position of registration points
4-by-2 numeric matrix

Position of registration points used to orient the image, specified as a 4-by-2 numeric matrix. The four
rows correspond to the top-left, top-right, bottom-right, and bottom-left registration points,
respectively. The two columns represent pixel coordinates in [x, y] format.
Data Types: double

ReferenceGrayLab — Reference values of gray ROIs
20-by-3 numeric matrix

Reference values of gray ROIs in the CIE 1976 L*a*b* color space, specified as a 20-by-3 numeric
matrix. The three columns contain the L*, a*, and b* values of the gray patches, respectively. The
rows contain the reference intensities of the 20 gray ROIs, in the same sequential order.

Note The esfrChart object includes default CIE 1976 L*a*b* values for the gray ROIs. However,
the actual reference values can vary depending on several factors, such as print quality.

Data Types: double

ReferenceColorLab — Reference values of color ROIs
16-by-3 numeric matrix

Reference values of color ROIs in the CIE 1976 L*a*b* color space, specified as a 16-by-3 numeric
matrix. The three columns contain the L*, a*, and b* values of the color patches, respectively. The
rows contain the reference intensities of the 16 color ROIs, in the same sequential order.

Note The esfrChart object includes default CIE 1976 L*a*b* values for the color ROIs. However,
the actual reference values can vary depending on several factors, such as print quality. Accurate
reference color values result in more faithful color reproduction measurements.

Data Types: double

Style — Style of test chart
'Enhanced' | 'Extended' | 'WedgeEnhanced' | 'WedgeExtended'

Style of test chart, specified as 'Enhanced', 'Extended', 'WedgeEnhanced', or
'WedgeExtended'.

 esfrChart

1-961

Object Functions
measureSharpness Measure spatial frequency response using Imatest eSFR chart
measureChromaticAberration Measure chromatic aberration at slanted edges using Imatest eSFR

chart
measureNoise Measure noise using Imatest eSFR chart
measureColor Measure color reproduction using test chart
measureIlluminant Measure scene illuminant using test chart
displayChart Display test chart with overlaid regions of interest

Examples

Create an eSFR Chart Object from a Test Image

Read an image of an eSFR chart into the workspace. Display the image.

I = imread('eSFRTestImage.jpg');
figure
imshow(I)
title('Captured Image of eSFR Chart')
text(size(I,2),size(I,1)+15, ...
 ['Chart courtesy of Imatest',char(174)],'FontSize',10,'HorizontalAlignment','right');

Linearize the image. The displayed chart will appear darker because the image no longer has gamma
correction.

I_lin = rgb2lin(I);

1 Functions

1-962

Create an esfrChart object using the linearized chart image. Specify the sensitivity that the
esfrChart model uses to detect the points with which to register the chart image.

chart = esfrChart(I_lin,'Sensitivity',0.6)

chart =
 esfrChart with properties:

 Image: [1836x3084x3 uint8]
 SlantedEdgeROIs: [60x1 struct]
 GrayROIs: [20x1 struct]
 ColorROIs: [16x1 struct]
 RegistrationPoints: [4x2 double]
 Style: 'Extended'
 ReferenceGrayLab: [20x3 double]
 ReferenceColorLab: [16x3 double]

Display the imported eSFR chart. Regions of interest (ROI) are highlighted and labeled.

displayChart(chart)

The chart is imported correctly. All 60 slanted edge ROIs (labeled with green numbers) are visible
and centered on appropriate edges. 20 gray patch ROIs (labeled in red) and 16 color patch ROIs
(labeled in white) are visible and are contained within the boundary of each patch.

 esfrChart

1-963

Create eSFR Chart Object Using Specified Registration Points

Create an esfrChart object by specifying the coordinates of the four registration points.
Registration points are located at the center of the black-and-white checkered circles.

Read an image of an eSFR chart into the workspace.

I = imread('eSFRTestImage.jpg');

Display the image and configure it to collect four registration points.

figure
imshow(I)
[X, Y] = ginput(4);

Click the registration points in this order: top-left, top-right, bottom-right, bottom-left.

Create an esfrChart object, specifying the four registration points. Display the imported eSFR
chart. Regions of interest are highlighted and labeled. The registration points appear in red.

chart = esfrChart(I,'RegistrationPoints',[X, Y]);
displayChart(chart);

Tips
• For accurate and reliable results, acquire an image of the test chart according to standard
specifications outlined in the ISO standard and by the manufacturer [2], [3]. As a simple guideline,
align the chart horizontally on a light background. Cover over 90% of the field of view with the
chart, but ensure that the top and bottom edges of the chart are still visible. For reliable
measurements, set the minimum image width to at least 500 pixels.

• You can capture an image of the Extended eSFR test chart at the full 16:9 aspect ratio, or at an
aspect ratio of 3:2 or 4:3, as specified on the chart.

• To ensure that the chart is properly imported, visually verify the test chart image using the
displayChart function.

Compatibility Considerations
esfrChart object now refines slanted edge ROI positions
Behavior changed in R2021a

Starting in R2021a, by default the esfrChart object refines the position of slanted edge ROIs based
on localized image content. In previous releases, the esfrChart object did not refine the position of
the slanted edge ROIs after the initial estimate of the position based on the position of the
registration points. The refinement results in more precise ROI positions.

To replicate the previous behavior, specify the 'RefinePoints' name-value argument as false when
creating an esfrChart object.

References
[1] Imatest. "Esfr". https://www.imatest.com/mathworks/esfr/.

[2] Using eSFR ISO Part 1. URL: https://www.imatest.com/docs/esfriso_instructions.

1 Functions

1-964

https://www.imatest.com/mathworks/esfr/
https://www.imatest.com/docs/esfriso_instructions

[3] ISO 12233:2014. "Photography – Electronic still picture imaging – Resolution and spatial
frequency responses." International Organization for Standardization; ISO/TC 42
Photography. URL: https://www.iso.org/standard/59419.html.

See Also
displayColorPatch | plotSFR | plotChromaticity

Topics
“Anatomy of Imatest Extended eSFR Chart”
“Evaluate Quality Metrics on eSFR Test Chart”

Introduced in R2017b

 esfrChart

1-965

https://www.iso.org/standard/59419.html

fan2para
Convert fan-beam projections to parallel-beam

Syntax
P = fan2para(F,D)
P = fan2para(F,D,Name,Value)
[P,parallel_sensor_positions,parallel_rotation_angles] = fan2para(___)

Description
P = fan2para(F,D) converts the fan-beam data F to the parallel-beam data P. Each column of F
contains the fan-beam data at one rotation angle. D is the distance from the fan-beam vertex to the
center of rotation.

P = fan2para(F,D,Name,Value) uses name-value pairs to control aspects of the data conversion.

[P,parallel_sensor_positions,parallel_rotation_angles] = fan2para(___) returns
the parallel-beam sensor locations in parallel_sensor_positions and rotation angles in
parallel_rotation_angles.

Examples

Recover Parallel-beam Data from Fan-beam Data

Create synthetic parallel-beam data.

ph = phantom(128);

Calculate the parallel beam transform and display it.

theta = 0:179;
[Psynthetic,xp] = radon(ph,theta);
imshow(Psynthetic,[],...
 'XData',theta,'YData',xp,'InitialMagnification','fit')
axis normal
title('Synthetic Parallel-Beam Data')
xlabel('\theta (degrees)')
ylabel('x''')
colormap(gca,hot), colorbar

1 Functions

1-966

Convert the parallel-beam data to fan-beam.

Fsynthetic = para2fan(Psynthetic,100,'FanSensorSpacing',1);

Recover original parallel-beam data.

[Precovered,Ploc,Pangles] = fan2para(Fsynthetic,100,...
 'FanSensorSpacing',1,...
 'ParallelSensorSpacing',1);
figure
imshow(Precovered,[],...
 'XData',Pangles,'YData',Ploc,'InitialMagnification','fit')
axis normal
title('Recovered Parallel-Beam Data')
xlabel('Rotation Angles (degrees)')
ylabel('Parallel Sensor Locations (pixels)')
colormap(gca,hot), colorbar

 fan2para

1-967

Input Arguments
F — Fan-beam projection data
numeric matrix

Fan-beam projection data, specified as a numeric matrix. Each column of F contains the fan-beam
data at one rotation angle. The number of columns indicates the number of fan-beam rotation angles
and the number of rows indicates the number of fan-beam sensors.
Data Types: double | single

D — Distance from fan beam vertex to center of rotation
positive number

Distance in pixels from the fan beam vertex to the center of rotation, specified as a positive number.
fan2para assumes that the center of rotation is the center point of the projections, which is defined
as ceil(size(F,1)/2). The figure illustrates D in relation to the fan-beam vertex for one fan-beam
projection.

1 Functions

1-968

Data Types: double | single

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: P = fan2para(F,D,'FanRotationIncrement',5)

FanCoverage — Range of fan-beam rotation
'cycle' (default) | 'minimal'

Range of fan-beam rotation, specified as the comma-separated pair consisting of 'FanCoverage'
and one of these values.

• 'cycle' — Rotate through the full range [0, 360) degrees.
• 'minimal' — Rotate through the minimum range necessary to represent the object.

FanRotationIncrement — Fan-beam rotation angle increment
1 (default) | positive scalar

Fan-beam rotation angle increment in degrees, specified as the comma-separated pair consisting of
'FanRotationIncrement' and a positive scalar.

 fan2para

1-969

Data Types: double

FanSensorGeometry — Fan-beam sensor positioning
'arc' (default) | 'line'

Fan-beam sensor positioning, specified as the comma-separated pair consisting of
'FanSensorGeometry' and one of the following values.

Value Meaning Diagram
'arc' Sensors are spaced at equal angles

along a circular arc at distance D from
the center of rotation.

FanSensorSpacing defines the
angular spacing in degrees.

1 Functions

1-970

Value Meaning Diagram
'line' Sensors are spaced at equal distances

along a line that is parallel to the x'
axis. The closest sensor is distance D
from the center of rotation.

FanSensorSpacing defines the
distance between fan-beams on the x'
axis, in pixels.

FanSensorSpacing — Fan-bean sensor spacing
1 (default) | positive scalar

Fan-bean sensor spacing, specified as the comma-separated pair consisting of 'FanSensorSpacing'
and a positive scalar.

• If FanSensorGeometry is 'arc', then FanSensorSpacing defines the angular spacing in
degrees.

• If FanSensorGeometry is 'line', then FanSensorSpacing defines the linear distance between
fan-beams, in pixels. Linear spacing is measured on the x' axis.

Data Types: double

Interpolation — Type of interpolation
'Linear' (default) | 'nearest' | 'spline' | 'pchip'

Type of interpolation used between the parallel-beam and fan-beam data, specified as the comma-
separated pair consisting of 'Interpolation' and one of these values.

'nearest' — Nearest-neighbor

'linear' — Linear (the default)

'spline' — Piecewise cubic spline

'pchip' — Piecewise cubic Hermite (PCHIP)

ParallelCoverage — Range of parallel-beam rotation
'halfcycle' (default) | 'cycle'

Range of parallel-beam rotation, specified as the comma-separated pair consisting of
'ParallelCoverage' and one of these values.

 fan2para

1-971

• 'cycle' — Parallel data covers the full range of [0, 360) degrees.
• 'halfcycle' — Parallel data covers [0, 180) degrees.

ParallelRotationIncrement — Parallel-beam rotation angle increment
positive scalar

Parallel-beam rotation angle increment in degrees, specified as the comma-separated pair consisting
of 'ParallelRotationIncrement' and a positive scalar k such that 180/k is an integer. If you do
not specify ParallelRotationIncrement, then the default value is equal to
FanRotationIncrement.
Data Types: double

ParallelSensorSpacing — Parallel-beam sensor spacing
positive scalar

Parallel-beam sensor spacing in pixels, specified as the comma-separated pair consisting of
'ParallelSensorSpacing' and a positive scalar. The range of parallel-beam sensor locations is
computed from the range of fan angles, fanangles, according to: [D*sin(min(fanangles))
D*sin(max(fanangles))].

If you do not specify ParallelSensorSpacing, then the spacing is assumed to be uniform and is
set to the minimum spacing implied by the fan angles and sampled over the range implied by the fan
angles.
Data Types: double

Output Arguments
P — Parallel-beam projection data
numeric matrix

Parallel-beam projection data, returned as a numeric matrix. Each column of P contains the parallel-
beam data at one rotation angle. The number of columns indicates the total number of parallel-beam
rotation angles and is equal to the length of parallel_rotation_angles. The number of rows
indicates the total number of parallel-beam sensors and is equal to the length of
parallel_sensor_positions.
Data Types: double

parallel_sensor_positions — Parallel-beam sensor locations
numeric column vector

Parallel-beam sensor locations, returned as a numeric column vector.
Data Types: double

parallel_rotation_angles — Parallel-beam rotation angles
numeric row vector

Parallel-beam rotation angles, returned as a numeric row vector.
Data Types: double

See Also
fanbeam | ifanbeam | iradon | para2fan | phantom | radon

1 Functions

1-972

Introduced before R2006a

 fan2para

1-973

fanbeam
Fan-beam transform

Syntax
F = fanbeam(I,D)
F = fanbeam(I,D,Name,Value)
[F,fan_sensor_positions,fan_rotation_angles] = fanbeam(___)

Description
F = fanbeam(I,D) computes the fan-beam projection data (sinogram) F from the image I. Each
column of F contains fan-beam projection data at one rotation angle. D is the distance from the fan-
beam vertex to the center of rotation.

F = fanbeam(I,D,Name,Value) uses name-value pairs to specify the rotation increment and
sensor spacing.

[F,fan_sensor_positions,fan_rotation_angles] = fanbeam(___) returns the location of
fan-beam sensors in fan_sensor_positions and the rotation angles where the fan-beam
projections are calculated in fan_rotation_angles.

Examples

Compute Fan-beam Projections for Rotation Angles Over Entire Image

Set the IPT preference to make the axes visible.

iptsetpref('ImshowAxesVisible','on')

Create a sample image and display it.

ph = phantom(128);
imshow(ph)

1 Functions

1-974

Calculate the fanbeam projections and display them.

[F,Fpos,Fangles] = fanbeam(ph,250);
figure
imshow(F,[],'XData',Fangles,'YData',Fpos,...
 'InitialMagnification','fit')
axis normal
xlabel('Rotation Angles (degrees)')
ylabel('Sensor Positions (degrees)')
colormap(gca,hot), colorbar

Compute Radon and Fan-beam Projections and Compare Results

Compute fan-beam projections for 'arc' geometry.

I = ones(100);
D = 200;
dtheta = 45;
[Farc,FposArcDeg,Fangles] = fanbeam(I,D,...
 'FanSensorGeometry','arc',...
 'FanRotationIncrement',dtheta);

Convert angular positions to linear distance along x-prime axis.

FposArc = D*tan(FposArcDeg*pi/180);

 fanbeam

1-975

Compute fan-beam projections for 'line' geometry.

[Fline,FposLine] = fanbeam(I,D,...
 'FanSensorGeometry','line',...
 'FanRotationIncrement',dtheta);

Compute the corresponding Radon transform.

[R,Rpos]=radon(I,Fangles);

Display the three projections at one particular rotation angle. Note the three are very similar.
Differences are due to the geometry of the sampling, and the numerical approximations used in the
calculations.

figure
idx = find(Fangles==45);
plot(Rpos,R(:,idx),...
 FposArc,Farc(:,idx),...
 FposLine,Fline(:,idx))
legend('Radon','Arc','Line')

Input Arguments
I — Input image
2-D numeric matrix | 2-D logical matrix

1 Functions

1-976

Input image, specified as a 2-D numeric or logical matrix.

D — Distance from fan beam vertex to center of rotation
positive number

Distance in pixels from the fan beam vertex to the center of rotation, specified as a positive number.
The center of rotation is the center pixel of the image, defined as floor((size(I)+1)/2). D must
be large enough to ensure that the fan-beam vertex is outside of the image at all rotation angles. See
“Tips” on page 1-980 for guidelines on specifying D. The figure illustrates D in relation to the fan-
beam vertex for one fan-beam geometry.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: F = fanbeam(I,D,'FanRotationIncrement',5)

FanRotationIncrement — Fan-beam rotation angle increment
1 (default) | positive scalar

Fan-beam rotation angle increment in degrees, specified as the comma-separated pair consisting of
'FanRotationIncrement' and a positive scalar.

 fanbeam

1-977

Data Types: double

FanSensorGeometry — Fan-beam sensor positioning
'arc' (default) | 'line'

Fan-beam sensor positioning, specified as the comma-separated pair consisting of
'FanSensorGeometry' and one of the following values.

Value Meaning Diagram
'arc' Sensors are spaced at equal angles

along a circular arc at distance D from
the center of rotation.

FanSensorSpacing defines the
angular spacing in degrees.

1 Functions

1-978

Value Meaning Diagram
'line' Sensors are spaced at equal distances

along a line that is parallel to the x'
axis. The closest sensor is distance D
from the center of rotation.

FanSensorSpacing defines the
distance between fan-beams on the x'
axis, in pixels.

FanSensorSpacing — Fan-bean sensor spacing
1 (default) | positive scalar

Fan-bean sensor spacing, specified as the comma-separated pair consisting of 'FanSensorSpacing'
and a positive scalar.

• If FanSensorGeometry is 'arc', then FanSensorSpacing defines the angular spacing in
degrees.

• If FanSensorGeometry is 'line', then FanSensorSpacing defines the linear distance between
fan-beams, in pixels. Linear spacing is measured on the x' axis.

Data Types: double

Output Arguments
F — Fan-beam projection data
numsensors-by-numangles numeric matrix

Fan-beam projection data, returned as a numsensors-by-numangles numeric matrix. numsensors is
the number of fan-beam sensors and numangles is the number of fan-beam rotation angles. Each
column of F contains the fan-beam sensor samples at one rotation angle.
Data Types: double

fan_sensor_positions — Location of fan-beam sensors
numsensors-by-1 numeric vector

Location of fan-beam sensors, returned as a numsensors-by-1 numeric vector.

• If FanSensorGeometry is 'arc' (the default), then fan_sensor_positions contains the fan-
beam spread angles.

 fanbeam

1-979

• If FanSensorGeometry is 'line', then fan_sensor_positions contains the fan-beam sensor
positions along the x' axis. See FanSensorSpacing for more information.

fanbeam determines the number of sensors by calculating how many beams are required to cover the
entire image for any rotation angle. Fewer sensors are required to cover the image when the distance
D between the fan-beam vertex and the center of rotation is large.
Data Types: double

fan_rotation_angles — Rotation angle of fan-beam sensors
1-by-numangles numeric vector

Rotation angle of fan-beam sensors, returned as a 1-by-numangles numeric vector. numangles is 360/
FanRotationIncrement.
Data Types: double

Tips
As a guideline, try making D a few pixels larger than half the image diagonal dimension, calculated as
follows.

sqrt(size(I,1)^2 + size(I,2)^2)

The values returned in F are a numerical approximation of the fan-beam projections. The algorithm
depends on the Radon transform, interpolated to the fan-beam geometry. The results vary depending
on the parameters used. You can expect more accurate results when the image is larger, D is larger,
and for points closer to the middle of the image, away from the edges.

References
[1] Kak, A.C., & Slaney, M., Principles of Computerized Tomographic Imaging, IEEE Press, NY, 1988,

pp. 92-93.

See Also
fan2para | ifanbeam | iradon | para2fan | phantom | radon

Introduced before R2006a

1 Functions

1-980

fibermetric
Enhance elongated or tubular structures in image

Syntax
J = fibermetric(I)
J = fibermetric(I,thickness)
J = fibermetric(___ ,Name,Value)

Description
J = fibermetric(I) enhances elongated or tubular structures in 2-D or 3-D grayscale image I
using Hessian-based multiscale filtering. The image returned, J, contains the maximum response of
the filter at a thickness that approximately matches the size of the tubular structure in the image.

J = fibermetric(I,thickness) specifies the thickness of the tubular structures to enhance.

J = fibermetric(___ ,Name,Value) uses name-value pair arguments to control different
aspects of the filtering algorithm.

Examples

Find Threads Approximately Seven Pixels Thick

Read and display an image that contains tubular threads of varying thicknesses.

I = imread('threads.png');
imshow(I)

 fibermetric

1-981

Create an enhanced version of the image that highlights threads that are seven pixels thick. Threads
show up dark against a light background, therefore specify the object polarity as 'dark'. Display the
enhanced image.

B = fibermetric(I,7,'ObjectPolarity','dark');
imshow(B)
title('Enhanced Tubular Structures 7 Pixels Thick')

1 Functions

1-982

Threshold the enhanced image to create a binary mask image containing the threads with the
specified thickness.

BW = imbinarize(B);

Display the mask over the original image by using the labeloverlay function. The overlay has a
blue tint where the mask is true (where threads have the specified thickness).

imshow(labeloverlay(I,BW))
title('Detected Tubular Structures 7 Pixels Thick')

 fibermetric

1-983

Input Arguments
I — Image with elongated or tubular structures
2-D grayscale image | 3-D grayscale volume

Image with elongated or tubular structures, specified as 2-D grayscale image or 3-D grayscale
volume.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

thickness — Thickness of tubular structures
[4 6 8 10 12 14] (default) | positive integer | vector of positive integers

Thickness of tubular structures in pixels, specified as a positive integer or vector of positive integers.

1 Functions

1-984

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: J = fibermetric(I,'StructureSensitivity',15)

StructureSensitivity — Structure sensitivity
positive number

Structure sensitivity, specified as the comma-separated pair consisting of
'StructureSensitivity' and a positive number. The structure sensitivity is a threshold for
differentiating the tubular structure from the background.

The default value depends on the data type of image I, and is calculated as
0.01*diff(getrangefromclass(I)). For example, the default threshold is 2.55 for images of
data type uint8, and the default is 0.01 for images of data type double with pixel values in the
range [0, 1].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ObjectPolarity — Polarity of tubular structures
'bright' (default) | 'dark'

Polarity of the tubular structures with the background, specified as the comma-separated pair
consisting of 'ObjectPolarity' and one of the following values:

Value Description
'bright' Structure is brighter than the background.
'dark' Structure is darker than the background.

Data Types: char | string

Output Arguments
J — Enhanced image
numeric array

Enhanced image, returned as a numeric array of the same size as the input image I. If the data type
of I is double, then the data type of J is also double. Otherwise, the data type of J is single.
Data Types: single | double

Tips
• The fibermetric function does not perform segmentation. The function enhances an image to

highlight structures and is typically used as a preprocessing step for segmentation.

 fibermetric

1-985

Compatibility Considerations
fibermetric calculates new default structural sensitivity
Behavior changed in R2018b

Starting in R2018b, fibermetric calculates the default value of the StructureSensitivity
argument as 0.01*diff(getrangefromclass(I)). The change in the default value increases
computational efficiency and reduces memory usage. These improvements also enable processing 3-D
volumetric images.

Previous versions of fibermetric defined the default value of StructureSensitivity as half of
the maximum of the Hessian norm of the image. If you want to reproduce the prior default value for
2-D images, then specify StructureSensitivity as 0.5*maxhessiannorm(I). The
maxhessiannorm function does not support 3-D input.

References
[1] Frangi, Alejandro F., et al. Multiscale vessel enhancement filtering. Medical Image Computing and

Computer-Assisted Intervention — MICCAI'98. Springer Berlin Heidelberg, 1998. pp. 130–
137.

See Also
edge | imgradient

Introduced in R2017a

1 Functions

1-986

findbounds
Find output bounds for spatial transformation

Syntax
outbounds = findbounds(tform,inbounds)

Description
outbounds = findbounds(tform,inbounds) estimates the output bounds corresponding to a
given spatial transformation and a set of input bounds. tform is a spatial transformation structure.
inbounds is a 2-by-num_dims matrix that specifies the lower and upper bounds of the output image.
outbounds is an estimate of the smallest rectangular region completely containing the transformed
rectangle represented by the input bounds, and has the same form as inbounds. Since outbounds is
only an estimate, it might not completely contain the transformed input rectangle.

Examples

Calculate Boundaries of Transformed Output Image

Read an image into the workspace, and display the image.

I = imread('cameraman.tif');
figure
imshow(I)

 findbounds

1-987

Create a spatial transformation structure that stretches an image.

T = maketform('affine',[.5 0 0; .5 2 0; 0 0 1]);

Calculate the boundaries of the output image, given the size of the input image and the spatial
transformation. The dimensions of the input image are 256-by-256. The boundaries of the output
image reflect the transformation: 256-by-512.

outb = findbounds(T,[0 0;256 256])

outb = 2×2

 0 0
 256 512

Apply the transformation, and display the image.

transformedI = imtransform(I,T);
figure
imshow(transformedI)

1 Functions

1-988

Input Arguments
tform — Spatial transformation
structure

Spatial transformation, specified as a structure (tform).
Data Types: struct

inbounds — Bounds for each dimension of the input image
2-by-num_dims matrix

 findbounds

1-989

Bounds for each dimension of the input image, specified as a 2-by-num_dims matrix. The first row of
inbounds specifies the lower bounds for each dimension, and the second row specifies the upper
bounds. num_dims has to be consistent with the ndims_in field of tform.
Example: outb = findbounds(T,[0 0;256 256]) where input image is 256-by-256.
Data Types: double

Output Arguments
outbounds — Bounds for each dimension of the output image
2-by-num_dims matrix of class double

Bounds for each dimension of the output image (output space bounding box), returned as a 2-by-
num_dims matrix of class double.

Algorithms
1 findbounds first creates a grid of input-space points. These points are at the center, corners,

and middle of each edge in the image.

I = imread('rice.png');
h = imshow(I);
set(h,'AlphaData',0.3);
axis on, grid on
in_points = [...
 0.5000 0.5000
 0.5000 256.5000
 256.5000 0.5000
 256.5000 256.5000
 0.5000 128.5000
 128.5000 0.5000
 128.5000 128.5000
 128.5000 256.5000
 256.5000 128.5000];
hold on
plot(in_points(:,1),in_points(:,2),'.','MarkerSize',18)
hold off

Grid of Input-Space Points

1 Functions

1-990

2 Next, findbounds transforms the grid of input-space points to output space. If tform contains a
forward transformation (a nonempty forward_fcn field), then findbounds transforms the
input-space points using tformfwd. For example:

tform = maketform('affine', ...
 [1.1067 -0.2341 0; 0.5872 1.1769 0; 1000 -300 1]);
out_points = tformfwd(tform, in_points)

 out_points =

 1.0e+03 *

 1.0008 -0.2995
 1.1512 0.0018
 1.2842 -0.3595
 1.4345 -0.0582
 1.0760 -0.1489
 1.1425 -0.3295
 1.2177 -0.1789
 1.2928 -0.0282

If tform does not contain a forward transformation, then findbounds estimates the output
bounds using the Nelder-Mead optimization function fminsearch.

3 Finally, findbounds computes the bounding box of the transformed grid of points.

Extended Capabilities
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
tformarray | tformfwd | tforminv

Introduced before R2006a

 findbounds

1-991

fitbrisque
Fit custom model for BRISQUE image quality score

Syntax
model = fitbrisque(imds,opinionScores)

Description
model = fitbrisque(imds,opinionScores) creates a Blind/Referenceless Image Spatial
Quality Evaluator (BRISQUE) model from a reference image datastore, imds, with corresponding
human perceptual differential mean opinion score (DMOS) values, opinionScore.

Note To use the fitbrisque function, you must have Statistics and Machine Learning Toolbox™.

Examples

Calculate BRISQUE Score Using Custom Feature Model

Train a custom BRISQUE model from a set of quality-aware features and corresponding human
opinion scores. Use the custom model to calculate a BRISQUE score for an image of a natural scene.

Save images from an image datastore. These images all have compression artifacts resulting from
JPEG compression.

setDir = fullfile(toolboxdir('images'),'imdata');
imds = imageDatastore(setDir,'FileExtensions',{'.jpg'});

Specify the opinion score for each image. The following differential mean opinion score (DMOS)
values are for illustrative purposes only. They are not real DMOS values obtained through
experimentation.

opinionScores = 100*rand(1,size(imds.Files,1));

Create the custom model of quality-aware features using the image datastore and the opinion scores.
Because the scores are random, the property values will vary.

model = fitbrisque(imds,opinionScores')

Extracting features from 38 images.
......
Completed 15 of 38 images. Time: Calculating...
.....Training support vector regressor...

Done.

model =
 brisqueModel with properties:

1 Functions

1-992

 Alpha: [35x1 double]
 Bias: 58.1250
 SupportVectors: [35x36 double]
 Kernel: 'gaussian'
 Scale: 0.2767

Read an image of a natural scene that has the same type of distortion as the training images. Display
the image.

I = imread('car1.jpg');
imshow(I)

Calculate the BRISQUE score for the image using the custom model. Display the score.

brisqueI = brisque(I,model);
fprintf('BRISQUE score for the image is %0.4f.\n',brisqueI)

BRISQUE score for the image is 72.7492.

Input Arguments
imds — Reference image datastore
ImageDatastore object

 fitbrisque

1-993

Reference image datastore, specified as an ImageDatastore object. The datastore must contain 2-D
grayscale or 2-D RGB images of data type single, double, int16, uint8, or uint16. The images
must have a known set of distortions such as compression artifacts, blurring, or noise.

opinionScores — Human opinion scores
numeric vector

Human opinion scores, specified as a numeric vector with values in the range [0, 100]. Each element
in opinionScores is the human perceptual DMOS value corresponding to an image in the datastore
imds. The length of opinionScores is equal to the number of images in imds.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Output Arguments
model — Custom model of image features
brisqueModel object

Custom model of image features, returned as a brisqueModel object. model contains a support
vector regressor (SVR) with a Gaussian kernel trained to predict the BRISQUE quality score.

References
[1] Mittal, A., A. K. Moorthy, and A. C. Bovik. "No-Reference Image Quality Assessment in the Spatial

Domain." IEEE Transactions on Image Processing. Vol. 21, Number 12, December 2012, pp.
4695–4708.

[2] Mittal, A., A. K. Moorthy, and A. C. Bovik. "Referenceless Image Spatial Quality Evaluation
Engine." Presentation at the 45th Asilomar Conference on Signals, Systems and Computers,
Pacific Grove, CA, November 2011.

See Also
Functions
brisque | niqe | fitniqe

Objects
brisqueModel

Topics
“Image Quality Metrics”
“Train and Use No-Reference Quality Assessment Model”

Introduced in R2017b

1 Functions

1-994

fitgeotrans
Fit geometric transformation to control point pairs

Syntax
tform = fitgeotrans(movingPoints,fixedPoints,transformationType)
tform = fitgeotrans(movingPoints,fixedPoints,'polynomial',degree)
tform = fitgeotrans(movingPoints,fixedPoints,'pwl')
tform = fitgeotrans(movingPoints,fixedPoints,'lwm',n)

Description
tform = fitgeotrans(movingPoints,fixedPoints,transformationType) takes the pairs of
control points, movingPoints and fixedPoints, and uses them to infer the geometric
transformation specified by transformationType.

tform = fitgeotrans(movingPoints,fixedPoints,'polynomial',degree) fits a
PolynomialTransformation2D object to control point pairs movingPoints and fixedPoints.
Specify the degree of the polynomial transformation degree, which can be 2, 3, or 4.

tform = fitgeotrans(movingPoints,fixedPoints,'pwl') fits a
PiecewiseLinearTransformation2D object to control point pairs movingPoints and
fixedPoints. This transformation maps control points by breaking up the plane into local
piecewise-linear regions. A different affine transformation maps control points in each local region.

tform = fitgeotrans(movingPoints,fixedPoints,'lwm',n) fits a
LocalWeightedMeanTransformation2D object to control point pairs movingPoints and
fixedPoints. The local weighted mean transformation creates a mapping, by inferring a polynomial
at each control point using neighboring control points. The mapping at any location depends on a
weighted average of these polynomials. The n closest points are used to infer a second degree
polynomial transformation for each control point pair.

Examples

Create Geometric Transformation for Image Alignment

This example shows how to create a geometric transformation that can be used to align two images.

Create a checkerboard image and rotate it to create a misaligned image.

I = checkerboard(40);
J = imrotate(I,30);
imshowpair(I,J,'montage')

 fitgeotrans

1-995

Define some matching control points on the fixed image (the checkerboard) and moving image (the
rotated checkerboard). You can define points interactively using the Control Point Selection tool.

fixedPoints = [41 41; 281 161];
movingPoints = [56 175; 324 160];

Create a geometric transformation that can be used to align the two images, returned as an
affine2d geometric transformation object.

tform = fitgeotrans(movingPoints,fixedPoints,'NonreflectiveSimilarity')

tform =
 affine2d with properties:

 T: [3x3 double]
 Dimensionality: 2

Use the tform estimate to resample the rotated image to register it with the fixed image. The regions
of color (green and magenta) in the false color overlay image indicate error in the registration. This
error comes from a lack of precise correspondence in the control points.

Jregistered = imwarp(J,tform,'OutputView',imref2d(size(I)));
figure
imshowpair(I,Jregistered)

1 Functions

1-996

Recover angle and scale of the transformation by checking how a unit vector parallel to the x-axis is
rotated and stretched.

u = [0 1];
v = [0 0];
[x, y] = transformPointsForward(tform, u, v);
dx = x(2) - x(1);
dy = y(2) - y(1);
angle = (180/pi) * atan2(dy, dx)

angle = 29.7686

scale = 1 / sqrt(dx^2 + dy^2)

scale = 1.0003

Input Arguments
movingPoints — x- and y-coordinates of control points in image to transform
m-by-2 matrix

x- and y-coordinates of control points in the image you want to transform, specified as an m-by-2
matrix.
Example: movingPoints = [11 11; 41 71];
Data Types: double | single

 fitgeotrans

1-997

fixedPoints — x- and y-coordinates of control points in fixed image
m-by-2 matrix

x- and y- coordinates of control points in the fixed image, specified as an m-by-2 matrix.
Example: fixedPoints = [14 44; 70 81];
Data Types: double | single

transformationType — Type of transformation
'nonreflectivesimilarity' | 'similarity' | 'affine' | 'projective'

Type of transformation, specified as one of the following: 'nonreflectivesimilarity',
'similarity', 'affine', or 'projective'. For more information, see “Transformation Types” on
page 1-998.
Data Types: char | string

degree — Degree of the polynomial
2 | 3 | 4

Degree of the polynomial, specified as the integer 2, 3, or 4.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

n — Number of points to use in local weighted mean calculation
positive integer

Number of points to use in local weighted mean calculation, specified as a positive integer. n can be
as small as 6, but making n small risks generating ill-conditioned polynomials.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
tform — Transformation
transformation object

Transformation, returned as a transformation object. The type of object depends on the
transformation type. For example, if you specify the transformation type 'affine', then tform is an
affine2d object. If you specify 'pwl', then tform is an
image.geotrans.PiecewiseLinearTransformation2d object.

More About
Transformation Types

The table lists all the transformation types supported by fitgeotrans in order of complexity.

1 Functions

1-998

Transformation Type Description Minimum
Number of
Control Point
Pairs

Example

'nonreflectivesimila
rity'

Use this transformation when shapes in the
moving image are unchanged, but the image is
distorted by some combination of translation,
rotation, and scaling. Straight lines remain
straight, and parallel lines are still parallel.

2

'similarity' Same as 'nonreflectivesimilarity' with
the addition of optional reflection.

3

'affine' Use this transformation when shapes in the
moving image exhibit shearing. Straight lines
remain straight, and parallel lines remain
parallel, but rectangles become parallelograms.

3

'projective' Use this transformation when the scene appears
tilted. Straight lines remain straight, but
parallel lines converge toward a vanishing
point.

4

'polynomial' Use this transformation when objects in the
image are curved. The higher the order of the
polynomial, the better the fit, but the result can
contain more curves than the fixed image.

6 (order 2)

10 (order 3)

15 (order 4)
'pwl' Use this transformation (piecewise linear) when

parts of the image appear distorted differently.
4

'lwm' Use this transformation (local weighted mean)
when the distortion varies locally and piecewise
linear is not sufficient.

6 (12
recommended)

References
[1] Goshtasby, Ardeshir, "Piecewise linear mapping functions for image registration," Pattern

Recognition, Vol. 19, 1986, pp. 459-466.

[2] Goshtasby, Ardeshir, "Image registration by local approximation methods," Image and Vision
Computing, Vol. 6, 1988, pp. 255-261.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• fitgeotrans supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

 fitgeotrans

1-999

• When generating code, the transformationType argument must be a compile-time constant
and only the following transformation types are supported: 'nonreflectivesimilarity',
'similarity', 'affine', and'projective'.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• When generating code, the transformationType argument must be a compile-time constant
and only the following transformation types are supported: 'nonreflectivesimilarity',
'similarity', 'affine', and 'projective'.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
Functions
imwarp | cpselect

Objects
affine2d | projective2d | LocalWeightedMeanTransformation2D |
PiecewiseLinearTransformation2D | PolynomialTransformation2D

Topics
“Register Images with Projection Distortion Using Control Points”
“Control Point Selection Procedure”
“Matrix Representation of Geometric Transformations”
“Approaches to Registering Images”

Introduced in R2013b

1 Functions

1-1000

fitniqe
Fit custom model for NIQE image quality score

Syntax
model = fitniqe(imds)
model = fitniqe(imds,Name,Value)

Description
model = fitniqe(imds) creates a Naturalness Image Quality Evaluator (NIQE) model from
reference image datastore imds.

model = fitniqe(imds,Name,Value) creates a NIQE model using additional parameters to
control the model calculation.

Examples

Calculate NIQE Score Using Custom Feature Model

Load a set of natural images into an image datastore. These images are shipped in Image Processing
Toolbox™ in a directory named 'imdata'.

setDir = fullfile(toolboxdir('images'),'imdata');
imds = imageDatastore(setDir,'FileExtensions',{'.jpg'});

Train a custom NIQE model using the image datastore.

model = fitniqe(imds);

Extracting features from 38 images.
..
Completed 4 of 38 images. Time: Calculating...
....
Completed 13 of 38 images. Time: 00:23 of 00:55
..
Completed 18 of 38 images. Time: 00:35 of 01:09
....
Completed 32 of 38 images. Time: 00:46 of 00:54
..
Done.

Read an image of a natural scene. Display the image.

I = imread('car1.jpg');
imshow(I)

 fitniqe

1-1001

Calculate the NIQE score for the image using the custom model. Display the score.

niqeI = niqe(I,model);
fprintf('NIQE score for the image is %0.4f.\n',niqeI)

NIQE score for the image is 1.8728.

Fit Custom NIQE Model Using Specified Block Size

Load a set of natural images into an image datastore. These images are shipped in Image Processing
Toolbox™ in a directory named 'imdata'.

setDir = fullfile(toolboxdir('images'),'imdata');
imds = imageDatastore(setDir,'FileExtensions',{'.jpg'});

Create the custom model of NSS features using the image datastore. Specify a block size and use the
default sharpness threshold.

model = fitniqe(imds,'BlockSize',[48 96])

Extracting features from 38 images.
..
Completed 4 of 38 images. Time: Calculating...
....

1 Functions

1-1002

Completed 14 of 38 images. Time: 00:23 of 00:55
....
Completed 25 of 38 images. Time: 00:39 of 00:56
....
Done.

model =
 niqeModel with properties:

 Mean: [1.9291 0.5854 0.6735 0.0667 0.0517 0.0889 ...]
 Covariance: [36x36 double]
 BlockSize: [48 96]
 SharpnessThreshold: 0

Read a natural image into the workspace. Display the image.

I = imread('yellowlily.jpg');
imshow(I)

 fitniqe

1-1003

Calculate the NIQE score for the image using the custom model. Display the score.

1 Functions

1-1004

niqeI = niqe(I,model);
fprintf('NIQE score for the image is %0.4f.\n',niqeI)

NIQE score for the image is 2.9554.

Input Arguments
imds — Reference image datastore
ImageDatastore object

Reference image datastore, specified as an ImageDatastore object. The datastore must contain 2-D
grayscale or 2-D RGB images of data type single, double, int16, uint8, or uint16.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: model = fitniqe(imds,'BlockSize',[48 36]) fits a NIQE model using 48-by-36
pixel blocks.

BlockSize — Block size used to partition the images
[96 96] (default) | 2-element row vector of positive even integers

Block size used to partition the images, specified as the comma-separated pair consisting of
'BlockSize' and a 2-element row vector of positive even integers. Blocks are nonoverlapping.
Natural scene statistics, which are calculated from the blocks, define the output model.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

SharpnessThreshold — Sharpness threshold
0 (default) | numeric scalar in the range [0, 1]

Sharpness threshold, specified as the comma-separated pair consisting of 'SharpnessThreshold'
and a numeric scalar in the range [0, 1]. The sharpness threshold, s, controls which image blocks are
used to compute the model. fitniqe computes the model using all blocks that have sharpness more
than s times the maximum sharpness among all blocks.
Data Types: single | double

Output Arguments
model — Custom model of image features
niqeModel object

Custom model of image features, returned as a niqeModel object.

Tips
• The custom dataset specified in the image datastore imds should consist of images that are

perceptually pristine to human subjects. However, the definition of pristine depends on the
application. For example, a pristine set of microscopy images has a different set of quality criteria

 fitniqe

1-1005

than images of buildings or outdoor scenes. When training a custom NIQE model, use images with
varied image content and with potentially different sets of quality criteria.

References
[1] Mittal, A., R. Soundararajan, and A. C. Bovik. "Making a Completely Blind Image Quality

Analyzer." IEEE Signal Processing Letters. Vol. 22, Number 3, March 2013, pp. 209–212.

See Also
Functions
brisque | fitbrisque | niqe

Objects
niqeModel

Topics
“Image Quality Metrics”
“Train and Use No-Reference Quality Assessment Model”

Introduced in R2017b

1 Functions

1-1006

fliptform
Flip input and output roles of spatial transformation structure

Syntax
tflip = fliptform(T)

Description
tflip = fliptform(T) creates a new TFORM spatial transformation structure by flipping the roles
of the inputs and outputs in an existing TFORM structure.

Examples

Flip Spatial Transformation Structure

Create a spatial transformation structure.

T = maketform('affine', [.5 0 0; .5 2 0; 0 0 1])

T =

 struct with fields:

 ndims_in: 2
 ndims_out: 2
 forward_fcn: @fwd_affine
 inverse_fcn: @inv_affine
 tdata: [1×1 struct]

Create a new spatial transformation structure by flipping the roles of the inputs and outputs.

T2 = fliptform(T)

T2 =

 struct with fields:

 ndims_in: 2
 ndims_out: 2
 forward_fcn: @inv_affine
 inverse_fcn: @fwd_affine
 tdata: [1×1 struct]

After flipping the spatial transformation structures, the following statements are equivalent.

x = tformfwd([-3 7],T)
x = tforminv([-3 7],T2)

x =

 2 14

 fliptform

1-1007

x =

 2 14

Input Arguments
T — Spatial transformation
TFORM spatial transformation structure

Spatial transformation, specified as a TFORM spatial transformation structure.
Data Types: struct

Output Arguments
tflip — Flipped spatial transformation
TFORM spatial transformation structure

Flipped spatial transformation, returned as a TFORM spatial transformation structure.

Extended Capabilities
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
maketform | tformfwd | tforminv

Introduced before R2006a

1 Functions

1-1008

freqz2
2-D frequency response

Syntax
[H,f1,f2] = freqz2(h)
[H,f1,f2] = freqz2(h,[n1 n2])
[H,f1,f2] = freqz2(h,f1, f2)
[___] = freqz2(h, ___ ,[dx dy])
freqz2(___)

Description
[H,f1,f2] = freqz2(h) returns H, the 64-by-64 frequency response of h, and the frequency
vectors f1 (of length 64) and f2 (of length 64). h is a two-dimensional FIR filter, in the form of a
computational molecule.

freqz2 returns f1 and f2 as normalized frequencies in the range -1.0 to 1.0, where 1.0 corresponds
to half the sampling frequency, or π radians.

[H,f1,f2] = freqz2(h,[n1 n2]) returns H, the n2-by-n1 frequency response of h, and the
frequency vectors f1 (of length n1) and f2 (of length n2). You can also specify [n1 n2] as two
separate arguments, n1,n2.

[H,f1,f2] = freqz2(h,f1, f2) returns the frequency response for the FIR filter h at frequency
values in f1 and f2. These frequency values must be in the range -1.0 to 1.0, where 1.0 corresponds
to half the sampling frequency, or π radians. You can also specify [f1 f2] as two separate
arguments, f1, f2.

[___] = freqz2(h, ___ ,[dx dy]) uses [dx dy] to override the intersample spacing in h. You
can also specify a scalar to specify the same spacing in both the x and y dimensions.

freqz2(___) produces a mesh plot of the two-dimensional magnitude frequency response when no
output arguments are specified.

Examples

View Frequency Response of Filter

This example shows how to create a two-dimensional filter using fwind1 and how to view the filter's
frequency response using freqz2.

Create an ideal frequency response.

Hd = zeros(16,16);
Hd(5:12,5:12) = 1;
Hd(7:10,7:10) = 0;

Create a 1-D window. This example uses a Bartlett window of length 16.

 freqz2

1-1009

w = [0:2:16 16:-2:0]/16;

Create the 16-by-16 filter using fwind1 and the 1-D window. This filter gives the closest match to the
ideal frequency response.

h = fwind1(Hd,w);

Display the actual frequency response of the filter.

colormap(parula(64))
freqz2(h,[32 32]);
axis ([-1 1 -1 1 0 1])

Input Arguments
h — 2-D FIR filter
computational molecule

2-D FIR filter, specified in the form of a computational molecule.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

[n1 n2] — Number of points in the frequency response
[64 64] (default) | two-element vector

Number of points in the frequency response, specified as a two-element vector.

1 Functions

1-1010

Data Types: double

f1, f2 — Frequency vectors
numeric vectors

Frequency vectors, specified as numeric vectors.
Data Types: double

[dx dy] — Sample spacing
0.5 (default) | two-element vector or scalar

Sample spacing, specified as a two-element vector of the form [dx dy]. The default spacing is 0.5,
which corresponds to a sampling frequency of 2.0. dx determines the spacing for the x dimension and
dy determines the spacing for the y dimension. If you specify a scalar, freqz2 uses the value to
determine the intersample spacing in both dimensions.
Data Types: double

Output Arguments
H — Frequency response
numeric array

Frequency response, returned as a numeric array.

f1 — Frequency vector
vector

Frequency vector, returned as a numeric vector.
Data Types: double

f2 — Frequency vector
vector

Frequency vector, returned as a numeric vector.

See Also
freqz

Topics
“Design Linear Filters in the Frequency Domain”

Introduced before R2006a

 freqz2

1-1011

fsamp2
2-D FIR filter using frequency sampling

Syntax
h = fsamp2(Hd)
h = fsamp2(f1,f2,Hd,[m n])

Description
h = fsamp2(Hd) designs a two-dimensional FIR filter with frequency response Hd, and returns the
filter coefficients in matrix h. The filter h has a frequency response that passes through points in Hd.
fsamp2 designs two-dimensional FIR filters based on a desired two-dimensional frequency response
sampled at points on the Cartesian plane.

h = fsamp2(f1,f2,Hd,[m n]) produces an m-by-n FIR filter by matching the filter response at the
points in the vectors f1 and f2. The frequency vectors f1 and f2 are in normalized frequency, where
1.0 corresponds to half the sampling frequency, or π radians. The resulting filter fits the desired
response as closely as possible in the least squares sense. For best results, there must be at least m*n
desired frequency points. fsamp2 issues a warning if you specify fewer than m*n points.

Examples

Create 2-D FIR Filter using Frequency Sampling

Use fsamp2 to design an approximately symmetric, two-dimensional bandpass filter with passband
between 0.1 and 0.5 (normalized frequency, where 1.0 corresponds to half the sampling frequency, or
π radians).

Create a matrix Hd that contains the desired bandpass response. Use freqspace to create the
frequency vectors f1 and f2.

[f1,f2] = freqspace(21,'meshgrid');
Hd = ones(21);
r = sqrt(f1.^2 + f2.^2);
Hd((r<0.1)|(r>0.5)) = 0;
colormap(jet(64))
mesh(f1,f2,Hd)

1 Functions

1-1012

Design the filter that passes through this response.

h = fsamp2(Hd);
freqz2(h)

 fsamp2

1-1013

Input Arguments
Hd — Frequency response
numeric matrix

Frequency response, specified as a numeric matrix. Hd is a matrix containing the desired frequency
response sampled at equally spaced points between -1.0 and 1.0 along the x and y frequency axes.
The value 1.0 corresponds to half the sampling frequency, or π radians.

Hd(f1, f2) = Hd(ω1, ω2) ω1 = πf1, ω2 = πf1

For best results, use frequency points returned by freqspace to create Hd.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

f1 — Frequency vector
numeric vector

Frequency vector, specified as a numeric vector.
Data Types: double

f2 — Frequency vector
numeric vector

Frequency vector, specified as a numeric vector.

1 Functions

1-1014

Data Types: double

[m n] — Size of output FIR filter
2-element vector of positive integers

Size of output FIR filter h, specified as a 2-element vector of positive integers. The filter has m rows
and n columns.
Data Types: double

Output Arguments
h — 2-D FIR filter
numeric array

2-D FIR filter, returned as a numeric array. fsamp2 returns h as a computational molecule, which is
the appropriate form to use with filter2. If you specify a frequency response matrix Hd, then h has
the same size. If Hd is of class single, h is also of class single. Otherwise, h is of class double.
Data Types: single | double

Algorithms
fsamp2 computes the filter h by taking the inverse discrete Fourier transform of the desired
frequency response. If the desired frequency response is real and symmetric (zero phase), the
resulting filter is also zero phase.

References
[1] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood Cliffs, NJ, Prentice Hall,

1990, pp. 213-217.

See Also
conv2 | filter2 | freqspace | ftrans2 | fwind1 | fwind2

Topics
“Design Linear Filters in the Frequency Domain”

Introduced before R2006a

 fsamp2

1-1015

fspecial
Create predefined 2-D filter

Syntax
h = fspecial(type)
h = fspecial('average',hsize)
h = fspecial('disk',radius)
h = fspecial('gaussian',hsize,sigma)
h = fspecial('laplacian',alpha)
h = fspecial('log',hsize,sigma)
h = fspecial('motion',len,theta)
h = fspecial('prewitt')
h = fspecial('sobel')

Description
h = fspecial(type) creates a two-dimensional filter h of the specified type. Some of the filter
types have optional additional parameters, shown in the following syntaxes. fspecial returns h as a
correlation kernel, which is the appropriate form to use with imfilter.

h = fspecial('average',hsize) returns an averaging filter h of size hsize.

h = fspecial('disk',radius) returns a circular averaging filter (pillbox) within the square
matrix of size 2*radius+1.

h = fspecial('gaussian',hsize,sigma) returns a rotationally symmetric Gaussian lowpass
filter of size hsize with standard deviation sigma. Not recommended. Use imgaussfilt or
imgaussfilt3 instead.

h = fspecial('laplacian',alpha) returns a 3-by-3 filter approximating the shape of the two-
dimensional Laplacian operator, alpha controls the shape of the Laplacian.

h = fspecial('log',hsize,sigma) returns a rotationally symmetric Laplacian of Gaussian filter
of size hsize with standard deviation sigma.

h = fspecial('motion',len,theta) returns a filter to approximate, once convolved with an
image, the linear motion of a camera. len specifies the length of the motion and theta specifies the
angle of motion in degrees in a counter-clockwise direction. The filter becomes a vector for horizontal
and vertical motions. The default len is 9 and the default theta is 0, which corresponds to a
horizontal motion of nine pixels.

h = fspecial('prewitt') returns a 3-by-3 filter that emphasizes horizontal edges by
approximating a vertical gradient. To emphasize vertical edges, transpose the filter h'.

[1 1 1
 0 0 0
 -1 -1 -1]

1 Functions

1-1016

h = fspecial('sobel') returns a 3-by-3 filter that emphasizes horizontal edges using the
smoothing effect by approximating a vertical gradient. To emphasize vertical edges, transpose the
filter h'.

[1 2 1
 0 0 0
 -1 -2 -1]

Examples

Create Various Filters and Filter an Image

Read image and display it.

I = imread('cameraman.tif');
imshow(I);

Create a motion filter and use it to blur the image. Display the blurred image.

H = fspecial('motion',20,45);
MotionBlur = imfilter(I,H,'replicate');
imshow(MotionBlur);

 fspecial

1-1017

Create a disk filter and use it to blur the image. Display the blurred image.

H = fspecial('disk',10);
blurred = imfilter(I,H,'replicate');
imshow(blurred);

1 Functions

1-1018

Input Arguments
type — Type of filter
'average' | 'disk' | 'gaussian' | 'laplacian' | 'log' | 'motion' | 'prewitt' | 'sobel'

Type of filter, specified as one of the following values:

Value Description
'average' Averaging filter
'disk' Circular averaging filter (pillbox)
'gaussian' Gaussian lowpass filter. Not recommended. Use imgaussfilt or

imgaussfilt3 instead.
'laplacian' Approximates the two-dimensional Laplacian operator
'log' Laplacian of Gaussian filter
'motion' Approximates the linear motion of a camera
'prewitt' Prewitt horizontal edge-emphasizing filter
'sobel' Sobel horizontal edge-emphasizing filter

Data Types: char | string

hsize — Size of the filter
positive integer | 2-element vector of positive integers

Size of the filter, specified as a positive integer or 2-element vector of positive integers. Use a vector
to specify the number of rows and columns in h. If you specify a scalar, then h is a square matrix.

When used with the 'average' filter type, the default filter size is [3 3]. When used with the
Laplacian of Gaussian ('log') filter type, the default filter size is [5 5].
Data Types: double

radius — Radius of a disk-shaped filter
5 (default) | positive number

Radius of a disk-shaped filter, specified as a positive number. The filter is a square matrix of size
2*radius+1.
Data Types: double

sigma — Standard deviation
0.5 (default) | positive number

Standard deviation, specified as a positive number.
Data Types: double

alpha — Shape of the Laplacian
0.2 (default) | number in the range [0, 1]

Shape of the Laplacian, specified as a number in the range [0, 1]. Specify alpha as 0 to obtain a 4-
neighborhood Laplacian filter:

 fspecial

1-1019

[0 1 0
 1 -4 1
 0 1 0]

Data Types: double

len — Linear motion of camera
9 (default) | numeric scalar

Linear motion of camera, specified as a numeric scalar, measured in pixels.
Data Types: double

theta — Angle of camera motion
0 (default) | numeric scalar

Angle of camera motion in degrees, specified as a numeric scalar. The angle is measured in a counter-
clockwise direction from horizontal.
Data Types: double

Output Arguments
h — Correlation kernel
matrix

Correlation kernel, returned as a matrix.
Data Types: double

Algorithms
Averaging filters:

ones(n(1),n(2))/(n(1)*n(2))

Gaussian filters:

hg(n1, n2) = e
−(n1

2 + n2
2)

2σ2

h(n1, n2) =
hg(n1, n2)
∑
n1
∑
n2

hg

Laplacian filters:

∇2 = ∂2

∂x2 + ∂2

∂y2

∇2 = 4
(α + 1)

α
4

1− α
4

α
4

1− α
4 −1 1− α

4
α
4

1− α
4

α
4

1 Functions

1-1020

Laplacian of Gaussian (LoG) filters:

hg(n1, n2) = e
−(n1

2 + n2
2)

2σ2

h(n1, n2) =
(n1

2 + n2
2− 2σ2)hg(n1, n2)
σ4∑

n1
∑
n2

hg

Note that fspecial shifts the equation to ensure that the sum of all elements of the kernel is zero
(similar to the Laplace kernel) so that the convolution result of homogeneous regions is always zero.

Motion filters:

1 Construct an ideal line segment with the length and angle specified by the arguments len and
theta, centered at the center coefficient of h.

2 For each coefficient location (i,j), compute the nearest distance between that location and the
ideal line segment.

3 h = max(1 - nearest_distance,0);
4 Normalize h: h = h/(sum(h(:)))

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• fspecial supports the generation of C code (requires MATLAB Coder). For more information,
see “Code Generation for Image Processing”.

• When generating code, all inputs must be constants at compilation time.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• When generating code, all inputs must be constants at compilation time.

See Also
conv2 | del2 | edge | imsharpen | imfilter | filter2 | fspecial3

Topics
“Filter Images Using Predefined Filter”
“What Is Image Filtering in the Spatial Domain?”

Introduced before R2006a

 fspecial

1-1021

fspecial3
Create predefined 3-D filter

Syntax
h = fspecial3(type)
h = fspecial3('average',hsize)
h = fspecial3('ellipsoid',semiaxes)
h = fspecial3('gaussian',hsize,sigma)
h = fspecial3('laplacian',gamma1,gamma2)
h = fspecial3('log',hsize,sigma)
h = fspecial3('prewitt',direction)
h = fspecial3('sobel',direction)

Description
h = fspecial3(type) creates a three-dimensional filter h of the specified type. Some of the filter
types have optional additional parameters, shown in the following syntaxes. fspecial3 returns h as
a correlation kernel, which is the appropriate form to use with imfilter.

h = fspecial3('average',hsize) returns an averaging filter h of size hsize. Not
recommended. Use imboxfilt3 instead.

h = fspecial3('ellipsoid',semiaxes) returns an ellipsoidal averaging filter with the length
of the principal semiaxes specified by semiaxes. The filter h is returned in an array of size
2*ceil(semiaxes)+1.

h = fspecial3('gaussian',hsize,sigma) returns a Gaussian lowpass filter of size hsize with
standard deviation sigma. Not recommended. Use imgaussfilt3 instead.

h = fspecial3('laplacian',gamma1,gamma2) returns a 3-by-3-by-3 filter approximating the
shape of the three-dimensional Laplacian operator. gamma1 and gamma2 control the shape of the
Laplacian [1][2].

h = fspecial3('log',hsize,sigma) returns a Laplacian of Gaussian filter of size hsize with
standard deviation sigma.

h = fspecial3('prewitt',direction) returns a 3-by-3-by-3 filter that emphasizes gradients in
the specified direction.

h = fspecial3('sobel',direction) returns a 3-by-3-by-3 filter that emphasizes gradients in
the specified direction and smooths the other directions [3].

Examples

Smooth Volume Using 3-D Ellipsoidal Filter

Load a 3-D grayscale MRI volume. Display the planes of the volume.

1 Functions

1-1022

load mristack;
montage(mristack,'BackgroundColor','w')

Create a 3-D ellipsoidal filter. Specify a semiaxis length of 7 pixels in the y (rows) and x (columns)
directions, and a semiaxis length of 3 pixels in the z (planes) direction.

H = fspecial3('ellipsoid',[7 7 3]);

Smooth the volume with the filter.

volSmooth = imfilter(mristack,H,'replicate');

Display the planes of the smoothed volume.

montage(volSmooth,'BackgroundColor','w')

 fspecial3

1-1023

Detect Horizontal Edges Using 3-D Sobel Filter

Load an MRI volume. This volume is stored as a 4-D array with a singleton dimension. Create a 3-D
grayscale volume by using the squeeze function to remove the singleton dimension.

load mri;
V = squeeze(D);

Display the planes of the volume.

montage(D,'BackgroundColor','w')

1 Functions

1-1024

Create a 3-D Sobel filter that detects horizontal edges in the volume. Horizontal edges appear where
there is a large gradient magnitude in the y direction, so specify the direction of the Sobel filter as
'Y'. The Sobel filter smooths the gradient in the x and z directions.

H = fspecial3('sobel','Y');

Filter the volume with the 3-D Sobel filter.

edgesHor = imfilter(V,H,'replicate');

Display the planes of the filtered volume.

montage(edgesHor)

 fspecial3

1-1025

Input Arguments
type — Type of filter
'average' | 'ellipsoid' | 'gaussian' | 'laplacian' | 'log' | 'prewitt' | 'sobel'

Type of filter, specified as one of the following values:

Value Description
'average' Averaging filter. Not recommended. Use imboxfilt3 instead.
'ellipsoid' Ellipsoidal averaging filter
'gaussian' Gaussian lowpass filter. Not recommended. Use imgaussfilt3

instead.
'laplacian' Approximates the three-dimensional Laplacian operator
'log' Laplacian of Gaussian filter

1 Functions

1-1026

Value Description
'prewitt' Prewitt edge-emphasizing filter
'sobel' Sobel edge-emphasizing filter

Data Types: char | string

hsize — Size of the filter
[5 5 5] (default) | positive integer | 3-element vector of positive integers

Size of the filter, specified as a positive integer or 3-element vector of positive integers. Use a vector
to specify the number of rows, columns, and planes in h. Use a scalar to specify the side length of a
cube.

For the 'gaussian' and 'log' filter types, if you specify hsize as [], then fspecial3 creates a
filter with a default size of 2*ceil(2*sigma)+1.
Data Types: double

semiaxes — Semiaxes length of ellipsoidal filter
5 (default) | positive number | 3-element vector of positive numbers

Semiaxes length of an ellipsoidal filter, specified as a positive number or 3-element vector of positive
numbers. Use a vector to specify the length of the three principal semiaxes in rows, columns, and
planes. These values correspond to length in the Cartesian y, x, and z directions, respectively. Use a
scalar to specify the radius of a sphere.
Data Types: double

sigma — Standard deviation of Gaussian filter
1 (default) | positive number | 3-element vector of positive numbers

Standard deviation of Gaussian filter, specified as a positive number or 3-element vector of positive
numbers. If you specify a scalar, then fspecial3 creates a cubic Gaussian kernel.
Data Types: double

gamma1, gamma2 — Shape of the Laplacian
0 (default) | scalar in the range [0 1]

Shape of the Laplacian, specified as a scalar in the range [0 1]. The sum of gamma1 and gamma2 must
not exceed 1.
Data Types: double

direction — Direction of gradients
'X' (default) | 'Y' | 'Z'

Direction of gradients for Prewitt and Sobel filtering, specified as 'X', 'Y', or 'Z'.
Data Types: char | string

Output Arguments
h — Correlation kernel
numeric array

 fspecial3

1-1027

Correlation kernel, returned as a numeric array.
Data Types: double

References
[1] Lindeberg, T., Scale-Space Theory in Computer Vision. Boston, MA: Kluwer Academic Publishers,

1994.

[2] Geometry-Driven Diffusion in Computer Vision. Edited by B. M. ter Haar Romeny. Boston, MA:
Kluwer Academic Publishers, 1994.

[3] Engel, K., M. Hadwiger, J. M. Kniss, C. Rezk-Salama, and D. Weiskopf. Real-Time Volume Graphics.
Wellesley, MA: A K Peters, Ltd., 2006, pp. 112–114.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• fspecial3 supports the generation of C code (requires MATLAB Coder). For more information,
see “Code Generation for Image Processing”.

• When generating code, all inputs must be constants at compilation time.

See Also
imfilter | fspecial | imboxfilt3 | imgaussfilt3 | edge3

Topics
“What Is Image Filtering in the Spatial Domain?”

Introduced in R2018b

1 Functions

1-1028

ftrans2
2-D FIR filter using frequency transformation

Syntax
h = ftrans2(b,t)
h = ftrans2(b)

Description
h = ftrans2(b,t) produces the two-dimensional FIR filter h that corresponds to the one-
dimensional FIR filter b using the transform t. The transform matrix t contains coefficients that
define the frequency transformation to use.

h = ftrans2(b) uses the McClellan transform matrix t.

t = [1 2 1; 2 -4 2; 1 2 1]/8;

Examples

Design Circularly Symmetric 2-D Bandpass Filter

Use ftrans2 to design an approximately circularly symmetric two-dimensional bandpass filter with
passband between 0.1 and 0.6 (normalized frequency, where 1.0 corresponds to half the sampling
frequency, or π radians). Since ftrans2 transforms a one-dimensional FIR filter to create a two-
dimensional filter, first design a one-dimensional FIR bandpass filter using the Signal Processing
Toolbox function firpm.

colormap(jet(64))
b = firpm(10,[0 0.05 0.15 0.55 0.65 1],[0 0 1 1 0 0]);
[H,w] = freqz(b,1,128,'whole');
plot(w/pi-1,fftshift(abs(H)))

 ftrans2

1-1029

Use ftrans2 with the default McClellan transformation to create the desired approximately
circularly symmetric filter.

h = ftrans2(b);
freqz2(h)

1 Functions

1-1030

Input Arguments
b — FIR filter
numeric matrix

FIR filter, specified as a numeric matrix. b must be a 1-D Type I (even symmetric, odd-length) filter
such as can be returned by fir1, fir2, or firpm.
Data Types: double

t — Transform matrix
numeric matrix

The transform matrix, specified as a numeric matrix. t contains coefficients that define the frequency
transformation to use. By default, ftrans2 uses a McClellan transform matrix.
Data Types: double

Output Arguments
h — 2-D FIR filter
numeric matrix

 ftrans2

1-1031

2-D FIR filter, returned as a numeric matrix. ftrans2 returns h as a computational molecule, which
is the appropriate form to use with filter2. If t is m-by-n and b has length Q, then h is size
((m-1)*(Q-1)/2+1)-by-((n-1)*(Q-1)/2+1).

Algorithms
The transformation below defines the frequency response of the two-dimensional filter returned by
ftrans2.

H(ω1, ω2) = B(ω) cosω = T(ω1, ω2),

where B(ω) is the Fourier transform of the one-dimensional filter b:

B(ω) = ∑
n = − N

N
b(n)e− jωn

and T(ω1,ω2) is the Fourier transform of the transformation matrix t:

T(ω1, ω2) = ∑
n2
∑
n1

t(n1, n2)e− jω1n1e− jω2n2 .

The returned filter h is the inverse Fourier transform of H(ω1,ω2):

h(n1, n2) = 1
2π 2∫−π

π∫−π

π
H(ω1, ω2)e jω1n1e jω2n2dω1dω2 .

References
[1] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood Cliffs, NJ, Prentice Hall,

1990, pp. 218-237.

See Also
conv2 | filter2 | fsamp2 | fwind1 | fwind2

Topics
“Design Linear Filters in the Frequency Domain”

Introduced before R2006a

1 Functions

1-1032

fwind1
2-D FIR filter using 1-D window method

Syntax
h = fwind1(Hd,win)
h = fwind1(Hd,win1,win2)
h = fwind1(f1,f2,Hd, ___)

Description
The fwind1 function designs 2-D FIR filters using the window method. fwind1 uses a 1-D window
specification to design a 2-D FIR filter based on the desired frequency response. fwind1 works with
1-D windows only. Use fwind2 to work with 2-D windows.

You can apply the 2-D FIR filter to images by using the filter2 function.

h = fwind1(Hd,win) creates a 2-D FIR filter h based on the desired frequency response Hd. The
fwind1 function uses the 1-D window win to form an approximately circularly symmetric 2-D window
using Huang's method.

h = fwind1(Hd,win1,win2) uses two 1-D windows, win1 and win2, to create a separable 2-D
window.

h = fwind1(f1,f2,Hd, ___) enables you to specify the desired frequency response Hd at
arbitrary frequencies f1 and f2 along the x- and y-axes.

Examples

Create 2-D FIR Filter using 1-D Window Method

This example shows how to design an approximately circularly symmetric two-dimensional bandpass
filter using a 1-D window method.

Create the frequency range vectors f1 and f2 using freqspace. These vectors have length 21.

[f1,f2] = freqspace(21,'meshgrid');

Compute the distance of each position from the center frequency.

r = sqrt(f1.^2 + f2.^2);

Create a matrix Hd that contains the desired bandpass response. In this example, the desired
passband is between 0.1 and 0.5 (normalized frequency, where 1.0 corresponds to half the sampling
frequency, or π radians).

Hd = ones(21);
Hd((r<0.1)|(r>0.5)) = 0;

Display the ideal bandpass response.

 fwind1

1-1033

colormap(parula(64))
mesh(f1,f2,Hd)

Design the 1-D window. This example uses a Hamming window of length 21.

win = 0.54 - 0.46*cos(2*pi*(0:20)/20);

Plot the 1-D window.

figure
plot(linspace(-1,1,21),win);

1 Functions

1-1034

Using the 1-D window, design the filter that best produces this frequency response

h = fwind1(Hd,win);

Display the actual frequency response of this filter.

freqz2(h)

 fwind1

1-1035

Input Arguments
Hd — Desired frequency response
numeric matrix

Desired frequency response, specified as a numeric matrix. Hd is sampled at equally spaced points
between -1.0 and 1.0 (in normalized frequency, where 1.0 corresponds to half the sampling frequency,
or π radians) along the x and y frequency axes. For accurate results, create Hd by using the
freqspace function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

win — 1-D window
numeric matrix

1-D window, specified as a numeric matrix. If you have Signal Processing Toolbox™ software, then
you can specify win using windows such as hamming, hann, bartlett, blackman, kaiser, or
chebwin.
Data Types: single | double

win1 — 1-D window
numeric matrix

1-D window, specified as a numeric matrix.

1 Functions

1-1036

Data Types: single | double

win2 — 1-D window
numeric matrix

1-D window, specified as a numeric matrix.
Data Types: single | double

f1 — Desired frequency along the x-axis
vector

Desired frequency along the x-axis. The frequency vector should be in the range [-1, 1], where 1.0
corresponds to half the sampling frequency, or π radians.
Data Types: single | double

f2 — Desired frequency along the y-axis
vector

Desired frequency along the y-axis. The frequency vector should be in the range [-1, 1], where 1.0
corresponds to half the sampling frequency, or π radians.
Data Types: single | double

Output Arguments
h — 2-D FIR filter
numeric matrix

2-D FIR filter, returned as a numeric matrix. The length of the window controls the size of the
resulting filter.

• If you specify a single window win of length n, then the size of h is n-by-n.
• If you specify two windows win1 and win2 of length n and m respectively, then the size of h is m-

by-n.

If Hd is of data type single, then h is of data type single. Otherwise, h is of data type double.
Data Types: single | double

Algorithms
The fwind1 function takes a one-dimensional window specification and forms an approximately
circularly symmetric two-dimensional window using Huang's method,

w(n1, n2) = w(t) t = n1
2 + n2

2,

where w(t) is the one-dimensional window and w(n1,n2) is the resulting two-dimensional window.

Given two windows, the fwind1 function forms a separable two-dimensional window:

w(n1, n2) = w1(n1)w2(n2) .

 fwind1

1-1037

The fwind1 function calls the fwind2 with the desired frequency response Hd and the two-
dimensional window. The fwind2 function calculates h using an inverse Fourier transform and
multiplication by the two-dimensional window:

hd(n1, n2) = 1
2π 2∫−π

π∫−π

π
Hd(ω1, ω2)e jω1n1e jω2n2dω1dω2

h(n1, n2) = hd(n1, n2)w(n1, n2)

References
[1] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood Cliffs, NJ, Prentice Hall,

1990.

See Also
conv2 | filter2 | fsamp2 | freqspace | ftrans2 | fwind2

Topics
“Design Linear Filters in the Frequency Domain”

Introduced before R2006a

1 Functions

1-1038

fwind2
2-D FIR filter using 2-D window method

Syntax
h = fwind2(Hd,win)
h = fwind2(f1,f2,Hd,win)

Description
The fwind2 function designs 2-D FIR filters using the window method. fwind2 uses a 2-D window
specification to design a 2-D FIR filter based on the desired frequency response. fwind2 works with
2-D windows only. Use fwind1 to create a 2-D FIR filter from a 1-D window.

You can apply the 2-D FIR filter to images by using the filter2 function.

h = fwind2(Hd,win) creates a 2-D FIR filter h by using an inverse Fourier transform of the desired
frequency response Hd and multiplication by the window win.

h = fwind2(f1,f2,Hd,win) lets you specify the desired frequency response Hd at arbitrary
frequencies f1 and f2 along the x- and y-axes.

Examples

Create 2-D FIR Filter using 2-D Window Method

This example shows how to design an approximately circularly symmetric two-dimensional bandpass
filter using a 2-D window method.

Create the frequency range vectors f1 and f2 using freqspace. These vectors have length 21.

[f1,f2] = freqspace(21,'meshgrid');

Compute the distance of each position from the center frequency.

r = sqrt(f1.^2 + f2.^2);

Create a matrix Hd that contains the desired bandpass response. In this example, the desired
passband is between 0.1 and 0.5 (normalized frequency, where 1.0 corresponds to half the sampling
frequency, or π radians).

Hd = ones(21);
Hd((r<0.1)|(r>0.5)) = 0;

Display the ideal bandpass response.

colormap(parula(64))
mesh(f1,f2,Hd)

 fwind2

1-1039

Create a 2-D Gaussian window using fspecial. Normalize the window.

win = fspecial('gaussian',21,2);
win = win ./ max(win(:));

Display the window.

mesh(win)

1 Functions

1-1040

Using the 2-D window, design the filter that best produces the desired frequency response

h = fwind2(Hd,win);

Display the actual frequency response of this filter.

freqz2(h)

 fwind2

1-1041

Input Arguments
Hd — Desired frequency response
numeric matrix

Desired frequency response at equally spaced points in the Cartesian plane, specified as a numeric
matrix. For accurate results, create Hd by using the freqspace function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

win — 2-D window
numeric matrix

2-D window, specified as a numeric matrix.
Data Types: single | double

f1 — Desired frequency along the x-axis
vector

Desired frequency along the x-axis. The frequency vector should be in the range [-1, 1], where 1.0
corresponds to half the sampling frequency, or π radians.
Data Types: single | double

1 Functions

1-1042

f2 — Desired frequency along the y-axis
vector

Desired frequency along the y-axis. The frequency vector should be in the range [-1, 1], where 1.0
corresponds to half the sampling frequency, or π radians.
Data Types: single | double

Output Arguments
h — 2-D FIR filter
numeric matrix

2-D FIR filter, returned as a numeric matrix of the same size as win.
Data Types: double

Algorithms
fwind2 computes h using an inverse Fourier transform and multiplication by the two-dimensional
window win.

hd(n1, n2) = 1
2π 2∫−π

π∫−π

π
Hd(ω1, ω2)e jω1n1e jω2n2dω1dω2

h(n1, n2) = hd(n1, n2)w(n1, n2)

References
[1] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood Cliffs, NJ, Prentice Hall,

1990, pp. 202-213.

See Also
conv2 | filter2 | fsamp2 | freqspace | ftrans2 | fwind1

Introduced before R2006a

 fwind2

1-1043

gabor
Create Gabor filter or Gabor filter bank

Description
A gabor object represents a linear Gabor filter that is sensitive to textures with a specified
wavelength and orientation.

You can use the gabor function to create a single Gabor filter or a Gabor filter bank. A filter bank is a
set of filters that represent combinations of multiple wavelengths, orientations, and other optional
parameters. For example, if you specify two wavelengths and three orientations, then the Gabor filter
bank consists of six filters for each combination of wavelength and orientation.

To apply a Gabor filter or a Gabor filter bank to an image, use the imgaborfilt function.

Creation

Syntax
g = gabor(Wavelength,Orientation)
g = gabor(wavelength,orientation,Name,Value)

Description

g = gabor(Wavelength,Orientation) creates a Gabor filter and sets the Wavelength and
Orientation properties with the wavelength and orientation of the filter.

If you specify Wavelength or Orientation as vectors, then the gabor function creates an array of
gabor objects that contain all the unique combinations of Wavelength and Orientation.

g = gabor(wavelength,orientation,Name,Value) also uses name-value pairs to set one or
both of the SpatialFrequencyBandwidth and SpatialAspectRatio properties. You can specify multiple
name-value pairs. Enclose each property name in quotes.

If you specify SpatialFrequencyBandwidth or SpatialAspectRatio as vectors, then the gabor
function creates an array of gabor objects that represent all combinations of the input argument
values.
Example: gabor(wavelength,orientation,'SpatialFrequencyBandwidth',2) creates a
Gabor filter with a spatial frequency bandwidth of two octaves.

Properties
Wavelength — Wavelength of sinusoidal carrier
numeric scalar | numeric vector

1 Functions

1-1044

Wavelength of the sinusoidal carrier, specified as a numeric scalar or numeric vector with values
greater than or equal to 2, in pixels/cycle. Typical values of Wavelength range from 2 up to the
hypotenuse length of the input image [1].

You cannot change the Wavelength property after creating the gabor object.

Orientation — Orientation of filter in degrees
numeric scalar | numeric vector

Orientation of filter in degrees, specified as a numeric scalar or numeric vector with values in the
range [0, 360]. The orientation is defined as the normal direction to the sinusoidal plane wave.

If you are interested in only the Gabor magnitude response, then restrict the range of Orientation
to [0, 180].

You cannot change the Orientation property after creating the gabor object.

SpatialFrequencyBandwidth — Spatial-frequency bandwidth
1 (default) | positive number | vector of positive numbers

Spatial-frequency bandwidth in units of octaves, specified as a positive number or a vector of positive
numbers. The spatial-frequency bandwidth determines the cutoff of the filter response as frequency
content in the input image varies from the preferred frequency, 1/lambda. Typical values for the
spatial-frequency bandwidth are in the range [0.5, 2.5].

You cannot change the SpatialFrequencyBandwidth property after creating the gabor object.

SpatialAspectRatio — Ratio of semimajor and semiminor axes of Gaussian envelope
0.5 (default) | positive number | vector of positive numbers

Ratio of the semimajor and semiminor axes of the Gaussian envelope (semiminor/semimajor),
specified as a positive number or a vector of positive numbers. This property controls the ellipticity of
the Gaussian envelope. Typical values for spatial aspect ratio are in the range [0.23, 0.92].

You cannot change the SpatialAspectRatio property after creating the gabor object.

SpatialKernel — Spatial kernel
numeric matrix

This property is read-only.

Spatial kernel, specified as a numeric matrix.

Examples

Construct Gabor Filter Array and Apply to Input Image

Create a sample image of a checkerboard.

A = checkerboard(20);

Create an array of Gabor filters.

 gabor

1-1045

wavelength = 20;
orientation = [0 45 90 135];
g = gabor(wavelength,orientation);

Apply the filters to the checkerboard image.

outMag = imgaborfilt(A,g);

Display the results.

outSize = size(outMag);
outMag = reshape(outMag,[outSize(1:2),1,outSize(3)]);
figure, montage(outMag,'DisplayRange',[]);
title('Montage of gabor magnitude output images.');

1 Functions

1-1046

Construct Gabor Filter Array and Visualize Wavelength and Orientation

Create array of Gabor filters.

g = gabor([5 10],[0 90]);

Visualize the real part of the spatial convolution kernel of each Gabor filter in the array.

figure;
subplot(2,2,1)
for p = 1:length(g)
 subplot(2,2,p);
 imshow(real(g(p).SpatialKernel),[]);
 lambda = g(p).Wavelength;
 theta = g(p).Orientation;
 title(sprintf('Re[h(x,y)], \\lambda = %d, \\theta = %d',lambda,theta));
end

References
[1] Jain, Anil K., and Farshid Farrokhnia. "Unsupervised Texture Segmentation Using Gabor Filters."

Pattern Recognition 24, no. 12 (January 1991): 1167–86. https://doi.org/
10.1016/0031-3203(91)90143-S.

 gabor

1-1047

See Also
imgaborfilt

Topics
“Texture Segmentation Using Gabor Filters”

Introduced in R2015b

1 Functions

1-1048

geometricTransform2d
2-D geometric transformation object

Description
A geometricTransform2d object defines a custom 2-D geometric transformation using point-wise
mapping functions.

Creation

Syntax
tform = geometricTransform2d(inverseFcn)
tform = geometricTransform2d(inverseFcn,forwardFcn)

Description

tform = geometricTransform2d(inverseFcn) creates a geometricTransform2d object and
sets the inverse mapping InverseFcn property.

tform = geometricTransform2d(inverseFcn,forwardFcn) also sets the forward mapping
property, ForwardFcn.

Properties
InverseFcn — Inverse mapping function
function handle

Inverse mapping function, specified as a function handle. The function should accept and return
coordinates as a n-by-2 numeric matrix representing the packed (x,y) coordinates of n points.

For more information about function handles, see “Create Function Handle”.
Example: ifcn = @(xy) [xy(:,1).^2, sqrt(xy(:,2))];

ForwardFcn — Forward mapping function
function handle

Forward mapping function, specified as a function handle. The function should accept and return
coordinates as a n-by-2 numeric matrix representing the packed (x,y) coordinates of n points.

For more information about function handles, see “Create Function Handle”.
Example: ffcn = @(xy) [sqrt(xy(:,1)),(xy(:,2).^2)];

Object Functions
transformPointsForward Apply forward geometric transformation

 geometricTransform2d

1-1049

transformPointsInverse Apply inverse geometric transformation

Examples

Transform Packed Coordinates Using Custom 2-D Transformation

Specify the packed (x,y) coordinates of five input points. The packed coordinates are stored in a 5-
by-2 matrix, where the x-coordinate of each point is in the first column, and the y-coordinate of each
point is in the second column.

XY = [10 15;11 32;15 34;2 7;2 10];

Define the inverse mapping function. The function accepts and returns points in packed (x,y) format.

inversefn = @(c) [c(:,1)+c(:,2),c(:,1)-c(:,2)]

inversefn = function_handle with value:
 @(c)[c(:,1)+c(:,2),c(:,1)-c(:,2)]

Create a 2-D geometric transform object, tform, that stores the inverse mapping function.

tform = geometricTransform2d(inversefn)

tform =
 geometricTransform2d with properties:

 InverseFcn: @(c)[c(:,1)+c(:,2),c(:,1)-c(:,2)]
 ForwardFcn: []
 Dimensionality: 2

Apply the inverse geometric transform to the input points.

UV = transformPointsInverse(tform,XY)

UV = 5×2

 25 -5
 43 -21
 49 -19
 9 -5
 12 -8

Transform Coordinate Arrays Using Custom 2-D Transformation

Specify the x- and y-coordinates vectors of five points to transform.

x = [10 11 15 2 2];
y = [15 32 34 7 10];

Define the inverse and forward mapping functions. Both functions accept and return points in packed
(x,y) format.

1 Functions

1-1050

inversefn = @(c) [c(:,1).^2,sqrt(c(:,2))];
forwardfn = @(c) [sqrt(c(:,1)),c(:,2).^2];

Create a 2-D geometric transform object, tform, that stores the inverse mapping function and the
optional forward mapping function.

tform = geometricTransform2d(inversefn,forwardfn)

tform =
 geometricTransform2d with properties:

 InverseFcn: @(c)[c(:,1).^2,sqrt(c(:,2))]
 ForwardFcn: @(c)[sqrt(c(:,1)),c(:,2).^2]
 Dimensionality: 2

Apply the inverse geometric transform to the input points.

[u,v] = transformPointsInverse(tform,x,y)

u = 1×5

 100 121 225 4 4

v = 1×5

 3.8730 5.6569 5.8310 2.6458 3.1623

Apply the forward geometric transform to the transformed points u and v.

[x,y] = transformPointsForward(tform,u,v)

x = 1×5

 10 11 15 2 2

y = 1×5

 15.0000 32.0000 34.0000 7.0000 10.0000

Transform Grayscale Image Using Custom 2-D Transformation

Define an inverse mapping function that applies anisotropic scaling. The function must accept and
return packed (x,y) coordinates, where the x-coordinate of each point is in the first column, and the y-
coordinate of each point is in the second column.

xscale = 0.3;
yscale = 0.5;
inversefn = @(xy) [xscale*xy(:,1), yscale*xy(:,2)];

Create a 2-D geometric transform object, tform, that stores the inverse mapping function.

tform = geometricTransform2d(inversefn)

 geometricTransform2d

1-1051

tform =
 geometricTransform2d with properties:

 InverseFcn: @(xy)[xscale*xy(:,1),yscale*xy(:,2)]
 ForwardFcn: []
 Dimensionality: 2

Read an image to be transformed.

I = imread('cameraman.tif');
imshow(I)

Use imwarp to apply the inverse geometric transform to the input image. The image is enlarged
vertically by a factor of 2 (the inverse of yscale) and horizontally by a factor of 10/3 (the inverse of
xscale).

Itransformed = imwarp(I,tform);
imshow(Itransformed)

1 Functions

1-1052

Transform Color Image Using Custom 2-D Transformation

Define an inverse mapping function that accepts packed (x,y) coordinates, where the x-coordinate of
each point is in the first column, and the y-coordinate of each point is in the second column. The
inverse mapping function in this example takes the square of the polar radial component.

r = @(c) sqrt(c(:,1).^2 + c(:,2).^2);
w = @(c) atan2(c(:,2), c(:,1));
f = @(c) [r(c).^2 .* cos(w(c)), r(c).^2 .* sin(w(c))];
g = @(c) f(c);

Create a 2-D geometric transform object, tform, that stores the inverse mapping function.

tform = geometricTransform2d(g);

Read a color image to be transformed.

I = imread('peppers.png');
imshow(I)

 geometricTransform2d

1-1053

Create an imref2d object, specifying the size and world limits of the input and output images.

Rin = imref2d(size(I),[-1 1],[-1 1]);
Rout = imref2d(size(I),[-1 1],[-1 1]);

Apply the inverse geometric transform to the input image.

Itransformed = imwarp(I,Rin,tform,'OutputView',Rout);
imshow(Itransformed)

1 Functions

1-1054

See Also
affine2d | rigid2d | projective2d | imwarp | geometricTransform3d

Topics
“2-D and 3-D Geometric Transformation Process Overview”

Introduced in R2018b

 geometricTransform2d

1-1055

geometricTransform3d
3-D geometric transformation object

Description
A geometricTransform3d object defines a custom 3-D geometric transformation using point-wise
mapping functions.

Creation

Syntax
tform = geometricTransform3d(inverseFcn)
tform = geometricTransform3d(inverseFcn,forwardFcn)

Description

tform = geometricTransform3d(inverseFcn) creates a geometricTransform3d object and
sets the value of inverse mapping function property, InverseFcn to inverseFcn.

tform = geometricTransform3d(inverseFcn,forwardFcn) also sets the value of forward
mapping function property, ForwardFcn to forwardFcn.

Properties
InverseFcn — Inverse mapping function
function handle

Inverse mapping function, specified as a function handle. The function must accept and return
coordinates as an n-by-3 numeric matrix representing the packed (x,y,z) coordinates of n points.

For more information about function handles, see “Create Function Handle”.
Example: ifcn = @(xyz) [xyz(:,1).^2,xyz(:,2).^2,xyz(:,3).^2];

ForwardFcn — Forward mapping function
function handle

Forward mapping function, specified as a function handle. The function must accept and return
coordinates as an n-by-3 numeric matrix representing the packed (x,y,z) coordinates of n points.

For more information about function handles, see “Create Function Handle”.
Example: ffcn = @(xyz) [sqrt(xyz(:,1)),sqrt(xyz(:,2)),sqrt(xyz(:,3))];

Object Functions
transformPointsForward Apply forward geometric transformation

1 Functions

1-1056

transformPointsInverse Apply inverse geometric transformation

Examples

Transform Packed Coordinates Using Custom 3-D Transformation

Specify the packed (x,y,z) coordinates of five input points. The packed coordinates are stored as a 5-
by-3 matrix, where the first, second, and third columns contain the x-, y-, and z-
coordinates,respectively.

XYZ = [5 25 20;10 5 25;15 10 5;20 15 10;25 20 15];

Define an inverse mapping function that accepts and returns points in packed (x,y,z) format.

inverseFcn = @(c) [c(:,1)+c(:,2),c(:,1)-c(:,2),c(:,3).^2];

Create a 3-D geometric transformation object, tform, that stores this inverse mapping function.

tform = geometricTransform3d(inverseFcn)

tform =
 geometricTransform3d with properties:

 InverseFcn: @(c)[c(:,1)+c(:,2),c(:,1)-c(:,2),c(:,3).^2]
 ForwardFcn: []
 Dimensionality: 3

Apply the inverse transformation of this 3-D geometric transformation to the input points.

UVW = transformPointsInverse(tform,XYZ)

UVW = 5×3

 30 -20 400
 15 5 625
 25 5 25
 35 5 100
 45 5 225

Transform Coordinate Arrays Using Custom 3-D Transformation

Specify the x-, y- and the z-coordinate vectors of five points to transform.

x = [3 5 7 9 11];
y = [2 4 6 8 10];
z = [5 9 13 17 21];

Define the inverse and forward mapping functions that accept and return points in packed (x,y,z)
format.

inverseFcn = @(c)[c(:,1).^2,c(:,2).^2,c(:,3).^2];
forwardFcn = @(c)[sqrt(c(:,1)),sqrt(c(:,2)),sqrt(c(:,3))];

 geometricTransform3d

1-1057

Create a 3-D geometric transformation object, tform, that stores these inverse and forward mapping
functions.

tform = geometricTransform3d(inverseFcn,forwardFcn)

tform =
 geometricTransform3d with properties:

 InverseFcn: @(c)[c(:,1).^2,c(:,2).^2,c(:,3).^2]
 ForwardFcn: @(c)[sqrt(c(:,1)),sqrt(c(:,2)),sqrt(c(:,3))]
 Dimensionality: 3

Apply the inverse transformation of this 3-D geometric transformation to the input points.

[u,v,w] = transformPointsInverse(tform,x,y,z)

u = 1×5

 9 25 49 81 121

v = 1×5

 4 16 36 64 100

w = 1×5

 25 81 169 289 441

Apply the forward geometric transform to the transformed points u, v, and w.

[x,y,z] = transformPointsForward(tform,u,v,w)

x = 1×5

 3 5 7 9 11

y = 1×5

 2 4 6 8 10

z = 1×5

 5 9 13 17 21

Transform 3-D Volumetric Image Using Custom 3-D Transformation

Define an inverse mapping function that performs reflection about horizontal axis. The function must
accept and return packed (x,y,z) coordinates, where the first, second, and third columns contain the
x-, y-, and z-coordinates, respectively.

1 Functions

1-1058

inverseFcn = @(xyz)[xyz(:,1),-xyz(:,2),xyz(:,3)];

Create a 3-D geometric transformation object, tform, that stores this inverse mapping function.

tform = geometricTransform3d(inverseFcn)

tform =
 geometricTransform3d with properties:

 InverseFcn: @(xyz)[xyz(:,1),-xyz(:,2),xyz(:,3)]
 ForwardFcn: []
 Dimensionality: 3

Load and display an MRI volume to be transformed.

s = load('mri');
mriVolume = squeeze(s.D);

Use imwarp to apply the inverse geometric transform to the input MRI volume.

[mriVolumeTransformed] = imwarp(mriVolume,tform,'nearest','SmoothEdges',true);

Display the image slices from the input MRI volume as montage.

montage(mriVolume,'Size',[4 8],'BackgroundColor','w')
title('Image Slices from 3-D MRI','FontSize',14)

Display the image slices from the transformed MRI volume as a montage. The transformed image
slices are the reflection of the input image slices across the x-axis.

montage(mriVolumeTransformed,'Size',[4 8],'BackgroundColor','w')
title('Image Slices from Inverse Geometric Transformation of 3-D MRI','FontSize',14)

 geometricTransform3d

1-1059

See Also
affine3d | rigid3d | geometricTransform2d | imwarp

Topics
“2-D and 3-D Geometric Transformation Process Overview”

Introduced in R2018b

1 Functions

1-1060

LocalWeightedMeanTransformation2D
2-D local weighted mean geometric transformation

Description
A LocalWeightedMeanTransformation2D object encapsulates a 2-D local weighted mean
geometric transformation.

Creation
You can create a LocalWeightedMeanTransformation2D object using the following methods:

• The fitgeotrans function, which estimates a geometric transformation that maps pairs of
control points between two images.

• The images.geotrans.LocalWeightedMeanTransformation2D described here. This function
creates a LocalWeightedMeanTransformation2D object using coordinates of fixed points and
moving points, and a specified number of points to use in the local weighted mean calculation.

Syntax
tform = images.geotrans.LocalWeightedMeanTransformation2D(movingPoints,
fixedPoints,n)

Description

tform = images.geotrans.LocalWeightedMeanTransformation2D(movingPoints,
fixedPoints,n) creates a LocalWeightedMeanTransformation2D object given control point
coordinates in movingPoints and fixedPoints, which define matched control points in the moving
and fixed images, respectively. The n closest points are used to infer a second degree polynomial
transformation for each control point pair.

Input Arguments

movingPoints — x- and y-coordinates of control points in the moving image
m-by-2 matrix

x- and y-coordinates of control points in the moving image, specified as an m-by-2 matrix. The number
of control points m must be greater than or equal to n.
Data Types: double | single

fixedPoints — x- and y-coordinates of control points in the fixed image
m-by-2 matrix

x- and y-coordinates of control points in the fixed image, specified as an m-by-2 matrix. The number of
control points m must be greater than or equal to n.
Data Types: double | single

 LocalWeightedMeanTransformation2D

1-1061

n — Number of points to use in local weighted mean calculation
numeric value

Number of points to use in local weighted mean calculation, specified as a numeric value. n can be as
small as 6, but making n small risks generating ill-conditioned polynomials
Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32

Properties
Dimensionality — Dimensionality of the geometric transformation
2

Dimensionality of the geometric transformation for both input and output points, specified as the
value 2.

Object Functions
outputLimits Find output spatial limits given input spatial limits
transformPointsInverse Apply inverse geometric transformation

Examples

Fit Set of Fixed and Moving Control Points Using Second Degree Polynomial

Fit a local weighted mean transformation to a set of fixed and moving control points that are actually
related by a global second degree polynomial transformation across the entire plane.

Set up variables.

x = [10, 12, 17, 14, 7, 10];
y = [8, 2, 6, 10, 20, 4];

a = [1 2 3 4 5 6];
b = [2.3 3 4 5 6 7.5];

u = a(1) + a(2).*x + a(3).*y + a(4) .*x.*y + a(5).*x.^2 + a(6).*y.^2;
v = b(1) + b(2).*x + b(3).*y + b(4) .*x.*y + b(5).*x.^2 + b(6).*y.^2;

movingPoints = [u',v'];
fixedPoints = [x',y'];

Fit local weighted mean transformation to points.

tformLocalWeightedMean = images.geotrans.LocalWeightedMeanTransformation2D(movingPoints,fixedPoints,6);

Verify the fit of the LocalWeightedMeanTransformation2D object at the control points.

movingPointsComputed = transformPointsInverse(tformLocalWeightedMean,fixedPoints);

1 Functions

1-1062

errorInFit = hypot(movingPointsComputed(:,1)-movingPoints(:,1),...
 movingPointsComputed(:,2)-movingPoints(:,2))

Algorithms
The local weighted mean transformation infers a polynomial at each control point using neighboring
control points. The mapping at any location depends on a weighted average of these polynomials. The
n closest points are used to infer a second degree polynomial transformation for each control point
pair. n can be as small as 6, but making it small risks generating ill-conditioned polynomials.

See Also
Functions
imwarp | fitgeotrans | cpselect

Objects
affine2d | projective2d | PiecewiseLinearTransformation2D |
PolynomialTransformation2D

Introduced in R2013b

 LocalWeightedMeanTransformation2D

1-1063

PiecewiseLinearTransformation2D
2-D piecewise linear geometric transformation

Description
A PiecewiseLinearTransformation2D object encapsulates a 2-D piecewise linear geometric
transformation.

Creation
You can create a PiecewiseLinearTransformation2D object using the following methods:

• The fitgeotrans function, which estimates a geometric transformation that maps pairs of
control points between two images.

• The images.geotrans.PiecewiseLinearTransformation2D function described here. This
function creates a PiecewiseLinearTransformation2D object using coordinates of fixed
points and moving points.

Syntax
tform = images.geotrans.PiecewiseLinearTransformation2D(movingPoints,
fixedPoints)

Description

tform = images.geotrans.PiecewiseLinearTransformation2D(movingPoints,
fixedPoints) creates a PiecewiseLinearTransformation2D object given control point
coordinates in movingPoints and fixedPoints, which define matched control points in the moving
and fixed images, respectively.

Input Arguments

movingPoints — x- and y-coordinates of control points in the moving image
m-by-2 matrix

x- and y-coordinates of control points in the moving image, specified as an m-by-2 matrix. The number
of control points m must be greater than or equal to n.
Data Types: double | single

fixedPoints — x- and y-coordinates of control points in the fixed image
m-by-2 matrix

x- and y-coordinates of control points in the fixed image, specified as an m-by-2 matrix. The number of
control points m must be greater than or equal to n.
Data Types: double | single

1 Functions

1-1064

Properties
Dimensionality — Dimensionality of the geometric transformation
2

Dimensionality of the geometric transformation for both input and output points, specified as the
value 2.

Object Functions
outputLimits Find output spatial limits given input spatial limits
transformPointsInverse Apply inverse geometric transformation

Examples

Fit Set of Control Points Related by Affine Transformation

Fit a piecewise linear transformation to a set of fixed and moving control points that are actually
related by a single global affine2d transformation across the domain.

Create a 2D affine transformation.

theta = 10;
tformAffine = affine2d([cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0; 0 0 1])

tformAffine =

 affine2d with properties:

 T: [3x3 double]
 Dimensionality: 2

Arbitrarily choose 6 pairs of control points.

fixedPoints = [10 20; 10 5; 2 3; 0 5; -5 3; -10 -20];

Apply forward geometric transformation to map fixed points to obtain effect of fixed and moving
points that are related by some geometric transformation.

movingPoints = transformPointsForward(tformAffine,fixedPoints)

movingPoints =

 13.3210 17.9597
 10.7163 3.1876
 2.4906 2.6071
 0.8682 4.9240
 -4.4031 3.8227
 -13.3210 -17.9597

Estimate piecewise linear transformation that maps movingPoints to fixedPoints.

tformPiecewiseLinear = images.geotrans.PiecewiseLinearTransformation2D(movingPoints,fixedPoints)

tformPiecewiseLinear =

 PiecewiseLinearTransformation2D

1-1065

 PiecewiseLinearTransformation2D with properties:

 Dimensionality: 2

Verify the fit of the PiecewiseLinearTransformation2D object at the control points.

movingPointsComputed = transformPointsInverse(tformPiecewiseLinear,fixedPoints);

errorInFit = hypot(movingPointsComputed(:,1)-movingPoints(:,1),...
 movingPointsComputed(:,2)-movingPoints(:,2))

errorInFit =

 1.0e-15 *

 0
 0
 0.4441
 0
 0
 0

See Also
Functions
imwarp | fitgeotrans | cpselect

Classes
affine2d | projective2d | LocalWeightedMeanTransformation2D |
PolynomialTransformation2D

Introduced in R2013b

1 Functions

1-1066

PolynomialTransformation2D
2-D polynomial geometric transformation

Description
A PolynomialTransformation2D object encapsulates a 2-D polynomial geometric transformation.

Creation
You can create a PolynomialTransformation2D object using the following methods:

• The fitgeotrans function, which estimates a geometric transformation that maps pairs of
control points between two images.

• The images.geotrans.PolynomialTransformation2D function described here. This function
creates a PolynomialTransformation2D object using coordinates of fixed points and moving
points, or the known polynomial coefficients for the forward and inverse transformation.

Syntax
tform = images.geotrans.PolynomialTransformation2D(movingPoints,fixedPoints,
degree)
tform = images.geotrans.PolynomialTransformation2D(a,b)

Description

tform = images.geotrans.PolynomialTransformation2D(movingPoints,fixedPoints,
degree) creates a PolynomialTransformation2D object and sets the Degree property. The
function estimates the polynomial coefficients A and B from matrices movingPoints and
fixedPoints that define matched control points in the moving and fixed images, respectively.

tform = images.geotrans.PolynomialTransformation2D(a,b) creates a
PolynomialTransformation2D object and sets the A and B properties.

Input Arguments

movingPoints — x- and y-coordinates of control points in the moving image
m-by-2 matrix

x- and y-coordinates of control points in the moving image, specified as an m-by-2 matrix.
Data Types: double | single

fixedPoints — x- and y-coordinates of control points in the fixed image
m-by-2 matrix

x- and y-coordinates of control points in the fixed image, specified as an m-by-2 matrix.
Data Types: double | single

 PolynomialTransformation2D

1-1067

Properties
A — Polynomial coefficients used to determine U in the inverse transformation
n-element vector

Polynomial coefficients used to determine U in the inverse transformation, specified as an n-element
vector. For polynomials of degree 2, 3, and 4, n is 6, 10, and 15, respectively.

The quadratic (degree 2) polynomial coefficient vector A is ordered as follows:
U = A(1) + A(2).*X + A(3).*Y + A(4).*X.*Y + A(5).*X.^2 + A(6).*Y.^2

The cubic (degree 3) polynomial coefficient vector adds these terms:
... + A(7).*X.^2.*Y + A(8).*X.*Y.^2 + A(9).*X.^3 + A(10).*Y.^3

The quartic (degree 4) polynomial coefficient vector adds these terms:
... + A(11).*X.^3.*Y + A(12).*X.^2.*Y.^2 + A(12).*X.*Y.^3 + A(14).*X.^3 + A(15).*Y.^4

Data Types: double | single

B — Polynomial coefficients used to determine V in the inverse transformation
n-element vector

Polynomial coefficients used to determine V in the inverse transformation, specified as an n-element
vector. For polynomials of degree 2, 3, and 4, n is 6, 10, and 15, respectively.

The quadratic (degree 2) polynomial coefficient vector B is ordered as follows:
V = B(1) + B(2).*X + B(3).*Y + B(4).*X.*Y + B(5).*X.^2 + B(6).*Y.^2

The cubic (degree 3) polynomial coefficient vector adds these terms:
... + B(7).*X.^2.*Y + B(8).*X.*Y.^2 + B(9).*X.^3 + B(10).*Y.^3

The quartic (degree 4) polynomial coefficient vector adds these terms:
... + B(11).*X.^3.*Y + B(12).*X.^2.*Y.^2 + B(12).*X.*Y.^3 + B(14).*X.^3 + B(15).*Y.^4

Data Types: double | single

Degree — Degree of the polynomial transformation
2 | 3 | 4

Degree of the polynomial transformation, specified as the scalar values 2, 3, or 4.

Dimensionality — Dimensionality of the geometric transformation
2

Dimensionality of the geometric transformation for both input and output points, specified as the
value 2.

Object Functions
outputLimits Find output spatial limits given input spatial limits
transformPointsInverse Apply inverse geometric transformation

1 Functions

1-1068

Examples

Fit a Second Degree Polynomial Transformation to a Set of Fixed and Moving Control Points

Fit a second degree polynomial transformation to a set of fixed and moving control points that are
actually related by an 2-D affine transformation.

Create 2-D affine transformation.

theta = 10;
tformAffine = affine2d([cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0; 0 0 1]);

Arbitrarily choose six pairs of control points. A second degree polynomial requires six pairs of control
points.

 fixedPoints = [10 20; 10 5; 2 3; 0 5; -5 3; -10 -20];

Apply forward geometric transformation to map fixed points to obtain effect of fixed and moving
points that are related by some geometric transformation.

movingPoints = transformPointsForward(tformAffine,fixedPoints);

Estimate second degree PolynomialTransformation2D transformation that fits fixedPoints and
movingPoints.

tformPolynomial = images.geotrans.PolynomialTransformation2D(movingPoints,fixedPoints,2);

Verify the fit of the PolynomialTransformation2D transformation at the control points.

movingPointsEstimated = transformPointsInverse(tformPolynomial,fixedPoints);
errorInFit = hypot(movingPointsEstimated(:,1)-movingPoints(:,1),...
 movingPointsEstimated(:,2)-movingPoints(:,2))

More About
U and V

U and V are the x- and y-coordinates of control points in the original coordinate system. This is the
same coordinate system as obtained by performing a forward transformation followed by its inverse
transformation.

X and Y

X and Y are the x- and y-coordinates of control points in the forward transformed coordinate system.

See Also
Functions
imwarp | fitgeotrans | cpselect

Objects
affine2d | projective2d | LocalWeightedMeanTransformation2D |
PiecewiseLinearTransformation2D

 PolynomialTransformation2D

1-1069

Introduced in R2013b

1 Functions

1-1070

getheight
Height of structuring element

Note getheight will be removed in a future release. See strel for the current list of methods.

Syntax
h = getheight(SE)

Description
h = getheight(SE) returns the height of all neighbors of structuring element SE.

Examples
Get Height of Arbitrary Structuring Element

se = strel(ones(3,3),magic(3));
getheight(se)

ans =

 8 1 6
 3 5 7
 4 9 2

Input Arguments
SE — Structuring element
strel object

Structuring element, specified as a strel object.

Output Arguments
h — Height
numeric matrix

Height of the structuring element SE, returned as a numeric matrix of the same size as
getnhood(SE). For a flat structuring element, h is all zeros.
Data Types: double

See Also
strel

Topics
“Structuring Elements”

 getheight

1-1071

Introduced before R2006a

1 Functions

1-1072

getimage
Image data from axes

Syntax
I = getimage(h)
[x,y,I] = getimage(h)
[___ ,flag] = getimage(h)
[___] = getimage

Description
I = getimage(h) returns the first image data contained in the graphics object h.

[x,y,I] = getimage(h) also returns the image extent in the x and y direction.

[___ ,flag] = getimage(h) also returns a flag that indicates the type of image that h contains.

[___] = getimage returns information for the current axes object.

Examples

Import Data into Workspace from Image Displayed in Figure or App

Display image directly from a file using imshow and create a variable in the workspace that contains
the image data.

imshow rice.png

 getimage

1-1073

I = getimage;

Display image directly from a file using the Image Viewer app (imtool) and create a variable in the
workspace that contains the image data.

h = imtool('cameraman.tif');

1 Functions

1-1074

I = getimage(imgca);

Input Arguments
h — Handle to graphics object
handle

Handle to a figure, axes, uipanel, or image graphics object, specified as a handle. If h is an axes or
figure handle containing multiple images, then getimage uses the first image returned by
findobj(h,'Type','image').

Output Arguments
I — Image data
numeric array

Image data, returned as a numeric array. I is identical to the image CData; it contains the same
values and is of the same class as the image CData. If h is not an image or does not contain an image,
then I is empty.

x — Image extent in x direction
2-element numeric vector

Image extent in the x direction, returned as a 2-element numeric vector of the form [xmin xmax]. x
is identical to the image XData.
Data Types: double

y — Image extent in y direction
2-element numeric vector

Image extent in the y direction, returned as a 2-element numeric vector of the form [ymin ymax]. y
is identical to the image YData.
Data Types: double

flag — Image type
integer

Image type, returned as an integer with one of these values:

Flag Type of Image
0 Not an image; I is returned as an empty matrix
1 Indexed image
2 Intensity image with values in standard range. The standard

range for single and double images is [0,1].
3 Intensity data, but not in standard range
4 RGB image
5 Binary image

Data Types: double

 getimage

1-1075

See Also
Image Viewer | imshow

Introduced before R2006a

1 Functions

1-1076

getimagemodel
Image model object from image object

Syntax
imgmodel = getimagemodel(himage)

Description
imgmodel = getimagemodel(himage) returns the image model object associated with image
himage. If himage does not have an associated image model object, then getimagemodel creates
one.

Examples

Retrieve imagemodel Object Associated with Image

Read an image into the workspace.

h = imshow('bag.png');

Retrieve the image model associated with this image.

imgmodel = getimagemodel(h)

imgmodel =

 getimagemodel

1-1077

IMAGEMODEL object accessing an image with these properties:

 ClassType: 'uint8'
 DisplayRange: [0 255]
 ImageHeight: 250
 ImageType: 'intensity'
 ImageWidth: 189
 MinIntensity: 0
 MaxIntensity: 255

Input Arguments
himage — Target image
handle | array of handles

Target image, specified as a handle or array of handles to image objects.

Output Arguments
imgmodel — Image model
imagemodel object | array of imagemodel object

Image model, returned as an imagemodel object. If himage is an array of handles to image objects,
then imgmodel is an array of image models.

See Also
imagemodel | imattributes | imhandles

Introduced before R2006a

1 Functions

1-1078

getline
Select polyline with mouse

Note getline is not recommended. Use one of the ROI classes instead, described in “Create ROI
Shapes”.

Syntax
[xi,yi] = getline
[xi,yi] = getline(fig)
[xi,yi] = getline(ax)
[xi,yi] = getline(___ ,'closed')

Description
[xi,yi] = getline lets you select a polyline in the current figure using the mouse. When you
finish selecting the polyline, getline returns the coordinates of the polyline endpoints in xi and yi.

Use normal button clicks to add points to the polyline. A shift-, right-, or double-click adds a final
point and ends the polyline selection. Pressing Return or Enter ends the polyline selection without
adding a final point. Pressing Backspace or Delete removes the previously selected point from the
polyline.

[xi,yi] = getline(fig) lets you select a polyline in the current axes of figure fig, using the
mouse.

[xi,yi] = getline(ax) lets you select a polyline in axes ax, using the mouse.

[xi,yi] = getline(___ ,'closed') animates and returns a closed polygon.

Input Arguments
fig — Figure handle
handle

Figure handle, specified as a handle.

ax — Axes handle
handle

Axes handle, specified as a handle.

Output Arguments
xi — x-coordinates of selected polyline endpoints
numeric vector

x-coordinates of selected polyline endpoints, returned as a numeric vector.

 getline

1-1079

Data Types: double

yi — y-coordinates of selected polyline endpoints
numeric vector

y-coordinates of selected polyline endpoints, returned as a numeric vector.
Data Types: double

See Also
getpts | getrect | imline

Introduced before R2006a

1 Functions

1-1080

getneighbors
Structuring element neighbor locations and heights

Note getneighbors will be removed in a future release. See strel for the current list of functions
recommended for use with structuring elements.

Syntax
[offsets,heights] = getneighbors(SE)

Description
[offsets,heights] = getneighbors(SE) returns the relative locations and corresponding
heights for each of the neighbors in the structuring element SE.

Examples
Get Neighbor Location and Height of 2-D Structuring Element

Create a nonflat 2-D structuring element with two neighbors.

se = strel('arbitrary',[1 0 1],[5 0 -5]);

Get the row and column offset of each neighbor from the center of the structuring element. Also get
the heights of the neighbors.

[offsets,heights] = getneighbors(se)

offsets =

 0 -1
 0 1

heights =

 5 -5

Input Arguments
SE — Structuring element
strel object

Structuring element, specified as a strel object with P neighbors and dimensionality N.

Output Arguments
offsets — Position of neighbors
P-by-N matrix

 getneighbors

1-1081

Position of neighbors relative to the center of the structuring element, in pixels, returned as a P-by-N
matrix.
Data Types: double

heights — Height of neighbors
P-by-1 column vector

Height of neighbors, returned as a P-by-1 column vector.
Data Types: double

See Also
Topics
“Structuring Elements”

Introduced before R2006a

1 Functions

1-1082

getnhood
Get structuring element neighborhood

Note getnhood will be removed in a future release. See strel for the current list of methods.

Syntax
nhood = getnhood(SE)

Description
nhood = getnhood(SE) returns the neighborhood associated with the structuring element SE.

Examples

Get Neighborhood of Flat Structuring Element

se = strel(eye(5));
nhood = getnhood(se)

nhood =

 5×5 logical array

 1 0 0 0 0
 0 1 0 0 0
 0 0 1 0 0
 0 0 0 1 0
 0 0 0 0 1

Input Arguments
SE — Structuring element
strel object | offsetstrel object

Structuring element, specified as a strel or offsetstrel object.

Output Arguments
nhood — Neighborhood of structuring element
logical array

Neighborhood of structuring element, returned as a logical array.

Note If SE is an offsetstrel object, then nhood indicates which pixels are in the neighborhood
but does not return the offset of the pixels. You can get the offset from the property SE.Offset.

 getnhood

1-1083

Data Types: logical

See Also
Topics
“Structuring Elements”

Introduced before R2006a

1 Functions

1-1084

getpts
Specify points with mouse

Note getpts is not recommended. Use one of the ROI classes instead, described in “Create ROI
Shapes”.

Syntax
[xi,yi] = getpts
[xi,yi] = getpts(fig)
[xi,yi] = getpts(ax)

Description
[xi,yi] = getpts lets you choose points in the current figure using the mouse. When you finish
selecting points, getpts returns the coordinates of the selected points in xi and yi.

Use normal button clicks to add points. A shift-, right-, or double-click adds a final point and ends the
selection. Pressing Return or Enter ends the selection without adding a final point. Pressing
Backspace or Delete removes the previously selected point.

[xi,yi] = getpts(fig) lets you choose points in the current axes of figure fig, using the mouse.

[xi,yi] = getpts(ax) lets you choose points in axes ax, using the mouse.

Examples

Select Points in Image Interactively

Display an image using imshow.

figure
imshow('moon.tif')

Call getpts to choose points interactively in the displayed image using the mouse. Double-click to
complete your selection. When you are done, getpts returns the coordinates of your points.

[x,y] = getpts

Input Arguments
fig — Figure handle
handle

Figure handle, specified as a handle.

ax — Axes handle
handle

 getpts

1-1085

Axes handle, specified as a handle.

Output Arguments
xi — x-coordinates of sampled points
numeric vector

x-coordinates of sampled points, returned as a numeric vector.
Data Types: double

yi — y-coordinates of sampled points
numeric vector

y-coordinates of sampled points, returned as a numeric vector.
Data Types: double

See Also
getline | getrect | impixel | impoint

Introduced before R2006a

1 Functions

1-1086

getrect
Specify rectangle with mouse

Note getrect is not recommended. Use one of the ROI classes instead, described in “Create ROI
Shapes”.

Syntax
rect = getrect
rect = getrect(fig)
rect = getrect(ax)

Description
rect = getrect lets you select a rectangle in the current axes using the mouse. When you finish
selecting the rectangle, getrect returns information about the position and size of the rectangle in
rect.

Use the mouse to click and drag the desired rectangle. To constrain the rectangle to be a square, use
a shift- or right-click to begin the drag.

rect = getrect(fig) lets you select a rectangle in the current axes of figure fig, using the
mouse.

rect = getrect(ax) lets you select a rectangle in axes ax, using the mouse.

Examples

Select Rectangle in Image Interactively

Display an image using imshow.

imshow('moon.tif')

Choose points interactively in the displayed image using the mouse. When you are done, getrect
returns the size and position of your rectangle.

rect = getrect

Input Arguments
fig — Figure handle
handle

Figure handle, specified as a handle.

ax — Axes handle
handle

 getrect

1-1087

Axes handle, specified as a handle.

Output Arguments
rect — Selected rectangle
4-element numeric vector

Selected rectangle, returned as a 4-element numeric vector with the form [xmin ymin width
height].

See Also
getline | getpts | imrect

Introduced before R2006a

1 Functions

1-1088

getsequence
Sequence of decomposed structuring elements

Note getsequence will be removed in a future release. See strel for the current list of methods.

Syntax
SEQ = getsequence(SE)

Description
SEQ = getsequence(SE) returns the array of structuring elements SEQ, containing the individual
structuring elements that form the decomposition of SE.

Examples
Decompose Square Structuring Element

The strel function uses decomposition for square structuring elements larger than 3-by-3. Use
getsequence to extract the decomposed structuring elements.

se = strel('square',5)

se =

strel is a square shaped structuring element with properties:

 Neighborhood: [5×5 logical]
 Dimensionality: 2

seq = getsequence(se)

seq =

 2×1 strel array with properties:

 Neighborhood
 Dimensionality

Use imdilate with the 'full' option to confirm that dilating sequentially with the decomposed
structuring elements forms a 5-by-5 square:

imdilate(1,seq,'full')

ans =

 1 1 1 1 1
 1 1 1 1 1
 1 1 1 1 1
 1 1 1 1 1
 1 1 1 1 1

 getsequence

1-1089

Input Arguments
SE — Structuring elements
array of strel objects

Structuring elements, specified as an array of strel objects.

Output Arguments
SEQ — Decomposed structuring elements
array of strel objects

Decomposed structuring elements, returned as an array of strel objects. The elements of SEQ have
no further decomposition.

See Also
strel

Topics
“Structuring Elements”

Introduced before R2006a

1 Functions

1-1090

grabcut
Segment image into foreground and background using iterative graph-based segmentation

Syntax
BW = grabcut(A,L,ROI)
BW = grabcut(A,L,ROI,foremask,backmask)
BW = grabcut(A,L,ROI,foreind,backind)
BW = grabcut(___ ,Name,Value)

Description
BW = grabcut(A,L,ROI) segments the image A into foreground and background regions. The label
matrix L specifies the subregions of the image. ROI is a logical mask designating the initial region of
interest.

BW = grabcut(A,L,ROI,foremask,backmask) segments the image A, where foremask and
backmask are masks designating pixels in the image as foreground and background, respectively.

BW = grabcut(A,L,ROI,foreind,backind) segments the image A, where foreind and
backind specify the linear indices of the pixels in the image marked as foreground and background,
respectively.

BW = grabcut(___ ,Name,Value) segments the image using name-value pairs to control aspects
of the segmentation.

Examples

Segment Foreground from Background in Image Using Grabcut

Read an RGB image into the workspace.

RGB = imread('peppers.png');

Generate label matrix.

L = superpixels(RGB,500);

Specify a region of interest and create a mask image.

imshow(RGB)
h1 = drawpolygon('Position',[72,105; 1,231; 0,366; 104,359;...
 394,307; 518,343; 510,39; 149,72]);

 grabcut

1-1091

roiPoints = h1.Position;
roi = poly2mask(roiPoints(:,1),roiPoints(:,2),size(L,1),size(L,2));

Perform the grab cut operation, specifying the original image, the label matrix and the ROI.

BW = grabcut(RGB,L,roi);
imshow(BW)

1 Functions

1-1092

Create masked image.

maskedImage = RGB;
maskedImage(repmat(~BW,[1 1 3])) = 0;
imshow(maskedImage)

 grabcut

1-1093

Segment 3-D Volume Using Grabcut

Load 3-D volumetric data.

load mristack
V = mristack;

Create a 2-D mask for initial foreground and background seed points.

seedLevel = 10;
fseed = V(:,:,seedLevel) > 75;
bseed = V(:,:,seedLevel) == 0;

Display foreground and background seed points.

imshow(fseed)

1 Functions

1-1094

imshow(bseed)

Place seed points into empty 3-D mask.

fmask = zeros(size(V));
bmask = fmask;

 grabcut

1-1095

fmask(:,:,seedLevel) = fseed;
bmask(:,:,seedLevel) = bseed;

Create initial region of interest.

roi = false(size(V));
roi(10:end-10,10:end-10,:) = true;

Generate label matrix.

L = superpixels3(V,500);

Perform GrabCut.

bw = grabcut(V,L,roi,fmask,bmask);

Display 3D segmented image.

montage(reshape(bw,size(V)))

1 Functions

1-1096

Input Arguments
A — Image to segment
2-D grayscale image | 2-D truecolor image | 3-D grayscale volume

Input image or volume, specified as a 2-D grayscale image, 2-D truecolor image, or 3-D grayscale
volume. Only grayscale images can be data type int16.
Data Types: single | double | int16 | uint8 | uint16

L — Label matrix
numeric array

 grabcut

1-1097

Label matrix, specified as a numeric array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

ROI — Region of interest
logical array

Region of interest, specified as a logical array. All pixels that define the region of interest are equal to
true.
Data Types: logical

foremask — Foreground mask
logical array

Foreground mask, specified as a logical array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

backmask — Background mask
logical array

Background mask, specified as a logical array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

foreind — Indices of pixels in foreground
vector

Indices of pixels in foreground, specified as a vector of linear indices.
Data Types: double

backind — Indices of pixels in background
vector

Indices of pixels in background, specified as a vector of linear indices.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: BW = grabcut(A,L,ROI,'Connectivity',4)

Connectivity — Connectivity of connected components
4 | 8 | 6 | 18 | 26

Connectivity of connected components, specified as one of the following values. The default
connectivity is 8 for 2–D images, and 26 for 3–D images.

1 Functions

1-1098

Value Meaning
Two-dimensional connectivities
4 4-connected neighborhood

 Current pixel is shown in gray.
8 8-connected neighborhood

 Current pixel is shown in gray.
Three-dimensional connectivities
6 6-connected neighborhood

 Current pixel is center of cube.
18 18-connected neighborhood

 Current pixel is center of cube.
26 26-connected neighborhood

 Current pixel is center of cube.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

MaximumIterations — Maximum number of iterations
5 (default) | positive scalar

 grabcut

1-1099

Maximum number of iterations performed by the algorithm. The algorithm can converge to a solution
before reaching the maximum number of iterations.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
BW — Segmented image
logical array

Segmented image, returned as binary image of the same size as the label matrix L.

Tips
• For double and single images, grabcut assumes the range of the image to be [0 1]. For

uint16, int16, and uint8 images, grabcut assumes the range to be the full range for the given
data type.

• For grayscale images, the size of L, foremask, and backmask must match the size of the image A.
For color and multi-channel images, L, foremask, and backmask must be 2-D arrays with the
first two dimensions identical to the first two dimensions of the image A.

Algorithms
• The algorithm treats all subregions fully or spatially outside the ROI mask as belonging to the

background. To get an optimal segmentation, make sure the object to be segmented is fully
contained within the ROI, surrounded by a small number of background pixels.

• Do not mark a subregion of the label matrix as belonging to both the foreground mask and the
background mask. If a region of the label matrix contains pixels belonging to both the foreground
mask and background mask, the algorithm effectively treats the region as unmarked.

• The algorithm assumes all subregions outside the region of interest belong to the background.
Marking one of these subregions as belonging to foreground or background mask has no effect on
the resulting segmentation.

References
[1] Rother, C., V. Kolmogorov, and A. Blake. "GrabCut - Interactive Foreground Extraction using

Iterated Graph Cuts". ACM Transactions on Graphics (SIGGRAPH). Vol. 23, Number 3, 2004,
pp. 309–314.

See Also
superpixels | lazysnapping | Image Segmenter | watershed

Topics
“Label and Measure Connected Components in a Binary Image”

Introduced in R2018a

1 Functions

1-1100

gradientweight
Calculate weights for image pixels based on image gradient

Syntax
W = gradientweight(I)
W = gradientweight(I,sigma)
W = gradientweight(___,Name,Value)

Description
W = gradientweight(I) calculates the pixel weight for each pixel in image I based on the
gradient magnitude at that pixel, and returns the weight array W. The weight of a pixel is inversely
related to the gradient values at the pixel location. Pixels with small gradient magnitude (smooth
regions) have a large weight and pixels with large gradient magnitude (such as on the edges) have a
small weight.

W = gradientweight(I,sigma) uses sigma as the standard deviation for the derivative of
Gaussian that is used for computing the image gradient.

W = gradientweight(___,Name,Value) returns the weight array W using name-value pairs to
control aspects of weight computation.

Examples

Segment Image Using Weights Derived from Image Gradient

This example segments an image using the Fast Marching Method based on the weights derived from
the image gradient.

Read image and display it.

I = imread('coins.png');
imshow(I)
title('Original Image')

 gradientweight

1-1101

Compute weights based on image gradient.

sigma = 1.5;
W = gradientweight(I, sigma, 'RolloffFactor', 3, 'WeightCutoff', 0.25);

Select a seed location.

R = 70; C = 216;
hold on;
plot(C, R, 'r.', 'LineWidth', 1.5, 'MarkerSize',15);
title('Original Image with Seed Location')

1 Functions

1-1102

Segment the image using the weight array.

thresh = 0.1;
[BW, D] = imsegfmm(W, C, R, thresh);
figure, imshow(BW)
title('Segmented Image')
hold on;
plot(C, R, 'r.', 'LineWidth', 1.5, 'MarkerSize',15);

 gradientweight

1-1103

Geodesic distance matrix D can be thresholded using different thresholds to get different
segmentation results.

figure, imshow(D)
title('Geodesic Distances')
hold on;
plot(C, R, 'r.', 'LineWidth', 1.5, 'MarkerSize',15);

Input Arguments
I — Grayscale image
numeric matrix

Grayscale image, specified as a numeric matrix.
Data Types: single | double | int8 | uint8 | int16 | uint16 | int32 | uint32

sigma — Standard deviation for derivative of Gaussian
1.5 (default) | positive number

Standard deviation for derivative of Gaussian, specified as a positive number.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: W = gradientweight(I,1.5,'RolloffFactor',3,'WeightCutoff',0.25);

1 Functions

1-1104

RolloffFactor — Output weight roll-off factor
3 (default) | positive scalar

Output weight roll-off factor, specified as the comma-separated pair consisting of 'RolloffFactor'
and a positive scalar of class double. Controls how fast weight values fall as a function of gradient
magnitude. When viewed as a 2-D plot, pixel intensity values might vary gradually at the edges of
regions, creating a gentle slope. In your segmented image, you might want the edge to be more well-
defined. Using the roll-off factor, you control the slope of the weight value curve at points where
intensity values start to change. If you specify a high value, the output weight values fall off sharply
around the edges of smooth regions. If you specify a low value, the output weight has a more gradual
fall-off around the edges. The suggested range for this parameter is [0.5 4].
Data Types: double

WeightCutoff — Threshold for weight values
0.25 (default) | positive number in the range [1e-3 1]

Threshold for weight values, specified as the comma-separated pair consisting of 'WeightCutoff'
and a positive number in the range [1e-3 1]. If you use this parameter to set a threshold on weight
values, it suppresses any weight values less than the value you specify, setting these pixels to a small
constant value (1e-3). This parameter can be useful in improving the accuracy of the output when you
use the output weight array W as input to Fast Marching Method segmentation function, imsegfmm.
Data Types: double

Output Arguments
W — Weight array
numeric array

Weight array, returned as a numeric array of the same size as the input image, I. The weight array is
of class double, unless I is single, in which case it is of class single.

Tips
• gradientweight uses double-precision floating point operations for internal computations for all

classes of I, except when I is of class single, in which case gradientweight uses single-
precision floating point operations internally.

See Also
imsegfmm | graydiffweight

Introduced in R2014b

 gradientweight

1-1105

gray2ind
Convert grayscale or binary image to indexed image

Syntax
[X,cmap] = gray2ind(I,c)
[X,cmap] = gray2ind(BW,c)

Description
[X,cmap] = gray2ind(I,c) converts the grayscale image I to an indexed image X with colormap
cmap with c colors.

[X,cmap] = gray2ind(BW,c) converts the binary image BW to an indexed image.

Examples

Convert Grayscale Image to Indexed Image

Read grayscale image into the workspace.

I = imread('cameraman.tif');

Convert the image to an indexed image using gray2ind. This example creates an indexed image with
16 indices.

[X, map] = gray2ind(I, 16);

Display the indexed image.

imshow(X, map);

1 Functions

1-1106

Input Arguments
I — Grayscale image
numeric array

Grayscale image, specified as a numeric array of any dimension.
Data Types: single | double | int16 | uint8 | uint16

BW — Binary image
numeric array

Binary image, specified as a numeric array of any dimension.
Data Types: logical

c — Number of colormap colors
positive integer

Number of colormap colors, specified as a positive integer between 1 and 65536.

• If the input image is grayscale, then the default value of c is 64.
• If the input image is binary, then the default value of c is 2.

Output Arguments
X — Indexed image
numeric array

 gray2ind

1-1107

Indexed image, returned as a numeric array of the same dimensionality as the input grayscale or
binary image. If the colormap length is less than or equal to 256, then the class of the output image is
uint8 ; otherwise it is uint16.
Data Types: uint8 | uint16

cmap — Colormap
c-by-3 numeric matrix

Colormap associated with indexed image X, returned as a c-by-3 numeric matrix with values in the
range [0, 1]. Each row is a three-element RGB triplet that specifies the red, green, and blue
components of a single color of the colormap. The colormap is equivalent to gray(c).
Data Types: double

Extended Capabilities
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
grayslice | ind2gray | mat2gray

Introduced before R2006a

1 Functions

1-1108

graycomatrix
Create gray-level co-occurrence matrix from image

Syntax
glcms = graycomatrix(I)
glcms = graycomatrix(I,Name,Value)
[glcms,SI] = graycomatrix(___)

Description
glcms = graycomatrix(I) creates a gray-level co-occurrence matrix (GLCM) from image I.
Another name for a gray-level co-occurrence matrix is a gray-level spatial dependence matrix.

graycomatrix creates the GLCM by calculating how often a pixel with gray-level (grayscale
intensity) value i occurs horizontally adjacent to a pixel with the value j. (You can specify other pixel
spatial relationships using the 'Offsets' parameter.) Each element (i,j) in glcm specifies the
number of times that the pixel with value i occurred horizontally adjacent to a pixel with value j.

glcms = graycomatrix(I,Name,Value) returns one or more gray-level co-occurrence matrices,
depending on the values of the optional name-value pair arguments.

[glcms,SI] = graycomatrix(___) returns the scaled image, SI, used to calculate the gray-level
co-occurrence matrix.

Examples

Create Gray-Level Co-occurrence Matrix for Grayscale Image

Read a grayscale image into the workspace.

I = imread('circuit.tif');
imshow(I)

 graycomatrix

1-1109

Calculate the gray-level co-occurrence matrix (GLCM) for the grayscale image. By default,
graycomatrix calculates the GLCM based on horizontal proximity of the pixels: [0 1]. That is the
pixel next to the pixel of interest on the same row. This example specifies a different offset: two rows
apart on the same column.

glcm = graycomatrix(I,'Offset',[2 0])

glcm = 8×8

 14205 2107 126 0 0 0 0 0
 2242 14052 3555 400 0 0 0 0
 191 3579 7341 1505 37 0 0 0
 0 683 1446 7184 1368 0 0 0
 0 7 116 1502 10256 1124 0 0
 0 0 0 2 1153 1435 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0

Create Gray-Level Co-occurrence Matrix Returning Scaled Image

Create a simple 3-by-6 sample array.

I = [1 1 5 6 8 8; 2 3 5 7 0 2; 0 2 3 5 6 7]

I = 3×6

 1 1 5 6 8 8

1 Functions

1-1110

 2 3 5 7 0 2
 0 2 3 5 6 7

Calculate the gray-level co-occurrence matrix (GLCM) and return the scaled image used in the
calculation. By specifying empty brackets for the GrayLimits parameter, the example uses the
minimum and maximum grayscale values in the input image as limits.

[glcm,SI] = graycomatrix(I,'NumLevels',9,'GrayLimits',[])

glcm = 9×9

 0 0 2 0 0 0 0 0 0
 0 1 0 0 0 1 0 0 0
 0 0 0 2 0 0 0 0 0
 0 0 0 0 0 2 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 2 1 0
 0 0 0 0 0 0 0 1 1
 1 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 1

SI = 3×6

 2 2 6 7 9 9
 3 4 6 8 1 3
 1 3 4 6 7 8

Calculate GLCMs using Four Different Offsets

Read a grayscale image into the workspace.

I = imread('cell.tif');
imshow(I)

 graycomatrix

1-1111

Define four offsets.

offsets = [0 1; -1 1;-1 0;-1 -1];

Calculate the GLCMs, returning the scaled image as well. Display the scaled image, performing an
additional rescaling of data values to the range [0, 1].

[glcms,SI] = graycomatrix(I,'Offset',offsets);
imshow(rescale(SI))

Note how the function returns an array of four GLCMs.

whos

 Name Size Bytes Class Attributes

 I 159x191 30369 uint8
 SI 159x191 242952 double
 glcms 8x8x4 2048 double
 offsets 4x2 64 double

Calculate Symmetric GLCM for Grayscale Image

Read a grayscale image into the workspace.

I = imread('circuit.tif');
imshow(I)

1 Functions

1-1112

Calculate the GLCM using the Symmetric option, returning the scaled image as well. The GLCM
created when you set Symmetric to true is symmetric across its diagonal, and is equivalent to the
GLCM described by Haralick (1973).

[glcm,SI] = graycomatrix(I,'Offset',[2 0],'Symmetric',true);
glcm

glcm = 8×8

 28410 4349 317 0 0 0 0 0
 4349 28104 7134 1083 7 0 0 0
 317 7134 14682 2951 153 0 0 0
 0 1083 2951 14368 2870 2 0 0
 0 7 153 2870 20512 2277 0 0
 0 0 0 2 2277 2870 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0

Display the scaled image, performing an additional rescaling of data values to the range [0, 1].

imshow(rescale(SI))

 graycomatrix

1-1113

Input Arguments
I — Grayscale image
2-D numeric matrix | 2-D logical matrix

Input image, specified as a 2-D numeric matrix or 2-D logical matrix.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Offset',[2 0]

GrayLimits — Range used for scaling input image into gray levels
2-element vector [low high]

Range used for scaling input image into gray levels, specified as a 2-element vector [low high]. If N
is the number of gray levels (see parameter 'NumLevels') to use for scaling, the range [low high]
is divided into N equal width bins and values in a bin get mapped to a single gray level. Grayscale
values less than or equal to low are scaled to 1. Grayscale values greater than or equal to high are
scaled to 'NumLevels'. If'GrayLimits' is set to [], graycomatrix uses the minimum and
maximum grayscale values in I as limits, [min(I(:)) max(I(:))], for example, [0 1] for class
double and [-32768 32767] for class int16.

NumLevels — Number of gray levels
positive integer

1 Functions

1-1114

Number of gray levels, specified as a positive integer. For example, if NumLevels is 8, then
graycomatrix scales the values in I so they are integers between 1 and 8. The number of gray-
levels determines the size of the gray-level co-occurrence matrix (glcm). The default number of gray
levels is 8 for numeric images and 2 for logical images.

Offset — Distance between pixel of interest and its neighbor
[0 1] (default) | p-by-2 matrix of integers

Distance between the pixel of interest and its neighbor, specified as a p-by-2 matrix of integers. Each
row in the matrix is a two-element vector, [row_offset, col_offset], that specifies the
relationship, or offset, of a pair of pixels. row_offset is the number of rows between the pixel-of-
interest and its neighbor. col_offset is the number of columns between the pixel-of-interest and its
neighbor. Because the offset is often expressed as an angle, the following table lists the offset values
that specify common angles, given the pixel distance D.

Angle Offset
0 [0 D]
45 [-D D]
90 [-D 0]
135 [-D -D]

The figure illustrates the array: offset = [0 1; -1 1; -1 0; -1 -1]

Symmetric — Consider ordering of values
false (default) | true

Consider ordering of values, specified as the Boolean value true or false. For example, when
'Symmetric' is set to true, graycomatrix counts both 1,2 and 2,1 pairings when calculating the
number of times the value 1 is adjacent to the value 2. When 'Symmetric' is set to false,
graycomatrix only counts 1,2 or 2,1, depending on the value of 'offset'.
Data Types: logical

Output Arguments
glcms — Gray-level co-occurrence matrix
numeric array

Gray-level co-occurrence matrix (or matrices), returned as an NumLevels-by-NumLevels-by-P array,
where P is the number of offsets in Offset.
Data Types: double

SI — Scaled image used in calculation of GLCM
numeric matrix

 graycomatrix

1-1115

Scaled image used in calculation of GLCM, returned as a numeric matrix of the same size as the input
image. The values in SI are between 1 and NumLevels.
Data Types: double

Algorithms
graycomatrix calculates the GLCM from a scaled version of the image. By default, if I is a binary
image, graycomatrix scales the image to two gray-levels. If I is an intensity image, graycomatrix
scales the image to eight gray-levels. You can specify the number of gray levels graycomatrix uses
to scale the image by using the 'NumLevels' parameter, and the way that graycomatrix scales the
values using the 'GrayLimits' name-value argument.

The following figure shows how graycomatrix calculates several values in the GLCM of the 4-by-5
image I. Element (1,1) in the GLCM contains the value 1 because there is only one instance in the
image where two, horizontally adjacent pixels have the values 1 and 1. Element (1,2) in the GLCM
contains the value 2 because there are two instances in the image where two, horizontally adjacent
pixels have the values 1 and 2. graycomatrix continues this processing to fill in all the values in the
GLCM.

graycomatrix ignores pixel pairs if either of the pixels contains a NaN, replaces positive Infs with
the value NumLevels, and replaces negative Infs with the value 1. graycomatrix ignores border
pixels, if the corresponding neighbor pixel falls outside the image boundaries.

The GLCM created when 'Symmetric' is set to true is symmetric across its diagonal, and is
equivalent to the GLCM described by Haralick (1973). The GLCM produced by the following syntax,
with 'Symmetric' set to true

 graycomatrix(I,'offset',[0 1],'Symmetric',true)

is equivalent to the sum of the two GLCMs produced by the following statements where
'Symmetric' is set to false.

graycomatrix(I,'offset',[0 1],'Symmetric',false)
graycomatrix(I,'offset',[0 -1],'Symmetric',false)

1 Functions

1-1116

References
[1] Haralick, R.M., K. Shanmugan, and I. Dinstein, "Textural Features for Image Classification", IEEE

Transactions on Systems, Man, and Cybernetics, Vol. SMC-3, 1973, pp. 610-621.

[2] Haralick, R.M., and L.G. Shapiro. Computer and Robot Vision: Vol. 1, Addison-Wesley, 1992, p.
459.

See Also
graycoprops

Topics
“Texture Analysis Using the Gray-Level Co-Occurrence Matrix (GLCM)”
“Derive Statistics from GLCM and Plot Correlation”

Introduced before R2006a

 graycomatrix

1-1117

grayconnected
Select contiguous image region with similar gray values using flood-fill technique

Syntax
BW = grayconnected(I,row,column)
BW = grayconnected(I,row,column,tolerance)

Description
BW = grayconnected(I,row,column) finds a connected region of similar intensity in the
grayscale image I. Specify the row and column indices of the starting point, the seed pixel. The
function returns a binary mask, BW, that indicates which pixels are 8-connected to the seed pixel with
a similar intensity.

BW = grayconnected(I,row,column,tolerance) specifies the range of intensity values to
include in the mask, as in [(seedvalue-tolerance),(seedvalue+tolerance)].

Examples

Segment Image Using Flood-Fill Technique

Read and display a grayscale image.

I = imread('cameraman.tif');
imshow(I)

1 Functions

1-1118

Segment the sky in the image by using the flood-fill technique. Select a pixel in the sky to be the seed
location. This example uses the pixel with (row, column) coordinate (50, 50). Call the
grayconnected function, specifying the image to be segmented and this seed location.

J = grayconnected(I,50,50);

Display the segmented region in color over the original image by using the labeloverlay function.
The segmented region includes sky pixels that are 8-connected to the seed pixel. The region does not
include pixels of similar intensity that are disconnected, such as the sky visible between the legs of
the tripod.

imshow(labeloverlay(I,J))

Segment the jacket of the cameraman by using the flood-fill. Select a pixel in the jacket to be the seed
location. This example specifies the seed pixel with (row, column) coordinate (110, 65). Call the
grayconnected function, specifying the image to be segmented and this seed location.

J2 = grayconnected(I,110,65);

Display the segmented image in color over the original image. The segmented region includes all
pixels that are 8-connected to the seed pixel. The tripod and the hair of the cameraman have similar
intensity to the jacket, so they are included in the segmented region.

imshow(labeloverlay(I,J2))

 grayconnected

1-1119

Create Binary Mask from Connected Pixels

Create small sample image.

I = uint8([20 22 24 23 25 20 100
 21 19 12 13 12 30 6
 22 11 13 12 24 25 5
 23 13 13 13 24 25 5
 24 27 13 12 12 13 5
 25 26 5 28 29 50 6]);

Specify the row and column indices of the seed location. The value at the seed location is 23.

seedrow = 4;
seedcol = 1;

Specify the tolerance.

tol = 3;

Create mask image, specifying the seed location and tolerance. The mask includes all pixels that are
8-connected to the seed pixel and have a value in the range [20, 26]. The mask excludes pixels with
grayscale values within the tolerance range that are not 8-connected, such as the pixel with (row,
column) coordinate (3, 6).

BW = grayconnected(I,seedrow,seedcol,tol)

BW = 6x7 logical array

 1 1 1 1 1 1 0

1 Functions

1-1120

 1 0 0 0 0 0 0
 1 0 0 0 0 0 0
 1 0 0 0 0 0 0
 1 0 0 0 0 0 0
 1 1 0 0 0 0 0

Input Arguments
I — Grayscale image
numeric matrix

Grayscale image, specified as a numeric matrix.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

row — Row index of seed pixel
positive integer

Row index of seed pixel, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

column — Column index of seed pixel
positive integer

Column index of seed pixel, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

tolerance — Tolerance of intensity values
numeric scalar

Tolerance of intensity values to include in the mask, specified as a numeric scalar. The mask includes
all pixels with a value in the range [(seedvalue-tolerance),(seedvalue+tolerance)]. By
default, the tolerance is 32 for integer-valued images and 0.1 for floating point images.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Output Arguments
BW — Binary mask
logical matrix

Binary mask of the connected region, returned as a logical array of the same size as I. All of the
foreground pixels indicate image pixels that are 8-connected to the seed pixel with similar intensity.
Data Types: logical

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 grayconnected

1-1121

• grayconnected supports the generation of C code (requires MATLAB Coder). Note that if you
choose the generic MATLAB Host Computer target platform, grayconnected generates code
that uses a precompiled, platform-specific shared library. Use of a shared library preserves
performance optimizations but limits the target platforms for which code can be generated. For
more information, see “Types of Code Generation Support in Image Processing Toolbox”.

See Also
imfill | bwselect | Image Segmenter

Introduced in R2015b

1 Functions

1-1122

graycoprops
Properties of gray-level co-occurrence matrix

Syntax
stats = graycoprops(glcm,properties)

Description
stats = graycoprops(glcm,properties) calculates the statistics specified in properties
from the gray-level co-occurrence matrix glcm.

graycoprops normalizes the gray-level co-occurrence matrix (GLCM) so that the sum of its elements
is equal to 1. Each element (r,c) in the normalized GLCM is the joint probability occurrence of pixel
pairs with a defined spatial relationship having gray level values r and c in the image. graycoprops
uses the normalized GLCM to calculate properties.

Examples

Calculate Statistics from Gray-level Co-occurrence Matrix

Create simple sample GLCM.

glcm = [0 1 2 3;1 1 2 3;1 0 2 0;0 0 0 3]

glcm = 4×4

 0 1 2 3
 1 1 2 3
 1 0 2 0
 0 0 0 3

Calculate statistical properties of the GLCM.

stats = graycoprops(glcm)

stats = struct with fields:
 Contrast: 2.8947
 Correlation: 0.0783
 Energy: 0.1191
 Homogeneity: 0.5658

Calculate Contrast and Homogeneity from Multiple GLCMs

Read grayscale image into the workspace.

I = imread('circuit.tif');

 graycoprops

1-1123

Create two gray-level co-occurrence matrices (GLCM) from the image, specifying different offsets.

glcm = graycomatrix(I,'Offset',[2 0;0 2])

glcm =
glcm(:,:,1) =

 Columns 1 through 6

 14205 2107 126 0 0 0
 2242 14052 3555 400 0 0
 191 3579 7341 1505 37 0
 0 683 1446 7184 1368 0
 0 7 116 1502 10256 1124
 0 0 0 2 1153 1435
 0 0 0 0 0 0
 0 0 0 0 0 0

 Columns 7 through 8

 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0

glcm(:,:,2) =

 Columns 1 through 6

 13938 2615 204 4 0 0
 2406 14062 3311 630 23 0
 145 3184 7371 1650 133 0
 2 371 1621 6905 1706 0
 0 0 116 1477 9974 1173
 0 0 0 1 1161 1417
 0 0 0 0 0 0
 0 0 0 0 0 0

 Columns 7 through 8

 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0

Get statistics on contrast and homogeneity of the image from the GLCMs.

stats = graycoprops(glcm,{'contrast','homogeneity'})

1 Functions

1-1124

stats = struct with fields:
 Contrast: [0.3420 0.3567]
 Homogeneity: [0.8567 0.8513]

Input Arguments
glcm — Gray-level co-occurrence matrix
matrix of nonnegative integers | array of nonnegative integers

Gray-level co-occurrence matrix, specified as one of the following. You can use the graycomatrix
function to create a GLCM.

• An m-by-n matrix of nonnegative integers for a single gray-level co-occurrence matrix
• An m-by-n-by-p array of nonnegative integers for p valid gray-level co-occurrence matrices.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

properties — Statistical properties
'all' (default) | comma-separated list | cell array | space-separated string scalar or character vector

Statistical properties of the image derived from GLCM, specified as a comma-separated list string
scalars or character vectors, space-separated string scalar or character vector, cell array of string
scalars or character vectors, or 'all'. You can specify any of the property names listed in this table.

Property Description Formula
'Contrast' Returns a measure of the intensity contrast

between a pixel and its neighbor over the whole
image.

Range = [0 (size(GLCM,1)-1)^2]

Contrast is 0 for a constant image.

The property Contrast is also known as variance
and inertia.

∑
i, j

i− j 2p(i, j)

'Correlation' Returns a measure of how correlated a pixel is to
its neighbor over the whole image.

Range = [-1 1]

Correlation is 1 or -1 for a perfectly positively or
negatively correlated image. Correlation is NaN for
a constant image.

∑
i, j

(i− μi)(j− μ j)p(i, j)
σiσ j

 graycoprops

1-1125

Property Description Formula
'Energy' Returns the sum of squared elements in the GLCM.

Range = [0 1]

Energy is 1 for a constant image.

The property Energy is also known as uniformity,
uniformity of energy, and angular second moment.

∑
i, j

p(i, j)2

'Homogeneity' Returns a value that measures the closeness of the
distribution of elements in the GLCM to the GLCM
diagonal.

Range = [0 1]

Homogeneity is 1 for a diagonal GLCM.

∑
i, j

p(i, j)
1 + i− j

Data Types: char | string | cell

Output Arguments
stats — Statistics derived from GLCM
structure

Statistics derived from the GLCM, returned as a structure with fields that are specified by
properties. Each field contains a 1-by-p array, where p is the number of gray-level co-occurrence
matrices in glcm. For example, if glcm is an 8-by-8-by-3 array and properties is 'Energy', then
stats is a structure containing the field Energy, which contains a 1-by-3 array.

See Also
graycomatrix

Topics
“Derive Statistics from GLCM and Plot Correlation”
“Texture Analysis Using the Gray-Level Co-Occurrence Matrix (GLCM)”
“Create a Gray-Level Co-Occurrence Matrix”

Introduced before R2006a

1 Functions

1-1126

graydiffweight
Calculate weights for image pixels based on grayscale intensity difference

Syntax
W = graydiffweight(I,refGrayVal)
W = graydiffweight(I,mask)
W = graydiffweight(I,C,R)
W = graydiffweight(V,C,R,P)
W = graydiffweight(___, Name,Value)

Description
W = graydiffweight(I,refGrayVal) computes the pixel weight for each pixel in the grayscale
image I. The weight is the absolute value of the difference between the intensity of the pixel and the
reference grayscale intensity specified by the scalar refGrayVal. Pick a reference grayscale
intensity value that is representative of the object you want to segment. The weights are returned in
the array W, which is the same size as input image I.

The weight of a pixel is inversely related to the absolute value of the grayscale intensity difference at
the pixel location. If the difference is small (intensity value close to refGrayVal), the weight value is
large. If the difference is large (intensity value very different from refGrayVal), the weight value is
small.

W = graydiffweight(I,mask) computes the pixel weights, where the reference grayscale
intensity value is the average of the intensity values of all the pixels in I that are marked as logical
true in mask. Using the average of several pixels to calculate the reference grayscale intensity value
can be more effective than using a single reference intensity value, as in the previous syntax.

W = graydiffweight(I,C,R) computes the pixel weights, where the reference grayscale intensity
value is the average of the intensity values of the pixel locations specified by the vectors C and R. C
and R contain the column and row indices of the pixel locations that must be valid pixel indices in I.

W = graydiffweight(V,C,R,P) computes the weights for each voxel in the volume V, specified by
the vectors C, R, and P. C, R, and P contain the column, row, and plane indices of the voxel locations
that must be valid voxel indices in V.

W = graydiffweight(___, Name,Value) returns the weight array W using name-value pairs to
control aspects of weight computation.

Examples

Calculate Grayscale Intensity Difference Weights

This example segments an object in an image using Fast Marching Method using grayscale intensity
difference weights calculated from the intensity values at the seed locations.

Read image and display it.

 graydiffweight

1-1127

I = imread('cameraman.tif');
imshow(I)
title('Original Image')

Specify row and column index of pixels for use a reference grayscale intensity value.

seedpointR = 159;
seedpointC = 67;

Calculate the grayscale intensity difference weight array for the image and display it. The example
does log-scaling of W for better visualization.

W = graydiffweight(I, seedpointC, seedpointR,'GrayDifferenceCutoff',25);
figure, imshow(log(W),[])

1 Functions

1-1128

Segment the image using the grayscale intensity difference weight array. Specify the same seed point
vectors you used to create the weight array.

thresh = 0.01;
BW = imsegfmm(W, seedpointC, seedpointR, thresh);
figure, imshow(BW)
title('Segmented Image')

 graydiffweight

1-1129

Input Arguments
I — Grayscale image
2-D numeric matrix

Grayscale image, specified as a 2-D numeric matrix.
Data Types: single | double | int8 | uint8 | int16 | uint16 | int32 | uint32

V — Grayscale volume
3-D numeric array

Grayscale volume, specified as a 3-D numeric array.
Data Types: single | double | int8 | uint8 | int16 | uint16 | int32 | uint32

refGrayVal — Reference grayscale intensity value
scalar

Reference grayscale intensity value, specified as a scalar.
Data Types: double

mask — Reference grayscale intensity mask
logical array

Reference grayscale intensity mask, specified as a logical array of the same size as I.
Data Types: logical

C — Column index of reference pixel (or voxel)
numeric vector

Column index of reference pixel (or voxel), specified as a numeric (integer-valued) vector.
Data Types: double

R — Row index of reference pixel (or voxel)
numeric vector

Row index of reference pixel (or voxel), specified as a numeric (integer-valued) vector.
Data Types: double

P — Plane index of reference voxel
numeric vector

Plane index of reference voxel, specified as a numeric (integer-valued) vector.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

1 Functions

1-1130

Example: W = graydiffweight(I, seedpointC,
seedpointR,'GrayDifferenceCutoff',25);

RolloffFactor — Output weight roll-off factor
0.5 (default) | positive scalar

Output weight roll-off factor, specified as the comma-separated pair consisting of 'RolloffFactor'
and a positive scalar of class double. Controls how fast the output weight falls as the function of the
absolute difference between an intensity value and the reference grayscale intensity. When viewed as
a 2-D plot, pixel intensity values can vary gradually at the edges of regions, creating a gentle slope. In
your segmented image, you might want the edge to be more well-defined. Using the roll-off factor,
you control the slope of the weight value curve at points where intensity values start to change. If you
specify a high value, the output weight values fall off sharply around the regions of change intensity.
If you specify a low value, the output weight has a more gradual fall-off around the regions of
changing intensity. The suggested range for this parameter is [0.5 4].
Data Types: double

GrayDifferenceCutoff — Threshold for absolute grayscale intensity difference values
Inf (default) | nonnegative scalar

Threshold for absolute grayscale intensity difference values, specified as the comma-separated pair
consisting of 'GrayDifferenceCutoff' and a nonnegative scalar of class double. When you put a
threshold on intensity difference values, you strongly suppress output weight values greater than the
cutoff value. graydiffweight assigns these pixels the smallest weight value. When the output
weight array W is used for Fast Marching Method based segmentation (as input to imsegfmm), this
parameter can be useful in improving the accuracy of the segmentation output. Default value of this
parameter is Inf, which means that there is no hard cutoff.
Data Types: double

Output Arguments
W — Weight array
numeric array

Weight array, specified as numeric array of the same size as the input image I or volume V. W is of
class double, unless the input image or volume is of class single, in which case W is of class
single.

See Also
imsegfmm | gradientweight | graydist

Introduced in R2014b

 graydiffweight

1-1131

graydist
Gray-weighted distance transform of grayscale image

Syntax
T = graydist(I,mask)
T = graydist(I,C,R)
T = graydist(I,ind)
T = graydist(___ ,method)

Description
T = graydist(I,mask) computes the gray-weighted distance transform of the grayscale image I.
Locations where mask is true are seed locations.

T = graydist(I,C,R) specifies the column and row coordinates of seed locations in vectors C and
R.

T = graydist(I,ind) specifies the linear indices of seed locations, ind.

T = graydist(___ ,method) specifies an alternate distance metric, method.

Examples

Compute Minimum Path in Magic Square

Create a magic square. Matrices generated by the magic function have equal row, column, and
diagonal sums. The minimum path between the upper-left and lower-right corner is along the
diagonal.

A = magic(3)

A = 3×3

 8 1 6
 3 5 7
 4 9 2

Calculate the gray-weighted distance transform, specifying the upper left corner and the lower right
corner of the square as seed locations.

T1 = graydist(A,1,1);
T2 = graydist(A,3,3);

Sum the two transforms to find the minimum path between the seed locations. As expected, there is a
constant-value minimum path along the diagonal.

T = T1 + T2

T = 3×3

1 Functions

1-1132

 10 11 17
 13 10 13
 17 17 10

Input Arguments
I — Grayscale image
numeric array | logical array

Grayscale image, specified as a numeric or logical array.

mask — Binary mask
logical array

Binary mask that specifies seed locations, specified as a logical array the same size as I.

C, R — Column and row coordinates
vector of positive integers

Column and row coordinates of seed locations, specified as a vector of positive integers. Coordinate
values are valid C,R subscripts in I.

ind — Indices
vector of positive integers

Indices of seed locations, specified as a vector of positive integers.

method — Distance metric
'chessboard' (default) | 'cityblock' | 'quasi-euclidean'

Distance metric, specified as one of these values.

Method Description
'chessboard' In 2-D, the chessboard distance between (x1,y1) and (x2,y2) is

max(│x1 – x2│,│y1 – y2│).
'cityblock' In 2-D, the cityblock distance between (x1,y1) and (x2,y2) is

│x1 – x2│ + │y1 – y2│
'quasi-euclidean' In 2-D, the quasi-Euclidean distance between (x1,y1) and (x2,y2) is

x1− x2 + (2− 1) y1− y2 , x1− x2 > y1− y2

(2− 1) x1− x2 + y1− y2 , otherwise.

For more information, see “Distance Transform of a Binary Image”.

Output Arguments
T — Gray-weighted distance transform
numeric array

 graydist

1-1133

Gray-weighted distance transform, returned as a numeric array of the same size as I. If the input
numeric type of I is double, then the output numeric type of T is double. If the input is any other
numeric type, then the output T is single.
Data Types: single | double

Algorithms
graydist uses the geodesic time algorithm [1]. The basic equation for geodesic time along a path is:

τf P =
f po

2 +
f pl

2 + ∑
i = 1

l− 1
f pi

method determines the chamfer weights that are assigned to the local neighborhood during outward
propagation. Each pixel's contribution to the geodesic time is based on the chamfer weight in a
particular direction multiplied by the pixel intensity.

References
[1] Soille, P. "Generalized geodesy via geodesic time." Pattern Recognition Letters. Vol.15, December

1994, pp. 1235–1240.

See Also
bwdist | bwdistgeodesic | watershed

Topics
“Distance Transform of a Binary Image”

Introduced in R2011b

1 Functions

1-1134

grayslice
Convert grayscale image to indexed image using multilevel thresholding

Syntax
X = grayslice(I,N)
X = grayslice(I,thresholds)

Description
X = grayslice(I,N) converts a grayscale image to an indexed image by using multilevel
thresholding approach. The function automatically calculates the threshold values based on N. To
learn more about threshold calculation, see “Algorithms” on page 1-1138.

X = grayslice(I,thresholds) returns an indexed image by multilevel thresholding of input
image using a specified set of thresholds.

Examples

Convert Grayscale Image to Indexed Image Using Thresholding

Read grayscale image into the workspace.

I = imread('snowflakes.png');

Threshold the intensity image, returning an indexed image.

X = grayslice(I,16);

Display the original image and the indexed image, using one of the standard colormaps.

imshow(I)

figure
imshow(X,jet(16))

 grayslice

1-1135

Convert Grayscale Image to Indexed Image Using Multilevel Thresholds

Read a grayscale image into the workspace. Display the image.

I = imread('coins.png');
imshow(I)

Specify the threshold values for multilevel thresholding.

thresholds = [45 65 84 108 134 157 174 189 206 228];

Convert the input grayscale image to an indexed image.

X = grayslice(I,thresholds);

1 Functions

1-1136

Display the indexed image. Set the colormap of the indexed image to jet. The length of colormap, m,
is the maximum intensity value in the indexed image.

m = double(max(X(:)));

figure
imshow(X,colormap(jet(m)))

Input Arguments
I — Input grayscale image
m-by-n numeric matrix

Input grayscale image, specified as a m-by-n numeric matrix.
Data Types: single | double | int16 | uint8 | uint16

N — Number of threshold values
positive scalar

Number of threshold values, specified as a positive scalar. The value represents the total number of
thresholds to be used for multilevel thresholding.
Data Types: single | double | int16 | uint8 | uint16

thresholds — Set of thresholds
numeric vector

Set of thresholds, specified as a numeric vector. The number of threshold values to be used for
multilevel thresholding is equal to length(thresholds).

 grayslice

1-1137

Image Data Type Range of Valid Threshold Values
uint8 [0, 255]
int16 or uint16 [0, 65535]
single or double [0, 1]

Note Before thresholding an image of data type int16, the grayslice function converts the image
to uint16 by adding 32,768 to each pixel. Consider this additive offset when specifying thresholds
for input images of data type int16.

Data Types: single | double | int16 | uint8 | uint16

Output Arguments
X — Output indexed image
m-by-n matrix

Output indexed image, returned as a m-by-n matrix of the same size as the input grayscale image.
The data type of X depends on the number of threshold values used for multilevel thresholding.

• If the number of threshold values is less than 256, then X is of data type uint8. In this case, the
range of intensity values in X is either [0, N-1] or [0, length(thresholds)].

• If the number of threshold values is greater than or equal to 256, then X is of data type double. In
this case, the range of intensity values in X is either [1, N] or [1, length(thresholds)+1].

Data Types: uint8 | double

Tips
• You can view the thresholded image using imshow(X,map) with a colormap of appropriate

length.

Algorithms
The function performs multilevel thresholding of the input grayscale image and returns an indexed
image as the output. If you specify the number of thresholds N, then grayslice assigns pixels to N
indices according to the these thresholds.

• The first index in X consists of the grayscale pixels in the range max_intensity × 0, 1
N

• The k-th index in X consists of the grayscale pixels in the range max_intensity × k− 1
N , k

N
• The last index in X consists of the grayscale pixels in the range max_intensity × N − 1

N , 1 .

max_intensity depends on the data type of the input image.

1 Functions

1-1138

Image Data Type max_intensity
uint8 255
int16 or uint16 65535
single or double 1

Note Before thresholding an image of data type int16, the grayslice function converts the image
to uint16 by adding 32,768 to each pixel.

Extended Capabilities
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
gray2ind

Introduced before R2006a

 grayslice

1-1139

graythresh
Global image threshold using Otsu's method

Syntax
T = graythresh(I)
[T,EM] = graythresh(I)

Description
T = graythresh(I) computes a global threshold T from grayscale image I, using Otsu's method
[1]. Otsu's method chooses a threshold that minimizes the intraclass variance of the thresholded
black and white pixels. The global threshold T can be used with imbinarize to convert a grayscale
image to a binary image.

[T,EM] = graythresh(I) also returns the effectiveness metric, EM.

Examples

Convert Intensity Image to Binary Image Using Level Threshold

Read a grayscale image into the workspace.

I = imread('coins.png');

Calculate a threshold using graythresh. The threshold is normalized to the range [0, 1].

level = graythresh(I)

level = 0.4941

Convert the image into a binary image using the threshold.

BW = imbinarize(I,level);

Display the original image next to the binary image.

imshowpair(I,BW,'montage')

1 Functions

1-1140

Input Arguments
I — Grayscale image
numeric array

Grayscale image, specified as a numeric array of any dimensionality. The graythresh function
converts multidimensional arrays to 2-D arrays, using reshape, and ignores any nonzero imaginary
part of I.
Data Types: single | double | int16 | uint8 | uint16

Output Arguments
T — Global threshold
numeric scalar

Global threshold, returned as a numeric scalar in the range [0, 1].
Data Types: double

EM — Effectiveness metric
positive scalar

Effectiveness metric of the threshold, returned as a positive scalar in the range [0,1]. The lower
bound is attainable only by images having a single gray level, and the upper bound is attainable only
by two-valued images.
Data Types: double

Tips
• By default, the function imbinarize creates a binary image using a threshold obtained using

Otsu’s method. This default threshold is identical to the threshold returned by graythresh.

 graythresh

1-1141

However, imbinarize only returns the binary image. If you want to know the level or the
effectiveness metric, use graythresh before calling imbinarize.

References
[1] Otsu, N., "A Threshold Selection Method from Gray-Level Histograms." IEEE Transactions on

Systems, Man, and Cybernetics. Vol. 9, No. 1, 1979, pp. 62–66.

See Also
imbinarize | imquantize | multithresh | rgb2ind

Introduced before R2006a

1 Functions

1-1142

hdrread
Read high dynamic range (HDR) image

Syntax
hdr = hdrread(filename)

Description
hdr = hdrread(filename) reads the high dynamic range (HDR) image, hdr, from the file
specified by filename. For scene-referred data sets, pixel values usually are scene illumination in
radiance units.

Examples

Read and Display High Dynamic Range Image

Read high dynamic range image into the workspace.

hdr = hdrread('office.hdr');

Convert the HDR image to a lower dynamic range, suitable for display.

rgb = tonemap(hdr);

Display the image.

imshow(rgb);

 hdrread

1-1143

Input Arguments
filename — File name
character vector | string scalar

File name of HDR image, specified as a character vector or string scalar.
Example: 'office.hdr' or "office.hdr"
Data Types: char | string

Output Arguments
hdr — HDR image
m-by-n-by-3 numeric array

HDR image, returned as an m-by-n-by-3 numeric array with values in the range [0,Inf).
Data Types: single

Tips
• To display HDR images, use an appropriate tone-mapping function, such as tonemap.

1 Functions

1-1144

References
[1] Larson, Greg W. "Radiance File Formats". http://radsite.lbl.gov/radiance/refer/filefmts.pdf

See Also
hdrwrite | makehdr | tonemap

Introduced in R2007b

 hdrread

1-1145

hdrwrite
Write high dynamic range (HDR) image file

Syntax
hdrwrite(hdr,filename)

Description
hdrwrite(hdr,filename) writes high dynamic range (HDR) image hdr to a file with name
filename. The function uses run-length encoding to minimize file size.

Examples

Write High Dynamic Range Image to File

Read a high dynamic range image into the workspace.

hdr = hdrread('office.hdr');

Create a new HDR file, writing the high dynamic range data, hdr, to a file with a new filename.

hdrwrite(hdr,'newHDRfile.hdr');

Input Arguments
hdr — HDR image
m-by-n-by-3 numeric array

HDR image, specified as an m-by-n-by-3 numeric array of positive numbers.
Data Types: single | double

filename — File name
character vector | string scalar

File name of HDR image, specified as a character vector or string scalar ending with extension
'hdr'.
Example: 'office.hdr' or "office.hdr"
Data Types: char | string

See Also
hdrread | makehdr | tonemap

Introduced in R2008a

1 Functions

1-1146

histeq
Enhance contrast using histogram equalization

Syntax
J = histeq(I)
J = histeq(I,n)
J = histeq(I,hgram)

newmap = histeq(X,map)
newmap = histeq(X,map,hgram)

[___ ,T] = histeq(___)

Description
J = histeq(I) transforms the grayscale image I so that the histogram of the output grayscale
image J has 64 bins and is approximately flat.

J = histeq(I,n) transforms the grayscale image I so that the histogram of the output grayscale
image J with n bins is approximately flat. The histogram of J is flatter when n is much smaller than
the number of discrete levels in I.

J = histeq(I,hgram) transforms the grayscale image I so that the histogram of the output
grayscale image J with length(hgram) bins approximately matches the target histogram hgram.

newmap = histeq(X,map) transforms the values in the colormap so that the histogram of the gray
component of the indexed image X is approximately flat. The transformed colormap is newmap.

newmap = histeq(X,map,hgram) transforms the colormap associated with the indexed image X so
that the histogram of the gray component of the indexed image (X,newmap) approximately matches
the target histogram hgram. The histeq function returns the transformed colormap in newmap.
length(hgram) must be the same as size(map,1).

[___ ,T] = histeq(___) also returns the transformation T that maps the gray component of the
input grayscale image or colormap to the gray component of the output grayscale image or colormap.

Examples

Enhance Contrast Using Histogram Equalization

Read an image into the workspace.

I = imread('tire.tif');

Enhance the contrast of an intensity image using histogram equalization.

J = histeq(I);

Display the original image and the adjusted image.

 histeq

1-1147

imshowpair(I,J,'montage')
axis off

Display a histogram of the original image.

figure
imhist(I,64)

1 Functions

1-1148

Display a histogram of the processed image.

figure
imhist(J,64)

 histeq

1-1149

Enhance Contrast of Volumetric Image Using Histogram Equalization

Load a 3-D dataset.

load mristack

Perform histogram equalization.

enhanced = histeq(mristack);

Display the first slice of data for the original image and the contrast-enhanced image.

figure
subplot(1,2,1)
imshow(mristack(:,:,1))
title('Slice of Original Image')
subplot(1,2,2)
imshow(enhanced(:,:,1))
title('Slice of Enhanced Image')

1 Functions

1-1150

Input Arguments
I — Grayscale image
numeric array

Grayscale image, specified as a numeric array of any dimension.
Data Types: single | double | int16 | uint8 | uint16

hgram — Target histogram
numeric vector

Target histogram, specified as a numeric vector. hgram has equally spaced bins with intensity values
in the appropriate range:

• [0, 1] for images of class double or single
• [0, 255] for images of class uint8
• [0, 65535] for images of class uint16
• [-32768, 32767] for images of class int16

histeq automatically scales hgram so that sum(hgram)=numel(I). The histogram of J better
matches hgram when length(hgram) is much smaller than the number of discrete levels in I.
Data Types: single | double

 histeq

1-1151

n — Number of discrete gray levels
64 (default) | positive integer

Number of discrete gray levels, specified as a positive integer.
Data Types: single | double

X — Indexed image
numeric array

Indexed image, specified as a numeric array of any dimension. The values in X are an index into the
colormap map.
Data Types: single | double | uint8 | uint16

map — Colormap
c-by-3 numeric matrix

Colormap associated with indexed image X, specified as a c-by-3 numeric matrix with values in the
range [0, 1]. Each row is a three-element RGB triplet that specifies the red, green, and blue
components of a single color of the colormap.
Data Types: double

Output Arguments
J — Transformed grayscale image
numeric array

Transformed grayscale image, returned as a numeric array of the same size and class as the input
image I.

T — Grayscale transformation
numeric vector

Grayscale transformation, returned as a numeric vector. The transformation T maps gray levels in the
image I to gray levels in J.
Data Types: double

newmap — Transformed colormap
n-by-3 numeric matrix

Transformed colormap, specified as an n-by-3 numeric matrix with values in the range [0, 1]. Each
row is a three-element RGB triplet that specifies the red, green, and blue components of a single
color of the colormap.
Data Types: double

Algorithms
When you supply a desired histogram hgram, histeq chooses the grayscale transformation T to
minimize

c1(T(k))− c0(k) ,

1 Functions

1-1152

c0 is the cumulative histogram of the input image I, and c1 is the cumulative sum of hgram for all
intensities k. This minimization is subject to these constraints:

• T must be monotonic
• c1(T(a)) cannot overshoot c0(a) by more than half the distance between the histogram counts at a

histeq uses the transformation b = T(a) to map the gray levels in X (or the colormap) to their new
values.

If you do not specify hgram, then histeq creates a flat hgram,

hgram = ones(1,n)*prod(size(A))/n;

and then applies the previous algorithm.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• histeq supports the generation of C code (requires MATLAB Coder). Note that if you choose the
generic MATLAB Host Computer target platform, histeq generates code that uses a
precompiled, platform-specific shared library. Use of a shared library preserves performance
optimizations but limits the target platforms for which code can be generated. For more
information, see “Types of Code Generation Support in Image Processing Toolbox”.

• When generating code, histeq does not support indexed images.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on a GPU”.

See Also
adapthisteq | brighten | imadjust | imhist

Introduced before R2006a

 histeq

1-1153

hough
Hough transform

Syntax
[H,theta,rho] = hough(BW)
[H,theta,rho] = hough(BW,Name,Value)

Description
[H,theta,rho] = hough(BW) computes the Standard Hough Transform (SHT) of the binary image
BW. The hough function is designed to detect lines. The function uses the parametric representation
of a line: rho = x*cos(theta) + y*sin(theta). The function returns rho, the distance from the
origin to the line along a vector perpendicular to the line, and theta, the angle in degrees between
the x-axis and this vector. The function also returns the SHT, H, which is a parameter space matrix
whose rows and columns correspond to rho and theta values respectively. For more information, see
“Algorithms” on page 1-1157.

[H,theta,rho] = hough(BW,Name,Value) computes the SHT of the binary image BW using
name-value pair arguments to affect the computation.

Examples

Compute and Display Hough Transform

Read an image, and convert it to a grayscale image.

RGB = imread('gantrycrane.png');
I = im2gray(RGB);

Extract edges.

BW = edge(I,'canny');

Calculate Hough transform.

[H,T,R] = hough(BW,'RhoResolution',0.5,'Theta',-90:0.5:89);

Display the original image and the Hough matrix.

subplot(2,1,1);
imshow(RGB);
title('gantrycrane.png');
subplot(2,1,2);
imshow(imadjust(rescale(H)),'XData',T,'YData',R,...
 'InitialMagnification','fit');
title('Hough transform of gantrycrane.png');
xlabel('\theta'), ylabel('\rho');
axis on, axis normal, hold on;
colormap(gca,hot);

1 Functions

1-1154

Compute Hough Transform Over Limited Theta Range

Read an image, and convert it to grayscale.

RGB = imread('gantrycrane.png');
I = im2gray(RGB);

Extract edges.

BW = edge(I,'canny');

Calculate the Hough transform over a limited range of angles.

[H,T,R] = hough(BW,'Theta',44:0.5:46);

Display the Hough transform.

figure
imshow(imadjust(rescale(H)),'XData',T,'YData',R,...
 'InitialMagnification','fit');
title('Limited Theta Range Hough Transform of Gantrycrane Image');
xlabel('\theta')
ylabel('\rho');
axis on, axis normal;
colormap(gca,hot)

 hough

1-1155

Input Arguments
BW — Binary image
2-D logical matrix | 2-D numeric matrix

Binary image, specified as a 2-D logical matrix or 2-D numeric matrix. For numeric input, any nonzero
pixels are considered to be 1 (true).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'RhoResolution',0.5

RhoResolution — Spacing of Hough transform bins
1 (default) | positive number

Spacing of Hough transform bins along the rho axis, specified as the comma-separated pair
consisting of 'RhoResolution' and a positive number between 0 and norm(size(BW)), exclusive.
Data Types: double

1 Functions

1-1156

Theta — Theta values for SHT
-90:89 (default) | numeric vector

Theta values for the SHT, specified as the comma-separated pair consisting of 'Theta' and a
numeric vector with elements in the range [-90, 90).
Example: -90:0.5:89.5
Data Types: double

Output Arguments
H — Hough transform matrix
numeric matrix

Hough transform matrix, returned as a numeric matrix of size nrho-by-ntheta. The rows and columns
correspond to rho and theta values. For more information, see “Algorithms” on page 1-1157.

theta — Angle between x-axis and rho vector
numeric matrix

Angle between the x-axis and the rho vector, in degrees, returned as a numeric matrix. For more
information, see “Algorithms” on page 1-1157.
Data Types: double

rho — Distance from origin to line
numeric array

Distance from the origin to the line along a vector perpendicular to the line, returned as a numeric
array of class double. For more information, see “Algorithms” on page 1-1157.

Algorithms
The Standard Hough Transform (SHT) uses the parametric representation of a line:

rho = x*cos(theta) + y*sin(theta)

The variable rho is the distance from the origin to the line along a vector perpendicular to the line.
theta is the angle of the perpendicular projection from the origin to the line measured in degrees
clockwise from the positive x-axis. The range of theta is –90° ≤ θ < 90°. The angle of the line itself is
θ + 90°, also measured clockwise with respect to the positive x-axis.

 hough

1-1157

The SHT is a parameter space matrix whose rows and columns correspond to rho and theta values
respectively. The elements in the SHT represent accumulator cells. Initially, the value in each cell is
zero. Then, for every non-background point in the image, rho is calculated for every theta. rho is
rounded off to the nearest allowed row in SHT. That accumulator cell is incremented. At the end of
this procedure, a value of Q in SHT(r,c) means that Q points in the xy-plane lie on the line specified by
theta(c) and rho(r). Peak values in the SHT represent potential lines in the input image.

The Hough transform matrix, H, is nrho-by-ntheta where:

nrho = 2*(ceil(D/RhoResolution)) + 1, and
D = sqrt((numRowsInBW - 1)^2 + (numColsInBW - 1)^2).
rho values range from -diagonal to diagonal, where
diagonal = RhoResolution*ceil(D/RhoResolution).

ntheta = length(theta)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• hough supports the generation of C code (requires MATLAB Coder). For more information, see
“Code Generation for Image Processing”.

• The optional parameters 'Theta' and 'RhoResolution' must be compile-time string constants.
• The optional Theta vector must have a bounded size.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

1 Functions

1-1158

• The optional parameters 'Theta' and 'RhoResolution' must be compile-time string constants.
• The optional Theta vector must have a bounded size.

See Also
houghlines | houghpeaks

Topics
“Detect Lines in Images Using Hough”

Introduced before R2006a

 hough

1-1159

houghlines
Extract line segments based on Hough transform

Syntax
lines = houghlines(BW,theta,rho,peaks)
lines = houghlines(___ ,Name,Value)

Description
lines = houghlines(BW,theta,rho,peaks) extracts line segments in the image BW associated
with particular bins in a Hough transform. theta and rho are vectors returned by function hough.
peaks is a matrix returned by the houghpeaks function that contains the row and column
coordinates of the Hough transform bins to use in searching for line segments. The return value
lines contains information about the extracted line segments.

lines = houghlines(___ ,Name,Value) uses name-value pair arguments to control various
aspects of the line extraction.

Examples

Find Line Segments and Highlight longest segment

Read image into workspace.

I = imread('circuit.tif');

Rotate the image.

rotI = imrotate(I,33,'crop');

Create a binary image.

BW = edge(rotI,'canny');

Create the Hough transform using the binary image.

[H,T,R] = hough(BW);
imshow(H,[],'XData',T,'YData',R,...
 'InitialMagnification','fit');
xlabel('\theta'), ylabel('\rho');
axis on, axis normal, hold on;

1 Functions

1-1160

Find peaks in the Hough transform of the image.

P = houghpeaks(H,5,'threshold',ceil(0.3*max(H(:))));
x = T(P(:,2)); y = R(P(:,1));
plot(x,y,'s','color','white');

 houghlines

1-1161

Find lines and plot them.

lines = houghlines(BW,T,R,P,'FillGap',5,'MinLength',7);
figure, imshow(rotI), hold on
max_len = 0;
for k = 1:length(lines)
 xy = [lines(k).point1; lines(k).point2];
 plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green');

 % Plot beginnings and ends of lines
 plot(xy(1,1),xy(1,2),'x','LineWidth',2,'Color','yellow');
 plot(xy(2,1),xy(2,2),'x','LineWidth',2,'Color','red');

 % Determine the endpoints of the longest line segment
 len = norm(lines(k).point1 - lines(k).point2);
 if (len > max_len)
 max_len = len;
 xy_long = xy;
 end
end

1 Functions

1-1162

Highlight the longest line segment by coloring it cyan.

plot(xy_long(:,1),xy_long(:,2),'LineWidth',2,'Color','cyan');

 houghlines

1-1163

Input Arguments
BW — Binary image
2-D logical matrix | 2-D numeric matrix

Binary image, specified as a 2-D logical matrix or 2-D numeric matrix. For numeric input, any nonzero
pixels are considered to be 1 (true).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

theta — Line rotation angle
numeric matrix

Line rotation angle, in degrees, specified as a numeric matrix. The angle is measured between the x-
axis and the rho vector.
Data Types: double

rho — Distance from origin to line
numeric matrix

Distance from the coordinate origin, specified as a numeric matrix. The coordinate origin is the top-
left corner of the image (0,0).
Data Types: double

peaks — Row and column coordinates of Hough transform bins
numeric matrix

Row and column coordinates of Hough transform bins, specified as a numeric matrix.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: lines = houghlines(BW,T,R,P,'FillGap',5,'MinLength',7);

FillGap — Distance between two line segments associated with the same Hough transform
bin
20 (default) | positive number

Distance between two line segments associated with the same Hough transform bin, specified as a
positive number. When the distance between the line segments is less than the value specified, the
houghlines function merges the line segments into a single line segment.
Data Types: double

MinLength — Minimum line length
40 (default) | positive number

Minimum line length, specified as a positive number. houghlines discards lines that are shorter
than the value specified.

1 Functions

1-1164

Data Types: double

Output Arguments
lines — Detected lines
structure array

Detected lines, returned as a structure array whose length equals the number of merged line
segments found. Each element of the structure array has these fields:

Field Description
point1 Two element vector [X Y] specifying the coordinates of the end-point of the

line segment
point2 Two element vector [X Y] specifying the coordinates of the end-point of the

line segment
theta Angle in degrees of the Hough transform bin
rho rho axis position of the Hough transform bin

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• houghlines supports the generation of C code (requires MATLAB Coder). For more information,
see “Code Generation for Image Processing”.

• The optional parameter names 'FillGap' and 'MinLength' must be compile-time constants.
Their associated values need not be compile-time constants.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The optional parameter names 'FillGap' and 'MinLength' must be compile-time constants.
Their associated values need not be compile-time constants.

See Also
hough | houghpeaks

Introduced before R2006a

 houghlines

1-1165

houghpeaks
Identify peaks in Hough transform

Syntax
peaks = houghpeaks(H,numpeaks)
peaks = houghpeaks(H,numpeaks,Name,Value)

Description
peaks = houghpeaks(H,numpeaks) locates peaks in the Hough transform matrix, H, generated by
the hough function. numpeaks specifies the maximum number of peaks to identify. The function
returns peaks a matrix that holds the row and column coordinates of the peaks.

peaks = houghpeaks(H,numpeaks,Name,Value) controls aspects of the operation using name-
value pair arguments.

Examples

Locate and Display Peaks in Hough Transform of Rotated Image

Read image into workspace.

I = imread('circuit.tif');

Create binary image.

BW = edge(imrotate(I,50,'crop'),'canny');

Create Hough transform of image.

[H,T,R] = hough(BW);

Find peaks in the Hough transform of the image and plot them.

P = houghpeaks(H,2);
imshow(H,[],'XData',T,'YData',R,'InitialMagnification','fit');
xlabel('\theta'), ylabel('\rho');
axis on, axis normal, hold on;
plot(T(P(:,2)),R(P(:,1)),'s','color','white');

1 Functions

1-1166

Input Arguments
H — Hough transform matrix
numeric array

Hough transform matrix, specified as a numeric array. The rows and columns correspond to rho and
theta values. Use the hough function to create a Hough transform matrix.
Data Types: double

numpeaks — Maximum number of peaks to identify
1 (default) | positive integer

Maximum number of peaks to identify, specified as a positive integer.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: P = houghpeaks(H,2,'Threshold',15);

 houghpeaks

1-1167

Threshold — Minimum value to be considered a peak
0.5*max(H(:)) (default) | nonnegative number

Minimum value to be considered a peak, specified as a nonnegative number.
Data Types: double

NHoodSize — Size of suppression neighborhood
2-element vector of positive odd integers

Size of the suppression neighborhood, specified as a 2-element vector of positive odd integers. The
suppression neighborhood is the neighborhood around each peak that is set to zero after the peak is
identified. The default value of NHoodSize is the smallest odd values greater than or equal to
size(H)/50. The dimensions of NHoodSize must be smaller than the size of the Hough transform
matrix, H.
Data Types: double

Theta — Hough transform theta values
-90:89 (default) | numeric vector

Hough transform theta values, specified as a numeric vector returned by the hough function. Each
element of the vector specifies the theta value for the corresponding column of the output matrix H.
houghpeaks uses the theta values specified for peak suppression. Use the hough function to create a
Hough transform matrix.

Note If you specify the 'Theta' parameter as input to the hough function, you must specify the
theta parameter with the houghpeaks function. Use the theta output value from the hough
function as the theta input value for houghpeaks. Otherwise, peak suppression can result in
unexpected results.

Data Types: double

Output Arguments
peaks — Row and column coordinates of found peaks
Q-by-2 matrix

Row and column coordinates of found peaks, returned as a Q-by-2 matrix. The value Q can range from
0 to numpeaks.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• houghpeaks supports the generation of C code (requires MATLAB Coder). For more information,
see “Code Generation for Image Processing”.

• The optional parameter names 'Threshold' and 'NHoodSize' must be compile-time constants.
Their associated values need not be compile-time constants.

1 Functions

1-1168

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The optional parameter names 'Threshold' and 'NHoodSize' must be compile-time constants.
Their associated values need not be compile-time constants.

See Also
hough | houghlines

Topics
“Hough Transform”

Introduced before R2006a

 houghpeaks

1-1169

iccfind
Find ICC profiles

Syntax
profiles = iccfind(folder)
profiles = iccfind(folder,pattern)
[profiles,descriptions] = iccfind(___)

Description
profiles = iccfind(folder) finds and returns profile information for all of the International
Color Consortium (ICC) profiles stored in the folder.

profiles = iccfind(folder,pattern) finds and returns profile information for ICC profiles in
the folder whose profile names contain the value pattern. The function performs case-insensitive
pattern matching to find the ICC profile with the desired profile name.

[profiles,descriptions] = iccfind(___) also returns the profile descriptions associated
with every profile listed in profiles.

Examples

Find International Color Consortium Profiles

Use iccroot to find the default folder to which the International Color Consortium (ICC) profiles are
stored.

folder = iccroot;
disp(folder)

C:\WINDOWS\System32\Spool\Drivers\Color

Find all the ICC profiles stored in default folder. Read the profile information of all ICC profiles as a
cell array of structures.

profiles = iccfind(folder);

Display the size of profiles to know the number of ICC profiles available in the default folder.

size(profiles)

ans = 1×2

 23 1

Read profile information for the first ICC profile in profiles.

currentProfile = profiles{1}

1 Functions

1-1170

currentProfile = struct with fields:
 Header: [1×1 struct]
 TagTable: {10×3 cell}
 Copyright: 'Copyright 2000 Adobe Systems Incorporated'
 Description: [1×1 struct]
 MediaWhitePoint: [0.9505 1 1.0891]
 MediaBlackPoint: [0 0 0]
 MatTRC: [1×1 struct]
 PrivateTags: {}
 Filename: 'C:\WINDOWS\System32\Spool\Drivers\Color\AdobeRGB1998.icc'

Inspect the Description field of currentProfile. The profile description is stored in the String
field of Description.

currentProfile.Description

ans = struct with fields:
 String: 'Adobe RGB (1998)'
 Optional: [1×78 uint8]

Display the profile name of selected ICC profile.

ProfileName = currentProfile.Description.String

ProfileName =
'Adobe RGB (1998)'

Read Profile Name of ICC Profiles

Find all the ICC profiles stored in default folder. Read the profile information and the descriptions of
all ICC profiles.

[~,descriptions] = iccfind(folder);

Display the descriptions of all the ICC profiles in profiles.

descriptions

descriptions = 23×1 cell
 {'Adobe RGB (1998)' }
 {'Apple RGB' }
 {'Coated FOGRA27 (ISO 12647-2:2004)' }
 {'Coated FOGRA39 (ISO 12647-2:2004)' }
 {'Coated GRACoL 2006 (ISO 12647-2:2004)'}
 {'ColorMatch RGB' }
 {'Japan Color 2001 Coated' }
 {'Japan Color 2001 Uncoated' }
 {'Japan Color 2002 Newspaper' }
 {'Japan Color 2003 Web Coated' }
 {'Japan Web Coated (Ad)' }
 {'ProPhoto RGB' }
 {'Agfa : Swop Standard ' }
 {'U.S. Sheetfed Coated v2' }
 {'U.S. Sheetfed Uncoated v2' }
 {'U.S. Web Coated (SWOP) v2' }
 {'U.S. Web Uncoated v2' }
 {'Uncoated FOGRA29 (ISO 12647-2:2004)' }

 iccfind

1-1171

 {'Web Coated FOGRA28 (ISO 12647-2:2004)'}
 {'Web Coated SWOP 2006 Grade 3 Paper' }
 {'Web Coated SWOP 2006 Grade 5 Paper' }
 {'change' }
 {'sRGB IEC61966-2.1' }

Find Specific ICC Profiles

Find ICC profiles with a specific pattern in the profile description. Specify the pattern to search in the
profile description as 'rgb'.

[profiles,descriptions] = iccfind(folder,'rgb');

Display the descriptions of all the ICC profiles in profiles. The function returns the profile
information and the descriptions for ICC profiles containing the pattern 'rgb' in profile description.

descriptions

descriptions = 5×1 cell
 {'Adobe RGB (1998)' }
 {'Apple RGB' }
 {'ColorMatch RGB' }
 {'ProPhoto RGB' }
 {'sRGB IEC61966-2.1'}

Input Arguments
folder — Path to ICC profiles
character vector | string scalar

Path to ICC profiles, specified as a character vector or string scalar denotes the folder in which the
ICC profiles are stored. The ICC profiles can have the file extension .icc or .icm.
Data Types: char | string

pattern — Search key
character vector | string scalar

Search key, specified as a character vector or string scalar. You can use this search key to find ICC
profiles whose profile names contain the search key. The ICC profile names are stored in the profile
descriptions.
Data Types: char | string

Output Arguments
profiles — Set of profile information
cell array of structures

Set of profile information, returned as a cell array of structures. Each structure in the cell array
contains profile information for an ICC profile in the folder.
Data Types: cell

1 Functions

1-1172

descriptions — Profile descriptions
cell array of character vectors

Profile descriptions, returned as a cell array of character vectors. Each profile description is the
localized version of the ICC profile name.
Data Types: cell

Tips
• To improve performance, iccfind caches copies of the ICC profiles in memory. Adding or

modifying profiles might not change the results of iccfind. To clear the cache, use the clear
functions command.

References
[1] Abhay, S. "ICC Color Management: Architecture and Implementation." Color Image Processing:

Methods and Applications (R. Lukac and K. N. Plataniotis, eds.). CRC Press, 2006.

See Also
iccread | iccroot | iccwrite

Introduced before R2006a

 iccfind

1-1173

iccread
Read ICC profile

Syntax
profile = iccread(filename)

Description
profile = iccread(filename) reads the International Color Consortium (ICC) color profile data
from the file specified by the input filename.

Note iccread can read profiles that conform with either Version 2 (ICC.1:2001-04) or Version 4
(ICC.1:2001-12) of the ICC specification. For more information about ICC profiles, visit the ICC
website, https://www.color.org.

Examples

Read ICC Profile for Typical PC Computer Monitor

Read the International Color Consortium (ICC) profile that describes a typical PC computer monitor.

profile = iccread('sRGB.icm')

profile = struct with fields:
 Header: [1x1 struct]
 TagTable: {17x3 cell}
 Copyright: 'Copyright (c) 1999 Hewlett-Packard Company'
 Description: [1x1 struct]
 MediaWhitePoint: [0.9505 1 1.0891]
 MediaBlackPoint: [0 0 0]
 DeviceMfgDesc: [1x1 struct]
 DeviceModelDesc: [1x1 struct]
 ViewingCondDesc: [1x1 struct]
 ViewingConditions: [1x1 struct]
 Luminance: [76.0365 80 87.1246]
 Measurement: [1x1 struct]
 Technology: 'Cathode Ray Tube Display'
 MatTRC: [1x1 struct]
 PrivateTags: {}
 Filename: 'sRGB.icm'

Determine the source color space. The profile header provides general information about the profile,
such as its class, color space, and PCS.

profile.Header.ColorSpace

ans =
'RGB'

1 Functions

1-1174

https://www.color.org/index.xalter

Input Arguments
filename — Name of the file containing ICC profile
character vector | string scalar

Name of the file containing ICC profile, specified as a character vector or string scalar. The file can be
either an ICC profile file or a TIFF file containing an embedded ICC profile. To determine if a TIFF file
contains an embedded ICC profile, use the imfinfo function to get information about the file and
look for the ICCProfileOffset field in the output.

Note If you specify only the file name without its path, iccread searches for the file in the current
folder, a folder on the MATLAB path, or in the folder returned by iccroot in that order.

Data Types: char | string

Output Arguments
profile — ICC profile data
structure array

ICC profile data, returned as a structure array. The fields contain the data structures (called tags)
defined in the ICC specification. The number of fields in profile depends on the profile class and
the choices made by the profile creator. iccread returns all the tags for a given profile, both public
and private. Private tags and certain public tags are left as encoded uint8 data. The following table
lists fields that are found in any profile structure generated by iccread.

Field Data Type Description
Header 1-by-1 struct

array
Profile header fields.

TagTable n-by-3 cell array Profile tag table.
Copyright Character vector Profile copyright notice.
Description 1-by-1 struct

array
Profile description. The String field in this
structure contains a character vector describing
the profile.

MediaWhitePoint double array XYZ stimulus values of the device's media white
point.

PrivateTags m-by-2 cell array Contents of all the private tags or tags not
defined in the ICC specifications. The tag
signatures are in the first column, and the
contents of the tags are in the second column.
The iccread leaves the contents of these tags
in unsigned 8-bit encoding.

Filename Character vector Name of the file containing the profile.

Also, profile might contain one or more of the following transforms:

 iccread

1-1175

• Three-component, matrix-based transform: A simple transform that is often used to transform
between the RGB and XYZ color spaces. If this transform is present, profile contains a field
called MatTRC.

• N-component look-up-table (LUT) based transform: A transform that is used for transforming
between color spaces that have a more complex relationship. This type of transform is found in
any of the following fields in profile:

AToB0 BToA0 Preview0
AToB1 BToA1 Preview1
AToB2 BToA2 Preview2
AToB3 BToA3 Gamut

Data Types: struct

Tips
• ICC profiles provide color management systems with the information necessary to convert color

data between native device color spaces and device-independent color spaces, called the Profile
Connection Space (PCS). You can use the profile as the source or destination profile with the
makecform or applycform functions to compute color space transformations.

See Also
applycform | iccfind | iccroot | iccwrite | isicc | makecform

Introduced before R2006a

1 Functions

1-1176

iccroot
Find system default ICC profile repository

Syntax
rootdir = iccroot

Description
rootdir = iccroot returns the system directory containing International Color Consortium (ICC)
profiles. Additional profiles can be stored in other directories, but this is the default location used by
the color management system.

Note This function is only supported on Windows and Mac OS X platforms.

Examples

Find System Directory Containing ICC Profiles

Find the default location of International Color Consortium (ICC) profile repository.

rootdir = iccroot

rootdir =
'C:\WINDOWS\System32\Spool\Drivers\Color'

See Also
iccfind | iccread | iccwrite

Introduced before R2006a

 iccroot

1-1177

iccwrite
Write ICC color profile data

Syntax
outProfile = iccwrite(inProfile,filename)

Description
outProfile = iccwrite(inProfile,filename) writes an International Color Consortium (ICC)
profile data in structure inProfile to the file specified by filename.

You can use this function to modify fields in an ICC profile data structure and write it to a file with
name filename. For example, some applications use the string field in profile description to present
choices to users. The ICC recommends modifying the profile description in ICC profile data before
writing the data to a file. Each profile is recommended to have a unique profile description. You can
therefore, use the iccwrite function to modify the profile description.

Note iccwrite can write profiles that conform with either Version 2 (ICC.1:2001-04) or Version 4
(ICC.1:2001-12) of the ICC specification. To determine the version of the ICC specification, use
version field in the Header of profile data structure. Based on the version, format the inProfile
for output. For more information about ICC profiles, visit the ICC website, https://www.color.org.

Examples

Write ICC Profile Data to a File

Read an ICC profile data into the workspace and display the profile name.

inProfile = iccread('monitor.icm');
inProfile.Description.String

ans =
'sgC4_050102_d50.pf'

Change the profile name to 'monitor_RGB'.

inProfile.Description.String = 'monitor_RGB';

Write the updated ICC profile data to a new file and display the corresponding output ICC profile
data. The new file is created in the current working folder.

outProfile = iccwrite(inProfile,'monitorcolor.icm')

outProfile = struct with fields:
 Header: [1x1 struct]
 TagTable: {11x3 cell}
 Description: [1x1 struct]
 MediaWhitePoint: [0.9642 1.0000 0.8249]

1 Functions

1-1178

https://www.color.org/index.xalter

 Copyright: 'Copyright Sequel Imaging Inc. 1996-2001'
 MediaBlackPoint: [0 0 0]
 MatTRC: [1x1 struct]
 PrivateTags: {'vcgt' [118 99 103 116 0 0 0 0 0 0 0 0 0 3 1 0 0 ...]}
 Filename: 'monitorcolor.icm'

Verify the modified description in output ICC profile data.

outProfile.Description.String

ans =
'monitor_RGB'

Input Arguments
inProfile — Input ICC profile data
structure array

Input ICC profile data, specified as a structure array represents an ICC profile in the data format
returned by iccread. The ICC profile data must contain all the tags and fields required by the ICC
profile specification. The input ICC profile data is written to filename.
Data Types: struct

filename — Name of the file to write ICC profile data
character vector | string scalar

Name of the file to write ICC profile data, specified as a character vector or string scalar. Depending
on the operating system, you can save the file with an extension .icc or .icm.

Note If you specify only the file name without its path, iccwrite writes the file to current working
folder.

Data Types: char | string

Output Arguments
outProfile — Output ICC profile data
structure array

Output ICC profile data, returned as a structure array gives the ICC profile data written to the file
filename.
Data Types: struct

Tips
iccwrite does not perform automatic conversions from one version of the ICC specification to
another. Do the conversion manually by adding fields or modifying fields in ICC profile data. Use
isicc to validate the converted ICC profile data.

 iccwrite

1-1179

See Also
applycform | iccread | isicc | makecform

Introduced before R2006a

1 Functions

1-1180

idct2
2-D inverse discrete cosine transform

Syntax
B = idct2(A)
B = idct2(A,m,n)
B = idct2(A,[m n])

Description
B = idct2(A) returns the two-dimensional inverse discrete cosine transform (DCT) of A.

B = idct2(A,m,n) and

B = idct2(A,[m n]) pads A with 0s to size m-by-n before applying the inverse transformation. If m
or n is smaller than the corresponding dimension of A, then idct2 crops A before the transformation.

Examples

Remove High Frequencies in Image using 2-D DCT

Read an image into the workspace, then convert the image to grayscale.

RGB = imread('autumn.tif');
I = im2gray(RGB);

Perform a 2-D DCT of the grayscale image using the dct2 function.

J = dct2(I);

Display the transformed image using a logarithmic scale. Notice that most of the energy is in the
upper left corner.

imshow(log(abs(J)),[])
colormap parula
colorbar

 idct2

1-1181

Set values less than magnitude 10 in the DCT matrix to zero.

J(abs(J) < 10) = 0;

Reconstruct the image using the inverse DCT function idct2. Rescale the values to the range [0, 1]
expected of images of data type double.

K = idct2(J);
K = rescale(K);

Display the original grayscale image alongside the processed image. The processed image has fewer
high frequency details, such as in the texture of the trees.

montage({I,K})
title('Original Grayscale Image (Left) and Processed Image (Right)');

1 Functions

1-1182

Input Arguments
A — Input matrix
2-D numeric matrix

Input matrix, specified as a 2-D numeric matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

m — Number of image rows
size(A,1) (default) | positive integer

Number of image rows, specified as a positive integer. idct2 pads image A with 0s or truncates
image A so that it has m rows. By default, m is equal to size(A,1).

n — Number of image columns
size(A,2) (default) | positive integer

Number of image columns, specified as a positive integer. idct2 pads image A with 0s or truncates
image A so that it has n columns. By default, n is equal to size(A,2)

Output Arguments
B — Transformed matrix
m-by-n numeric matrix

Transformed matrix using a two-dimensional discrete cosine transform, returned as an m-by-n
numeric matrix.
Data Types: double

Tips
• For any matrix A, idct2(dct2(A)) equals A to within round-off error.

Algorithms
idct2 computes the two-dimensional inverse DCT using:

Amn = ∑
p = 0

M − 1
∑

q = 0

N − 1
αpαqBpqcosπ(2m + 1)p

2M cosπ(2n + 1)q
2N ,

0 ≤ m ≤ M − 1
0 ≤ n ≤ N − 1

,

where

αp =

1
M , p = 0

2
M , 1 ≤ p ≤ M − 1

and

αq =

1
N , q = 0

2
N , 1 ≤ q ≤ N − 1

.

 idct2

1-1183

References
[1] Jain, A. K., Fundamentals of Digital Image Processing, Englewood Cliffs, NJ, Prentice Hall, 1989,

pp. 150-153.

[2] Pennebaker, W. B., and J. L. Mitchell, JPEG: Still Image Data Compression Standard, New York,
Van Nostrand Reinhold, 1993.

See Also
dct2 | dctmtx | fft2 | ifft2

Introduced before R2006a

1 Functions

1-1184

ifanbeam
Inverse fan-beam transform

Syntax
I = ifanbeam(F,D)
I = ifanbeam(F,D,Name,Value)
[I,H] = ifanbeam(___)

Description
I = ifanbeam(F,D) reconstructs the image I from fan-beam projection data in F. Each column of F
contains fan-beam projection data at one rotation angle. The angle between sensors is assumed to be
uniform and equal to the increment between fan-beam rotation angles. D is the distance from the fan-
beam vertex to the center of rotation.

I = ifanbeam(F,D,Name,Value) uses name-value pairs to control various aspects of the
reconstruction.

[I,H] = ifanbeam(___) also returns the frequency response of the filter, H.

Examples

Recreate Image from Fan-beam Transformation

Create a sample image. The phantom function creates a phantom head image.

ph = phantom(128);

Create a fan-beam transformation of the phantom head image.

d = 100;
F = fanbeam(ph,d);

Reconstitute the phantom head image from the fan-beam representation. Display the original image
and the reconstituted image.

I = ifanbeam(F,d);
imshow(ph)

 ifanbeam

1-1185

figure
imshow(I);

Generate Fan-beam with Fancoverage Set to Minimal

Create a sample image. The phantom function creates a phantom head image.

ph = phantom(128);

Create a radon transformation of the image.

P = radon(ph);

Convert the transformation from parallel beam projection to fan-beam projection.

[F,obeta,otheta] = para2fan(P,100,...
 'FanSensorSpacing',0.5,...
 'FanCoverage','minimal',...
 'FanRotationIncrement',1);

Reconstitute the image from fan-beam data.

1 Functions

1-1186

phReconstructed = ifanbeam(F,100,...
 'FanSensorSpacing',0.5,...
 'Filter','Shepp-Logan',...
 'OutputSize',128,...
 'FanCoverage','minimal',...
 'FanRotationIncrement',1);

Display the original and the transformed image.

imshow(ph)

figure
imshow(phReconstructed)

Input Arguments
F — Fan-beam projection data
numsensors-by-numangles numeric matrix

Fan-beam projection data, specified as a numsensors-by-numangles numeric matrix. numsensors is
the number of fan-beam sensors and numangles is the number of fan-beam rotation angles. Each
column of F contains the fan-beam sensor samples at one rotation angle.
Data Types: double | single

 ifanbeam

1-1187

D — Distance from fan-beam vertex to center of rotation
positive number

Distance in pixels from the fan-beam vertex to the center of rotation, specified as a positive number.
ifanbeam assumes that the center of rotation is the center point of the projections, which is defined
as ceil(size(F,1)/2). The figure illustrates D in relation to the fan-beam vertex for one fan-beam
projection.

Data Types: double | single

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: I = ifanbeam(F,D,'FanRotationIncrement',5)

FanCoverage — Range of fan-beam rotation
'cycle' (default) | 'minimal'

Range of fan-beam rotation, specified as the comma-separated pair consisting of 'FanCoverage'
and one of these values.

• 'cycle' — Rotate through the full range [0, 360) degrees.
• 'minimal' — Rotate through the minimum range necessary to represent the object.

FanRotationIncrement — Fan-beam rotation angle increment
1 (default) | positive scalar

Fan-beam rotation angle increment in degrees, specified as the comma-separated pair consisting of
'FanRotationIncrement' and a positive scalar.

1 Functions

1-1188

Data Types: double

FanSensorGeometry — Fan-beam sensor positioning
'arc' (default) | 'line'

Fan-beam sensor positioning, specified as the comma-separated pair consisting of
'FanSensorGeometry' and one of the following values.

Value Meaning Diagram
'arc' Sensors are spaced at equal angles

along a circular arc at distance D from
the center of rotation.

FanSensorSpacing defines the
angular spacing in degrees.

 ifanbeam

1-1189

Value Meaning Diagram
'line' Sensors are spaced at equal distances

along a line that is parallel to the x'
axis. The closest sensor is distance D
from the center of rotation.

FanSensorSpacing defines the
distance between fan-beams on the x'
axis, in pixels.

FanSensorSpacing — Fan-bean sensor spacing
1 (default) | positive scalar

Fan-bean sensor spacing, specified as the comma-separated pair consisting of 'FanSensorSpacing'
and a positive scalar.

• If FanSensorGeometry is 'arc', then FanSensorSpacing defines the angular spacing in
degrees.

• If FanSensorGeometry is 'line', then FanSensorSpacing defines the linear distance between
fan-beams, in pixels. Linear spacing is measured on the x' axis.

Data Types: double

Filter — Filter
'Ram-Lak' (default) | 'Shepp-Logan' | 'Cosine' | 'Hamming' | 'Hann' | 'None'

Filter to use for frequency domain filtering, specified as the comma-separated pair consisting of
'Filter' and one of the values in the table. For more information, see iradon.

Value Description
'Ram-Lak' Cropped Ram-Lak or ramp filter. The frequency response of this filter is | f

|. Because this filter is sensitive to noise in the projections, one of the filters
listed below might be preferable. These filters multiply the Ram-Lak filter
by a window that de-emphasizes high frequencies.

'Shepp-Logan' Multiplies the Ram-Lak filter by a sinc function
'Cosine' Multiplies the Ram-Lak filter by a cosine function
'Hamming' Multiplies the Ram-Lak filter by a Hamming window
'Hann' Multiplies the Ram-Lak filter by a Hann window

1 Functions

1-1190

Value Description
'None' No filtering. ifanbeam returns unfiltered data.

Data Types: char | string

FrequencyScaling — Scale factor
1 (default) | positive number in the range (0, 1]

Scale factor for rescaling the frequency axis, specified as the comma-separated pair consisting of
'FrequencyScaling' and a positive number in the range (0, 1]. If 'FrequencyScaling' is less
than 1, then the filter is compressed to fit into the frequency range [0,FrequencyScaling], in
normalized frequencies; all frequencies above FrequencyScaling are set to 0. For more
information, see iradon.
Data Types: double

Interpolation — Type of interpolation
'Linear' (default) | 'nearest' | 'spline' | 'pchip'

Type of interpolation used between the parallel-beam and fan-beam data, specified as the comma-
separated pair consisting of 'Interpolation' and one of the following values.

'nearest' — Nearest-neighbor

'linear' — Linear (the default)

'spline' — Piecewise cubic spline

'pchip' — Piecewise cubic Hermite (PCHIP)
Data Types: char | string

OutputSize — Size of reconstructed image
positive integer

Size of the reconstructed image, specified as the comma-separated pair consisting of 'OutputSize'
and a positive integer. The image has an equal number of rows and columns.

If you specify OutputSize, then ifanbeam reconstructs a smaller or larger portion of the image but
does not change the scaling of the data.

Note If the projections were calculated with the fanbeam function, then the reconstructed image
might not be the same size as the original image.

If you do not specify OutputSize, then the size is calculated automatically by:

OutputSize = 2*floor(size(R,1)/(2*sqrt(2)))

where R is the length of parallel-beam projection data used by iradon. For more information, see
“Algorithms” on page 1-1192.
Data Types: double

 ifanbeam

1-1191

Output Arguments
I — Reconstructed image
2-D numeric matrix

Reconstructed image, specified as a 2-D numeric matrix.

H — Frequency response
numeric vector

Frequency response of the filter, returned as a numeric vector.
Data Types: double

Tips
• To perform an inverse fan-beam reconstruction, you must give ifanbeam the same parameters

that were used to calculate the projection data, F. If you use fanbeam to calculate the projection,
then make sure the parameters are consistent when calling ifanbeam.

Algorithms
ifanbeam converts the fan-beam data to parallel beam projections and then uses the filtered back
projection algorithm to perform the inverse Radon transform. The filter is designed directly in the
frequency domain and then multiplied by the FFT of the projections. The projections are zero-padded
to a power of 2 before filtering to prevent spatial domain aliasing and to speed up the FFT.

References
[1] Kak, A. C., and M. Slaney, Principles of Computerized Tomographic Imaging, New York, NY, IEEE

Press, 1988.

See Also
fan2para | fanbeam | iradon | para2fan | phantom | radon

Introduced before R2006a

1 Functions

1-1192

illumgray
Estimate illuminant using gray world algorithm

Syntax
illuminant = illumgray(A)
illuminant = illumgray(A,percentile)
illuminant = illumgray(___ ,Name,Value)

Description
illuminant = illumgray(A) estimates the illumination of the scene in RGB image A by assuming
that the average color of the scene is gray.

illuminant = illumgray(A,percentile) estimates the illumination, excluding the specified
bottom and top percentiles of pixel values.

illuminant = illumgray(___ ,Name,Value) estimates the illumination using name-value pairs
to control additional options.

Examples

Correct White Balance Using Gray World Algorithm

Open an image and display it. Specify an optional magnification to shrink the size of the displayed
image.

A = imread('foosball.jpg');
figure
imshow(A,'InitialMagnification',25)
title('Original Image')

 illumgray

1-1193

The gray world algorithm assumes that the RGB values are linear. However, the JPEG file format
saves images in the gamma-corrected sRGB color space. Undo the gamma correction by using the
rgb2lin function.

A_lin = rgb2lin(A);

Estimate the scene illumination, excluding the top and bottom 10% of pixels. Because the input image
has been linearized, illumgray returns the illuminant in the linear RGB color space.

percentiles = 10;
illuminant = illumgray(A_lin,percentiles)

illuminant = 1×3

 0.2206 0.2985 0.5219

The third coefficient of illuminant is the largest, which is consistent with the blue tint of the image.

Correct colors by providing the estimated illuminant to the chromadapt function.

B_lin = chromadapt(A_lin,illuminant,'ColorSpace','linear-rgb');

To display the white-balanced image correctly on the screen, apply gamma correction by using the
lin2rgb function.

B = lin2rgb(B_lin);

1 Functions

1-1194

Display the corrected image, setting the optional magnification.

figure
imshow(B,'InitialMagnification',25)
title(['White-Balanced Image Using Gray World with percentiles=[' ...
 num2str(percentiles) ' ' num2str(percentiles) ']'])

Input Arguments
A — RGB image
m-by-n-by-3 numeric array

RGB image, specified as an m-by-n-by-3 numeric array.
Data Types: single | double | uint8 | uint16

percentile — Percentile of pixels to exclude
1 (default) | numeric scalar | 2-element numeric vector

Percentile of pixels to exclude from the illuminant estimation, specified as a numeric scalar or 2-
element numeric vector. Excluding pixels helps prevent overexposed and underexposed pixels from
skewing the estimation.

 illumgray

1-1195

• If percentile is a scalar, the same value is used for both the bottom percentile and the top
percentile. In this case, percentile must be in the range [0, 50] so that the sum of the bottom
and top percentiles does not exceed 100.

• If percentile is a 2-element vector, the first element is the bottom percentile and the second
element is the top percentile. Both percentiles must be in the range [0, 100) and their sum cannot
exceed 100.

The following image indicates the range of pixels that are included in the illuminant estimation. The
selection is separate for each color channel.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: illuminant = illumgray(I,'Mask',m) estimates the scene illuminant using a subset
of pixels in image I, selected according to a binary mask, m.

Mask — Image mask
m-by-n logical or numeric array

Image mask, specified as the comma-separated pair consisting of 'Mask' and an m-by-n logical or
numeric array. The mask indicates which pixels of the input image A to use when estimating the
illuminant. The computation excludes pixels in A that correspond to a mask value of 0. By default, the
mask has all 1s, and all pixels in A are included in the estimation.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Norm — Type of vector norm (p-norm)
1 (default) | positive numeric scalar

Type of vector norm (p-norm), specified as the comma-separated pair consisting of 'Norm' and a
positive numeric scalar. The p-norm affects the calculation of the average RGB value in the input
image A. The p-norm is defined as sum(abs(x)p) ^ (1/p).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
illuminant — Estimate of scene illumination
3-element numeric row vector

1 Functions

1-1196

Estimate of scene illumination, returned as a 3-element numeric row vector. The three elements
correspond to the red, green, and blue values of the illuminant.
Data Types: double

Tips
• The gray world algorithm assumes uniform illumination and linear RGB values. If you are working

with nonlinear sRGB or Adobe RGB images, use the rgb2lin function to undo the gamma
correction before using illumgray. Also, make sure to convert the chromatically adapted image
back to sRGB by using the lin2rgb function.

• When you specify Mask on page 1-0 , the bottom percentile and top percentile apply to the
masked image.

• You can adjust the color balance of the image to remove the scene illumination by using the
chromadapt function.

References
[1] Ebner, Marc. "The Gray World Assumption." Color Constancy. Chichester, West Sussex: John Wiley

& Sons, 2007.

See Also
chromadapt | illumpca | illumwhite | lin2rgb | rgb2lin

Introduced in R2017b

 illumgray

1-1197

illumpca
Estimate illuminant using principal component analysis (PCA)

Syntax
illuminant = illumpca(A)
illuminant = illumpca(A,percentage)
illuminant = illumpca(___ ,'Mask',mask)

Description
illuminant = illumpca(A) estimates the illumination of the scene in RGB image A from large
color differences using principal component analysis (PCA).

illuminant = illumpca(A,percentage) estimates the illumination using the specified
percentage of darkest and brightest pixels.

illuminant = illumpca(___ ,'Mask',mask) estimates the illumination using only the pixels
within the ROI defined by a binary mask.

Examples

Correct White Balance Using Principal Component Analysis

Open an image and display it. Specify an optional magnification to shrink the size of the displayed
image.

A = imread('foosball.jpg');
figure
imshow(A,'InitialMagnification',25)
title('Original Image')

1 Functions

1-1198

Principal component analysis assumes that the RGB values are linear. However, the JPEG file format
saves images in the gamma-corrected sRGB color space. Undo the gamma correction by using the
rgb2lin function.

A_lin = rgb2lin(A);

Estimate the scene illumination from the darkest and brightest 3.5% of pixels (the default
percentage). Because the input image is linear, the illumpca function returns the illuminant in the
linear RGB color space,

illuminant = illumpca(A_lin)

illuminant = 1×3

 0.4074 0.5547 0.7254

The third coefficient of illuminant is the largest, which is consistent with the blue tint of the image.

Correct colors by providing the estimated illuminant to the chromadapt function.

B_lin = chromadapt(A_lin,illuminant,'ColorSpace','linear-rgb');

To display the white-balanced image correctly on the screen, apply gamma correction by using the
lin2rgb function.

B = lin2rgb(B_lin);

 illumpca

1-1199

Display the corrected image, setting the optional magnification.

figure
imshow(B,'InitialMagnification',25)
title('White-Balanced Image using Principal Component Analysis')

Input Arguments
A — RGB image
m-by-n-by-3 numeric array

RGB image, specified as an m-by-n-by-3 numeric array.
Data Types: single | double | uint8 | uint16

percentage — Percentage of pixels to retain
3.5 (default) | numeric scalar

Percentage of pixels to retain for the illuminant estimation, specified as a numeric scalar in the range
(0, 50].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

mask — Image mask
m-by-n logical or numeric matrix

1 Functions

1-1200

Image mask, specified as an m-by-n logical or numeric matrix. The mask indicates which pixels of the
input image A to use when estimating the illuminant. The computation excludes pixels in A that
correspond to a mask value of 0. By default, the mask has all 1s, and all pixels in A are included in the
estimation.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Output Arguments
illuminant — Estimate of scene illumination
3-element numeric row vector

Estimate of scene illumination, returned as a 3-element numeric row vector. The three elements
correspond to the red, green, and blue values of the illuminant.
Data Types: double

Tips
• The algorithm assumes uniform illumination and linear RGB values. If you are working with

nonlinear sRGB or Adobe RGB images, use the rgb2lin function to undo the gamma correction
before using illumpca. Also, make sure to convert the chromatically adapted image back to
sRGB or Adobe RGB by using the lin2rgb function.

Algorithms
Pixel colors are represented as vectors in the RGB color space. The algorithm orders colors according
to the brightness, or norm, of their projection on the average color in the image. The algorithm
retains only the darkest and brightest colors, according to this ordering. Principal component
analysis (PCA) is then performed on the subset of colors. The first component of PCA indicates the
illuminant estimate.

References
[1] Cheng, Dongliang, Dilip K. Prasad, and Michael S. Brown. "Illuminant Estimation for Color

Constancy: Why spatial-domain methods work and the role of the color distribution." Journal
of the Optical Society of America A. Vol. 31, Number 5, 2014, pp. 1049–1058.

See Also
chromadapt | illumgray | illumwhite | lin2rgb | rgb2lin

Introduced in R2017b

 illumpca

1-1201

illumwhite
Estimate illuminant using White Patch Retinex algorithm

Syntax
illuminant = illumwhite(A)
illuminant = illumwhite(A,topPercentile)
illuminant = illumwhite(___ ,'Mask',mask)

Description
illuminant = illumwhite(A) estimates the scene illumination in RGB image A by assuming that
the top 1% brightest red, green, and blue values represent the color white.

illuminant = illumwhite(A,topPercentile) estimates the illumination using the
topPercentile percentage brightest red, green, and blue values.

illuminant = illumwhite(___ ,'Mask',mask) estimates the illumination using only the pixels
within the ROI defined by a binary mask.

Examples

Correct White Balance Using White Patch Retinex Algorithm

Open an image and display it. Specify an optional magnification to shrink the size of the displayed
image.

A = imread('foosball.jpg');
figure
imshow(A,'InitialMagnification',25)
title('Original Image')

1 Functions

1-1202

The JPEG file format saves images in the gamma-corrected sRGB color space. Undo the gamma
correction by using the rgb2lin function.

A_lin = rgb2lin(A);

Estimate the scene illumination from the top 5% brightest pixels. Because the input image has been
linearized, the illumwhite function returns the illuminant in the linear RGB color space.

topPercentile = 5;
illuminant = illumwhite(A,topPercentile)

illuminant = 1×3

 0.7333 0.8314 1.0000

The third coefficient of illuminant is the largest, which is consistent with the blue tint of the image.

Correct colors by providing the estimated illuminant to the chromadapt function.

B_lin = chromadapt(A_lin,illuminant,'ColorSpace','linear-rgb');

To display the white-balanced image correctly on the screen, apply gamma correction by using the
lin2rgb function.

B = lin2rgb(B_lin);

 illumwhite

1-1203

Display the corrected image, setting the optional magnification.

figure
imshow(B,'InitialMagnification',25)
title(['White-Balanced Image using White Patch with topPercentile=' ...
 num2str(topPercentile)])

Input Arguments
A — RGB image
m-by-n-by-3 numeric array

RGB image, specified as an m-by-n-by-3 numeric array.
Data Types: single | double | uint8 | uint16

topPercentile — Percentile of brightest colors
1 (default) | numeric scalar

Percentile of brightest colors to use for illuminant estimation, specified as a numeric scalar in the
range [0, 100). To return the maximum red, green, and blue values, set topPercentile to 0.

The image indicates the red, green, and blue value that is selected to estimate the illuminant. The
selection is separate for each color channel.

1 Functions

1-1204

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

mask — Image mask
m-by-n logical or numeric matrix

Image mask, specified as an m-by-n logical or numeric matrix. The mask indicates which pixels of the
input image A to use when estimating the illuminant. The computation excludes pixels in A that
correspond to a mask value of 0. By default, the mask has all 1s, and all pixels in A are included in the
estimation.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Output Arguments
illuminant — Estimate of scene illumination
3-element numeric row vector

Estimate of scene illumination, returned as a 3-element numeric row vector. The three elements
correspond to the red, green, and blue values of the illuminant.
Data Types: double

References
[1] Ebner, Marc. "White Patch Retinex." Color Constancy. Chichester, West Sussex: John Wiley &

Sons, 2007.

See Also
whitepoint | chromadapt | illumgray | illumpca | lin2rgb | rgb2lin

Introduced in R2017b

 illumwhite

1-1205

im2bw
Convert image to binary image, based on threshold

Note im2bw is not recommended. Use imbinarize instead. For more information, see
“Compatibility Considerations”.

Syntax
BW = im2bw(I,level)
BW = im2bw(X,cmap,level)
BW = im2bw(RGB,level)

Description
BW = im2bw(I,level) converts the grayscale image I to binary image BW, by replacing all pixels in
the input image with luminance greater than level with the value 1 (white) and replacing all other
pixels with the value 0 (black).

This range is relative to the signal levels possible for the image's class. Therefore, a level value of
0.5 corresponds to an intensity value halfway between the minimum and maximum value of the
class.

BW = im2bw(X,cmap,level) converts the indexed image X with colormap cmap to a binary image.

BW = im2bw(RGB,level) converts the truecolor image RGB to a binary image.

Examples

Convert an Indexed Image To a Binary Image

load trees
BW = im2bw(X,map,0.4);
imshow(X,map), figure, imshow(BW)

1 Functions

1-1206

Input Arguments
I — 2-D grayscale image
m-by-n numeric matrix

 im2bw

1-1207

2-D grayscale image, specified as an m-by-n numeric matrix.
Data Types: single | double | int16 | uint8 | uint16

X — 2-D indexed image
m-by-n numeric matrix

2-D indexed image, specified as an m-by-n numeric matrix.
Data Types: single | double | int16 | uint8 | uint16

cmap — Colormap
c-by-3 numeric matrix

Colormap associated with indexed image X, specified as a c-by-3 numeric matrix with values in the
range [0, 1]. Each row is a three-element RGB triplet that specifies the red, green, and blue
components of a single color of the colormap.
Data Types: single | double | int16 | uint8 | uint16

RGB — 2-D RGB image
m-by-n-by-3 numeric matrix

2-D RGB image, specified as an m-by-n-by-3 numeric matrix.
Data Types: single | double | int16 | uint8 | uint16

level — Luminance threshold
0.5 (default) | number in the range [0, 1]

Luminance threshold, specified as a number in the range [0, 1]. To compute level, you can use the
graythresh function.
Data Types: single | double | int16 | uint8 | uint16

Output Arguments
BW — Binary image
m-by-n logical matrix

Binary image, returned as an m-by-n logical matrix.
Data Types: logical

Algorithms
If the input image is not a grayscale image, im2bw converts the input image to grayscale using
ind2gray or rgb2gray, and then converts this grayscale image to binary by thresholding.

Compatibility Considerations
im2bw is not recommended
Not recommended starting in R2016a

1 Functions

1-1208

The default luminance threshold of im2bw is not optimal for most images. If you want to use a
threshold appropriate for your image, you must compute the level using graythresh before calling
im2bw.

In R2016a, the imbinarize function was introduced. This function computes the luminance
threshold and performs binarization in one step. imbinarize has additional benefits, such as the
ability to perform adaptive thresholding when the image has nonuniform shading. For more
information, see Image Binarization - New 2016a Functions.

The table shows some typical usages of im2bw and how to update your code to use imbinarize
instead.

Not Recommended Recommended
BW = im2bw(I); BW = imbinarize(I,0.5);
thresh = graythresh(I);
BW = im2bw(I,thresh);

BW = imbinarize(I);

There are no plans to remove im2bw at this time.

See Also
graythresh | ind2gray | rgb2gray | imbinarize

Introduced before R2006a

 im2bw

1-1209

https://blogs.mathworks.com/steve/2016/05/16/image-binarization-new-r2016a-functions/

im2col
Rearrange image blocks into columns

Syntax
B = im2col(A,[m n],'distinct')
B = im2col(A,[m n],'sliding')
B = im2col(A,[m n])
B = im2col(A,'indexed', ___)

Description
B = im2col(A,[m n],'distinct') rearranges discrete image blocks of size m-by-n into columns,
and returns the concatenated columns in matrix B. The im2col function pads image A, if necessary.
For more information about the padding value, see “Tips” on page 1-1212.

The order of the columns in matrix B is determined by traversing the image A in a column-wise
manner. For example, if A consists of distinct blocks Aij arranged as A = [A11 A12; A21 A22],
then B = [A11(:) A21(:) A12(:) A22(:)].

B = im2col(A,[m n],'sliding') or

B = im2col(A,[m n]) rearranges sliding image neighborhoods of size m-by-n into columns with no
zero-padding, and returns the concatenated columns in matrix B.

B = im2col(A,'indexed', ___) interprets A as an indexed image.

Examples

Calculate Local Mean Using [2 2] Neighborhood

Create a matrix.

A = reshape(linspace(0,1,16),[4 4])'

A = 4×4

 0 0.0667 0.1333 0.2000
 0.2667 0.3333 0.4000 0.4667
 0.5333 0.6000 0.6667 0.7333
 0.8000 0.8667 0.9333 1.0000

Rearrange the values into a column-wise arrangement.

B = im2col(A,[2 2])

B = 4×9

 0 0.2667 0.5333 0.0667 0.3333 0.6000 0.1333 0.4000 0.6667
 0.2667 0.5333 0.8000 0.3333 0.6000 0.8667 0.4000 0.6667 0.9333

1 Functions

1-1210

 0.0667 0.3333 0.6000 0.1333 0.4000 0.6667 0.2000 0.4667 0.7333
 0.3333 0.6000 0.8667 0.4000 0.6667 0.9333 0.4667 0.7333 1.0000

Calculate the mean.

M = mean(B)

M = 1×9

 0.1667 0.4333 0.7000 0.2333 0.5000 0.7667 0.3000 0.5667 0.8333

Rearrange the values back into their original, row-wise orientation.

newA = col2im(M,[1 1],[3 3])

newA = 3×3

 0.1667 0.2333 0.3000
 0.4333 0.5000 0.5667
 0.7000 0.7667 0.8333

Input Arguments
A — Image
2-D grayscale image | 2-D binary image | 2-D indexed image

Image, specified as a 2-D grayscale image, 2-D binary image, or 2-D indexed image.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

[m n] — Block size
2-element vector

Block size, specified as a 2-element vector. m is the number of rows and n is the number of columns in
the block.

Output Arguments
B — Image blocks
numeric matrix | logical matrix

Image blocks, returned as a numeric matrix or logical matrix with m*n rows. The number of columns
depends on whether the image blocks are discrete blocks or sliding neighborhoods. Each column of B
contains a block or neighborhood of A reshaped as a column vector.

• For distinct block processing, B has as many columns as there are m-by-n blocks in A. For example,
if the size of A is [mm nn], then B has (mm/m)*(nn/n) columns.

• For sliding neighborhood processing, B has as many columns as there are m-by-n neighborhoods of
A. For example, if the size of A is [mm nn], then B has ((mm-m+1)*(nn-n+1)) columns.

 im2col

1-1211

Tips
• For distinct block processing, im2col zero-pads A, if necessary, so its size is an integer multiple of

m-by-n. The padding value is 0 when A is data type uint8, uint16, or logical. For other data
types, the value of padding depends on whether A is interpreted as an indexed image.

• The padding value is 1 when A is interpreted as an indexed image.
• The padding value is 0 when A is not interpreted as an indexed image.

• im2col orders the columns of B so that they can be reshaped to form a matrix according to
reshape.

For example, suppose you use a function, such as sum(B), that returns a scalar for each column of
B. You can directly store the result in a matrix of size (mm-m+1)-by-(nn-n+1), using these calls.

B = im2col(A,[m n],'sliding');
C = reshape(sum(B),mm-m+1,nn-n+1);

See Also
blockproc | col2im | colfilt | nlfilter | reshape

Introduced before R2006a

1 Functions

1-1212

im2int16
Convert image to 16-bit signed integers

Syntax
J = im2int16(I)

Description
J = im2int16(I) converts the grayscale, RGB, or binary image I to int16, rescaling the data if
necessary.

If the input image is of class int16, then the output image is identical to the input image. If the input
image is of class logical, then im2int16 changes false-valued elements to -32768 and true-valued
elements to 32767.

Examples

Convert Array from double to int16

Create an array of class double.

I = reshape(linspace(0,1,20),[5 4])

I = 5×4

 0 0.2632 0.5263 0.7895
 0.0526 0.3158 0.5789 0.8421
 0.1053 0.3684 0.6316 0.8947
 0.1579 0.4211 0.6842 0.9474
 0.2105 0.4737 0.7368 1.0000

Convert the array to class int16.

I2 = im2int16(I)

I2 = 5x4 int16 matrix

 -32768 -15522 1724 18970
 -29319 -12073 5173 22419
 -25870 -8624 8623 25869
 -22420 -5174 12072 29318
 -18971 -1725 15521 32767

Input Arguments
I — Input image
numeric array | logical array

 im2int16

1-1213

Input image, specified as a numeric array or logical array of any size and dimension.
Data Types: single | double | int16 | uint8 | uint16 | logical

Output Arguments
J — Image with class int16
numeric array

Image with class int16, returned as a numeric array of the same size as the input image I.
Data Types: int16

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• im2int16 supports the generation of C code (requires MATLAB Coder). Note that if you choose
the generic MATLAB Host Computer target platform, im2int16 generates code that uses a
precompiled, platform-specific shared library. Use of a shared library preserves performance
optimizations but limits the target platforms for which code can be generated. For more
information, see “Types of Code Generation Support in Image Processing Toolbox”.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on a GPU”.

See Also
im2double | im2single | im2uint8 | im2uint16 | int16

Introduced before R2006a

1 Functions

1-1214

im2java2d
(To be removed) Convert image to Java buffered image

Note im2java2d will be removed in a future release. For more information, see “Compatibility
Considerations”.

Syntax
javaImage = im2java2d(I)
javaImage = im2java2d(X,map)

Description
javaImage = im2java2d(I) converts the input image to an instance of the Java image class
java.awt.image.BufferedImage.

javaImage = im2java2d(X,map) converts an indexed image with colormap map to an instance of
the Java image class java.awt.image.BufferedImage.

Input Arguments
I — Input image
m-by-n matrix | m-by-n-by-3 matrix

Input image, specified as

• m-by-n matrix for grayscale and binary images.
• m-by-n-by-3 matrix for RGB color images.

Data Types: double | uint8 | uint16 | logical

X — Input indexed image
m-by-n matrix

Input indexed image, specified as a m-by-n matrix.
Data Types: double | uint8 | uint16

map — Colormap
c-by-3 numeric array

Colormap associated with input indexed image X, specified as a c-by-3 numeric array. c represents the
number of colors in the colormap.
Data Types: double

 im2java2d

1-1215

Output Arguments
javaImage — Output Java 2D image
BufferedImage class

Output Java 2D image, returned as a BufferedImageclass of instance
java.awt.image.BufferedImage. The output Java 2D image can be used with the Java 2D API and
the Java Abstract Windowing Toolkit (AWT).

Compatibility Considerations
im2java2d function will be removed
Warns starting in R2020a

The im2java2d function will be removed in a future release. There is no replacement for this
function.

Introduced before R2006a

1 Functions

1-1216

im2single
Convert image to single precision

Syntax
J = im2single(I)
J = im2single(I,'indexed')

Description
J = im2single(I) converts the grayscale, RGB, or binary image I to single, rescaling or
offsetting the data as necessary.

If the input image is of class single, then the output image is identical. If the input image is of class
logical, then im2single changes true-valued elements to 65535.

J = im2single(I,'indexed') converts the indexed image I to single, offsetting the data if
necessary.

Examples

Convert Array to Class Single

This example shows how to convert an array of class uint8 into class single .

Create a numeric array of class uint8 .

I = reshape(uint8(linspace(1,255,25)),[5 5])

I = 5x5 uint8 matrix

 1 54 107 160 213
 12 65 117 170 223
 22 75 128 181 234
 33 86 139 192 244
 43 96 149 202 255

Convert the array to class single .

I2 = im2single(I)

I2 = 5x5 single matrix

 0.0039 0.2118 0.4196 0.6275 0.8353
 0.0471 0.2549 0.4588 0.6667 0.8745
 0.0863 0.2941 0.5020 0.7098 0.9176
 0.1294 0.3373 0.5451 0.7529 0.9569
 0.1686 0.3765 0.5843 0.7922 1.0000

 im2single

1-1217

Input Arguments
I — Input image
numeric array | logical array

Input image, specified as a numeric array or logical array of any size and dimension.

• If I is a grayscale or RGB image, then it can be uint8, uint16, double, logical, single, or
int16.

• If I is an indexed image, then it can be uint8, uint16, double or logical.
• If I is a binary image, then it must be logical.

Data Types: single | double | int16 | uint8 | uint16 | logical

Output Arguments
J — Image with class single
numeric array

Image with class single, returned as a numeric array of the same size as the input image I.
Data Types: single

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

im2single supports the generation of C code (requires MATLAB Coder). For more information, see
“Code Generation for Image Processing”.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on a GPU”.

See Also
im2double | im2int16 | im2uint8 | im2uint16 | single

Introduced before R2006a

1 Functions

1-1218

im2uint16
Convert image to 16-bit unsigned integers

Syntax
J = im2uint16(I)
J = im2uint16(I,'indexed')

Description
J = im2uint16(I) converts the grayscale, RGB, or binary image I to uint16, rescaling or
offsetting the data as necessary.

If the input image is of class uint16, then the output image is identical. If the input image is of class
logical, then im2uint16 changes true-valued elements to 65535.

J = im2uint16(I,'indexed') converts the indexed image I to uint16, offsetting the data if
necessary.

Examples

Convert Array from double to uint16

Create an array of class double.

I = reshape(linspace(0,1,20),[5 4])

I = 5×4

 0 0.2632 0.5263 0.7895
 0.0526 0.3158 0.5789 0.8421
 0.1053 0.3684 0.6316 0.8947
 0.1579 0.4211 0.6842 0.9474
 0.2105 0.4737 0.7368 1.0000

Convert the array to class uint16.

I2 = im2uint16(I)

I2 = 5x4 uint16 matrix

 0 17246 34492 51738
 3449 20695 37941 55187
 6898 24144 41391 58637
 10348 27594 44840 62086
 13797 31043 48289 65535

 im2uint16

1-1219

Input Arguments
I — Input image
numeric array | logical array

Input image, specified as a numeric array or logical array of any size and dimension.

• If I is a grayscale or RGB image, then it can be uint8, uint16, double, logical, single, or
int16.

• If I is an indexed image, then it can be uint8, uint16, double or logical.

Note It is not always possible to convert an indexed image to uint8. If the indexed image is of
class double, then the maximum value must be 65536 or less.

• If I is a binary image, then it must be logical.

Data Types: single | double | int16 | uint8 | uint16 | logical

Output Arguments
J — Image with class uint16
numeric array

Image with class uint16, returned as a numeric array of the same size as the input image I.
Data Types: uint16

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• im2uint16 supports the generation of C code (requires MATLAB Coder). Note that if you choose
the generic MATLAB Host Computer target platform, im2uint16 generates code that uses a
precompiled, platform-specific shared library. Use of a shared library preserves performance
optimizations but limits the target platforms for which code can be generated. For more
information, see “Types of Code Generation Support in Image Processing Toolbox”.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on a GPU”.

1 Functions

1-1220

See Also
im2uint8 | double | im2double | uint8 | uint16 | imapprox

Introduced before R2006a

 im2uint16

1-1221

im2uint8
Convert image to 8-bit unsigned integers

Syntax
J = im2uint8(I)
J = im2uint8(I,'indexed')

Description
J = im2uint8(I) converts the grayscale, RGB, or binary image I to uint8, rescaling or offsetting
the data as necessary.

If the input image is of class uint8, then the output image is identical. If the input image is of class
logical, then im2uint8 changes true-valued elements to 255.

J = im2uint8(I,'indexed') converts the indexed image I to uint8, offsetting the data if
necessary.

Examples

Convert uint16 Array to uint8 Array

Create an array of class uint16.

I = reshape(uint16(linspace(0,65535,25)),[5 5])

I = 5x5 uint16 matrix

 0 13653 27306 40959 54613
 2731 16384 30037 43690 57343
 5461 19114 32768 46421 60074
 8192 21845 35498 49151 62804
 10923 24576 38229 51882 65535

Convert the array to class uint8 .

I2 = im2uint8(I)

I2 = 5x5 uint8 matrix

 0 53 106 159 213
 11 64 117 170 223
 21 74 128 181 234
 32 85 138 191 244
 43 96 149 202 255

1 Functions

1-1222

Input Arguments
I — Input image
numeric array | logical array

Input image, specified as a numeric array or logical array of any size and dimension.

• If I is a grayscale or RGB image, then it can be uint8, uint16, double, logical, single, or
int16. The intensity values for input image of class single or double must be in the range [0,
1].

Note If I is of class single or double with values outside the range [0, 1] then you can use
rescale function to rescale values to the expected range.

• If I is an indexed image, then it can be uint8, uint16, double or logical.

Note It is not always possible to convert an indexed image to uint8. If the indexed image is of
class double, then the maximum value must be 256 or less. If the indexed image is of class
uint16, then the maximum value must be 255 or less.

• If I is a binary image, then it must be logical.

Data Types: single | double | int16 | uint8 | uint16 | logical

Output Arguments
J — Image with class uint8
numeric array

Image with class uint8, returned as a numeric array of the same size as the input image I.
Data Types: uint8

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• im2uint8 supports the generation of C code (requires MATLAB Coder). Note that if you choose
the generic MATLAB Host Computer target platform, im2uint8 generates code that uses a
precompiled, platform-specific shared library. Use of a shared library preserves performance
optimizations but limits the target platforms for which code can be generated. For more
information, see “Types of Code Generation Support in Image Processing Toolbox”.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

 im2uint8

1-1223

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on a GPU”.

See Also
im2double | im2int16 | im2single | im2uint16 | uint8

Introduced before R2006a

1 Functions

1-1224

imabsdiff
Absolute difference of two images

Syntax
Z = imabsdiff(X,Y)

Description
Z = imabsdiff(X,Y) subtracts each element in array Y from the corresponding element in array X
and returns the absolute difference in the corresponding element of the output array Z.

Examples

Display Absolute Difference between Filtered image and Original

Read image into workspace.

I = imread('cameraman.tif');

Filter the image.

J = uint8(filter2(fspecial('gaussian'), I));

Calculate the absolute difference of the two images.

K = imabsdiff(I,J);

Display the absolute difference image.

figure
imshow(K,[])

 imabsdiff

1-1225

Input Arguments
X — Input image
numeric array

Input image, specified as a numeric array of any dimension.
Example: x = imread('cameraman.tif');
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

Y — Input image
numeric array

Input image, specified as a numeric array. Y must be the same size and class as X.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

Output Arguments
Z — Difference image
numeric array

Difference image, returned as a numeric array. Z has the same class and size as X and Y. If X and Y
are integer arrays, then imabsdiff truncates elements in the output that exceed the range of the
integer type.

1 Functions

1-1226

Tips
• If X is of class double, then use the expression abs(X-Y) instead of this function.
• If X is of class logical, then use the expression XOR(X,Y) instead of this function.
• When X and Y are of class uint8, int16, or single, then imabsdiff can use hardware

optimization to run faster.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

imabsdiff supports the generation of C code (requires MATLAB Coder). For more information, see
“Code Generation for Image Processing”.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on a GPU”.

See Also
imadd | imcomplement | imdivide | imlincomb | imsubtract | immultiply

Introduced before R2006a

 imabsdiff

1-1227

imadd
Add two images or add constant to image

Syntax
Z = imadd(X,Y)

Description
Z = imadd(X,Y) adds each element in array X with the corresponding element in array Y and
returns the sum in the corresponding element of the output array Z.

Examples

Add Two uint8 Arrays

This example shows how to add two uint8 arrays with truncation for values that exceed 255.

X = uint8([255 0 75; 44 225 100]);
Y = uint8([50 50 50; 50 50 50]);
Z = imadd(X,Y)

Z = 2x3 uint8 matrix

 255 50 125
 94 255 150

Add Two Images and Specify Output Class

Read two grayscale uint8 images into the workspace.

I = imread('rice.png');
J = imread('cameraman.tif');

Add the images. Specify the output as type uint16 to avoid truncating the result.

K = imadd(I,J,'uint16');

Display the result.

imshow(K,[])

1 Functions

1-1228

Add a Constant to an Image

Read an image into the workspace.

I = imread('rice.png');

Add a constant to the image.

J = imadd(I,50);

Display the original image and the result.

imshow(I)

 imadd

1-1229

figure
imshow(J)

1 Functions

1-1230

Input Arguments
X — First array
numeric array | logical array

First array, specified as a numeric array or logical array of any dimension.

Y — Second array
numeric scalar | numeric array | logical array

Second array to be added to X, specified as a numeric or logical array of the same size and class as X,
or a numeric scalar of type double.

Output Arguments
Z — Sum
numeric array

Sum, returned as a numeric array of the same size as X. Z is the same class as X unless X is logical, in
which case Z is data type double. If X is an integer array, elements of the output that exceed the
range of the integer type are truncated, and fractional values are rounded.

See Also
imabsdiff | imcomplement | imdivide | imlincomb | immultiply | imsubtract

Introduced before R2006a

 imadd

1-1231

imadjust
Adjust image intensity values or colormap

Syntax
J = imadjust(I)
J = imadjust(I,[low_in high_in])
J = imadjust(I,[low_in high_in],[low_out high_out])
J = imadjust(I,[low_in high_in],[low_out high_out],gamma)

J = imadjust(RGB,[low_in high_in], ___)
newmap = imadjust(cmap,[low_in high_in], ___)

Description
J = imadjust(I) maps the intensity values in grayscale image I to new values in J. By default,
imadjust saturates the bottom 1% and the top 1% of all pixel values. This operation increases the
contrast of the output image J.

This syntax is equivalent to imadjust(I,stretchlim(I)).

J = imadjust(I,[low_in high_in]) maps intensity values in I to new values in J such that
values between low_in and high_in map to values between 0 and 1.

J = imadjust(I,[low_in high_in],[low_out high_out]) maps intensity values in I to new
values in J such that values between low_in and high_in map to values between low_out and
high_out.

J = imadjust(I,[low_in high_in],[low_out high_out],gamma) maps intensity values in I
to new values in J, where gamma specifies the shape of the curve describing the relationship between
the values in I and J.

J = imadjust(RGB,[low_in high_in], ___) maps the values in truecolor image RGB to new
values in J. You can apply the same mapping or unique mappings for each color channel.

newmap = imadjust(cmap,[low_in high_in], ___) maps the values in colormap cmap to new
values in newmap. You can apply the same mapping or unique mappings for each color channel.

Examples

Adjust Contrast of Grayscale Image

Read a low-contrast grayscale image into the workspace and display it.

I = imread('pout.tif');
imshow(I)

1 Functions

1-1232

Adjust the contrast of the image so that 1% of the data is saturated at low and high intensities, and
display it.

J = imadjust(I);
figure
imshow(J)

 imadjust

1-1233

Adjust Contrast of Grayscale Image Specifying Contrast Limits

Read a low-contrast grayscale image into the workspace and display it.

I = imread('pout.tif');
imshow(I);

1 Functions

1-1234

Adjust the contrast of the image, specifying contrast limits.

K = imadjust(I,[0.3 0.7],[]);
figure
imshow(K)

 imadjust

1-1235

Adjust Contrast of Color Image

Read an RGB image into the workspace and display it.

RGB = imread('football.jpg');
imshow(RGB)

1 Functions

1-1236

Adjust the contrast of the RGB image, specifying contrast limits.

RGB2 = imadjust(RGB,[.2 .3 0; .6 .7 1],[]);
figure
imshow(RGB2)

 imadjust

1-1237

Standard Deviation Based Image Stretching

Read an image into the workspace, and display it.

I = imread('pout.tif');
imshow(I)

Calculate the standard deviation and the image mean for stretching.

n = 2;
Idouble = im2double(I);
avg = mean2(Idouble);
sigma = std2(Idouble);

Adjust the contrast based on the standard deviation.

J = imadjust(I,[avg-n*sigma avg+n*sigma],[]);

Display the adjusted image.

imshow(J)

1 Functions

1-1238

Input Arguments
I — Grayscale image
m-by-n numeric matrix

Grayscale image, specified as an m-by-n numeric matrix.
Data Types: single | double | int16 | uint8 | uint16

RGB — Truecolor image
m-by-n-by-3 numeric array

Truecolor image, specified as an m-by-n-by-3 numeric array.
Data Types: single | double | int16 | uint8 | uint16

cmap — Colormap
c-by-3 numeric matrix

Colormap, specified as a c-by-3 numeric matrix with values in the range [0, 1]. Each row is a three-
element RGB triplet that specifies the red, green, and blue components of a single color of the
colormap.
Data Types: double

[low_in high_in] — Contrast limits for input image
[0 1] (default) | 2-element numeric vector | 2-by-3 numeric matrix

Contrast limits for the input image, specified in one of the following forms:

 imadjust

1-1239

Input Type Value Description
Grayscale image 1-by-2 vector of the

form [low_in
high_in]

Specifies the contrast limits in the input
grayscale image that you want to map to values
in the output image. Values must be in the range
[0 1.0]. The value low_in must be less than
the value high_in.

RGB image or colormap 2-by-3 matrix of the
form
[low_RGB_triplet;
high_RGB_triplet]

Specifies the contrast limits in the input RGB
image or colormap that you want to map to
values in the output image or colormap. Each row
in the array is an RGB color triplet. Values must
be in the range [0 1]. The value
low_RGB_triplet must be less than the value
high_RGB_triplet.

RGB image or colormap 1-by-2 vector of the
form [low_in
high_in]

Specifies the contrast limits in the input RGB
image that you want to map to values in the
output image. Each value must be in the range [0
1.0]. The value low_in must be less than the
value high_in. If you specify a 1-by-2 vector
with an RGB image or colormap, then imadjust
applies the same adjustment to each color plane
or channel.

All types [] If you specify an empty matrix ([]), then
imadjust uses the default limits [0 1].

imadjust clips value below low_in and above high_in: Values below low_in map to low_out and
values above high_in map to high_out.
Data Types: single | double

[low_out high_out] — Contrast limits for output image
[0 1] (default) | 2-element numeric vector | 2-by-3 numeric matrix

Contrast limits for the output image, specified in one of the following forms:

Input Type Value Description
Grayscale image 1-by-2 vector of the

form [low_out
high_out]

Specifies the contrast limits of the output
grayscale image. Each value must be in the range
[0 1].

RGB image or colormap 2-by-3 matrix of the
form
[low_RGB_triplet;
high_RGB_triplet]

Specifies the contrast limits of the output RGB
image or colormap. Each row in the array is an
RGB color triplet. Values must be in the range [0
1].

RGB image or colormap 1-by-2 vector of the
form [low_out
high_out]

Specifies the contrast limits in the output image.
Each value must be in the range [0 1]. If you
specify a 1-by-2 vector with an RGB image or
colormap, then imadjust applies the same
adjustment to each plane or channel.

All types [] If you specify an empty matrix ([]), then
imadjust uses the default limits [0 1].

1 Functions

1-1240

If high_out is less than low_out, then imadjust reverses the output image, as in a photographic
negative.
Data Types: single | double

gamma — Shape of curve describing relationship of input and output values
1 (default) | nonnegative scalar | 1-by-3 numeric vector

Shape of curve describing the relationship of input and output values, specified as a nonnegative
scalar or a 1-by-3 numeric vector.

• If gamma is less than 1, then imadjust weights the mapping toward higher (brighter) output
values.

• If gamma is greater than 1, then imadjust weights the mapping toward lower (darker) output
values.

• If gamma is a 1-by-3 vector, then imadjust applies a unique gamma to each color component or
channel.

• If you omit the argument, then gamma defaults to 1 (linear mapping).

Data Types: double

Output Arguments
J — Adjusted image
grayscale image | RGB image

Adjusted image, returned as a grayscale or RGB image. J has the same size and class as the input
grayscale image I or truecolor image RGB.
Data Types: single | double | int16 | uint8 | uint16

newmap — Adjusted colormap
c-by-3 numeric matrix

Adjusted colormap, returned as an c-by-3 numeric matrix of the same class as the input colormap,
map.
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imadjust supports the generation of C code (requires MATLAB Coder). Note that if you choose
the generic MATLAB Host Computer target platform, imadjust generates code that uses a
precompiled, platform-specific shared library. Use of a shared library preserves performance
optimizations but limits the target platforms for which code can be generated. For more
information, see “Types of Code Generation Support in Image Processing Toolbox”.

• When generating code, imadjust does not support indexed images.

 imadjust

1-1241

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• When generating code, imadjust does not support indexed images.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on a GPU”.

See Also
brighten | histeq | stretchlim

Introduced before R2006a

1 Functions

1-1242

imadjustn
Adjust intensity values in N-D volumetric image

Syntax
J = imadjustn(V)
J = imadjustn(V,[low_in high_in])
J = imadjustn(V,[low_in high_in].[low_out high_out])
J = imadjustn(V,[low_in high_in],[low_out high_out],gamma)

Description
J = imadjustn(V) maps the values in the N-D volumetric intensity image V to new values in J.
imadjustn increases the contrast of the output volumetric image J.

By default, imadjustn saturates the bottom 1% and the top 1% of all pixel values. This syntax is
equivalent to imadjustn(V,stretchlim(V(:))).

J = imadjustn(V,[low_in high_in]) maps the values in V to new values in the range [0, 1].
Values below low_in map to 0 and values above high_in map to 1.

J = imadjustn(V,[low_in high_in].[low_out high_out]) maps the values in V to new
values in J such that values between low_in and high_in map to values between low_out and
high_out. Values below low_in are clipped to low_out and values above high_in are clipped to
high_out.

If high_out is less than low_out, then imadjustn reverses the output image volume, as in a
photographic negative.

J = imadjustn(V,[low_in high_in],[low_out high_out],gamma) maps the values in V to J
using a nonlinear gamma curve.

Examples

Scale Intensity of 3-D Volume of MRI Data

Load a 3-D image into the workspace, then save the image as data type double.

load mristack;
V1 = im2double(mristack);

Display cross-sections of the image.

figure
slice(V1,size(V1,2)/2,size(V1,1)/2,size(V1,3)/2)
colormap gray
shading interp

 imadjustn

1-1243

Adjust the image intensity values. imadjustn maps input values between 0.2 and 0.8 to the default
output range of [0, 1]. imadjustn clips input values below 0.2 and above 0.8.

V2 = imadjustn(V1,[0.2 0.8],[]);

Display cross-sections of the contrast-adjusted image.

figure
slice(V2,size(V2,2)/2,size(V2,1)/2,size(V2,3)/2)
colormap gray
shading interp

1 Functions

1-1244

Input Arguments
V — Volumetric intensity image
N-D numeric array

Volumetric intensity image, specified as an N-D numeric array.
Data Types: single | double | int16 | uint8 | uint16

[low_in high_in] — Range of values in input image
[0 1] (default) | 2-element vector

Range of values in the input image, specified as a 2-element vector of the form [low_in high_in],
with values in the range [0, 1]. Before adjusting intensity values, imadjustn converts the input
image to class double (using im2double), rescaling values to the range [0, 1]. low_in and high_in
correspond to the specified input range after conversion to double.

You can use an empty matrix ([]) for [low_in high_in] to specify the default of [0 1].
Data Types: double

[low_out high_out] — Range of values in output image
[0 1] (default) | 2-element vector

Range of values in output image, specified as a 2-element vector of the form [low_out high_out],
with values in the range [0, 1]. Before adjusting intensity values, imadjustn converts the input

 imadjustn

1-1245

image to class double (using im2double), rescaling values to the range [0,1]. low_out and
high_out correspond to the specified output range after conversion to double. After adjusting
intensity values, imadjustn converts the image to the data type of the input image.

You can use an empty matrix ([]) for [low_out high_out] to specify the default of [0 1].
Data Types: double

gamma — Shape of gamma curve
1 (default) | numeric scalar

Shape of gamma curve describing relationship between values in V and J, specified as a numeric
scalar.

• If you omit the argument, then gamma defaults to 1 and performs a linear mapping.
• If the value is less than 1, then imadjustn weights the mapping toward higher (brighter) output

values.
• If the value is greater than 1, then imadjustn weights the mapping toward lower (darker) output

values.

Data Types: double

Output Arguments
J — Volume with adjusted intensity values
N-D volumetric intensity image

Volume with adjusted intensity values, returned as an N-D volumetric intensity image. The output
volume has the same class as the input image.

See Also
histeq | stretchlim | decorrstretch | imhistmatchn

Introduced in R2017b

1 Functions

1-1246

ImageAdapter class

Interface for image I/O

Description
ImageAdapter is an abstract class that defines custom region-based reading and writing of images
in arbitrary image file formats. You can use classes that inherit from the ImageAdapter interface
with the blockproc function to perform file-based block processing.

To write an Image Adapter class for a particular file format, you must be able to:

• Query the size of the file on disk
• Read a rectangular block of data from the file

To use this class, you must inherit from the ImageAdapter class. Type the following syntax as the
first line of your class definition file:

classdef MyAdapter < ImageAdapter
 ...
end

Classes that inherit from ImageAdapter must implement the readRegion and close methods to
support basic region-based reading of images. The optional writeRegion method allows for
incremental, region-based writing of images. Image Adapter classes that do not implement the
writeRegion method are read-only.

The ImageAdapter class is a handle class.

Class Attributes

Abstract true
HandleCompatible true

For information on class attributes, see “Class Attributes”.

Properties
ImageSize — Image size
[] (default) | 2-element vector of positive integers | 3-element vector of positive integers

Image size, specified as a 2-element vector of positive integers [m n], or a 3-element vector of
positive integers [m n p], where m is the number of rows, n is the number of columns, and p is the
number of channels of the image.

When you construct a new class that inherits from ImageAdapter, set the ImageSize property in
your class constructor.
Example: [1920 1080]

 ImageAdapter class

1-1247

Attributes:

GetAccess public
SetAccess protected

Colormap — Colormap
[] (default) | c-by-3 numeric matrix

Colormap for indexed images, specified as a c-by-3 numeric matrix with values in the range [0, 1].
Each row of the matrix is a 3-element RGB triplet that specifies the red, green, and blue components
of a single color.

When you construct a new class that inherits from ImageAdapter, set the Colormap property in
your class constructor.

Attributes:

GetAccess public
SetAccess protected

Methods
Public Methods
close Close ImageAdapter object
readRegion Read region of image
writeRegion Write block of data to region of image

See Also
blockproc

Topics
“Compute Statistics for Large Images”
“Abstract Classes and Class Members”
“Perform Block Processing on Image Files in Unsupported Formats”

Introduced in R2010a

1 Functions

1-1248

close
Class: ImageAdapter

Close ImageAdapter object

Syntax
close(adapter)

Description
close(adapter) closes the ImageAdapter object and performs any necessary clean-up, such as
closing file handles.

Input Arguments
adapter — Image adapter
ImageAdapter

Image adapter, specified as an instance of an ImageAdapter.

Attributes
Abstract true

To learn about attributes of methods, see Method Attributes.

Tips
• When you construct a class that inherits from the ImageAdapter class, you must implement this

method.
• blockproc does not call the close method. If your image adapter opens file handles or requires

other class clean-up responsibilities, then you must call the close method explicitly in your image
processing pipeline.

See Also
ImageAdapter

Introduced in R2010a

 close

1-1249

readRegion
Class: ImageAdapter

Read region of image

Syntax
data = readRegion(adapter,region_start, region_size)

Description
data = readRegion(adapter,region_start, region_size) reads an image region of size
region_size with top-left pixel at coordinate region_start.

Input Arguments
adapter — Image adapter
ImageAdapter

Image adapter, specified as an instance of an ImageAdapter.

region_start — Top-left coordinates of region
2-element vector of positive integers

Top-left coordinates of the region to read, specified as a 2-element vector of positive integers of the
form [row column].

region_size — Size of region
2-element vector of positive integers

Size of the region to read, specified as a 2-element vector of positive integers of the form [numrows
numcolumns].

Output Arguments
data — Image data
numeric array

Image data, returned as a numeric array of size region_size.

Attributes
Abstract true

To learn about attributes of methods, see Method Attributes.

1 Functions

1-1250

Tips
• When you construct a class that inherits from the ImageAdapter class, you must implement this

method.

See Also
ImageAdapter

Topics
“Compute Statistics for Large Images”
“Perform Block Processing on Image Files in Unsupported Formats”

Introduced in R2010a

 readRegion

1-1251

writeRegion
Class: ImageAdapter

Write block of data to region of image

Syntax
writeRegion(adapter,region_start,region_data)

Description
writeRegion(adapter,region_start,region_data) writes a contiguous block of data
region_data to the region of the image with top-left pixel at coordinate region_start.

Input Arguments
adapter — Image adapter
ImageAdapter

Image adapter, specified as an instance of an ImageAdapter.

region_start — Top-left coordinates of region
2-element vector of positive integers

Top-left coordinates of the region to write, specified as a 2-element vector of positive integers of the
form [row column].

region_data — Image data
numeric array

Image data, specified as a numeric array.

Tips
• When you construct a class that inherits from the ImageAdapter class, you can optionally

implement this method to enable incremental, region-based writing of images. Image adapter
classes that do not implement the writeRegion method are read-only.

See Also
ImageAdapter

Introduced in R2010a

1 Functions

1-1252

imageinfo
Image Information tool

Syntax
imageinfo
imageinfo(h)
imageinfo(filename)
imageinfo(info)
imageinfo(himage,filename)
imageinfo(himage,info)
htool = imageinfo(___)

Description
Use the imageinfo function to create an Image Information tool. The tool displays information about
the basic attributes and metadata of the target image in a separate figure.

imageinfo creates an Image Information tool associated with the image in the current figure. The
tool displays information about the basic attributes of the target image in a separate figure.

imageinfo(h) creates an Image Information tool associated with h, where h is a handle to a figure,
axes, or image object.

imageinfo(filename) creates an Image Information tool containing image metadata from the
graphics file filename. The image does not have to be displayed in a figure window.

 imageinfo

1-1253

imageinfo(info) creates an Image Information tool containing the image metadata in the
structure info.

imageinfo(himage,filename) creates an Image Information tool containing information about
the basic attributes of the image specified by the handle himage and the image metadata from the
graphics file filename.

imageinfo(himage,info) creates an Image Information tool containing information about the
basic attributes of the image specified by the handle himage and the image metadata in the structure
info.

htool = imageinfo(___) returns a handle to the Image Information tool figure.

Examples

Open Image Information Tool

There are several ways to open an Image Information tool. This example demonstrates three different
ways to open this tool.

Open an Image Information tool containing metadata from an image file. It is not necessary to display
the image.

imageinfo('peppers.png')

1 Functions

1-1254

Display an image in a figure window.

h = imshow('bag.png');

 imageinfo

1-1255

Get the image metadata.

info = imfinfo('bag.png');

Open an Image Information tool associated with the figure that also contains the image metadata.

imageinfo(h,info)

1 Functions

1-1256

Display a new image, then open an Image Information tool associated with the image.

imshow('canoe.tif')
imageinfo

 imageinfo

1-1257

Input Arguments
h — Handle to graphics object
handle

Handle to a figure, axes, uipanel, or image graphics object, specified as a handle. If h is an axes or
figure handle, then imageinfo uses the first image returned by findobj(h,'Type','image').

filename — File name
character vector | string scalar

File name, specified as a character vector. filename can be any file type that has been registered
with an information function in the file formats registry, imformats, so its information can be read
by imfinfo. filename can also be a DICOM, NITF, Interfile, or Analyze file.

info — Image metadata
structure

Image metadata, specified as a structure returned by the functions imfinfo, dicominfo,
nitfinfo, interfileinfo, or analyze75info. info can also be a user-created structure.

himage — Handle to image object
handle

Handle to an image graphics object, specified as a handle.

Output Arguments
htool — Handle to Image Information tool figure
handle

Handle to Image Information tool figure, returned as a handle.

Tips
• The table lists the basic image attribute information included in the Image Information tool

display. Note that the tool contains either four or six fields, depending on the type of image.

Attribute Name Value
Width (columns) Number of columns in the image
Height (rows) Number of rows in the image
Class Data type used by the image, such as 'uint8'.

Note For single or int16 images, imageinfo returns a 'Class'
value of 'double', because the image object converts the CData of
these images to double.

Image type One of the image types identified by the Image Processing Toolbox
software: 'intensity' 'truecolor', 'binary', or 'indexed'.

1 Functions

1-1258

Attribute Name Value
Minimum intensity
or index

For grayscale images, this value represents the lowest intensity value of
any pixel.

For indexed images, this value represents the lowest index value into a
colormap.

This field is not included for 'binary' or 'truecolor' images.
Maximum intensity
or index

For grayscale images, this value represents the highest intensity value of
any pixel.

For indexed images, this value represents the highest index value into a
colormap.

This field is not included for 'binary' or 'truecolor' images.

• imageinfo gets information about image attributes by querying the image object's CData. The
image object converts the CData for single or int16 images to class double. In these cases,
imageinfo(H) displays a'Class' attribute of 'double', even though the image is of class
single or int16. For example,

h = imshow(ones(10,'int16'));
class(get(h,'CData'))

See Also
Image Viewer | dicominfo | imattributes | imfinfo | imformats | nitfinfo

Introduced before R2006a

 imageinfo

1-1259

imagemodel
Image model object

Description
An image model object stores information about an image such as class, type, display range, width,
height, minimum intensity value and maximum intensity value.

The image model object supports functions that you can use to access this information, get
information about the pixels in an image, and perform special text formatting. An imagemodel object
works by querying the target image CData.

Creation

Syntax
imgmodel = imagemodel(himage)

Description

imgmodel = imagemodel(himage) creates an image model object associated with a target image
himage.

If himage is an array of image objects, then imgmodel is an array of image model objects.

Input Arguments

himage — Target image
handle | array of handles

Target image, specified as a handle or array of handles to image objects.

Object Functions
getClassType Get class of image from image model
getDisplayRange Get display range of image from image model
getImageHeight Get height of image from image model
getImageType Get type of image from image model
getImageWidth Get width of image from image model
getMaxIntensity Get maximum value of image from image model
getMinIntensity Get minimum value of image from image model
getNumberFormatFcn Get function handle that converts numeric value into character vector
getPixelInfoString Get pixel value as character vector
getPixelRegionFormatFcn Get function handle that formats pixel value into character vector
getPixelValue Get pixel value as numeric array
getDefaultPixelInfoString Get default pixel value as character vector

1 Functions

1-1260

getDefaultPixelRegionString Get type of information displayed in Pixel Region tool as character
vector

getScreenPixelRGBValue Get screen value of specified pixel in image model
getimagemodel Image model object from image object

Examples

Create an Image Model from Image Objects

Create an image model associated with a single image object.

h = imshow('peppers.png');

im = imagemodel(h)

im =

IMAGEMODEL object accessing an image with these properties:

 ClassType: 'uint8'
 DisplayRange: []

 imagemodel

1-1261

 ImageHeight: 384
 ImageType: 'truecolor'
 ImageWidth: 512
 MinIntensity: []
 MaxIntensity: []

Create an image model for an array of image object handles.

figure
subplot(1,2,1)
h1 = imshow('hestain.png');
subplot(1,2,2)
h2 = imshow('coins.png');

im = imagemodel([h1 h2])

im =

1x2 array of IMAGEMODEL objects.

1 Functions

1-1262

Get RGB Pixel Values From Image Model

Pixel values obtained from an imagemodel object can be returned in several formats suitable for
display in different interactive image processing tools.

Create an image model associated with a color image.

h = imshow('flamingos.jpg');

im = imagemodel(h)

im =

IMAGEMODEL object accessing an image with these properties:

 ClassType: 'uint8'
 DisplayRange: []
 ImageHeight: 972
 ImageType: 'truecolor'
 ImageWidth: 1296
 MinIntensity: []
 MaxIntensity: []

 imagemodel

1-1263

Select a pixel by specifying row and column coordinates. This pixel has (row, column) coordinates
(100, 200).

r = 100;
c = 200;

Get the numeric value of the pixel using the getPixelValue function.

pxValue = getPixelValue(im,r,c)

pxValue = 1x3 uint8 row vector

 104 95 54

Get the default pixel information string using the getDefaultPixelInfoString function. This
string depends on the type of image but does not use the pixel values. The pixel information string is
suitable for use with the Pixel Information tool.

defaultPxInfoStr = getDefaultPixelInfoString(im)

defaultPxInfoStr =
'[R G B]'

Using the same string format, get the pixel information string for the specified pixel by using the
getPixelInfoString function.

pxInfoStr = getPixelInfoString(im,r,c)

pxInfoStr =
'[104 95 54]'

Get the default pixel region string using the getDefaultPixelRegionString function. This string
depends on the type of image but does not use the pixel values. The pixel region string is suitable for
use with the Pixel Region tool.

defaultPxRegStr = getDefaultPixelRegionString(im)

defaultPxRegStr =
 'R:000
 G:000
 B:000'

There are two steps to get the pixel region string for the specified pixel in the same string format.
First, get a function formatFcn that formats numeric pixel values by using the
getPixelRegionFormatFcn function. Then, specify the row and column coordinate of the pixel as
input arguments to formatFcn to get the formatted string.

formatFcn = getPixelRegionFormatFcn(im);
pxRegStr = formatFcn(r,c)

pxRegStr = 1x1 cell array
 {'R:104...'}

1 Functions

1-1264

See Also
getimagemodel | imattributes

Introduced before R2006a

 imagemodel

1-1265

getClassType
Get class of image from image model

Syntax
imgclass = getClassType(imgmodel)

Description
imgclass = getClassType(imgmodel) returns the class associated with the image model,
imgmodel.

Input Arguments
imgmodel — Image model
scalar imagemodel object

Image model, specified as a scalar imagemodel object.

Output Arguments
imgclass — Class of image
character vector

Class of the image CData, returned as a character vector such as 'uint8'.

See Also
imageinfo | getDisplayRange | getMaxIntensity | getMinIntensity

Introduced before R2006a

1 Functions

1-1266

getDefaultPixelInfoString
Get default pixel value as character vector

Syntax
pixval = getDefaultPixelInfoString(imgmodel)

Description
pixval = getDefaultPixelInfoString(imgmodel) returns a default pixel value character
vector matching the information displayed in the Pixel Information tool on page 1-1692, based on the
type of image in imgmodel. This character vector can be used in place of actual pixel information
values.

Examples

Get RGB Pixel Values From Image Model

Pixel values obtained from an imagemodel object can be returned in several formats suitable for
display in different interactive image processing tools.

Create an image model associated with a color image.

h = imshow('flamingos.jpg');

 getDefaultPixelInfoString

1-1267

im = imagemodel(h)

im =

IMAGEMODEL object accessing an image with these properties:

 ClassType: 'uint8'
 DisplayRange: []
 ImageHeight: 972
 ImageType: 'truecolor'
 ImageWidth: 1296
 MinIntensity: []
 MaxIntensity: []

Select a pixel by specifying row and column coordinates. This pixel has (row, column) coordinates
(100, 200).

r = 100;
c = 200;

1 Functions

1-1268

Get the numeric value of the pixel using the getPixelValue function.

pxValue = getPixelValue(im,r,c)

pxValue = 1x3 uint8 row vector

 104 95 54

Get the default pixel information string using the getDefaultPixelInfoString function. This
string depends on the type of image but does not use the pixel values. The pixel information string is
suitable for use with the Pixel Information tool.

defaultPxInfoStr = getDefaultPixelInfoString(im)

defaultPxInfoStr =
'[R G B]'

Using the same string format, get the pixel information string for the specified pixel by using the
getPixelInfoString function.

pxInfoStr = getPixelInfoString(im,r,c)

pxInfoStr =
'[104 95 54]'

Get the default pixel region string using the getDefaultPixelRegionString function. This string
depends on the type of image but does not use the pixel values. The pixel region string is suitable for
use with the Pixel Region tool.

defaultPxRegStr = getDefaultPixelRegionString(im)

defaultPxRegStr =
 'R:000
 G:000
 B:000'

There are two steps to get the pixel region string for the specified pixel in the same string format.
First, get a function formatFcn that formats numeric pixel values by using the
getPixelRegionFormatFcn function. Then, specify the row and column coordinate of the pixel as
input arguments to formatFcn to get the formatted string.

formatFcn = getPixelRegionFormatFcn(im);
pxRegStr = formatFcn(r,c)

pxRegStr = 1x1 cell array
 {'R:104...'}

Get Grayscale Pixel Value From Image Model

Pixel values obtained from an imagemodel object can be returned in several formats suitable for
display in different interactive image processing tools.

Create an image model associated with a grayscale image.

 getDefaultPixelInfoString

1-1269

h = imshow('liftingbody.png');

im = imagemodel(h)

im =

IMAGEMODEL object accessing an image with these properties:

 ClassType: 'uint8'
 DisplayRange: [0 255]
 ImageHeight: 512
 ImageType: 'intensity'
 ImageWidth: 512
 MinIntensity: 0

1 Functions

1-1270

 MaxIntensity: 255

Select a pixel by specifying the row and column coordinates. This pixel has (row, column) coordinates
(50, 250).

r = 50;
c = 250;

Get the numeric value of the pixel using the getPixelValue function.

pxValue = getPixelValue(im,r,c)

pxValue = uint8
 151

Convert the numeric pixel value to a string. First, get a function formatFcn that formats numeric
pixel values by using the getNumberFormatFcn. Then, specify the numeric value of the pixel as the
input argument to formatFcn to get the formatted string.

formatFcn = getNumberFormatFcn(im);
pxValueStr = formatFcn(pxValue)

pxValueStr =
'151'

Get the default pixel information string using the getDefaultPixelInfoString function. This
string depends on the type of image but does not use the pixel values. The pixel information string is
suitable for use with the Pixel Information tool.

defaultPxInfoStr = getDefaultPixelInfoString(im)

defaultPxInfoStr =
'Intensity'

Using the same string format, get the pixel information string for the specified pixel by using the
getPixelInfoString function.

pxInfoStr = getPixelInfoString(im,r,c)

pxInfoStr =
'151'

Get the default pixel region string using the getDefaultPixelRegionString function. This string
depends on the type of image but does not use the pixel values. The pixel region string is suitable for
use with the Pixel Region tool.

defaultPxRegStr = getDefaultPixelRegionString(im)

defaultPxRegStr =
'000'

There are two steps to get the pixel region string for the specified pixel in the same string format.
First, get a function formatFcn that formats numeric pixel values by using the
getPixelRegionFormatFcn function. Then, specify the row and column coordinate of the pixel as
input arguments to formatFcn to get the formatted string.

 getDefaultPixelInfoString

1-1271

formatFcn = getPixelRegionFormatFcn(im);
pxRegStr = formatFcn(r,c)

pxRegStr = 1x1 cell array
 {'151'}

Input Arguments
imgmodel — Image model
scalar imagemodel object

Image model, specified as a scalar imagemodel object.

Output Arguments
pixval — Default pixel value
'Intensity' | '[R G B]' | 'BW' | '<Index> [R G B]'

Default pixel value, returned as one of the following.

Image Type Default Pixel Value
Grayscale 'Intensity'
Truecolor (RGB) '[R G B]'
Binary 'BW'
Indexed '<Index> [R G B]'

Data Types: char

See Also
getPixelInfoString | getImageType | getDefaultPixelRegionString | impixelinfo |
impixelinfoval

Introduced before R2006a

1 Functions

1-1272

getDefaultPixelRegionString
Get type of information displayed in Pixel Region tool as character vector

Syntax
pixval = getDefaultPixelRegionString(imgmodel)

Description
pixval = getDefaultPixelRegionString(imgmodel) returns a default pixel value character
vector matching the information displayed in the Pixel Region tool on page 1-1697, based on the type
of image in imgmodel. This character vector can be used in place of actual pixel information values.

Examples

Get RGB Pixel Values From Image Model

Pixel values obtained from an imagemodel object can be returned in several formats suitable for
display in different interactive image processing tools.

Create an image model associated with a color image.

h = imshow('flamingos.jpg');

 getDefaultPixelRegionString

1-1273

im = imagemodel(h)

im =

IMAGEMODEL object accessing an image with these properties:

 ClassType: 'uint8'
 DisplayRange: []
 ImageHeight: 972
 ImageType: 'truecolor'
 ImageWidth: 1296
 MinIntensity: []
 MaxIntensity: []

Select a pixel by specifying row and column coordinates. This pixel has (row, column) coordinates
(100, 200).

r = 100;
c = 200;

1 Functions

1-1274

Get the numeric value of the pixel using the getPixelValue function.

pxValue = getPixelValue(im,r,c)

pxValue = 1x3 uint8 row vector

 104 95 54

Get the default pixel information string using the getDefaultPixelInfoString function. This
string depends on the type of image but does not use the pixel values. The pixel information string is
suitable for use with the Pixel Information tool.

defaultPxInfoStr = getDefaultPixelInfoString(im)

defaultPxInfoStr =
'[R G B]'

Using the same string format, get the pixel information string for the specified pixel by using the
getPixelInfoString function.

pxInfoStr = getPixelInfoString(im,r,c)

pxInfoStr =
'[104 95 54]'

Get the default pixel region string using the getDefaultPixelRegionString function. This string
depends on the type of image but does not use the pixel values. The pixel region string is suitable for
use with the Pixel Region tool.

defaultPxRegStr = getDefaultPixelRegionString(im)

defaultPxRegStr =
 'R:000
 G:000
 B:000'

There are two steps to get the pixel region string for the specified pixel in the same string format.
First, get a function formatFcn that formats numeric pixel values by using the
getPixelRegionFormatFcn function. Then, specify the row and column coordinate of the pixel as
input arguments to formatFcn to get the formatted string.

formatFcn = getPixelRegionFormatFcn(im);
pxRegStr = formatFcn(r,c)

pxRegStr = 1x1 cell array
 {'R:104...'}

Input Arguments
imgmodel — Image model
scalar imagemodel object

Image model, specified as a scalar imagemodel object.

 getDefaultPixelRegionString

1-1275

Output Arguments
pixval — Default pixel value
'000' | 'R:000 G:000 B:000' | '0' | '<000> R:0.00 G:0.00 B:0.00'

Default pixel value, returned as one of the following.

Image Type Default Pixel Value
Grayscale '000'
Truecolor (RGB) 'R:000 G:000 B:000'
Binary '0'
Indexed '<000> R:0.00 G:0.00 B:0.00'

Data Types: char

See Also
getPixelRegionFormatFcn | getImageType | getDefaultPixelInfoString | impixelregion

Introduced before R2006a

1 Functions

1-1276

getDisplayRange
Get display range of image from image model

Syntax
disp_range = getDisplayRange(imgmodel)

Description
disp_range = getDisplayRange(imgmodel), returns the display range associated with a
grayscale image in imgmodel.

Input Arguments
imgmodel — Image model
scalar imagemodel object

Image model, specified as a scalar imagemodel object.

Output Arguments
disp_range — Image display range
2-element numeric vector | []

Image display range, returned as a 2-element numeric vector of the form [min max] for grayscale
images. For other image types, the value returned is an empty array, [].
Data Types: double

See Also
getMaxIntensity | getMinIntensity | getClassType | imdisplayrange

Introduced before R2006a

 getDisplayRange

1-1277

getImageHeight
Get height of image from image model

Syntax
imgheight = getImageHeight(imgmodel)

Description
imgheight = getImageHeight(imgmodel) returns the number of rows of the image in image
model imgmodel.

Input Arguments
imgmodel — Image model
scalar imagemodel object

Image model, specified as a scalar imagemodel object.

Output Arguments
imgheight — Image height
positive integer

Image height in rows of pixels, returned as positive integer.
Data Types: double

See Also
getImageWidth | imageinfo

Introduced before R2006a

1 Functions

1-1278

getImageType
Get type of image from image model

Syntax
imgtype = getImageType(imgmodel)

Description
imgtype = getImageType(imgmodel) returns the type of image in imgmodel.

Input Arguments
imgmodel — Image model
scalar imagemodel object

Image model, specified as a scalar imagemodel object.

Output Arguments
imgtype — Image type
'intensity' | 'truecolor' | 'binary' | 'indexed'

Image type, returned as 'intensity', 'truecolor', 'binary', or 'indexed'.

See Also
imageinfo

Topics
“Image Types in the Toolbox”

Introduced before R2006a

 getImageType

1-1279

getImageWidth
Get width of image from image model

Syntax
imgwidth = getImageWidth(imgmodel)

Description
imgwidth = getImageWidth(imgmodel) returns the number of columns of the image in image
model imgmodel.

Input Arguments
imgmodel — Image model
scalar imagemodel object

Image model, specified as a scalar imagemodel object.

Output Arguments
imgwidth — Image width
positive integer

Image width in columns of pixels, returned as positive integer.
Data Types: double

See Also
getImageHeight | imageinfo

Introduced before R2006a

1 Functions

1-1280

getMaxIntensity
Get maximum value of image from image model

Syntax
maxval = getMaxIntensity(imgmodel)

Description
maxval = getMaxIntensity(imgmodel) returns the maximum value of the image in imgmodel.

Input Arguments
imgmodel — Image model
scalar imagemodel object

Image model, specified as a scalar imagemodel object.

Output Arguments
maxval — Maximum image value
numeric scalar | []

Maximum image value, returned as a numeric scalar. For a grayscale image, the value returned is the
maximum intensity, calculated as max(Image(:)). For an indexed image, the value returned is the
maximum index. For any other image type, the value returned is an empty array, []. The class of
maxval depends on the class of the target image.

See Also
getMinIntensity | getDisplayRange | getClassType | imdisplayrange

Topics
“Image Types in the Toolbox”

Introduced before R2006a

 getMaxIntensity

1-1281

getMinIntensity
Get minimum value of image from image model

Syntax
minval = getMinIntensity(imgmodel)

Description
minval = getMinIntensity(imgmodel) returns the minimum value of the image in imgmodel.

Input Arguments
imgmodel — Image model
scalar imagemodel object

Image model, specified as a scalar imagemodel object.

Output Arguments
minval — Minimum image value
numeric scalar | []

Minimum image value, returned as a numeric scalar. For a grayscale image, the value returned is the
minimum intensity, calculated as min(Image(:)). For an indexed image, the value returned is the
minimum index. For any other image type, the value returned is an empty array, []. The class of
minval depends on the class of the target image.

See Also
getMaxIntensity | getDisplayRange | getClassType | imdisplayrange

Topics
“Image Types in the Toolbox”

Introduced before R2006a

1 Functions

1-1282

getNumberFormatFcn
Get function handle that converts numeric value into character vector

Syntax
fun = getNumberFormatFcn(imgmodel)

Description
fun = getNumberFormatFcn(imgmodel) returns a handle to a function that converts a single
numeric value into a character vector for image model imgmodel.

Examples

Get Grayscale Pixel Value From Image Model

Pixel values obtained from an imagemodel object can be returned in several formats suitable for
display in different interactive image processing tools.

Create an image model associated with a grayscale image.

h = imshow('liftingbody.png');

 getNumberFormatFcn

1-1283

im = imagemodel(h)

im =

IMAGEMODEL object accessing an image with these properties:

 ClassType: 'uint8'
 DisplayRange: [0 255]
 ImageHeight: 512
 ImageType: 'intensity'
 ImageWidth: 512
 MinIntensity: 0
 MaxIntensity: 255

1 Functions

1-1284

Select a pixel by specifying the row and column coordinates. This pixel has (row, column) coordinates
(50, 250).

r = 50;
c = 250;

Get the numeric value of the pixel using the getPixelValue function.

pxValue = getPixelValue(im,r,c)

pxValue = uint8
 151

Convert the numeric pixel value to a string. First, get a function formatFcn that formats numeric
pixel values by using the getNumberFormatFcn. Then, specify the numeric value of the pixel as the
input argument to formatFcn to get the formatted string.

formatFcn = getNumberFormatFcn(im);
pxValueStr = formatFcn(pxValue)

pxValueStr =
'151'

Get the default pixel information string using the getDefaultPixelInfoString function. This
string depends on the type of image but does not use the pixel values. The pixel information string is
suitable for use with the Pixel Information tool.

defaultPxInfoStr = getDefaultPixelInfoString(im)

defaultPxInfoStr =
'Intensity'

Using the same string format, get the pixel information string for the specified pixel by using the
getPixelInfoString function.

pxInfoStr = getPixelInfoString(im,r,c)

pxInfoStr =
'151'

Get the default pixel region string using the getDefaultPixelRegionString function. This string
depends on the type of image but does not use the pixel values. The pixel region string is suitable for
use with the Pixel Region tool.

defaultPxRegStr = getDefaultPixelRegionString(im)

defaultPxRegStr =
'000'

There are two steps to get the pixel region string for the specified pixel in the same string format.
First, get a function formatFcn that formats numeric pixel values by using the
getPixelRegionFormatFcn function. Then, specify the row and column coordinate of the pixel as
input arguments to formatFcn to get the formatted string.

formatFcn = getPixelRegionFormatFcn(im);
pxRegStr = formatFcn(r,c)

 getNumberFormatFcn

1-1285

pxRegStr = 1x1 cell array
 {'151'}

Input Arguments
imgmodel — Image model
scalar imagemodel object

Image model, specified as a scalar imagemodel object.

Output Arguments
fun — Number format function
function handle

Number format function that converts numeric values into character vectors, returned as a function
handle. fun accepts one input argument, a numeric scalar or logical scalar. fun returns the number
as a character vector.
Data Types: function_handle

See Also
getPixelValue

Introduced before R2006a

1 Functions

1-1286

getPixelInfoString
Get pixel value as character vector

Syntax
pixval = getPixelInfoString(imgmodel,r,c)

Description
pixval = getPixelInfoString(imgmodel,r,c) returns as a character vector the value of a
single pixel with (row, column) coordinate (r, c) in image imgmodel. The format of the character
vector matches the information displayed in the Pixel Information tool on page 1-1692.

Examples

Get RGB Pixel Values From Image Model

Pixel values obtained from an imagemodel object can be returned in several formats suitable for
display in different interactive image processing tools.

Create an image model associated with a color image.

h = imshow('flamingos.jpg');

 getPixelInfoString

1-1287

im = imagemodel(h)

im =

IMAGEMODEL object accessing an image with these properties:

 ClassType: 'uint8'
 DisplayRange: []
 ImageHeight: 972
 ImageType: 'truecolor'
 ImageWidth: 1296
 MinIntensity: []
 MaxIntensity: []

Select a pixel by specifying row and column coordinates. This pixel has (row, column) coordinates
(100, 200).

r = 100;
c = 200;

1 Functions

1-1288

Get the numeric value of the pixel using the getPixelValue function.

pxValue = getPixelValue(im,r,c)

pxValue = 1x3 uint8 row vector

 104 95 54

Get the default pixel information string using the getDefaultPixelInfoString function. This
string depends on the type of image but does not use the pixel values. The pixel information string is
suitable for use with the Pixel Information tool.

defaultPxInfoStr = getDefaultPixelInfoString(im)

defaultPxInfoStr =
'[R G B]'

Using the same string format, get the pixel information string for the specified pixel by using the
getPixelInfoString function.

pxInfoStr = getPixelInfoString(im,r,c)

pxInfoStr =
'[104 95 54]'

Get the default pixel region string using the getDefaultPixelRegionString function. This string
depends on the type of image but does not use the pixel values. The pixel region string is suitable for
use with the Pixel Region tool.

defaultPxRegStr = getDefaultPixelRegionString(im)

defaultPxRegStr =
 'R:000
 G:000
 B:000'

There are two steps to get the pixel region string for the specified pixel in the same string format.
First, get a function formatFcn that formats numeric pixel values by using the
getPixelRegionFormatFcn function. Then, specify the row and column coordinate of the pixel as
input arguments to formatFcn to get the formatted string.

formatFcn = getPixelRegionFormatFcn(im);
pxRegStr = formatFcn(r,c)

pxRegStr = 1x1 cell array
 {'R:104...'}

Input Arguments
imgmodel — Image model
scalar imagemodel object

Image model, specified as a scalar imagemodel object.

 getPixelInfoString

1-1289

r — Row coordinate
positive integer

Row coordinate of pixel, specified as a positive integer.

c — Column coordinate
positive integer

Column coordinate of pixel, specified as a positive integer.

Output Arguments
pixval — Pixel value
character vector

Pixel value, returned as a character vector. The table shows the character vector returned for a black
pixel for each image type.

Image Type Sample Pixel Value
Grayscale '000'
Truecolor (RGB) '[0 0 0]'
Binary '0'
Indexed '<000> [0 0 0]'

Data Types: char

See Also
getPixelRegionFormatFcn | getPixelValue | impixelinfo | impixelinfoval

Introduced before R2006a

1 Functions

1-1290

getPixelRegionFormatFcn
Get function handle that formats pixel value into character vector

Syntax
fun = getPixelRegionFormatFcn(imgmodel)

Description
fun = getPixelRegionFormatFcn(imgmodel) returns a function that formats one or more pixel
values in image model imgmodel as character vectors. The format of the character vectors matches
the information displayed in the Pixel Region tool on page 1-1697.

Examples

Get RGB Pixel Values From Image Model

Pixel values obtained from an imagemodel object can be returned in several formats suitable for
display in different interactive image processing tools.

Create an image model associated with a color image.

h = imshow('flamingos.jpg');

 getPixelRegionFormatFcn

1-1291

im = imagemodel(h)

im =

IMAGEMODEL object accessing an image with these properties:

 ClassType: 'uint8'
 DisplayRange: []
 ImageHeight: 972
 ImageType: 'truecolor'
 ImageWidth: 1296
 MinIntensity: []
 MaxIntensity: []

Select a pixel by specifying row and column coordinates. This pixel has (row, column) coordinates
(100, 200).

r = 100;
c = 200;

1 Functions

1-1292

Get the numeric value of the pixel using the getPixelValue function.

pxValue = getPixelValue(im,r,c)

pxValue = 1x3 uint8 row vector

 104 95 54

Get the default pixel information string using the getDefaultPixelInfoString function. This
string depends on the type of image but does not use the pixel values. The pixel information string is
suitable for use with the Pixel Information tool.

defaultPxInfoStr = getDefaultPixelInfoString(im)

defaultPxInfoStr =
'[R G B]'

Using the same string format, get the pixel information string for the specified pixel by using the
getPixelInfoString function.

pxInfoStr = getPixelInfoString(im,r,c)

pxInfoStr =
'[104 95 54]'

Get the default pixel region string using the getDefaultPixelRegionString function. This string
depends on the type of image but does not use the pixel values. The pixel region string is suitable for
use with the Pixel Region tool.

defaultPxRegStr = getDefaultPixelRegionString(im)

defaultPxRegStr =
 'R:000
 G:000
 B:000'

There are two steps to get the pixel region string for the specified pixel in the same string format.
First, get a function formatFcn that formats numeric pixel values by using the
getPixelRegionFormatFcn function. Then, specify the row and column coordinate of the pixel as
input arguments to formatFcn to get the formatted string.

formatFcn = getPixelRegionFormatFcn(im);
pxRegStr = formatFcn(r,c)

pxRegStr = 1x1 cell array
 {'R:104...'}

Get Multiple Grayscale Pixel Values From Image Model

Pixel values obtained from an imagemodel object can be returned in several formats suitable for
display in different interactive image processing tools.

Create an image model associated with a grayscale image.

 getPixelRegionFormatFcn

1-1293

h = imshow('liftingbody.png');

im = imagemodel(h);

Specify the row and column coordinates of multiple pixels as vectors.

r = [50 400 500];
c = [250 300 500];

Get the numeric value of the pixel using the getPixelValue function.

pxValue = getPixelValue(im,r,c)

pxValue = 1x3 uint8 row vector

1 Functions

1-1294

 151 74 104

There are two steps to get the pixel region strings for the pixels. First, get a function formatFcn that
formats numeric pixel values by using the getPixelRegionFormatFcn function. Then, specify the
row and column coordinate of the pixels as input arguments to formatFcn to get the formatted
strings.

formatFcn = getPixelRegionFormatFcn(im);
pxRegStr = formatFcn(r,c)

pxRegStr = 3x1 cell
 {'151'}
 {'74' }
 {'104'}

Input Arguments
imgmodel — Image model
scalar imagemodel object

Image model, specified as a scalar imagemodel object.

Output Arguments
fun — Pixel value format function
function handle

Pixel value format function, returned as a function handle. The function fun has two input
arguments, which are the row and column coordinates of pixels in the target image. For grayscale,
indexed, and binary images, fun can accept row vectors specifying multiple pixels. For RGB images,
fun only accepts a single pixel. fun returns pixel values as a cell array of character vectors,
formatted according to the input image type.

Image Type Sample Format of Pixel Value
Grayscale '000'
Truecolor (RGB) 'R:000 G:000 B:000'
Binary '0'
Indexed '<000> R:0.00 G:0.00 B:0.00'

Data Types: function_handle

See Also
getPixelInfoString | getPixelValue | getDefaultPixelRegionString | impixelregion

Introduced before R2006a

 getPixelRegionFormatFcn

1-1295

getPixelValue
Get pixel value as numeric array

Syntax
pixval = getPixelValue(imgmodel,r,c)

Description
pixval = getPixelValue(imgmodel,r,c) returns the numeric value of one or more pixels with
(row, column) coordinate (r, c) in image model imgmodel.

Examples

Get RGB Pixel Values From Image Model

Pixel values obtained from an imagemodel object can be returned in several formats suitable for
display in different interactive image processing tools.

Create an image model associated with a color image.

h = imshow('flamingos.jpg');

1 Functions

1-1296

im = imagemodel(h)

im =

IMAGEMODEL object accessing an image with these properties:

 ClassType: 'uint8'
 DisplayRange: []
 ImageHeight: 972
 ImageType: 'truecolor'
 ImageWidth: 1296
 MinIntensity: []
 MaxIntensity: []

Select a pixel by specifying row and column coordinates. This pixel has (row, column) coordinates
(100, 200).

r = 100;
c = 200;

 getPixelValue

1-1297

Get the numeric value of the pixel using the getPixelValue function.

pxValue = getPixelValue(im,r,c)

pxValue = 1x3 uint8 row vector

 104 95 54

Get the default pixel information string using the getDefaultPixelInfoString function. This
string depends on the type of image but does not use the pixel values. The pixel information string is
suitable for use with the Pixel Information tool.

defaultPxInfoStr = getDefaultPixelInfoString(im)

defaultPxInfoStr =
'[R G B]'

Using the same string format, get the pixel information string for the specified pixel by using the
getPixelInfoString function.

pxInfoStr = getPixelInfoString(im,r,c)

pxInfoStr =
'[104 95 54]'

Get the default pixel region string using the getDefaultPixelRegionString function. This string
depends on the type of image but does not use the pixel values. The pixel region string is suitable for
use with the Pixel Region tool.

defaultPxRegStr = getDefaultPixelRegionString(im)

defaultPxRegStr =
 'R:000
 G:000
 B:000'

There are two steps to get the pixel region string for the specified pixel in the same string format.
First, get a function formatFcn that formats numeric pixel values by using the
getPixelRegionFormatFcn function. Then, specify the row and column coordinate of the pixel as
input arguments to formatFcn to get the formatted string.

formatFcn = getPixelRegionFormatFcn(im);
pxRegStr = formatFcn(r,c)

pxRegStr = 1x1 cell array
 {'R:104...'}

Input Arguments
imgmodel — Image model
scalar imagemodel object

Image model, specified as a scalar imagemodel object.

1 Functions

1-1298

r — Row coordinate
positive integer | vector of positive integers

Row coordinate of pixel, specified as a positive integer or vector of positive integers.

c — Column coordinate
positive integer | vector of positive integers

Column coordinate of pixel, specified as a positive integer or vector of positive integers.

Output Arguments
pixval — Pixel value
numeric array | logical array

Pixel value, returned as one of the following.

Input Type Return Format
p grayscale pixels p-element numeric row vector
p RGB pixels Numeric row vector of length p*3. The first p elements are the red value for

each pixel. The next p elements are the green value for each pixel. The last p
elements are the blue value for each pixel.

p binary pixels p-element logical row vector
p indexed pixels p-by-3 numeric array. Each row specifies a pixel. The columns specify the red,

green, and blue components of the pixel value.

See Also
getPixelRegionFormatFcn | getPixelInfoString | impixel | drawpoint

Introduced before R2006a

 getPixelValue

1-1299

getScreenPixelRGBValue
Get screen value of specified pixel in image model

Syntax
pixval = getScreenPixelRGBValue(imgmodel,r,c)

Description
pixval = getScreenPixelRGBValue(imgmodel,r,c) returns the screen value of one or more
pixels with (row, column) coordinate (r, c) in image imgmodel.

Input Arguments
imgmodel — Image model
scalar imagemodel object

Image model, specified as a scalar imagemodel object.

r — Row coordinate
positive integer | vector of positive integers

Row coordinate of pixel, specified as a positive integer or vector of positive integers.

c — Column coordinate
positive integer | vector of positive integers

Column coordinate of pixel, specified as a positive integer or vector of positive integers.

Output Arguments
pixval — Screen pixel value
numeric scalar | numeric vector | numeric array

Pixel value, returned as one of the following.

Input Type Return Format
p grayscale pixels p-by-3 numeric array. Each row specifies a pixel. The columns specify the red,

green, and blue components of the pixel value.
p RGB pixels Numeric row vector of length p*3. The first p elements are the red value for

each pixel. The next p elements are the green value for each pixel. The last p
elements are the blue value for each pixel.

p binary pixels p-by-3 numeric array. Each row specifies a pixel. The columns specify the red,
green, and blue components of the pixel value.

p indexed pixels p-by-3 numeric array. Each row specifies a pixel. The columns specify the red,
green, and blue components of the pixel value.

Data Types: double

1 Functions

1-1300

See Also
getPixelValue

Introduced before R2006a

 getScreenPixelRGBValue

1-1301

images.blocked.Adapter class
Package: images.blocked

Adapter interface for blockedImage objects

Description
The images.blocked.Adapter class specifies the interface for block-based reading and writing of
array data. Classes that inherit from this interface can be used with blockedImage objects, enabling
block-based stream processing of array data.

The images.blocked.Adapter class is a handle class.

Class Attributes

Abstract true

For information on class attributes, see “Class Attributes”.

Creation
To implement this class, you must:

• Inherit from the images.blocked.Adapter class. Type the following syntax as the first line of
your class definition file:

classdef MyAdapter < images.blocked.Adapter
 ...
end

• Define three required methods for reading image data from disk: openToRead, getInfo, and
getIOBlock.

• Optionally, define methods that enable additional reading and writing capabilities. The table lists
the complete set of capabilities offered by Adapter methods.

• Optionally, for single-file destinations, define an Extension property that specifies the file
extension to use when automatically creating a destination location. The property must be a
string, such as "jpg". For adapters that store data in a folder, do not add this property or specify
the value of the property as empty ([]).

Capability Methods to Implement
Read data (Required) openToRead – Open source for reading

getInfo – Gather information about the source

getIOBlock – Get specified I/O block
Write data (Optional) openToWrite – Create and open destination for writing

setIOBlock – Set specified I/O block

1 Functions

1-1302

Capability Methods to Implement
Perform clean up tasks (Optional) close – Perform clean up tasks such as closing file handles
Enable parallel block processing
(Optional)

openInParallelToAppend – Use the adapter in parallel mode
with the apply object function

Resume writing after interruption
(Optional)

alreadyWritten – Enable the resume option in the apply
object function

Examples

Define Adapter to Read 3-D TIFF Files

This example shows how to define and use a custom adapter that reads 3-D TIFF image data as a
single volumetric image.

Create a .m class definition file that contains the code implementing your custom adapter. You must
save this file in your working folder or in a folder that is on the MATLAB® path. The name of the .m
file must be the same as the name of your object. For example, if you want your adapter to have the
name My3DTIFFAdapter, then the name of the .m file must be My3DTIFFAdapter.m. The .m class
definition file must contain the following steps:

• Step 1: Inherit from the images.blocked.Adapter class.
• Step 2: Define required methods.

In addition to these steps, define any other properties or methods that you need to process and
analyze your data.

%% STEP 1: INHERIT FROM ADAPTER CLASS
classdef My3DTIFFAdapter < images.blocked.Adapter

 properties
 File (1,1) string
 Info (1,1) struct
 end

%% STEP 2: DEFINE REQUIRED METHODS
 methods

 % Define the openToRead method
 function openToRead(obj,source)
 obj.File = source;
 end

 % Define the getInfo method
 function info = getInfo(obj)
 % Read raw file info
 finfo = imfinfo(obj.File);

 % Make sure all slices are the same size.
 assert(all(finfo(1).Width==[finfo.Width]), ...
 'All slices do not have the same width.');
 assert(all(finfo(1).Height==[finfo.Height]), ...
 'All slices do not have the same height.');

 images.blocked.Adapter class

1-1303

 obj.Info.Size = [finfo(1).Height, finfo(1).Width, numel(finfo)];

 % The first two dims of the smallest unit of data that can be
 % read depends on the type of TIFF file - stripped or tiled.
 % The third dim is always 1 - indicating that the smallest unit
 % that can be read in the third dimensions is 1 (one slice).
 if isempty(finfo(1).TileWidth)
 % This is a stripped TIFF file
 obj.Info.IOBlockSize = [finfo(1).RowsPerStrip, finfo(1).Width, 1];
 else
 % This is a tiled TIFF file
 obj.Info.IOBlockSize = [finfo(1).TileLength, finfo(1).TileWidth, 1];
 end

 % This is usually the same for a data set and can be hardcoded.
 assert(finfo(1).BitsPerSample==8 && finfo(1).BitDepth==8)
 obj.Info.Datatype = "uint8";
 obj.Info.InitialValue = cast(0,obj.Info.Datatype);
 info = obj.Info;
 end

 % Define the getIOBlock method
 function block = getIOBlock(obj,ioblockSub,level)
 assert(level==1)

 % Convert ioblockSub (which is in terms of IOBlockSize) into a
 % 'PixelRegion' coordinate.
 regionStart = (ioblockSub-1).*obj.Info.IOBlockSize + 1;
 regionEnd = (ioblockSub).*obj.Info.IOBlockSize;
 rows = [regionStart(1), regionEnd(1)];
 cols = [regionStart(2), regionEnd(2)];
 slices = [regionStart(3), regionEnd(3)];

 block = tiffreadVolume(obj.File, ...
 'PixelRegion',{rows,cols,slices});
 end

 end
end

Your custom adapter is now ready. Use My3DTIFFAdapter to create an adapter object that reads
files with 3-D TIFF image data.

Test Custom 3-D TIFF Adapter

Create a blocked image that reads data using the custom adapter, My3DTIFFAdapter. This adapter
is attached to the example as a supporting file. Display the size of the blocked image.

filename = 'mri.tif';
a = My3DTIFFAdapter

a =
 My3DTIFFAdapter with properties:

 File: ""

1 Functions

1-1304

 Info: [1×1 struct]

bim = blockedImage(filename,'Adapter',My3DTIFFAdapter);
bimSize = bim.Size

bimSize = 1×3

 128 128 27

For comparison, create a blocked image that reads the data using the default adapter. Display the
size of the blocked image.

bimDefault = blockedImage(filename);
bimDefaultSize = bimDefault.Size

bimDefaultSize = 27×2

 128 128
 128 128
 128 128
 128 128
 128 128
 128 128
 128 128
 128 128
 128 128
 128 128
 ⋮

Test the custom adapter by reading one quadrant of the volumetric data.

regionStart = [1 1 1];
regionEnd = [bimSize(1:2)/2 bimSize(3)];
vol = getRegion(bim,regionStart,regionEnd);

Display the data.

p = uipanel(figure);
volshow(vol,'Parent',p);

 images.blocked.Adapter class

1-1305

Tips
• The toolbox includes several built-in adapters that subclass from the Adapter class. All these

adapters support both read and write operations. All of the adapters that work on a per-block
basis, such as GenericImageBlocks, can be used with the parallel mode of the apply object
function.

Adapter Description
BINBlocks Store each block as a binary file in a folder
GenericImage Store blocks in a single image
GenericImageBlocks Store each block as an image file in a folder
H5 Store blocks in a single HDF5 image
H5Blocks Store each block as an HDF5 file in a folder
InMemory Store blocks in a variable in main memory

1 Functions

1-1306

Adapter Description
JPEGBlocks Store each block as a JPEG file in a folder
MATBlocks Store each block as a MAT file in a folder
PNGBlocks Store each block as a PNG file in a folder
TIFF Store blocks in a single TIFF file

See Also
blockedImage

Introduced in R2021a

 images.blocked.Adapter class

1-1307

alreadyWritten
Package: images.blocked

List of blocks already written

Syntax
ioblocksubs = alreadyWritten(obj,level)

Description
ioblocksubs = alreadyWritten(obj,level) returns a list of block subscripts that have data
written to them. This list is used to skip processing existing output in blockedImage/apply calls
when the parameter Resume is set to true.

Input Arguments
obj — Adapter object
images.blocked.Adapter object

Adapter object, specified as an instance of an adapter class that is subclassed from the
images.blocked.Adapter class.

level — Image resolution level
integer-valued scalar

Image resolution level, specified as an integer-valued scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
ioblocksubs — List of written block
array of block subscripts

List of written blocks, returned as an array of subscripts.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

See Also
images.blocked.Adapter

Introduced in R2021a

1 Functions

1-1308

close
Package: images.blocked

Close adapter

Syntax
close(obj)

Description
close(obj) closes and releases resources acquired during openToRead, openToWrite, and
openInParallelToAppend methods. Use this method to flush data, close file handles and perform
other clean up actions.

close may get called more than once.

Input Arguments
obj — Adapter object
images.blocked.Adapter object

Adapter object, specified as an instance of an adapter class that is subclassed from the
images.blocked.Adapter class.

See Also
images.blocked.Adapter

Introduced in R2021a

 close

1-1309

getInfo
Package: images.blocked

Gather information about source

Syntax
info = getInfo(obj)

Description
info = getInfo(obj)gathers and returns info, a structure containing information about the
source.

Input Arguments
obj — Adapter object
images.blocked.Adapter object

Adapter object, specified as an instance of an adapter class that is subclassed from the
images.blocked.Adapter class.

Output Arguments
info — Structure containing information about source
struct

Structure containing information about source, returned as a structure with these fields.

Field Description
Size An L-by-N integer-valued array representing

image size(s);

For this field and all subsequent fields,L is the
number of levels in Source. For a single
resolution level image L is 1. N is the number of
dimensions in the image.

IOBlockSize An L-by-N integer-valued array representing the
smallest unit of data that can be read from the
source.

Datatype An L-by-N string array containing the MATLAB
datatype for each level.

InitialValue A scalar value of type specified by Datatype,
indicating the initial data value for each level. If
the types and values differ for a multiresolution
array, this can be a cell array .

1 Functions

1-1310

You can optionally return these additional fields.

Optional Field Description
UserData A scalar struct containing additional metadata

about the source. This field can be empty.
WorldStart An L-by-N numeric array specifying the starting

edge location of the image in world coordinates.L
is the number of levels in Source. N is the
number of dimensions in the image.

WorldEnd An L-by-N numeric array specifying the ending
edge location of the image in world coordinates.L
is the number of levels in Source. N is the
number of dimensions in the image.

See Also
images.blocked.Adapter

Introduced in R2021a

 getInfo

1-1311

getIOBlock
Package: images.blocked

Read specified I/O block

Syntax
block = getIOBlock(obj,ioblocksub,level)

Description
block = getIOBlock(obj,ioblocksub,level) reads the block specified by the block subscript
ioblocksub from the specified resolution level level. The return value block is empty if there is
no data for the corresponding block. blockedImage uses the InitialValue property to create a
block for such block subscripts.

Input Arguments
obj — Adapter object
images.blocked.Adapter object

Adapter object, specified as an instance of an adapter class that is subclassed from the
images.blocked.Adapter class.

ioblocksub — Block subscripts
integer-valued scalar

Block subscripts, specified as an integer-valued scalar. These subscripts span the grid made by
Size./IOBlockSize.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

level — Image resolution level
integer-valued scalar

Image resolution level, specified as an integer-valued scalar. For single-resolution level files, the
level parameter is always 1.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
block — Data read
numeric array

Data read, returned as a numeric array.

See Also
images.blocked.Adapter

1 Functions

1-1312

Introduced in R2021a

 getIOBlock

1-1313

openInParallelToAppend
Package: images.blocked

Open destination on parallel worker to append blocks

Syntax
openInParallelToAppend(obj, destination)

Description
openInParallelToAppend(obj, destination) opens the location specified by destination on
a parallel worker in preparation for appending blocks. This function is only invoked when the
UseParallel parameter of blockedImage/apply is set to true. openToWrite is guaranteed to
have been called once on a corresponding destination value earlier on a separate instance of the
adapter in the main MATLAB session. A copy of the adapter is made for each parallel worker and
openInParallelToAppend is called once before subsequent setIOBlock. The adapter uses the
AlternateFileSystemRoots property of the blocked image to resolve destination on the
worker.

An adapter which implements this method must be able to support multiple adapter instances (one on
each parallel worker) appending blocks to the same destination simultaneously. This is usually
handled by writing independent files for each block in a single destination folder.

Input Arguments
obj — Adapter object
images.blocked.Adapter object

Adapter object, specified as an instance of an adapter class that is subclassed from the
images.blocked.Adapter class.

destination — Location
string scalar | char vector

Location, specified as a string scalar or char vector.
Data Types: char | string

See Also
images.blocked.Adapter

Introduced in R2021a

1 Functions

1-1314

openToRead
Package: images.blocked

Open source for read access

Syntax
openToRead(obj,source)

Description
openToRead(obj,source) opens the source, specified as a scalar string, for read access. This
method issues an error if the adapter does not support source.

Input Arguments
obj — Adapter object
images.blocked.Adapter object

Adapter object, specified as an instance of an adapter class that is subclassed from the
images.blocked.Adapter class.

source — Location to read from
string scalar | char vector

Location to read from, specified as a string scalar or char vector.
Data Types: char | string

Tips
• openToRead gets called when a previously saved blockedImage is loaded from a MAT file.

See Also
images.blocked.Adapter

Introduced in R2021a

 openToRead

1-1315

openToWrite
Package: images.blocked

Create and open destination for writing

Syntax
openToWrite(obj,destination,info,currentlevel)

Description
openToWrite(obj,destination,info,currentlevel) opens the location specified by the
string scalar destination for writing. info is a scalar structure that describes the object.
currentlevel is an integer-valued scalar indicating the current level for which data will be written.

Use this method to prepare the destination for writing. For example, open file handle or create
destination folder, or write file header or meta data to the destination. When writing multiresolution
(pyramid) images, openToWrite is called for each level before the corresponding level's
setIOBlock is called.

Input Arguments
obj — Adapter object
images.blocked.Adapter object

Adapter object, specified as an instance of an adapter class that is subclassed from the
images.blocked.Adapter class.

destination — Location to write to
string scalar | char vector

Location to write to, specified as a string scalar or char vector.
Data Types: char | string

info — Structure containing information about source
struct

Structure containing information about source, returned as a structure with these fields.

Field Description
Size An L-by-N integer-valued array representing

image size(s);

For this field and all subsequent fields,L is the
number of levels in Source. For a single
resolution level image L is 1. N is the number of
dimensions in the image.

1 Functions

1-1316

Field Description
IOBlockSize An L-by-N integer-valued array representing the

smallest unit of data that can be read from the
source.

Datatype An L-by-N string array containing the MATLAB
datatype for each level.

InitialValue A scalar value of type specified by Datatype,
indicating the initial data value for each level. If
the types and values differ for a multiresolution
array, this can be a cell array .

You can optionally return these additional fields.

Optional Field Description
UserData A scalar struct containing additional metadata

about the source. This field can be empty.
WorldStart An L-by-N numeric array specifying the starting

edge location of the image in world coordinates.L
is the number of levels in Source. N is the
number of dimensions in the image.

WorldEnd An L-by-N numeric array specifying the ending
edge location of the image in world coordinates.L
is the number of levels in Source. N is the
number of dimensions in the image.

currentlevel — Image resolution level
integer-valued scalar

Image resolution level, specified as an integer-valued scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

See Also
images.blocked.Adapter

Introduced in R2021a

 openToWrite

1-1317

setIOBlock
Package: images.blocked

Write specified block

Syntax
setIOBlock(obj,ioblocksub, level,block)

Description
setIOBlock(obj,ioblocksub, level,block) writes the data, block, to the specified block
subscript, ioblocksub, at the specified multi-resolution level, level.

Input Arguments
obj — Adapter object
images.blocked.Adapter object

Adapter object, specified as an instance of an adapter class that is subclassed from the
images.blocked.Adapter class.

ioblocksub — Block subscript
numeric array

Block subscript, specified as a numeric array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

level — Image resolution level
integer-valued scalar

Image resolution level, specified as an integer-valued scalar. For single-resolution images, level is
always 1.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

block — Block of data
numeric array

Block of data, specified as a numeric array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

See Also
images.blocked.Adapter

Introduced in R2021a

1 Functions

1-1318

images.dicom.decodeUID
Get information about DICOM unique identifier

Syntax
details = images.dicom.decodeUID(UID)

Description
details = images.dicom.decodeUID(UID) returns information about the DICOM unique
identifier contained in UID. details contains the name of the UID and its type (SOP class, transfer
syntax, etc.). If UID corresponds to a transfer syntax, details also contains the endianness, the
DICOM value representation necessary for reading the image pixels, and information about
compression.

The images.dicom.decodeUID function can interpret IDs defined in the PS 3.6-1999 specification,
with some additions from PS 3.6-2009.

Examples

Decode DICOM UID

Read metadata from a DICOM file and extract a UID field.

info = dicominfo('CT-MONO2-16-ankle.dcm');
uid = info.SOPClassUID;

Decode the UID.

uid_info = images.dicom.decodeUID(uid)

uid_info = struct with fields:
 Value: '1.2.840.10008.5.1.4.1.1.7'
 Name: 'Secondary Capture Image Storage'
 Type: 'SOP Class'

Input Arguments
UID — DICOM unique identifier
character vector | string | cell array

DICOM unique identifier, specified as a string or character vector.
Example: uid_info = images.dicom.decodeUID('1.2.840.10008.5.1.4.1.1.7')
Data Types: char | string | cell

 images.dicom.decodeUID

1-1319

Output Arguments
details — Information from UID
struct

Information from UID, returned as a struct.

See Also
dicominfo | dicomuid

Introduced in R2017b

1 Functions

1-1320

images.dicom.parseDICOMDIR
Extract metadata from DICOMDIR file

Syntax
DICOMDIR = images.dicom.parseDICOMDIR(filename)

Description
DICOMDIR = images.dicom.parseDICOMDIR(filename) extracts the metadata from the
DICOMDIR file named in filename, returning the information in the structure DICOMDIR. If
filename is not a DICOMDIR file, the function returns an error.

A DICOM directory file (DICOMDIR) is a special DICOM file that serves as a directory to a collection
of DICOM files stored on removable media, such as CD/DVD ROMs. When devices write DICOM files
to removable media, they typically write a DICOMDIR file on the disk to serve as a list of the disk
contents.

Examples

Extract Metadata from DICOMDIR File

Read information about the contents of a DICOM folder into the workspace.

detailsStruct = images.dicom.parseDICOMDIR('DICOMDIR');

Input Arguments
filename — DICOMDIR file
string scalar | character vector

DICOMDIR file, specified as a string scalar or character vector. filename can contain a full path
name or a relative path name to the file. The name of this file is DICOMDIR, with no file extension.
Data Types: char | string

Output Arguments
DICOMDIR — Metadata from DICOMDIR file
struct

Metadata from DICOMDIR file, returned as a struct.

See Also
dicominfo

 images.dicom.parseDICOMDIR

1-1321

Introduced in R2017b

1 Functions

1-1322

images.roi.CircleMovingEventData class
Package: images.roi

Event data passed when circle ROI is moving

Description
The images.roi.CircleMovingEventData class is the class passed to listeners when a Circle
ROI is moving. When the ROI class triggers an event using the notify handle class method, MATLAB
assigns values to the properties of an images.roi.CircleMovingEventData object and passes
that object to the listener callback function (the event handler).

The images.roi.CircleMovingEventData class is a handle class.

Class Attributes

ConstructOnLoad true
HandleCompatible true

For information on class attributes, see “Class Attributes”.

Creation
The notify handle class method creates an images.roi.CircleMovingEventData object when
called to trigger an event. images.roi.CircleMovingEventData accepts no input arguments.

Properties
Source — Event source
object

Event source, specified as a handle to the object that triggered the event.

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

EventName — Name of event
character vector

Name of the event, specified as a character vector.

 images.roi.CircleMovingEventData class

1-1323

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

Data Types: char

PreviousCenter — Position before ROI moved
two-element numeric vector

Position before ROI moved, specified as a two-element numeric vector of the form [x y].

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

CurrentCenter — Position after ROI moved
two-element numeric vector

Position after ROI moved, specified as a two-element numeric vector of the form [x y].

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

PreviousRadius — Radius before change in size
numeric scalar

Radius before change in size, specified as a numeric scalar.

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

CurrentRadius — Radius after change in size
numeric scalar

Radius after change in size, specified as a numeric scalar.

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

1 Functions

1-1324

Examples

Access Event Data

This callback function gets the event source object handle and the event name and other properties
from the images.roi.CircleMovingEventData object passed to it when the event is triggered.

function myCallbk(s,evtData)
 eventSource = evtData.Source;
 eventName = evtData.EventName;
 previousCenter = evtData.PreviousCenter;
 currentCenter = evtData.CurrentCenter;
 previousRadius = evtData.PreviousRadius;
 currentRadius = evtData.CurrentRadius;
end

See Also
drawcircle | Circle

Introduced in R2018b

 images.roi.CircleMovingEventData class

1-1325

images.roi.CuboidMovingEventData class
Package: images.roi

Event data passed when cuboid ROI is moving

Description
The images.roi.CuboidMovingEventData class is the class passed to listeners when a Cuboid
ROI is moving. When the ROI class triggers an event using the notify handle class method, MATLAB
assigns values to the properties of an images.roi.CuboidMovingEventData object and passes
that object to the listener callback function (the event handler).

The images.roi.CuboidMovingEventData class is a handle class.

Class Attributes

ConstructOnLoad true
HandleCompatible true

For information on class attributes, see “Class Attributes”.

Creation
The notify handle class method creates an images.roi.CuboidMovingEventData object when
called to trigger an event. images.roi.CuboidMovingEventData accepts no input arguments.

Properties
Source — Event source
object

Event source, specified as a handle to the object that triggered the event.

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

EventName — Name of event
character vector

Name of the event, specified as a character vector.

1 Functions

1-1326

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

PreviousPosition — Position before ROI moved
1-by-6 numeric array

Position before ROI moved, specified as a 1-by-6 numeric array of the form [x y z w h d].

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

CurrentPosition — Position after ROI moved
1-by-6 numeric array

Position after ROI moved, specified as a 1-by-6 numeric array of the form [x y z w h d].

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

PreviousRotationAngle — Orientation before ROI rotated
1-by-3 numeric array

Orientation before ROI rotated, specified as a 1-by-3 numeric array, measured in degrees.

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

CurrentRotationAngle — Orientation after ROI rotated
1-by-3 numeric array

Orientation after ROI rotated, specified as a 1-by-3 numeric array, measured in degrees.

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

 images.roi.CuboidMovingEventData class

1-1327

Examples

Access Event Data

This callback function gets the event source object handle, the event name, and other properties from
the images.roi.CuboidMovingEventData object passed to it when the event is triggered.

function myCallbk(s,evtData)
 eventSource = evtData.Source;
 eventName = evtData.EventName;
 previousCenter = evtData.PreviousCenter;
 currentCenter = evtData.CurrentCenter;
 previousRotationAngle = evtData.PreviousRotationAngle;
 currentRotationAngle = evtData.CurrentRotationAngle;
end

See Also
Cuboid | drawcuboid

Introduced in R2019a

1 Functions

1-1328

images.roi.EllipseMovingEventData class
Package: images.roi

Event data passed when ellipse ROI is moving

Description
The images.roi.EllipseMovingEventData class is the class passed to listeners when an
Ellipse ROI is moving. When the ROI class triggers an event using the notify handle class
method, MATLAB assigns values to the properties of an images.roi.EllipseMovingEventData
object and passes that object to the listener callback function (the event handler).

The images.roi.EllipseMovingEventData class is a handle class.

Class Attributes

ConstructOnLoad true
HandleCompatible true

For information on class attributes, see “Class Attributes”.

Creation
The notify handle class method creates an images.roi.EllipseMovingEventData object when
called to trigger an event. images.roi.EllipseMovingEventData accepts no input arguments.

Properties
Source — Event source
object

Event source, specified as a handle to the object that triggered the event.

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

EventName — Name of event
character vector

Name of event, specified as a character vector.

 images.roi.EllipseMovingEventData class

1-1329

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

Data Types: char

PreviousCenter — Position before ROI moved
two-element numeric vector

Position before ROI moved, specified as a two-element numeric vector of the form [m n].

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

CurrentCenter — Position after ROI moved
two-element numeric vector

Position after ROI moved, specified as a two-element numeric vector of the form [m n].

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

PreviousSemiAxes — Lengths of semiaxes before ROI was reshaped
two-element numeric vector

Lengths of semiaxes before ROI was reshaped, specified as a two-element numeric vector.

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

CurrentSemiAxes — Lengths of semiaxes after ROI was reshaped
two-element numeric vector

Lengths of semiaxes after ROI was reshaped, specified as a two-element numeric vector.

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

1 Functions

1-1330

PreviousRotationAngle — Orientation of ROI before rotation
numeric scalar

Orientation of ROI before rotation, specified as a numeric scalar, measured in degrees.

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

CurrentRotationAngle — Orientation of ROI after rotation
numeric scalar

Position after ROI moved, specified as a numeric scalar, measured in degrees.

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

Examples

Access Event Data

This callback function gets the event source object handle and the event name and other properties
from the images.roi.EllipseMovingEventData object passed to it when the event is triggered.

function myCallbk(s,evtData)
 eventSource = evtData.Source;
 eventName = evtData.EventName;
 previousCenter = evtData.PreviousCenter;
 currentCenter = evtData.CurrentCenter;
 previousSemiAxes = evtData.PreviousRadius;
 currentSemiAxes = evtData.CurrentRadius;
 previousRotationAngle = evtData.PreviousRotationAngle;
 currentRotationAngle = evtData.CurrentRotationAngle;
end

See Also
Ellipse | drawellipse

Introduced in R2018b

 images.roi.EllipseMovingEventData class

1-1331

images.roi.RectangleMovingEventData class
Package: images.roi

Event data passed when rectangle ROI is moving

Description
The images.roi.RectangleMovingEventData class is the class passed to listeners when a
Rectangle ROI is moving. When the ROI class triggers an event using the notify handle class
method, MATLAB assigns values to the properties of an images.roi.RectangleMovingEventData
object and passes that object to the listener callback function (the event handler).

The images.roi.RectangleMovingEventData class is a handle class.

Class Attributes

ConstructOnLoad true
HandleCompatible true

For information on class attributes, see “Class Attributes”.

Creation
The notify handle class method creates an images.roi.RectangleMovingEventData object
when called to trigger an event. images.roi.RectangleMovingEventData accepts no input
arguments.

Properties
Source — Event source
object

Event source, specified as a handle to the object that triggered the event.

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

EventName — Name of event
character vector

Name of the event, specified as a character vector.

1 Functions

1-1332

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

PreviousPosition — Position before ROI moved
two-element numeric vector

Position before ROI moved, specified as a two-element numeric vector of the form [m n].

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

CurrentPosition — Position after ROI moved
two-element numeric vector

Position after ROI moved, specified as a two-element numeric vector of the form [m n].

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

PreviousRotationAngle — Orientation before ROI moved
numeric scalar

Orientation before ROI moved, specified as a numeric scalar, measured in degrees.

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

CurrentRotationAngle — Orientation after ROI moved
numeric scalar

Orientation after ROI moved, specified as a numeric scalar, measured in degrees.

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

 images.roi.RectangleMovingEventData class

1-1333

Examples

Access Event Data

This callback function gets the event source object handle, the event name, and other properties from
the images.roi.RectangleMovingEventData object passed to it when the event is triggered.

function myCallbk(s,evtData)
 eventSource = evtData.Source;
 eventName = evtData.EventName;
 previousCenter = evtData.PreviousCenter;
 currentCenter = evtData.CurrentCenter;
 previousRotationAngle = evtData.PreviousRotationAngle;
 currentRotationAngle = evtData.CurrentRotationAngle;
end

See Also
drawrectangle | Rectangle

Introduced in R2018b

1 Functions

1-1334

images.roi.ROIClickedEventData class
Package: images.roi

Event data passed when ROI is clicked

Description
The images.roi.ROIClickedEventData class is the class passed to listeners when a region-of-
interest (ROI) is clicked. When the ROI class triggers an event using the notify handle class
method, MATLAB assigns values to the properties of an images.roi.ROIClickedEventData
object and passes that object to the listener callback function (the event handler).

The images.roi.ROIClickedEventData class is a handle class.

Class Attributes

ConstructOnLoad true
HandleCompatible true

For information on class attributes, see “Class Attributes”.

Creation
The notify handle class method creates an images.roi.ROIClickedEventData object when
called to trigger an event. images.roi.ROIClickedEventData does not accept input arguments.

Properties
Source — Event source
object

Event source object, specified as a handle to the object that triggered the event.

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

EventName — Name of event
character vector

Name of the event, specified as a character vector.

 images.roi.ROIClickedEventData class

1-1335

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

SelectionType — Type of selection
character vector

Type of selection, specified as one of the following character vectors.

SelectionType Value Description
'left' Left mouse-click
'right' Right mouse-click
'double' Double-click
'shift' Shift-left mouse-click
'ctrl' Control-left mouse-click

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

SelectedPart — Part of ROI that was clicked
character vector

Part of the ROI that was clicked, specified as one of the character vectors in this table.

SelectedPart Value Description
'edge' Clicked edge of ROI.
'face' Clicked face of ROI.
'label' Clicked ROI label.
'marker' Clicked marker used to reshape the ROI.

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

CurrentSelected — ROI is currently selected
logical scalar

ROI is currently selected, specified as a logical scalar. Returns 1 when the ROI is selected, otherwise,
0. To deselect an ROI, use Ctrl-click.

1 Functions

1-1336

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

PreviousSelected — ROI was previously selected
logical scalar

ROI was previously selected, specified as a logical scalar. Returns 1 when the ROI was already
selected and 0 when the ROI was not previously selected.

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

Examples

Access Event Data

This callback function gets the event source object handle, the event name, and other properties from
the images.roi.ROIClickedEventData object passed to it when the event is triggered.

function myCallbk(s,evtData)
 eventSource = evtData.Source;
 eventName = evtData.EventName;
 selectionType = evtData.SelectionType;
 selectedPart = evtData.SelectedPart;
 currselected = evtData.CurrentSelected;
 prevselected = evtData.PreviousSelected;
end

See Also
addlistener | notify | images.roi.ROIMovingEventData | AssistedFreehand | Circle |
Crosshair | Cuboid | Ellipse | Freehand | Line | Point | Polyline | Rectangle | Polygon

Topics
“Use Wait Function After Drawing ROI”

Introduced in R2018b

 images.roi.ROIClickedEventData class

1-1337

images.roi.ROIMovingEventData class
Package: images.roi

Event data passed when ROI is moving

Description
The images.roi.ROIMovingEventData class is the class passed to listeners when a region-of-
interest (ROI) is moving. When the ROI class triggers an event using the notify handle class
method, MATLAB assigns values to the properties of an images.roi.ROIMovingEventData object
and passes that object to the listener callback function (the event handler).

The images.roi.ROIMovingEventData class is a handle class.

Class Attributes

ConstructOnLoad true
HandleCompatible true

For information on class attributes, see “Class Attributes”.

Creation
The notify handle class method creates an images.roi.ROIMovingEventData object when
called to trigger an event. images.roi.ROIMovingEventData does not accept input arguments.
Subclasses of event.EventData cannot pass arguments to the superclass constructor.

Properties
Source — Event source
object

Event source, specified as a handle to the object that triggered the event.

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

EventName — Name of event
character vector

Name of the event, specified as a character vector.

1 Functions

1-1338

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

Data Types: char

PreviousPosition — Position before ROI moved
two-element numeric vector

Position before the ROI moved, specified as a two-element numeric vector of the form [x y].

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

Data Types: char

CurrentPosition — Position after ROI moved
two-element numeric vector

Position after the ROI moved, specified as a two-element numeric vector of the form [x y].

Attributes:

GetAccess public
SetAccess private
GetObservable true
SetObservable true

Data Types: char

Examples

Access Event Data

This callback function gets the event source object handle, the event name, and other properties from
the images.roi.ROIMovingEventData object passed to it when the event is triggered.

function myCallbk(s,evtData)
 eventSource = evtData.Source;
 eventName = evtData.EventName;
 previousPosition = evtData.PreviousPosition;
 currentPosition = evtData.CurrentPosition;
end

See Also
AssistedFreehand | Circle | Crosshair | Cuboid | Ellipse | Freehand | Line | Point |
Polyline | Rectangle | Polygon

 images.roi.ROIMovingEventData class

1-1339

Introduced in R2018b

1 Functions

1-1340

images.stack.browser.CrosshairMovingEventData
class
Package: images.stack.browser

Event data passed when Crosshair ROI is moving

Description
The images.stack.browser.CrosshairMovingEventData class is the class passed to listeners
when the crosshair in an orthosliceViewer object is moved interactively. The orthosliceViewer
object triggers an event using the notify handle class method. MATLAB assigns values to the
properties of an images.stack.browser.CrosshairMovingEventData object and passes that
object to the listener callback function (the event handler). Programmatic positioning of the crosshair
does not trigger this event.

The images.stack.browser.CrosshairMovingEventData class is a handle class.

Creation
The notify handle class method creates an
images.stack.browser.CrosshairMovingEventData object when called to trigger an event.

Properties
Source — Event source
object

Event source, specified as a handle to the object that triggered the event.

EventName — Name of event
character vector

Name of the event, specified as a character vector.

PreviousPosition — Position before the crosshair moved
three-element numeric vector

Position before the crosshair moved, specified as a three-element numeric vector of the form [x y
z].

CurrentPosition — Position after crosshair moved
three-element numeric vector

Position after crosshair moved, specified as a three-element numeric vector of the form [x y z].

Examples

 images.stack.browser.CrosshairMovingEventData class

1-1341

Set Up Listener for Orthoslice Viewer Crosshair Events

Load a stack of images.

load(fullfile(toolboxdir('images'),'imdata','BrainMRILabeled','images','vol_001.mat'));

Create a custom colormap for viewing slices.

cmap = parula(256);

View the image stack in the Orthoslice Viewer.

os = orthosliceViewer(vol,'Colormap',cmap);

Set up listeners for the two Orthoslice Viewer crosshair moving events. When you move the crosshair,
the Orthoslice Viewer sends notifications of these events and executes the callback function you
specify.

addlistener(os,'CrosshairMoving',@allevents);
addlistener(os,'CrosshairMoved',@allevents);

1 Functions

1-1342

The allevents callback function displays the name of each event with the previous position and the
current position of the crosshair.

function allevents(src,evt)
evname = evt.EventName;
 switch(evname)
 case{'CrosshairMoved'}
 disp(['Crosshair moved previous position: ' mat2str(evt.PreviousPosition)]);
 disp(['Crosshair moved current position: ' mat2str(evt.CurrentPosition)]);
 case{'CrosshairMoving'}
 disp(['Crosshair moving previous position: ' mat2str(evt.PreviousPosition)]);
 disp(['Crosshair moving current position: ' mat2str(evt.CurrentPosition)]);
 end
 end

See Also
Crosshair | orthosliceViewer

Introduced in R2019b

 images.stack.browser.CrosshairMovingEventData class

1-1343

images.stack.browser.SliderMovingEventData
class
Package: images.stack.browser

Event data passed when slider in Slice Viewer is moving

Description
The images.stack.browser.SliderMovingEventData class is the class passed to listeners when
the slider in a sliceViewer object moves. The sliceViewer object triggers an event using the
notify handle class method. MATLAB assigns values to the properties of an
images.stack.browser.SliderMovingEventData class and passes that class to the listener
callback function (the event handler). Programmatic positioning of the slider does not trigger this
event.

The images.stack.browser.SliderMovingEventData class is a handle class.

Creation
The notify handle class method creates an images.stack.browser.SliderMovingEventData
object when called to trigger an event.

Properties
Source — Event source
object

Event source, specified as a handle to the object that triggered the event.

EventName — Name of event
character vector

Name of the event, specified as a character vector.

CurrentValue — Image frame indicated by slider position
numeric scalar

Image frame indicated by slider position, specified as a numeric scalar.

Examples

Set Up Listener for Slice Viewer Slider Events

Load a stack of images into the workspace.

load mristack

1 Functions

1-1344

View the data in the slice viewer, specifying a custom colormap for viewing the slices. The slice
viewer opens the stack of images and displays the one in the middle. Use the slider to view a different
slice.

cmap = parula(256);
s = sliceViewer(mristack,'Colormap',cmap);

Set up listeners for the two sliceViewer object slider events: when the slider is moving and when
the slider has been moved. When you move the slider, the slice viewer sends notifications of these
events and executes the specified callback function.

addlistener(s,'SliderValueChanging',@allevents);
addlistener(s,'SliderValueChanged',@allevents);

Use this allevents callback function to display the name of each event and the current position of
the slider.

function allevents(src,evt)
 evname = evt.EventName;
 switch(evname)
 case{'SliderValueChanging'}
 disp(['Slider value changing event: ' mat2str(evt.CurrentValue)]);
 case{'SliderValueChanged'}
 disp(['Slider value changed event: ' mat2str(evt.CurrentValue)]);
 end
end

See Also
sliceViewer

 images.stack.browser.SliderMovingEventData class

1-1345

Introduced in R2019b

1 Functions

1-1346

imapplymatrix
Linear combination of color channels

Syntax
Y = imapplymatrix(M,X)
Y = imapplymatrix(M,X,C)
Y = imapplymatrix(___ ,output_type)

Description
Y = imapplymatrix(M,X) computes the linear combination of the rows of M with the color
channels of X.

Y = imapplymatrix(M,X,C) computes the linear combination of the rows of M with the color
channels of X, adding the corresponding constant value C to each combination.

Y = imapplymatrix(___ ,output_type) returns the result of the linear combination in an array
of type output_type.

Examples

Compute Linear Combination of Color Channels

This example shows how to create a grayscale image by computing the linear combination of three
colors channels.

Read a truecolor image into the workspace.

RGB = imread('peppers.png');

Create a coefficient matrix

M = [0.30, 0.59, 0.11];

Compute the linear combination of the RGB channels using the coefficient matrix.

gray = imapplymatrix(M, RGB);

Display the original image and the grayscale conversion.

imshowpair(RGB,gray,'montage')

 imapplymatrix

1-1347

Input Arguments
M — Weighting coefficients for each color channel
q-by-p numeric array

Weighting coefficients for each color channel, specified as a q-by-p numeric array. p is the length of
the third dimension of X. In other words, p=size(X,3). q is in the range [1,p].

X — Input image
m-by-n-by-p numeric array

Input image, specified as an m-by-n-by-p numeric array.

C — Constant to add to each channel
q-element numeric vector

Constant to add to each channel during the linear combination, specified as q-element numeric
vector, where q is the number of rows in M.
Data Types: double

output_type — Output data type
'double' | 'single' | 'uint8' | 'uint16' | 'uint32' | 'int8' | 'int16' | 'int32'

Output data type, specified as one of the following: 'double', 'single', 'uint8', 'uint16',
'uint32', 'int8', 'int16', or 'int32'.
Data Types: char | string

Output Arguments
Y — Output image
numeric array

1 Functions

1-1348

Output image comprised of the linear combination of the rows of M with the color channels of X,
returned as a numeric array. If output_type is not specified, the data type of Y is the same as the
data type of X.

See Also
imlincomb | immultiply

Introduced in R2011b

 imapplymatrix

1-1349

imattributes
Information about image attributes

Syntax
attrs = imattributes
attrs = imattributes(img)
attrs = imattributes(imgmodel)

Description
attrs = imattributes returns information about an image in the current figure. If the current
figure does not contain an image, then imattributes returns an empty array.

attrs = imattributes(img) returns information about the image specified by image object img.
The imattributes function gets the image attributes by querying the image object's CData.

attrs = imattributes(imgmodel) returns information about the image represented by the
image model object, imgmodel.

Examples

Retrieve Attributes of Grayscale Image

Read a grayscale image into the workspace.

h = imshow('liftingbody.png');

1 Functions

1-1350

Get the image attributes.

attrs = imattributes(h)

attrs = 6x2 cell
 {'Width (columns)' } {'512' }
 {'Height (rows)' } {'512' }
 {'Class' } {'uint8' }
 {'Image type' } {'intensity'}
 {'Minimum intensity'} {'0' }
 {'Maximum intensity'} {'255' }

 imattributes

1-1351

Retrieve Attributes of Truecolor Image
h = imshow('gantrycrane.png');

im = imagemodel(h);
attrs = imattributes(im)

attrs = 4x2 cell
 {'Width (columns)'} {'400' }
 {'Height (rows)' } {'264' }
 {'Class' } {'uint8' }
 {'Image type' } {'truecolor'}

Input Arguments
img — Image
image object

Image, specified as an image object.

imgmodel — Image model
imagemodel object

Image model, specified as an imagemodel object.

Output Arguments
attrs — Image attributes
cell array of character vectors

1 Functions

1-1352

Image attributes, returned as a cell array of character vectors. The cell array has size 4-by-2 for
binary and truecolor images and size 6-by-2 for grayscale (intensity) and indexed images. The first
column of the cell array contains the name of the attribute. The second column contains the value of
the attribute.

The table lists these attributes in the order they appear in the cell array.

Attribute Name Value
'Width (columns)' Number of columns in the image.
'Height (rows)' Number of rows in the image.
'Class' Data type used by the image, such as uint8.
'Image type' One of the image types identified by the Image Processing Toolbox software:

'intensity, 'truecolor', 'binary', or 'indexed'.
'Minimum
intensity'

• For intensity images, this value represents the lowest intensity value of any
pixel.

• For indexed images, this value represents the lowest index value into a
colormap.

This attribute is not included for 'binary' or 'truecolor' images.
'Maximum
intensity'

• For intensity images, this value represents the highest intensity value of
any pixel.

• For indexed images, this value represents the highest index value into a
colormap.

This attribute is not included for 'binary' or 'truecolor' images.

See Also
imagemodel

Introduced before R2006a

 imattributes

1-1353

imbilatfilt
Bilateral filtering of images with Gaussian kernels

Syntax
J = imbilatfilt(I)
J = imbilatfilt(I,degreeOfSmoothing)
J = imbilatfilt(I,degreeOfSmoothing,spatialSigma)
J = imbilatfilt(___ ,Name,Value)

Description
J = imbilatfilt(I) applies an edge-preserving Gaussian bilateral filter to the grayscale or RGB
image, I.

J = imbilatfilt(I,degreeOfSmoothing) specifies the amount of smoothing. When
degreeOfSmoothing is a small value, imbilatfilt smooths neighborhoods with small variance
(uniform areas) but does not smooth neighborhoods with large variance, such as strong edges. When
the value of degreeOfSmoothing increases, imbilatfilt smooths both uniform areas and
neighborhoods with larger variance.

J = imbilatfilt(I,degreeOfSmoothing,spatialSigma) also specifies the standard deviation,
spatialSigma, of the spatial Gaussian smoothing kernel. Larger values of spatialSigma increase
the contribution of more distant neighboring pixels, effectively increasing the neighborhood size.

J = imbilatfilt(___ ,Name,Value) uses name-value pairs to change the behavior of the
bilateral filter.

Examples

Smooth Grayscale Image Using Bilateral Filtering

Read and display a grayscale image. Observe the horizontal striation artifact in the sky region.

I = imread('cameraman.tif');
imshow(I)

1 Functions

1-1354

Inspect a patch of the image from the sky region. Compute the variance of the patch, which
approximates the variance of the noise.

patch = imcrop(I,[170, 35, 50 50]);
imshow(patch)

patchVar = std2(patch)^2;

Filter the image using bilateral filtering. Set the degree of smoothing to be larger than the variance
of the noise.

DoS = 2*patchVar;
J = imbilatfilt(I,DoS);
imshow(J)
title(['Degree of Smoothing: ',num2str(DoS)])

 imbilatfilt

1-1355

The striation artifact is reduced, but not eliminated. To improve the smoothing, increase the value of
spatialSigma to 2 so that distant neighboring pixels contribute more to the Gaussian smoothing
kernel. This effectively increases the spatial extent of the bilateral filter.

K = imbilatfilt(I,DoS,2);
imshow(K)
title(['Degree of Smoothing: ',num2str(DoS),', Spatial Sigma: 2'])

1 Functions

1-1356

The striation artifact in the sky is successfully removed. The sharpness of strong edges such as the
silhouette of the man, and textured regions such as the grass in the foreground of the image, have
been preserved.

Smooth Color Image Using Bilateral Filtering

Read an RGB image.

imRGB = imread("coloredChips.png");
imshow(imRGB)

Convert the image to the L*a*b color space, so that the bilateral filter smooths perceptually similar
colors.

imLAB = rgb2lab(imRGB);

Extract an L*a*b patch that contains no sharp edges. Compute the variance in the Euclidean distance
from the origin, in the L*a*b space.

patch = imcrop(imLAB,[34,71,60,55]);
patchSq = patch.^2;

 imbilatfilt

1-1357

edist = sqrt(sum(patchSq,3));
patchVar = std2(edist).^2;

Filter the image in the L*a*b* color space using bilateral filtering. Set the DegreeOfSmoothing
value to be higher than the variance of the patch.

DoS = 2*patchVar;
smoothedLAB = imbilatfilt(imLAB,DoS);

Convert the image back to the RGB color space, and display the smoothed image.

smoothedRBG = lab2rgb(smoothedLAB,"Out","uint8");
montage({imRGB,smoothedRBG})
title("Original Image vs. Filtered Image with Degree of Smoothing: " + num2str(DoS))

The colors of the chips and black pen appear more uniform, but the horizontal grains in the table are
still visible. Increase the spatial extent of the filter so that the effective neighborhood of the filter
spans the space between the horizontal grains (this distance is approximately seven pixels). Also
increase the DegreeOfSmoothing to smooth these regions more aggressively.

DoS2 = 4*patchVar;
smoothedLAB2 = imbilatfilt(imLAB,DoS2,7);
smoothedRBG2 = lab2rgb(smoothedLAB2,"Out","uint8");
montage({imRGB,smoothedRBG2})
title("Original Image vs. Filtered Image with Degree of Smoothing: " + num2str(DoS) + " and Spatial Sigma: 7")

1 Functions

1-1358

The color of the wooden table is more uniform with the larger neighborhood and larger degree of
smoothing. The edge sharpness of the chips and pen is preserved.

Input Arguments
I — Image to filter
2-D grayscale image | 2-D color image

Image to filter, specified as a 2-D grayscale image of size m-by-n or a 2-D color image of size m-by-n-
by-3.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

degreeOfSmoothing — Degree of smoothing
positive number

Degree of smoothing, specified as a positive number. The default value of degreeOfSmoothing
depends on the data type of image I, and is calculated as
0.01*diff(getrangefromclass(I)).^2. For example, the default degree of smoothing is
650.25 for images of data type uint8, and the default is 0.01 for images of data type double with
pixel values in the range [0, 1].

spatialSigma — Standard deviation of spatial Gaussian smoothing kernel
1 (default) | positive number

Standard deviation of spatial Gaussian smoothing kernel, specified as a positive number.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: imbilatfilt(I,'NeighborhoodSize',7) performs bilateral filtering on image I using
a 7-by-7 pixel neighborhood

 imbilatfilt

1-1359

NeighborhoodSize — Neighborhood size
odd-valued positive integer

Neighborhood size, specified as the comma-separated pair consisting of 'NeighborhoodSize' and
an odd-valued positive integer. By default, the neighborhood size is 2*ceil(2*SpatialSigma)+1
pixels
Example: 'NeighborhoodSize',7
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Padding — Padding
'replicate' (default) | 'symmetric' | numeric scalar

Padding, specified as the comma-separated pair consisting of 'Padding' and one of these values.

Value Description
'replicate' Input array values outside the bounds of the

array are assumed to equal the nearest array
border value.

'symmetric' Input array values outside the bounds of the
array are computed by mirror-reflecting the array
across the array border.

numeric scalar, x Input image values outside the bounds of the
image are assigned the value x.

Example: 'Padding','symmetric'
Example: 'Padding',128
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

Output Arguments
J — Filtered image
numeric array

Filtered image, returned as a numeric array of the same size and data type as the input image, I.

Tips
• The value of degreeOfSmoothing corresponds to the variance of the Range Gaussian kernel of

the bilateral filter [1]. The Range Gaussian is applied on the Euclidean distance of a pixel value
from the values of its neighbors.

• To smooth perceptually close colors of an RGB image, convert the image to the CIE L*a*b space
using rgb2lab before applying the bilateral filter. To view the results, convert the filtered image
to RGB using lab2rgb.

• Increasing spatialSigma increases NeighborhoodSize, which increases the filter execution
time. You can specify a smaller NeighborhoodSize to trade accuracy for faster execution time.

1 Functions

1-1360

References
[1] Tomasi, C., and R. Manduchi. "Bilateral Filtering for Gray and Color Images". Proceedings of the

1998 IEEE® International Conference on Computer Vision. Bombay, India. Jan 1998, pp. 836–
846.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imbilatfilt supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

• When generating code, all character vector input arguments must be compile-time constants.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

When generating CUDA® code, all character vector input arguments must be compile-time constants.

See Also
imdiffusefilt | imgaussfilt | imguidedfilter | imfilter | nlfilter | locallapfilt |
imnlmfilt

Introduced in R2018a

 imbilatfilt

1-1361

imbinarize
Binarize 2-D grayscale image or 3-D volume by thresholding

Syntax
BW = imbinarize(I)
BW = imbinarize(I,method)
BW = imbinarize(I,T)
BW = imbinarize(I,'adaptive',Name,Value)

Description
BW = imbinarize(I) creates a binary image from 2-D or 3-D grayscale image I by replacing all
values above a globally determined threshold with 1s and setting all other values to 0s. By default,
imbinarize uses Otsu's method, which chooses the threshold value to minimize the intraclass
variance of the thresholded black and white pixels [1]. imbinarize uses a 256-bin image histogram
to compute Otsu's threshold. To use a different histogram, see otsuthresh.

BW = imbinarize(I,method) creates a binary image from image I using the thresholding method
specified by method: 'global' or 'adaptive'.

BW = imbinarize(I,T) creates a binary image from image I using the threshold value T. T can be
a global image threshold, specified as a scalar luminance value, or a locally adaptive threshold,
specified as a matrix of luminance values.

BW = imbinarize(I,'adaptive',Name,Value) creates a binary image from image I using
name-value pairs to control aspects of adaptive thresholding.

Examples

Binarize Image Using Global Threshold

Read grayscale image into the workspace.

I = imread('coins.png');

Convert the image into a binary image.

BW = imbinarize(I);

Display the original image next to the binary version.

figure
imshowpair(I,BW,'montage')

1 Functions

1-1362

Binarize Image Using Locally Adaptive Thresholding

Read grayscale image into workspace.

I = imread('rice.png');

Convert grayscale image to binary image.

BW = imbinarize(I, 'adaptive');

Display original image along side binary version.

figure
imshowpair(I,BW,'montage')

 imbinarize

1-1363

Binarize Images with Darker Foreground Than Background

Read a grayscale image into the workspace and display it.

I = imread('printedtext.png');
figure
imshow(I)
title('Original Image')

1 Functions

1-1364

Convert the image to a binary image using adaptive thresholding. Use the ForegroundPolarity
parameter to indicate that the foreground is darker than the background.

BW = imbinarize(I,'adaptive','ForegroundPolarity','dark','Sensitivity',0.4);

Display the binary version of the image.

figure
imshow(BW)
title('Binary Version of Image')

 imbinarize

1-1365

Binarize 3-D Volume Using Global Thresholding

Load 3-D grayscale intensity data into the workspace.

load mristack;
V = mristack;

View the 3-D volume.

figure
slice(double(V),size(V,2)/2,size(V,1)/2,size(V,3)/2)
colormap gray
shading interp

1 Functions

1-1366

Convert the intensity volume into a 3-D binary volume.

J = imbinarize(V);

View the 3-D binary volume.

figure
slice(double(J),size(J,2)/2,size(J,1)/2,size(J,3)/2)
colormap gray
shading interp

 imbinarize

1-1367

Input Arguments
I — Input image
2-D grayscale image | 3-D grayscale volume

Input image, specified as a 2-D grayscale image or a 3-D grayscale volume. imbinarize expects
pixel values of data type double and single to be in the range [0, 1]. You can use the rescale
function to adjust pixel values to the expected range.

Note imbinarize interprets an RGB image as a volumetric grayscale image and does not binarize
each channel separately. To produce a binary image from an RGB image, first convert the image to a
grayscale image using rgb2gray.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

method — Method used to binarize image
'global' (default) | 'adaptive'

Method used to binarize image, specified as one of the following values.

1 Functions

1-1368

Values Meaning
'global' Calculate global image threshold using Otsu's method. See graythresh for more

information about Otsu’s method.
'adaptive' Calculate locally adaptive image threshold chosen using local first-order image

statistics around each pixel. See adaptthresh for details. If the image contains
Infs or NaNs, the behavior of imbinarize for the 'adaptive' method is
undefined. Propagation of Infs or NaNs might not be localized to the neighborhood
around Inf and NaN pixels.

Data Types: char | string

T — Threshold
numeric scalar | numeric array

Threshold luminance value, specified as a numeric scalar or numeric array with values in the range
[0, 1].

• If T is a numeric scalar, then imbinarize interprets T as a global image threshold. Use
graythresh or otsuthresh to compute a global image threshold.

• If T is a numeric array, then imbinarize interprets T as a locally adaptive threshold. Use
adaptthresh to compute a locally adaptive threshold.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: BW = imbinarize(I,'adaptive','Sensitivity',0.4);

Sensitivity — Sensitivity factor for adaptive thresholding
0.50 (default) | number in the range [0, 1]

Sensitivity factor for adaptive thresholding, specified as the comma-separated pair consisting of
'Sensitivity' and a number in the range [0, 1]. A high sensitivity value leads to thresholding more
pixels as foreground, at the risk of including some background pixels.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ForegroundPolarity — Determine which pixels are considered foreground pixels
'bright' (default) | 'dark'

Determine which pixels are considered foreground pixels for adaptive thresholding, specified as the
comma-separated pair consisting of 'ForegroundPolarity' and one of the following values.

Value Meaning
'bright' The foreground is brighter than the background.
'dark' The foreground is darker than the background

Data Types: char | string

 imbinarize

1-1369

Output Arguments
BW — Output binary image
logical matrix | logical array

Output binary image, returned as a logical matrix or logical array of the same size as I.
Data Types: logical

Tips
• To produce a binary image from an indexed image, first convert the image to a grayscale image

using ind2gray.

Algorithms
The 'adaptive' method binarizes the image using a locally adaptive threshold. imbinarize
computes a threshold for each pixel using the local mean intensity around the neighborhood of the
pixel. This technique is also called Bradley's method [2]. The 'adaptive' method also uses a
neighborhood size of approximately 1/8th of the size of the image (computed as 2*floor(size(I)/
16)+1). To use a different first order local statistic or a different neighborhood size, see
adaptthresh.

References
[1] Otsu, N., "A Threshold Selection Method from Gray-Level Histograms." IEEE Transactions on

Systems, Man, and Cybernetics. Vol. 9, No. 1, 1979, pp. 62–66.

[2] Bradley, D., G. Roth, "Adapting Thresholding Using the Integral Image," Journal of Graphics Tools.
Vol. 12, No. 2, 2007, pp.13–21.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imbinarize supports the generation of C code (requires MATLAB Coder). Note that if you choose
the generic MATLAB Host Computer target platform, imbinarize generates code that uses a
precompiled, platform-specific shared library. Use of a shared library preserves performance
optimizations but limits the target platforms for which code can be generated. For more
information, see “Types of Code Generation Support in Image Processing Toolbox”.

• When generating code, all character vector input arguments must be compile-time constants.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• When generating code, all character vector input arguments must be compile-time constants.

1 Functions

1-1370

See Also
graythresh | otsuthresh | adaptthresh | Image Segmenter

Introduced in R2016a

 imbinarize

1-1371

imbothat
Bottom-hat filtering

Syntax
J = imbothat(I,SE)
J = imbothat(I,nhood)

Description
J = imbothat(I,SE) performs morphological bottom-hat filtering on the grayscale or binary image
I using the structuring element SE. Bottom-hat filtering computes the morphological closing of the
image (using imclose) and then subtracts the original image from the result.

J = imbothat(I,nhood) bottom-hat filters the image I, where nhood is a matrix of 0s and 1s that
specifies the structuring element neighborhood.

This syntax is equivalent to imbothat(I,strel(nhood)).

Examples

Enhance Contrast Using Bottom-hat and Top-hat Filtering

Read image into the workspace and display it.

I = imread('pout.tif');
imshow(I)

1 Functions

1-1372

Create a disk-shaped structuring element.

se = strel('disk',3);

Add the original image I to the top-hat filtered image, and then subtract the bottom-hat filtered
image.

J = imsubtract(imadd(I,imtophat(I,se)),imbothat(I,se));
figure
imshow(J)

 imbothat

1-1373

Input Arguments
I — Input image
grayscale image | binary image

Input image, specified as a grayscale image or binary image of any dimension.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

SE — Structuring element
strel object | offsetstrel object

Structuring element, specified as a single strel object or offsetstrel object. If the image I is
data type logical, the structuring element must be flat.

nhood — Structuring element neighborhood
matrix of 0s and 1s

Structuring element neighborhood, specified as a matrix of 0s and 1s.
Example: [0 1 0; 1 1 1; 0 1 0]

Output Arguments
J — Bottom-hat filtered image
grayscale image | binary image

1 Functions

1-1374

Bottom-hat filtered image, returned as a grayscale image or binary image. J has the same data type
as input image I.

Tips
• If the dimensionality of the image I is greater than the dimensionality of the structuring element,

then the imbothat function applies the same morphological closing to all planes along the higher
dimensions.

You can use this behavior to perform bottom-hat filtering on RGB images. Specify a 2-D
structuring element for RGB images to operate on each color channel separately.

• When you specify a structuring element neighborhood, imbothat determines the center element
of nhood by floor((size(nhood)+1)/2).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imbothat supports the generation of C code (requires MATLAB Coder). Note that if you choose
the generic MATLAB Host Computer target platform, imbothat generates code that uses a
precompiled, platform-specific shared library. Use of a shared library preserves performance
optimizations but limits the target platforms for which code can be generated. For more
information, see “Types of Code Generation Support in Image Processing Toolbox”.

• The input image I must be 2-D or 3-D.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• gpuArray input must be of type uint8 or logical.
• The structuring element SE must be flat and 2-D.

For more information, see “Image Processing on a GPU”.

See Also
Functions
imclose | imdilate | imerode | imopen | imtophat

Objects
strel | offsetstrel

Introduced before R2006a

 imbothat

1-1375

imboxfilt
2-D box filtering of images

Syntax
B = imboxfilt(A)
B = imboxfilt(A,filterSize)
B = imboxfilt(___ ,Name,Value)

Description
B = imboxfilt(A) filters image A with a 2-D, 3-by-3 box filter. A box filter is also called a mean
filter.

B = imboxfilt(A,filterSize) filters image A with a 2-D box filter with size specified by
filterSize.

B = imboxfilt(___ ,Name,Value) uses name-value pair arguments to control aspects of the
filtering.

Examples

Compute Mean Filter Over Specified Neighborhood

Read image into the workspace.

A = imread('cameraman.tif');

Perform the mean filtering using an 11-by-11 filter.

localMean = imboxfilt(A,11);

Display the original image and the filtered image, side-by-side.

imshowpair(A,localMean,'montage')

1 Functions

1-1376

Compute Local Area Sums Over Specified Neighborhood

Read image into the workspace.

A = imread('cameraman.tif');

Change the data type of the image to double to avoid integer overflow.

A = double(A);

Filter image, calculating local area sums, using a 15-by-15 box filter. To calculate local area sums,
rather than the mean, set the NormalizationFactor parameter to 1.

localSums = imboxfilt(A, 15, 'NormalizationFactor',1);

Display the original image and the filtered image, side-by-side.

imshowpair(A,localSums,'montage')

 imboxfilt

1-1377

Input Arguments
A — Image to be filtered
numeric array

Image to be filtered, specified as a numeric array of any dimension. If the input image has more than
two dimensions (ndims(I)>2), such as for an RGB image, then imboxfilt performs box filtering of
all 2-D planes along the higher dimensions.

If A contains Infs or NaNs, then the behavior of imboxfilt is undefined. This can happen when
integral image based filtering is used. To restrict the propagation of Infs and NaNs in the output,
consider using imfilter instead.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

filterSize — Size of box filter
3 (default) | positive, odd integer | 2-element vector of positive, odd integers

Size of box filter, specified as a positive odd integer or 2-element vector of positive, odd integers. If
filterSize is scalar, then the box filter is square.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: B = imboxfilt(A,5,'Padding','circular');

1 Functions

1-1378

Padding — Padding pattern
'replicate' (default) | 'circular' | 'symmetric' | numeric scalar

Padding pattern, specified as one of the following values or a numeric scalar. If you specify a scalar
value, input image pixels outside the bounds of the image are implicitly assumed to have the scalar
value.

Value Description
'circular' Input image values outside the bounds of the image are computed by

implicitly assuming the input image is periodic.
'replicate' Input image values outside the bounds of the image are assumed equal to the

nearest image border value.
'symmetric' Input image values outside the bounds of the image are computed by mirror-

reflecting the array across the array border.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

NormalizationFactor — Normalization factor applied to box filter
1/filterSize.^2, if scalar, and 1/prod(filterSize), if vector (default) | numeric scalar

Normalization factor applied to box filter, specified as a numeric scalar.

The default 'NormalizationFactor' has the effect of a mean filter — the pixels in the output
image are the local means of the image over the neighborhood determined by filterSize. To get
local area sums, set 'NormalizationFactor' to 1. To avoid overflow in such circumstances,
consider using double precision images by converting the input image to class double.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
B — Filtered image
numeric array

Filtered image, returned as a numeric array of the same size as the input image A.

Algorithms
imboxfilt performs filtering using either convolution-based filtering or integral image filtering,
using an internal heuristic to determine which filtering approach to use.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imboxfilt supports the generation of C code (requires MATLAB Coder). Note that if you choose
the generic MATLAB Host Computer target platform, imboxfilt generates code that uses a
precompiled, platform-specific shared library. Use of a shared library preserves performance

 imboxfilt

1-1379

optimizations but limits the target platforms for which code can be generated. For more
information, see “Types of Code Generation Support in Image Processing Toolbox”.

• When generating code, all character vector input arguments must be compile-time constants.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• When generating code, all character vector input arguments must be compile-time constants.

See Also
imboxfilt3 | imfilter | integralBoxFilter

Introduced in R2015b

1 Functions

1-1380

imboxfilt3
3-D box filtering of 3-D images

Syntax
B = imboxfilt3(A)
B = imboxfilt3(A,filterSize)
B = imboxfilt3(___ ,Name,Value)

Description
B = imboxfilt3(A) filters the 3-D image A with a 3-D box filter, 3-by-3-by-3 in size.

B = imboxfilt3(A,filterSize) filters 3-D image A with a 3-D box filter of size filterSize.

B = imboxfilt3(___ ,Name,Value) uses name-value pair arguments to control aspects of the
filtering.

Examples

Compute Mean Filter in MRI Volume

Load 3-D image data into the workspace.

volData = load('mri');
vol = squeeze(volData.D);

Filter the image with a 3-D box filter.

localMean = imboxfilt3(vol,[5 5 3]);

Input Arguments
A — Image to be filtered
3-D numeric array

Image to be filtered, specified as a 3-D numeric array.

If A contains Infs or NaNs, the behavior of imboxfilt3 is undefined. This can happen when integral
image based filtering is used. To restrict the propagation of Infs and NaNs in the output, consider
using imfilter instead.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

filterSize — Size of box filter
3 (default) | positive, odd integer | 3-element vector of positive, odd integers

Size of box filter, specified as a positive odd integer or 3-element vector of positive, odd integers. If
filterSize is scalar, then the filter is a cube.

 imboxfilt3

1-1381

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: B = imboxfilt3(A,5,'padding','circular');

Padding — Padding pattern
'replicate' (default) | 'circular' | 'symmetric' | numeric scalar

Padding pattern, specified as one of the following values or a numeric scalar. If you specify a scalar
value, input image pixels outside the bounds of the image are implicitly assumed to have the scalar
value.

Value Description
'circular' Input image values outside the bounds of the image are computed by

implicitly assuming the input image is periodic.
'replicate' Input image values outside the bounds of the image are assumed equal to the

nearest image border value.
'symmetric' Input image values outside the bounds of the image are computed by mirror-

reflecting the array across the array border.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

NormalizationFactor — Normalization factor applied to box filter
1/filterSize.^3, if scalar, and 1/prod(filterSize), if vector (default) | numeric scalar

Normalization factor applied to box filter, specified as a numeric scalar.

The default 'NormalizationFactor' has the effect of a mean filter — the pixels in the output
image are the local means of the image. To get local area sums, set 'NormalizationFactor' to 1.
To avoid overflow in such circumstances, consider using double precision images by converting the
input image to class double.
Example: 'NormalizationFactor',1
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
B — Filtered image
3-D numeric array

Filtered image, returned as a 3-D numeric array.

Algorithms
imboxfilt performs filtering using either convolution-based filtering or integral image filtering,
using an internal heuristic to determine which filtering approach to use.

1 Functions

1-1382

See Also
imboxfilt | imfilter | integralBoxFilter3

Introduced in R2015b

 imboxfilt3

1-1383

imclearborder
Suppress light structures connected to image border

Syntax
J = imclearborder(I)
J = imclearborder(I,conn)

Description
J = imclearborder(I) suppresses structures in image I that are lighter than their surroundings
and that are connected to the image border. Use this function to clear the image border. For
grayscale images, imclearborder tends to reduce the overall intensity level in addition to
suppressing border structures. The output image, J, is grayscale or binary, depending on the input.

J = imclearborder(I,conn) specifies the pixel connectivity, conn.

Examples

Impact of Connectivity on Clearing the Border

Create a simple binary image.

BW = [0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 1 0 0 1 1 1 0 0 0
 0 1 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0];

Clear pixels on the border of the image using 4-connectivity. Note that imclearborder does not
clear the pixel at (5,2) because, with 4-connectivity, it is not considered connected to the border pixel
at (4,1).

BWc1 = imclearborder(BW,4)

BWc1 = 9×9

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 1 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

1 Functions

1-1384

Now clear pixels on the border of the image using 8-connectivity. imclearborder clears the pixel at
(5,2) because, with 8-connectivity, it is considered connected to the border pixel (4,1).

BWc2 = imclearborder(BW,8)

BWc2 = 9×9

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0

Input Arguments
I — Grayscale or binary image
numeric array | logical array

Grayscale or binary image, specified as a numeric or logical array.
Example: I = imread('pout.tif');
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

conn — Pixel connectivity
4 | 8 | 6 | 18 | 26 | 3-by-3-by- ... -by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of the values in this table. The default connectivity is 8 for 2-D
images, and 26 for 3-D images.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch. The

neighborhood of a pixel are the adjacent pixels
in the horizontal or vertical direction.

8-connected Pixels are connected if their edges or corners
touch. The neighborhood of a pixel are the
adjacent pixels in the horizontal, vertical, or
diagonal direction.

Three-Dimensional Connectivities

 imclearborder

1-1385

Value Meaning
6-connected Pixels are connected if their faces touch. The

neighborhood of a pixel are the adjacent pixels
in:

• One of these directions: in, out, left, right,
up, and down

18-connected Pixels are connected if their faces or edges
touch. The neighborhood of a pixel are the
adjacent pixels in:

• One of these directions: in, out, left, right,
up, and down

• A combination of two directions, such as
right-down or in-up

26-connected Pixels are connected if their faces, edges, or
corners touch. The neighborhood of a pixel are
the adjacent pixels in:

• One of these directions: in, out, left, right,
up, and down

• A combination of two directions, such as
right-down or in-up

• A combination of three directions, such as
in-right-up or in-left-down

For higher dimensions, imclearborder uses the default value conndef(ndims(I),'maximal').

Connectivity can also be defined in a more general way for any dimension by specifying a 3-by-3-
by- ... -by-3 matrix of 0s and 1s. The 1-valued elements define neighborhood locations relative to the
center element of conn. Note that conn must be symmetric about its center element. See “Specifying
Custom Connectivities” for more information.

Note A pixel on the edge of the input image might not be considered to be a border pixel if you
specify a nondefault connectivity. For example, if conn = [0 0 0; 1 1 1; 0 0 0], elements on
the first and last row are not considered to be border pixels because, according to that connectivity
definition, they are not connected to the region outside the image.

Data Types: double | logical

Output Arguments
J — Processed image
numeric array | logical array

Processed grayscale or binary image, returned as numeric or logical array, depending on the input
image you specify.

1 Functions

1-1386

Algorithms
imclearborder uses morphological reconstruction where:

• Mask image is the input image.
• Marker image is zero everywhere except along the border, where it equals the mask image.

References
[1] Soille, P., Morphological Image Analysis: Principles and Applications, Springer, 1999, pp. 164-165.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imclearborder supports the generation of C code (requires MATLAB Coder). Note that if you
choose the generic MATLAB Host Computer target platform, imclearborder generates code
that uses a precompiled, platform-specific shared library. Use of a shared library preserves
performance optimizations but limits the target platforms for which code can be generated. For
more information, see “Types of Code Generation Support in Image Processing Toolbox”.

• Supports only up to 3-D inputs.
• The optional second input argument, conn, must be a compile-time constant.

See Also
conndef

Introduced before R2006a

 imclearborder

1-1387

imclose
Morphologically close image

Syntax
J = imclose(I,SE)
J = imclose(I,nhood)

Description
J = imclose(I,SE) performs morphological closing on the grayscale or binary image I, using the
structuring element SE. The morphological close operation is a dilation followed by an erosion, using
the same structuring element for both operations.

J = imclose(I,nhood) closes the image I, where nhood is a matrix of 0s and 1s that specifies the
structuring element neighborhood.

This syntax is equivalent to imclose(I,strel(nhood)).

Examples

Use Morphological Closing to Fill Gaps in an Image

Read a binary image into the workspace and display it.

originalBW = imread('circles.png');
imshow(originalBW);

1 Functions

1-1388

Create a disk-shaped structuring element. Use a disk structuring element to preserve the circular
nature of the object. Specify a radius of 10 pixels so that the largest gap gets filled.

se = strel('disk',10);

Perform a morphological close operation on the image.

closeBW = imclose(originalBW,se);
figure, imshow(closeBW)

Input Arguments
I — Input image
grayscale image | binary image

Input image, specified as a grayscale image or binary image of any dimension.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

SE — Structuring element
strel object | offsetstrel object

Structuring element, specified as a single strel object or offsetstrel object. If the image I is
data type logical, then the structuring element must be flat.

nhood — Structuring element neighborhood
matrix of 0s and 1s

Structuring element neighborhood, specified as a matrix of 0s and 1s.
Example: [0 1 0; 1 1 1; 0 1 0]

 imclose

1-1389

Output Arguments
J — Closed image
grayscale image | binary image

Closed image, returned as a grayscale image or binary image. J has the same data type as input
image I.

Tips
• If the dimensionality of the image I is greater than the dimensionality of the structuring element,

then the imclose function applies the same morphological closing to all planes along the higher
dimensions.

You can use this behavior to perform morphological closing on RGB images. Specify a 2-D
structuring element for RGB images to operate on each color channel separately.

• When you specify a structuring element neighborhood, imclose determines the center element of
nhood by floor((size(nhood)+1)/2).

Compatibility Considerations
imclose pads image border
Behavior changed in R2017a

Starting in R2017a, imclose pads the input image border by half the size of the structuring element.
Padding the image removes border artifacts when there are foreground pixels near the boundary of
the input image.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imclose supports the generation of C code (requires MATLAB Coder). Note that if you choose the
generic MATLAB Host Computer target platform, imclose generates code that uses a
precompiled, platform-specific shared library. Use of a shared library preserves performance
optimizations but limits the target platforms for which code can be generated. For more
information, see “Types of Code Generation Support in Image Processing Toolbox”.

• The input image I must be 2-D or 3-D.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The input image I must be 2-D or 3-D.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

1 Functions

1-1390

Usage notes and limitations:

• gpuArray input must be of type uint8 or logical.
• The structuring element SE must be flat and 2-D.

For more information, see “Image Processing on a GPU”.

See Also
Functions
imopen | imdilate | imerode

Objects
strel | offsetstrel

Introduced before R2006a

 imclose

1-1391

imcolordiff
Color difference based on CIE94 or CIE2000 standard

Syntax
dE = imcolordiff(I1,I2)
dE = imcolordiff(I1,I2,Name,Value)

Description
dE = imcolordiff(I1,I2) calculates the color difference between two RGB images or color maps
using the CIE94 standard.

dE = imcolordiff(I1,I2,Name,Value) specifies additional aspects of the computation, such as
the input color space and the CIE standard, using one or more name-value pair arguments.

Examples

Calculate Color Difference of Images Using CIE94 Standard

Read a color image into the workspace.

I1 = imread('peppers.png');
imshow(I1)

1 Functions

1-1392

Alter the local color contrast in the image.

I2 = localcontrast(I1);
imshow(I2)

 imcolordiff

1-1393

Calculate the color difference of the images using the default color standard, CIE94.

dE = imcolordiff(I1,I2);

Display the color difference as an image. Scale the display range to use the full range of pixel values
in dE.

imshow(dE,[])

1 Functions

1-1394

Calculate Color Difference of L*a*b* Images using CIE94 Standard

Read and display an image of tissue stained with hemotoxylin and eosin (H&E).

he = imread('hestain.png');
imshow(he)

 imcolordiff

1-1395

Convert the image to the L*a*b* color space.

lab = rgb2lab(he);

Make a copy of the image, then increase the signal of the a* channel. Red tones in the image become
more saturated while the image overall brightness and the blue tones are unchanged.

lab2 = lab;
scaleFactor = 1.1;
lab2(:,:,2) = scaleFactor*lab(:,:,2);

Calculate the color difference of the original and enhanced image in the L*a*b* color space.

dE = imcolordiff(lab,lab2,'isInputLab',true);

Display the color difference as an image. Scale the display range to match the range of pixel values in
dE. Bright regions indicate the greatest color difference and correspond with the pink regions of
tissue.

imshow(dE,[])

1 Functions

1-1396

Calculate Color Difference of Two Colors using CIEDE2000 Standard

Specify two RGB color values.

pureRed = uint8([255,0,0]);
darkRed = uint8([255,10,50]);

Calculate the color difference of the colors using the CIEDE2000 standard.

dE = imcolordiff(pureRed,darkRed,"Standard","CIEDE2000")

dE = single
 7.4449

Calculate Color Difference using Textile Weighting Factors

Read and display an RGB image of fabric.

fabric = imread('fabric.png');
imshow(fabric)

 imcolordiff

1-1397

Simulate a second image of fabric by altering the local color contrast in the image.

fabric2 = localcontrast(fabric);
imshow(fabric2)

1 Functions

1-1398

Calculate the color difference of the two images using the CIEDE2000 standard. Specify a luminance
coefficient and K1 and K2 weighting factors appropriate for textiles.

dE = imcolordiff(fabric,fabric2,'Standard','CIEDE2000', ...
 'kL',2,'K1',0.048,'K2',0.014);

Display the color difference. Scale the display range to the full range of pixel values in dE.

imshow(dE,[])

 imcolordiff

1-1399

Input Arguments
I1 — First set of color data
m-by-n-by-3 numeric array | c-by-3 numeric matrix

First set of color data, specified as an m-by-n-by-3 numeric array representing an image or a c-by-3
numeric matrix representing a set of c colors. I1 and I2 must be the same size with values in the
same color space.

By default, the imcolordiff function interprets the color data as RGB color values. To calculate the
color difference in the L*a*b* color space, specify the 'isInputLab' argument as true. L*a*b* color
values can be of data type single or double only.
Data Types: single | double | uint8 | uint16

I2 — Second set of color data
m-by-n-by-3 numeric array | c-by-3 numeric matrix

Second set of color data, specified as an m-by-n-by-3 numeric array representing an image or a c-by-3
numeric matrix representing a set of c colors. I1 and I2 must be the same size with values in the
same color space.

1 Functions

1-1400

By default, imcolordiff interprets the color data as RGB color values. To calculate the difference of
colors in the L*a*b* color space, specify the 'isInputLab' argument as true. L*a*b* color values
can be of data type single or double only.
Data Types: single | double | uint8 | uint16

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Standard',"CIEDE2000" calculates the color difference between two RGB images using
the CIEDE2000 standard.

Standard — CIE standard
"CIE94" (default) | "CIEDE2000"

CIE standard used to compute the color difference value, specified as the comma-separated pair
consisting of 'Standard' and one of these values:

Value Description
"CIE94" The CIE94 standard. This standard improves the

perceptual non-uniformities of the CIE76
standard implemented in the deltaE function.

"CIEDE2000" The CIEDE2000 standard. This standard further
improves the perceptual uniformity through five
additional corrections: a hue rotation term,
compensation for neutral colors, and
compensation for lightness, chroma, and hue.

Data Types: char | string

isInputLab — Color values are in L*a*b* color space
false or 0 (default) | true or 1

Color values are in the L*a*b* color space, specified as the comma-separated pair consisting of
'isInputLab' and a numeric or logical 0 (false) or 1 (true).

kL — Luminance coefficient
1 (default) | numeric scalar

Luminance coefficient, specified as the comma-separated pair consisting of 'kL' and a numeric
scalar. The luminance coefficient is typically 1 for applications in graphic arts and 2 for applications
in textiles.

K1 — K1 weighting factor
0.045 (default) | numeric scalar

K1 weighting factor, specified as the comma-separated pair consisting of 'K1' and a numeric scalar.
The K1 weighting factor is typically 0.045 for applications in graphic arts and 0.048 for applications
in textiles.

K2 — K2 weighting factor
0.015 (default) | numeric scalar

 imcolordiff

1-1401

K2 weighting factor, specified as the comma-separated pair consisting of 'K2' and a numeric scalar.
The K2 weighting factor is typically 0.015 for applications in graphic arts and 0.014 for applications
in textiles.

Output Arguments
dE — Color difference
m-by-n matrix | c-element column vector

Color difference (delta E), returned as one of the following.

• An m-by-n matrix when the input color data I1 and I2 represent images
• A c-element column vector when I1 and I2 represent a set of c colors

If I1 or I2 is of data type double, then dE is of data type double. Otherwise, dE is of data type
single.
Data Types: single | double

Tips
• To calculate color differences following the CIE76 standard, use the deltaE function. This

function is faster than the imcolordiff function, but less precise.

References
[1] Sharma, Gaurav, Wencheng Wu, and Edul N. Dalal, "The CIEDE2000 Color-Difference Formula:

Implementation Notes, Supplementary Test Data, and Mathematical Observations". Color
Research and Application 30, no. 1 (February 2005): 21–30. https://doi.org/10.1002/col.20070.

See Also
deltaE | colorangle | measureColor

Topics
“Understanding Color Spaces and Color Space Conversion”

Introduced in R2020b

1 Functions

1-1402

imcolormaptool
Choose Colormap tool

Syntax
imcolormaptool
imcolormaptool(h)
htool = imcolormaptool(___)

Description
Use the imcolormaptool function to create a Choose Colormap tool. The Choose Colormap tool is
an interactive colormap selection tool that allows you to change the colormap of a figure by selecting
a colormap from a list of MATLAB colormap functions or workspace variables, or by entering a
custom MATLAB expression.

Choose Colormap Tool

imcolormaptool launches the Choose Colormap tool in a separate figure, which is associated with
the current figure.

imcolormaptool(h) launches the Choose Colormap tool using h as the target figure. h must
contain either a grayscale or an indexed image.

htool = imcolormaptool(___) returns a handle to the Choose Colormap tool figure, htool.

Examples
Open Choose Colormap Tool
h = figure;
imshow('cameraman.tif');
imcolormaptool(h);

 imcolormaptool

1-1403

Input Arguments
h — Graphics object
figure | axes

Graphics object, specified as a figure or axes.

Output Arguments
htool — Handle to Choose Colormap tool figure
handle

Handle to Choose Colormap tool figure, returned as a handle.

See Also
Image Viewer | colormap | imshow

Introduced in R2009a

1 Functions

1-1404

imcomplement
Complement image

Syntax
J = imcomplement(I)

Description
J = imcomplement(I) computes the complement on page 1-1410 of the image I and returns the
result in J.

Examples

Create the Complement of a uint8 Array

X = uint8([255 10 75; 44 225 100]);
X2 = imcomplement(X)

X2 = 2x3 uint8 matrix

 0 245 180
 211 30 155

Reverse Black and White in a Binary Image

bw = imread('text.png');
bw2 = imcomplement(bw);
imshowpair(bw,bw2,'montage')

 imcomplement

1-1405

Create the Complement of an Intensity Image
I = imread('cameraman.tif');
J = imcomplement(I);
imshowpair(I,J,'montage')

1 Functions

1-1406

Create the Complement of a Color Image

Read a color image into the workspace.

rgb = imread('yellowlily.jpg');
imshow(rgb)

 imcomplement

1-1407

Display the complement of the image.

1 Functions

1-1408

c = imcomplement(rgb);
imshow(c)

 imcomplement

1-1409

Each color channel of the resulting image is the complement of the corresponding color channel in
the original image. Regions that were dark, such as dirt, become light. In the original image, the
leaves appear green, and petals appear yellow because of a mixture of red and green signals. In the
complement image, the leaves appear purple because the red and blue signals are larger than the
green signal. The flower petals appear blue because the blue signal is larger than the red and green
channels.

Input Arguments
I — Input image
RGB image | grayscale image | binary image

Input image, specified as an RGB, grayscale, or binary image.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

Output Arguments
J — Image complement
RGB image | grayscale image | binary image

Image complement, specified as an RGB, grayscale, or binary image. J has the same size and class as
the input image, I.

More About
Image Complement

In the complement of a binary image, zeros become ones and ones become zeros. Black and white are
reversed.

In the complement of a grayscale or color image, each pixel value is subtracted from the maximum
pixel value supported by the class (or 1.0 for double-precision images). The difference is used as the
pixel value in the output image. In the output image, dark areas become lighter and light areas
become darker. For color images, reds become cyan, greens become magenta, blues become yellow,
and vice versa.

Tips
• If I is a grayscale or RGB image of class double, then you can use the expression 1-I instead of

this function.
• If I is a binary image, then you can use the expression ~I instead of this function.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

1 Functions

1-1410

• imcomplement supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

• imcomplement does not support int64 and uint64 data types.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• imcomplement does not support int64 and uint64 data types.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on a GPU”.

See Also
imabsdiff | imadd | imdivide | imlincomb | immultiply | imsubtract

Introduced before R2006a

 imcomplement

1-1411

imcontour
Create contour plot of image data

Syntax
imcontour(I)
imcontour(I,levels)
imcontour(I,V)
imcontour(x,y, ___)
imcontour(___ ,LineSpec)
[C,h] = imcontour(___)

Description
imcontour(I) draws a contour plot of the grayscale image I, choosing the number of levels and the
values of levels automatically. imcontour automatically sets up the axes so their orientation and
aspect ratio match the image.

imcontour(I,levels) specifies the number, levels, of equally spaced contour levels in the plot.

imcontour(I,V) draws contour lines at the data values specified in vector V. The number of
contour levels is equal to length(V).

imcontour(x,y, ___) uses the vectors x and y to specify the image x- and y coordinates.

imcontour(___ ,LineSpec) draws the contours using the line type and color specified by
LineSpec. Marker symbols are ignored.

[C,h] = imcontour(___) returns the contour matrix, C, and the handle, h, to the contour patches
drawn onto the current axes.

Examples

Create Contour Plot of Image Data

This example shows how to create a contour plot of an image.

Read grayscale image and display it. The example uses an example image of grains of rice.

I = imread('rice.png');
imshow(I)

1 Functions

1-1412

Create a contour plot of the image using imcontour .

figure;
imcontour(I,3)

 imcontour

1-1413

Input Arguments
I — Grayscale image
m-by-n matrix

Grayscale image, specified as an m-by-n matrix.
Data Types: single | double | int16 | uint8 | uint16 | logical

levels — Number of contour levels
numeric scalar

Number of contour levels, specified as a numeric scalar.

V — Value of contour levels
numeric vector

Value of contour levels, specified as a numeric vector with length greater than or equal to two. Use V
= [v v] to compute a single contour at level v.

x — Image x values
2-element numeric vector | n-element numeric vector

Image x values, specified as one of the following:

1 Functions

1-1414

• 2-element numeric vector of the form [xmin xmax] — Image extent in the x direction.
• n-element numeric vector — x-coordinate of each column.

y — Image y values
2-element numeric vector | m-element numeric vector

Image y values, specified as one of the following:

• 2-element numeric vector of the form [ymin ymax] — Image extent in the y direction.
• m-element numeric vector — y-coordinate of each row.

LineSpec — Line style and color
character vector | string

Line style and color, specified as a character vector or string containing a line style specifier, a color
specifier, or both.
Example: '--r' specifies red dashed lines

These two tables list the line style and color options.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

Color Specifier Description
y yellow
m magenta
c cyan
r red
g green
b blue
w white
k black

Output Arguments
C — Contour matrix
numeric matrix

Contour matrix, returned as a matrix with two rows. The matrix is defined according to the
ContourMatrix property of the Contour object, h.

 imcontour

1-1415

h — Contour patches
handle

Contour patches, returned as a handle to a Contour object.

See Also
Functions
contour | clabel

Properties
Contour

Introduced before R2006a

1 Functions

1-1416

imcontrast
Adjust Contrast tool

Syntax
imcontrast
imcontrast(h)
htool = imcontrast(___)

Description
Use the imcontrast function to create an Adjust Contrast tool. The Adjust Contrast tool is an
interactive contrast and brightness adjustment tool that you can use to adjust the black-to-white
mapping used to display a grayscale image. For more information about using the tool, see “Tips” on
page 1-1418.

imcontrast creates an Adjust Contrast tool in a separate figure that is associated with the grayscale
image in the current figure, called the target image.

imcontrast(h) creates the Adjust Contrast tool associated with the image specified by the handle
h.

htool = imcontrast(___) returns the handle htool to the Adjust Contrast tool figure.

 imcontrast

1-1417

Examples

Adjust the Contrast of the Current Image

Read an image into the workspace. Adjust the contrast of the current image.

imshow('pout.tif')
imcontrast

Adjust Image Contrast, Specifying Figure Handle

Read an image into the workspace and define the handle of the figure as h1. Open a second figure
window and define the handle of that figure as h2. Adjust the contrast of the first figure by specifying
h1 in the call to imcontrast.

h1 = figure;
imshow('pout.tif');
h2 = figure;
imshow('coins.png');
imcontrast(h1)

Input Arguments
h — Handle to graphics object
handle

Handle to a figure, axes, uipanel, or image graphics object, specified as a handle. If h is an axes or
figure handle, then imcontrast uses the first image returned by findobj(H,'Type','image').

Output Arguments
htool — Handle to Adjust Contrast tool figure
handle

Handle to Adjust Contrast tool figure, returned as a handle.

Tips
The Adjust Contrast tool presents a scaled histogram of pixel values (overly represented pixel values
are truncated for clarity). Dragging on the left red bar in the histogram display changes the minimum
value. The minimum value, and any pixel value less than the minimum, display as black. Dragging on
the right red bar in the histogram changes the maximum value. The maximum value, and any value
greater than the maximum, display as white. Values in between the red bars display as intermediate
shades of gray.

Together the minimum and maximum values create a "window". Stretching the window reduces
contrast. Shrinking the window increases contrast. Changing the center of the window changes the
brightness of the image. It is possible to manually enter the minimum, maximum, width, and center
values for the window. Changing one value automatically updates the other values and the image.

1 Functions

1-1418

• Click and drag the mouse within the target image to interactively change the window values.
Dragging the mouse horizontally from left to right changes the window width. Dragging the mouse
vertically up and down changes the window center. Holding down the Ctrl key before clicking and
dragging the mouse accelerates the rate of change; holding down the Shift key before clicking
and dragging the mouse slows the rate of change. Keys must be pressed before clicking and
dragging.

• When you use the tool, imcontrast adjusts the contrast of the displayed image by modifying the
axes CLim property. To modify the actual pixel values in the target image, click the Adjust Data
button. This button is unavailable until you make a change to the contrast of the image.

• The Adjust Contrast tool can handle grayscale images of class double and single with data
ranges beyond the default display range, which is [0 1]. For these images, imcontrast sets the
histogram limits to fit the image data range, with padding at the upper and lower bounds.

See Also
Image Viewer | imadjust | stretchlim

Topics
“Adjust Image Contrast in Image Viewer App”

Introduced before R2006a

 imcontrast

1-1419

imcrop
Crop image

Syntax
Icropped = imcrop
Icropped = imcrop(I)
Xcropped = imcrop(X,cmap)
___ = imcrop(h)

Icropped = imcrop(I,rect)
Xcropped = imcrop(X,cmap,rect)
___ = imcrop(xref,yref, ___)

[___ ,rectout] = imcrop(___)
[xrefout,yrefout, ___] = imcrop(___)
imcrop(___)

Description
Crop Image Interactively

Note The interactive syntaxes do not support categorical images. For categorical images, you must
specify the crop region, rect.

Icropped = imcrop creates an interactive Crop Image tool associated with the grayscale,
truecolor, or binary image displayed in the current figure. imcrop returns the cropped image,
Icropped.

With this syntax and the other interactive syntaxes, the Crop Image tool blocks the MATLAB
command line until you complete the operation. For more information about using the Crop Image
tool, see “Interactive Behavior” on page 1-1429.

Icropped = imcrop(I) displays the grayscale, truecolor, or binary image I in a figure window and
creates an interactive Crop Image tool associated with the image.

Xcropped = imcrop(X,cmap) displays the indexed image X in a figure using the colormap cmap,
and creates an interactive Crop Image tool associated with that image. imcrop returns the cropped
indexed image, Xcropped, which also has the colormap cmap.

___ = imcrop(h) creates an interactive Crop Image tool associated with the image specified by
the handle h.

Crop Image by Specifying Crop Region

Icropped = imcrop(I,rect) crops the image I according to the position and dimensions
specified in the crop rectangle rect. The cropped image includes all pixels in the input image that
are completely or partially enclosed by the rectangle.

1 Functions

1-1420

The actual size of the output image does not always correspond exactly with the width and height
specified by rect. For example, suppose rect is [20 20 40 30], using the default spatial
coordinate system. The upper left corner of the specified rectangle is the center of the pixel with
spatial (x,y) coordinates (20,20). The lower right corner of the rectangle is the center of the pixel with
spatial (x,y) coordinates (60,50). The resulting output image has size 31-by-41 pixels, not 30-by-40
pixels.

Xcropped = imcrop(X,cmap,rect) crops the indexed image X with colormap cmap according to
the position and dimensions specified in the crop rectangle rect. imcrop returns the cropped
indexed image, Xcropped, which also has the colormap cmap.

___ = imcrop(xref,yref, ___) crops the input image using the world coordinate system
defined by xref and yref. After the xref and yref input arguments, you can specify the arguments
of any syntax that includes an input image I or X.

Specify Additional Output Options

[___ ,rectout] = imcrop(___) also returns the position of the crop rectangle in rectout. You
can use the input arguments of any other syntax.

[xrefout,yrefout, ___] = imcrop(___) also returns the image limits of the input image in
xrefout and yrefout.

imcrop(___) without output arguments displays the cropped image in a new figure window. This
syntax does not support categorical images.

Examples

Crop Image Using Crop Image Interactive Tool

Read image into the workspace.

I = imread('cameraman.tif');

Open Crop Image tool associated with this image. Specify a variable in which to store the cropped
image. The example includes the optional return value rect in which imcrop returns the four-
element position vector of the rectangle you draw.

[J,rect] = imcrop(I);

When you move the cursor over the image, it changes to a cross-hairs . The Crop Image tool
blocks the MATLAB command line until you complete the operation.

Using the mouse, draw a rectangle over the portion of the image that you want to crop.

 imcrop

1-1421

Perform the crop operation by double-clicking in the crop rectangle or selecting Crop Image on the
context menu.

1 Functions

1-1422

The Crop Image tool returns the cropped area in the return variable, J. The variable rect is the four-
element position vector describing the crop rectangle you specified.

whos

Name Size Bytes Class Attributes

 I 256x256 65536 uint8
 J 121x126 15246 uint8
 rect 1x4 32 double

Crop Image By Specifying Crop Rectangle

Read image into the workspace.

I = imread('circuit.tif');

Crop image, specifying crop rectangle.

I2 = imcrop(I,[75 68 130 112]);

Display original image and cropped image.

subplot(1,2,1)
imshow(I)

 imcrop

1-1423

title('Original Image')
subplot(1,2,2)
imshow(I2)
title('Cropped Image')

Center Crop Image Using Spatial Referencing Rectangle

Read and display an image.

I = imread('parkavenue.jpg');
imshow(I)

1 Functions

1-1424

Specify a target window size as a two-element vector of the form [width, height].

targetSize = [300 600];

Create a Rectangle object that specifies the spatial extent of the crop window.

r = centerCropWindow2d(size(I),targetSize);

Crop the image to the spatial extents. Display the cropped region.

J = imcrop(I,r);
imshow(J)

 imcrop

1-1425

Crop Indexed Image Specifying Crop Rectangle

Load indexed image with its associated map into the workspace.

load trees

Crop indexed image, specifying crop rectangle.

X2 = imcrop(X,map,[30 30 50 75]);

Display original image and cropped image.

subplot(1,2,1)
imshow(X,map)
title('Original Image')
subplot(1,2,2)
imshow(X2,map)
title('Cropped Image')

1 Functions

1-1426

Input Arguments
I — Image to be cropped
numeric matrix | numeric array | logical matrix | categorical matrix

Image to be cropped, specified as one of the following.

• m-by-n numeric matrix representing a grayscale image
• m-by-n-by-3 numeric array representing a truecolor image
• m-by-n logical matrix representing a binary mask.
• m-by-n categorical matrix representing a label image.

Note For categorical input, you must specify a crop rectangle, rect. The interactive syntaxes do
not support categorical input.

When you use an interactive syntax, imcrop calls the imshow function and accepts whatever image
classes imshow accepts.
Data Types: single | double | int8 | int16 | uint8 | uint16 | logical | categorical

X — Indexed image to be cropped
matrix of integers

Indexed image to be cropped, specified as a matrix of integers.

 imcrop

1-1427

Data Types: single | double | int8 | int16 | uint8 | uint16 | logical

cmap — Colormap
c-by-3 numeric matrix

Colormap associated with the indexed image X, specified as a c-by-3 numeric matrix. Each row is a
three-element RGB triplet that specifies the red, green, and blue components of a single color of the
colormap. Values with data type single or double must be in the range [0, 1].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

rect — Size and position of crop rectangle
4-element numeric vector | Rectangle object

Size and position of the crop rectangle in spatial coordinates, specified as a 4-element numeric vector
of the form [xmin ymin width height] or an images.spatialref.Rectangle object.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

h — Input image
handle

Input image, specified as a handle to a figure, axes, uipanel, or image graphics object. If h is an axes
or figure handle, then imcrop uses the first image returned by findobj(H,'Type','image').

xref — Image limits in world coordinates along x-dimension
2-element numeric vector

Image limits in world coordinates along the x-dimension, specified as a 2-element numeric vector of
the form [xmin xmax] where xmax is greater than xmin. The value of xref sets the image XData.

yref — Image limits in world coordinates along y-dimension
2-element numeric vector

Image limits in world coordinates along the y-dimension, specified as a 2-element numeric vector of
the form [ymin ymax] where ymax is greater than ymin. The value of yref sets the image YData.

Output Arguments
Icropped — Cropped image
numeric array | numeric matrix | logical matrix | categorical matrix

Cropped image, returned as a numeric array, numeric matrix, logical matrix, or categorical matrix.

• If you specify an input image I, then the output image has the same data type as the input image.
• If you do not specify an input image, then the output image generally has the same data type as

the input image. However, if the input image has data type int16 or single, then the output
image has data type double.

Xcropped — Cropped indexed image
numeric matrix

Cropped indexed image, returned as a numeric matrix.

1 Functions

1-1428

rectout — Size and position of crop rectangle
4-element numeric vector

Size and position of the crop rectangle, returned as a 4-element numeric vector of the form [xmin
ymin width height].

xrefout — Image limits in world coordinates along x-dimension
2-element numeric vector

Image limits in world coordinates along the x-dimension, returned as a 2-element numeric vector of
the form [xmin xmax]. If you specify image limits in a world coordinate system using xref, then
xrefout is equal to xref. Otherwise, xrefout is equal to the original image XData.

yrefout — Image limits in world coordinates along y-dimension
2-element numeric vector

Image limits in world coordinates along the y-dimension, returned as a 2-element numeric vector of
the form [ymin ymax]. If you specify image limits in a world coordinate system using yin, then
yrefout is equal to yin. Otherwise, yrefout is equal to the original image YData.

More About
Interactive Behavior

The Crop Image tool is a moveable, resizeable rectangle that you can position over the image and
perform the crop operation interactively using the mouse.

When the Crop Image tool is active in a figure, the pointer changes to cross hairs when you move
it over the target image. Using the mouse, you specify the crop rectangle by clicking and dragging
the mouse. You can move or resize the crop rectangle using the mouse. When you are finished sizing
and positioning the crop rectangle, create the cropped image by double-clicking the left mouse
button. You can also choose Crop Image from the context menu. The figure illustrates the Crop
Image tool with the context menu displayed.

 imcrop

1-1429

Interactive Behavior Description
Delete the Crop Image tool. Press Backspace, Escape or Delete, or right-click inside the crop

rectangle and select Cancel from the context menu.

Note: If you delete the ROI, the function returns empty values.
Resize the Crop Image tool. Select any of the resize handles on the crop rectangle. The pointer

changes to a double-headed arrow . Click and drag the mouse
to resize the crop rectangle.

Move the Crop Image tool. Move the pointer inside the boundary of the crop rectangle. The

pointer changes to a fleur shape . Click and drag the mouse to
move the rectangle over the image.

Change the color used to display
the crop rectangle.

Right-click inside the boundary of the crop rectangle and select Set
Color from the context menu.

Crop the image. Double-click the left mouse button or right-click inside the boundary
of the crop rectangle and select Crop Image from the context
menu.

1 Functions

1-1430

Interactive Behavior Description
Retrieve the coordinates of the
crop rectangle.

Right-click inside the boundary of the crop rectangle and select
Copy Position from the context menu. imcrop copies a 4-element
position vector ([xmin ymin width height]) to the clipboard.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imcrop supports the generation of C code (requires MATLAB Coder). For more information, see
“Code Generation for Image Processing”.

• The interactive syntaxes are not supported, including:

• Icropped = imcrop
• Icropped = imcrop(I)
• Xcropped = imcrop(X,cmap)
• Icropped = imcrop(h)

• Indexed images are not supported, including the non-interactive syntax Xcropped =
imcrop(X,cmap,rect);

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The interactive syntaxes are not supported, including:

• Icropped = imcrop
• Icropped = imcrop(I)
• Xcropped = imcrop(X,cmap)
• Icropped = imcrop(h)

• Indexed images are not supported, including the non-interactive syntax Xcropped =
imcrop(X,cmap,rect);

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

Usage notes and limitations:

• The interactive syntaxes are not supported, including:

• Icropped = imcrop
• Icropped = imcrop(I)
• Xcropped = imcrop(X,cmap)
• Icropped = imcrop(h)

 imcrop

1-1431

For more information, see “Run MATLAB Functions in Thread-Based Environment”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The interactive syntaxes are not supported, including:

• Icropped = imcrop
• Icropped = imcrop(I)
• Xcropped = imcrop(X,cmap)
• Icropped = imcrop(h)

• Categorical images are not supported.

For more information, see “Image Processing on a GPU”.

See Also
zoom | imcrop3 | drawrectangle | images.spatialref.Rectangle

Topics
“Image Types in the Toolbox”
“Define World Coordinate System of Image”

Introduced before R2006a

1 Functions

1-1432

imcrop3
Crop 3-D image

Syntax
Vout = imcrop3(V,cuboid)

Description
Vout = imcrop3(V,cuboid) crops the image volume V according to cuboid, which specifies the
size and position of the cropping window in spatial coordinates.

Examples

Crop 3-D Volume

Load a 3-D volume into the workspace.

D = load('mristack');
V = D.mristack;

Display the image.

fullViewPnl = uipanel(figure,'Title','Original Volume');
volshow(V,'Parent',fullViewPnl);

 imcrop3

1-1433

Crop the volume using imcrop3, specifying the size and position of the cuboidal crop region.

Vout = imcrop3(V,[30 40 10 100 100 10]);

Display the cropped image.

fullViewPnl = uipanel(figure,'Title','Cropped Volume');
volshow(Vout,'Parent',fullViewPnl);

1 Functions

1-1434

Crop 3-D Image Volume Using Fixed Off-Center Spatial Extent

Load a 3-D MRI image. Use the squeeze function to remove any singleton dimensions.

S = load('mri.mat','D');
volumeData = squeeze(S.D);

Display the image.

fullViewPnl = uipanel(figure,'Title','Original Volume');
volshow(volumeData,'Parent',fullViewPnl);

 imcrop3

1-1435

Create a Cuboid object and specify the cropping window size in all three dimensions.

c = images.spatialref.Cuboid([30,90],[30,90],[1,20]);

Crop the image based on the Cuboid dimensions.

croppedVolume = imcrop3(volumeData,c);

Display the cropped image.

fullViewPnl = uipanel(figure,'Title','Cropped Volume');
volshow(croppedVolume,'Parent',fullViewPnl);

1 Functions

1-1436

Center Crop 3-D Image to Target Size

Load a 3-D MRI image. Use the squeeze function to remove any singleton dimensions.

load mri;
D = squeeze(D);

Display the image.

fullViewPnl = uipanel(figure,'Title','Original Volume');
volshow(D,'Parent',fullViewPnl);

 imcrop3

1-1437

Specify the target size of the cropping window.

targetSize = [64 64 10];

Create a center cropping window that crops the specified image from its center.

win = centerCropWindow3d(size(D),targetSize);

Crop the image using the center cropping window.

Dcrop = imcrop3(D,win);

Display the cropped image in a display panel.

fullViewPnl = uipanel(figure,'Title','Cropped Volume');
volshow(Dcrop,'Parent',fullViewPnl);

1 Functions

1-1438

Input Arguments
V — Volume to be cropped
numeric array | logical array | categorical array

Volume to be cropped, specified as a numeric, logical, or categorical array. V can be a 3-D array that
represents a single channel 3-D volume or a 4-D array that represents a multichannel 3-D volume. If V
represents a multichannel 3-D volume, then imcrop3 crops the first three dimensions only.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | categorical

cuboid — Size and position of crop volume
6-element numeric vector | Cuboid object

Size and position of the crop volume in spatial coordinates, specified as a 6-element vector of the
form [xmin ymin zmin width height depth] or a images.spatialref.Cuboid object.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
Vout — Cropped volume
logical, numeric, or categorical array

 imcrop3

1-1439

Cropped volume, returned as a logical, numeric, or categorical array of the same class as the input
volume V.

Extended Capabilities
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
images.spatialref.Cuboid | imcrop

Introduced in R2019b

1 Functions

1-1440

imdiffuseest
Estimate parameters for anisotropic diffusion filtering

Syntax
[gradientThreshold,numberOfIterations] = imdiffuseest(I)
[gradientThreshold,numberOfIterations] = imdiffuseest(I,Name,Value)

Description
[gradientThreshold,numberOfIterations] = imdiffuseest(I) estimates the gradient
threshold and number of iterations required to filter the grayscale image I using anisotropic
diffusion.

[gradientThreshold,numberOfIterations] = imdiffuseest(I,Name,Value) uses name-
value pairs to change the behavior of the anisotropic diffusion algorithm.

Examples

Estimate Parameters for Anisotropic Diffusion Filtering

Read a grayscale image, then apply strong Gaussian noise to it. Display the noisy image.

I = imread('pout.tif');
Inoisy = imnoise(I,'gaussian',0,0.005);
imshow(Inoisy)
title('Noisy Image')

 imdiffuseest

1-1441

Estimate the gradient threshold and number of iterations needed to perform anisotropic diffusion
filtering of the image.

[gradThresh,numIter] = imdiffuseest(Inoisy)

gradThresh = 1x5 uint8 row vector

 64 50 39 34 29

numIter = 5

Filter the noisy image by using anisotropic diffusion with the estimated parameters.

Idiffuseest = imdiffusefilt(Inoisy,'GradientThreshold', ...
 gradThresh,'NumberOfIterations',numIter);

For comparison, also filter the noisy image by using anisotropic diffusion with the default parameters.
The default gradient threshold is 25.5 because the data type of the image is uint8, and the default
number of iterations is 5.

Idiffusedef = imdiffusefilt(Inoisy);

Visually compare the two filtered images.

 montage({Idiffusedef,Idiffuseest},'ThumbnailSize',[])
 title(['Anisotropic Diffusion Filtering Using ' ...
 'Default Parameters (Left) vs. Estimated Parameters (Right)'])

1 Functions

1-1442

Some noise remains in the image that was filtered using default parameters. The noise is almost
completely absent from the image that was filtered using estimated parameters. The sharpness of
edges in both images, especially high-contrast edges such as the trellis and white collar, is preserved.

Input Arguments
I — Image
2-D grayscale image

Image to be filtered, specified as a 2-D grayscale image.
Data Types: single | double | int16 | uint8 | uint16

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: imdiffuseest(I,'Connectivity','minimal') estimates parameters required for
anisotropic diffusion on image I, using minimal connectivity.

Connectivity — Connectivity
'maximal' (default) | 'minimal'

Connectivity of a pixel to its neighbors, specified as the comma-separated pair consisting of
'Connectivity' and 'maximal' or 'minimal'. Maximal connectivity considers eight nearest
neighbors and minimal connectivity considers four nearest neighbors.

 imdiffuseest

1-1443

ConductionMethod — Conduction method
'exponential' (default) | 'quadratic'

Conduction method, specified as the comma-separated pair consisting of 'ConductionMethod' and
'exponential' or 'quadratic'. Exponential diffusion favors high-contrast edges over low-
contrast edges. Quadratic diffusion favors wide regions over smaller regions.

Output Arguments
gradientThreshold — Gradient threshold
numeric vector

Gradient threshold, returned as a numeric vector of the same data type as the input image, I. The
length of the vector is equal to numberOfIterations.

numberOfIterations — Number of iterations
positive integer

Number of iterations to use in the diffusion process, returned as a positive integer.

References
[1] Perona, P., and J. Malik. "Scale-space and edge detection using anisotropic diffusion." IEEE

Transactions on Pattern Analysis and Machine Intelligence. Vol. 12, No. 7, July 1990, pp. 629–
639.

[2] Tsiotsios, C., and M. Petrou. "On the choice of the parameters for anisotropic diffusion in image
processing." Pattern Recognition. Vol. 46, No. 5, May 2013, pp. 1369–1381.

See Also
imdiffusefilt

Introduced in R2018a

1 Functions

1-1444

imdiffusefilt
Anisotropic diffusion filtering of images

Syntax
J = imdiffusefilt(I)
J = imdiffusefilt(I,Name,Value)

Description
J = imdiffusefilt(I) applies anisotropic diffusion filtering to image I and returns the result in
J.

J = imdiffusefilt(I,Name,Value) uses name-value pairs to change the behavior of the
anisotropic diffusion algorithm.

Examples

Perform Edge-Preserving Smoothing Using Anisotropic Diffusion

Read an image into the workspace and display it.

I = imread('cameraman.tif');
imshow(I)
title('Original Image')

 imdiffusefilt

1-1445

Smooth the image using anisotropic diffusion. For comparison, also smooth the image using Gaussian
blurring. Adjust the standard deviation sigma of the Gaussian smoothing kernel so that textured
regions, such as the grass, are smoothed a similar amount for both methods.

Idiffusion = imdiffusefilt(I);
sigma = 1.2;
Igaussian = imgaussfilt(I,sigma);

Display the results.

montage({Idiffusion,Igaussian},'ThumbnailSize',[])
title('Smoothing Using Anisotropic Diffusion (Left) vs. Gaussian Blurring (Right)')

Anisotropic diffusion preserves the sharpness of edges better than Gaussian blurring.

Perform Edge-Aware Noise Reduction Using Anisotropic Diffusion

Read a grayscale image, then apply strong Gaussian noise to it. Display the noisy image.

I = imread('pout.tif');
noisyImage = imnoise(I,'gaussian',0,0.005);
imshow(noisyImage)
title('Noisy Image')

1 Functions

1-1446

Compute the structural similarity index (SSIM) to measure the quality of the noisy image. The closer
the SSIM value is to 1, the better the image agrees with the noiseless reference image.

n = ssim(I,noisyImage);
disp(['The SSIM value of the noisy image is ',num2str(n),'.'])

The SSIM value of the noisy image is 0.26556.

Reduce the noise using anisotropic diffusion. First, try the default parameters for the anisotropic
diffusion filter, and display the result.

B = imdiffusefilt(noisyImage);
imshow(B)
title('Anisotropic Diffusion with Default Parameters')

 imdiffusefilt

1-1447

nB = ssim(I,B);
disp(['The SSIM value using default anisotropic diffusion is ',num2str(nB),'.'])

The SSIM value using default anisotropic diffusion is 0.65665.

The image is still degraded by noise, so refine the filter. Choose the quadratic conduction method
because the image is characterized more by wide homogenous regions than by high-contrast edges.
Estimate the optimal gradient threshold and number of iterations by using the imdiffuseest
function. Display the resulting image.

[gradThresh,numIter] = imdiffuseest(noisyImage,'ConductionMethod','quadratic');
C = imdiffusefilt(noisyImage,'ConductionMethod','quadratic', ...
 'GradientThreshold',gradThresh,'NumberOfIterations',numIter);
imshow(C)
title('Anisotropic Diffusion with Estimated Parameters')

1 Functions

1-1448

nC = ssim(I,C);
disp(['The SSIM value using quadratic anisotropic diffusion is ',num2str(nC),'.'])

The SSIM value using quadratic anisotropic diffusion is 0.88135.

Noise is less apparent in the resulting image. The SSIM value, which is closer to 1, confirms that the
quality of the image has improved.

Perform 3-D Edge-Aware Noise Reduction

Load a noisy 3-D grayscale MRI volume.

load mristack

Perform edge-aware noise reduction on the volume using anisotropic diffusion. To prevent over-
smoothing the low-contrast features in the brain, decrease the number of iterations from the default
number, 5. The tradeoff is that less noise is removed.

diffusedImage = imdiffusefilt(mristack,'NumberOfIterations',3);

To compare the noisy image and the filtered image in detail, display the tenth slice of both.

imshowpair(mristack(:,:,10),diffusedImage(:,:,10),'montage')
title('Noisy Image (Left) vs. Anisotropic-Diffusion-Filtered Image (Right)')

 imdiffusefilt

1-1449

Calculate the Naturalness Image Quality Evaluator (NIQE) score averaged over all slices in the
volume. The NIQE score provides a quantitative measure of image quality that does not require a
reference image. Lower NIQE scores reflect better perceptual image quality.

nframes = size(mristack,3);
m = 0;
d = 0;
for i = 1:nframes
 m = m + niqe(mristack(:,:,i));
 d = d + niqe(diffusedImage(:,:,i));
end
mAvg = m/nframes;
dAvg = d/nframes;
disp(['The NIQE score of the noisy volume is ',num2str(mAvg),'.'])

The NIQE score of the noisy volume is 5.7794.

disp(['The NIQE score using anisotropic diffusion is ',num2str(dAvg),'.'])

The NIQE score using anisotropic diffusion is 4.1391.

The NIQE score is consistent with the observation of reduced noise in the filtered image.

Input Arguments
I — Image to filter
2-D grayscale image | 3-D grayscale volume

Image to filter, specified as a 2-D grayscale image of size m-by-n or a 3-D grayscale volume of size m-
by-n-by-k.

1 Functions

1-1450

Note To apply anisotropic diffusion filtering to a color image, use imdiffusefilt on each color
channel independently.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: imdiffusefilt(I,'NumberOfIterations',4,'Connectivity','minimal')
performs anisotropic diffusion on image I, using 4 iterations and minimal connectivity.

GradientThreshold — Gradient threshold
numeric scalar | numeric vector

Gradient threshold, specified as the comma-separated pair consisting of 'GradientThreshold' and
a numeric scalar or a numeric vector of length NumberOfIterations. The value of
GradientThreshold controls the conduction process by classifying gradient values as an actual
edge or as noise. Increasing the value of GradientThreshold smooths the image more. The default
value is 10% of the dynamic range of the image. You can use the imdiffuseest function to estimate
a suitable value of GradientThreshold.

NumberOfIterations — Number of iterations
5 (default) | positive integer

Number of iterations to use in the diffusion process, specified as the comma-separated pair consisting
of 'NumberOfIterations' and a positive integer. You can use the imdiffuseest function to
estimate a suitable value of NumberOfIterations.

Connectivity — Connectivity
'maximal' (default) | 'minimal'

Connectivity of a pixel to its neighbors, specified as the comma-separated pair consisting of
'Connectivity' and one of these values:

• 'maximal' — Considers 8 nearest neighbors for 2-D images, and 26 nearest neighbors for 3-D
images

• 'minimal' — Considers 4 nearest neighbors for 2-D images, and 6 nearest neighbors for 3-D
images

ConductionMethod — Conduction method
'exponential' (default) | 'quadratic'

Conduction method, specified as the comma-separated pair consisting of 'ConductionMethod' and
'exponential' or 'quadratic'. Exponential diffusion favors high-contrast edges over low-
contrast edges. Quadratic diffusion favors wide regions over smaller regions.

Output Arguments
J — Diffusion-filtered image
numeric array

 imdiffusefilt

1-1451

Diffusion-filtered image, returned as a numeric array of the same size and data type as the input
image, I.

References
[1] Perona, P., and J. Malik. "Scale-space and edge detection using anisotropic diffusion." IEEE

Transactions on Pattern Analysis and Machine Intelligence. Vol. 12, No. 7, July 1990, pp. 629–
639.

[2] Gerig, G., O. Kubler, R. Kikinis, and F. A. Jolesz. "Nonlinear anisotropic filtering of MRI data." IEEE
Transactions on Medical Imaging. Vol. 11, No. 2, June 1992, pp. 221–232.

See Also
imdiffuseest | imfilter | imgaussfilt | imguidedfilter | locallapfilt | imnlmfilt

Introduced in R2018a

1 Functions

1-1452

imdilate
Dilate image

Syntax
J = imdilate(I,SE)
J = imdilate(I,nhood)
J = imdilate(___ ,packopt)
J = imdilate(___ ,shape)

Description
J = imdilate(I,SE) dilates the grayscale, binary, or packed binary image I using the structuring
element SE.

J = imdilate(I,nhood) dilates the image I, where nhood is a matrix of 0s and 1s that specifies
the structuring element neighborhood.

This syntax is equivalent to imdilate(I,strel(nhood)).

J = imdilate(___ ,packopt) specifies whether I is a packed binary image.

J = imdilate(___ ,shape) specifies the size of the output image.

Examples

Dilate Image with Vertical Line Structuring Element

Read a binary image into the workspace.

BW = imread('text.png');

Create a vertical line shaped structuring element.

se = strel('line',11,90);

Dilate the image with a vertical line structuring element and compare the results.

BW2 = imdilate(BW,se);
imshow(BW), title('Original')

 imdilate

1-1453

figure, imshow(BW2), title('Dilated')

1 Functions

1-1454

Dilate Grayscale Image with Rolling Ball

Read a grayscale image into the workspace.

originalI = imread('cameraman.tif');

Create a nonflat ball-shaped structuring element.

se = offsetstrel('ball',5,5);

Dilate the image.

dilatedI = imdilate(originalI,se);

Display the original image and the dilated image.

imshowpair(originalI,dilatedI,'montage')

Determine Domain of Composition of Structuring Elements

Create two flat, line-shaped structuring elements, one at 0 degrees and the other at 90 degrees.

se1 = strel('line',3,0)

se1 =
strel is a line shaped structuring element with properties:

 Neighborhood: [1 1 1]
 Dimensionality: 2

 imdilate

1-1455

se2 = strel('line',3,90)

se2 =
strel is a line shaped structuring element with properties:

 Neighborhood: [3x1 logical]
 Dimensionality: 2

Dilate the scalar value 1 with both structuring elements in sequence, using the 'full' option.

composition = imdilate(1,[se1 se2],'full')

composition = 3×3

 1 1 1
 1 1 1
 1 1 1

Dilate Points in 3D Space Using Spherical Structuring Elements

Create a logical 3D volume with two points.

BW = false(100,100,100);
BW(25,25,25) = true;
BW(75,75,75) = true;

Dilate the 3D volume using a spherical structuring element.

se = strel('sphere',25);
dilatedBW = imdilate(BW,se);

Visualize the dilated image volume.

figure
isosurface(dilatedBW, 0.5)

1 Functions

1-1456

Input Arguments
I — Input image
grayscale image | binary image | packed binary image

Input image, specified as a grayscale image, binary image, or packed binary image of any dimension.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

SE — Structuring element
strel object | offsetstrel object | array of strel objects | array of offsetstrel objects

Structuring element, specified as a scalar strel object or offsetstrel object. SE can also be an
array of strel object or offsetstrel objects, in which case imdilate performs multiple dilations
of the input image, using each structuring element in succession.

imdilate performs grayscale dilation for all images except images of data type logical. In this
case, the structuring element must be flat and imdilate performs binary dilation.

nhood — Structuring element neighborhood
matrix of 0s and 1s

Structuring element neighborhood, specified as a matrix of 0s and 1s.
Example: [0 1 0; 1 1 1; 0 1 0]

 imdilate

1-1457

packopt — Indicator of packed binary image
'notpacked' (default) | 'packed'

Indicator of packed binary image, specified as one of the following.

Value Description
'notpacked' I is treated as a normal array.
'ispacked' I is treated as a packed binary image as produced by bwpack. I must be

a 2-D uint32 array and SE must be a flat 2-D structuring element. The
value of shape must be 'same'.

Data Types: char | string

shape — Size of output image
'same' (default) | 'full'

Size of the output image, specified as one of the following.

Value Description
'same' The output image is the same size as the input image. If the value of

packopt is 'ispacked', then shape must be 'same'.
'full' Compute the full dilation.

Data Types: char | string

Output Arguments
J — Dilated image
grayscale image | binary image | packed binary image

Dilated image, returned as a grayscale image, binary image, or packed binary image. If the input
image I is packed binary, then J is also packed binary. J has the same data type as I.

More About
Binary Dilation

The binary dilation of A by B, denoted A ⚬ B, is defined as the set operation:

A⊕ B = z B z∩ A ≠ ∅ ,

where B is the reflection of the structuring element B. In other words, it is the set of pixel locations z,
where the reflected structuring element overlaps with foreground pixels in A when translated to z.
Note that some applications use a definition of dilation in which the structuring element is not
reflected.

For more information about binary dilation, see [1] on page 1-1459.

1 Functions

1-1458

Grayscale Dilation

In the general form of grayscale dilation, the structuring element has a height. The grayscale dilation
of A(x, y) by B(x, y) is defined as:

A⊕ B x, y = max A(x− x′, y − y′) + B(x′, y′) x′, y′ ∈ DB ,

where DB is the domain of the structuring element B and A(x, y) is assumed to be –∞ outside the
domain of the image. Note that some applications define grayscale dilation using an equation with
A(x + x′, y + y′) instead of A(x – x′, y – y′).

To create a structuring element with nonzero height values, use the syntax strel(nhood,height),
where height gives the height values and nhood corresponds to the structuring element domain, DB.

Most commonly, grayscale dilation is performed with a flat structuring element (B(x,y) = 0).
Grayscale dilation using such a structuring element is equivalent to a local-maximum operator:

A⊕ B x, y = max A(x− x′, y − y′) (x′, y′) ∈ DB .

All of the strel syntaxes except for strel(nhood,height),
strel('arbitrary',nhood,height), and strel('ball',___) produce flat structuring
elements.

Tips
• If the dimensionality of the image I is greater than the dimensionality of the structuring element,

then the imdilate function applies the same morphological dilation to all planes along the higher
dimensions.

You can use this behavior to perform morphological dilation on RGB images. Specify a 2-D
structuring element for RGB images to operate on each color channel separately.

• When you specify a structuring element neighborhood, imdilate determines the center element
of nhood by floor((size(nhood)+1)/2).

• imdilate automatically takes advantage of the decomposition of a structuring element object (if
it exists). Also, when performing binary dilation with a structuring element object that has a
decomposition, imdilate automatically uses binary image packing to speed up the dilation [3].

References
[1] Gonzalez, Rafael C., Richard E. Woods, and Steven L. Eddins. Digital Image Processing Using

MATLAB. Third edition. Knoxville: Gatesmark Publishing, 2020.

[2] Haralick, Robert M., and Linda G. Shapiro. Computer and Robot Vision. 1st ed. USA: Addison-
Wesley Longman Publishing Co., Inc., 1992, pp. 158-205.

[3] Boomgaard, Rein van den, and Richard van Balen. “Methods for Fast Morphological Image
Transforms Using Bitmapped Binary Images.” CVGIP: Graphical Models and Image
Processing 54, no. 3 (May 1, 1992): 252–58. https://doi.org/10.1016/1049-9652(92)90055-3.

 imdilate

1-1459

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imdilate supports the generation of C code (requires MATLAB Coder). Note that if you choose
the generic MATLAB Host Computer target platform, imdilate generates code that uses a
precompiled, platform-specific shared library. Use of a shared library preserves performance
optimizations but limits the target platforms for which code can be generated. For more
information, see “Types of Code Generation Support in Image Processing Toolbox”.

• The input image I must be 2-D or 3-D.
• The structuring element SE must be a single element—arrays of structuring elements are not

supported. To obtain the same result as that obtained using an array of structuring elements, call
the function sequentially.

• When the target is MATLAB Host Computer, the packopt and shape arguments must be
compile-time constants. When the target is any other platform, the packopt syntax is not
supported.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The input image I must be 2-D or 3-D.
• Packed binary input images (packopt syntax) are not supported.
• For 3-D input images with more than three channels, only C/C++ code is generated.
• The structuring element SE must be a compile-time constant. CUDA code is generated only for 1-D

or 2-D structuring elements. If the structuring element is 3-D, C/C++ code is generated. Code
generation is not supported for structuring elements with more than three dimensions.

• For non-flat structuring elements, only C/C++ code is generated.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• gpuArray input must be of type uint8 or logical.
• The structuring element SE must be flat and 2-D.
• The packopt argument is not supported on the GPU.

For more information, see “Image Processing on a GPU”.

See Also
Functions
bwpack | bwunpack | conv2 | filter2 | imclose | imerode | imopen

Objects
strel | offsetstrel

1 Functions

1-1460

Introduced before R2006a

 imdilate

1-1461

imdisplayrange
Display Range tool

Syntax
imdisplayrange
imdisplayrange(h)
imdisplayrange(hparent,himage)
htool = imdisplayrange(___)

Description
Use the imdisplayrange function to create a Display Range tool. The Display Range tool shows the
display range of the grayscale image or images in the figure.

imdisplayrange creates a Display Range tool in the current figure.

imdisplayrange(h) creates a Display Range tool in the figure specified by the handle h.

imdisplayrange(hparent,himage) creates a Display Range tool in hparent that shows the
display range of himage.

htool = imdisplayrange(___) returns a handle to the Display Range tool uipanel.

Examples
Create Display Range Tool

Display an image and include the Display Range tool.

imshow('bag.png');
imdisplayrange;

Import a 16-bit DICOM image and display it with its default range and scaled range in the same
figure.

dcm = dicomread('CT-MONO2-16-ankle.dcm');
subplot(1,2,1), imshow(dcm);
subplot(1,2,2), imshow(dcm,[]);
imdisplayrange;

Input Arguments
h — Handle to graphics object
handle

1 Functions

1-1462

Handle to a figure, axes, uipanel, or image graphics object, specified as a handle. Axes, uipanel, or
figure objects must contain at least one image object.

hparent — Handle to figure or uipanel object
handle

Handle to a figure or uipanel object that contains the Display Range tool, specified as a handle.

himage — Handle to images
handle | array of handles

Handle to one or more images, specified as a handle or an array of image handles.

Output Arguments
htool — Handle to Display Range tool
handle

Handle to Display Range tool uipanel, returned as a handle.

Tips
• The Display Range tool is a uipanel object, positioned in the lower-right corner of the figure. It

contains the label Display range: followed by the display range values for the image.
• For an indexed, truecolor, or binary image, the display range is not applicable and is set to empty

([]).
• The Display Range tool can work with multiple images in a figure. When the pointer is not in an

image in a figure, the Display Range tool displays [black white].

See Also
Image Viewer

Introduced before R2006a

 imdisplayrange

1-1463

imdivide
Divide one image into another or divide image by constant

Syntax
Z = imdivide(X,Y)

Description
Z = imdivide(X,Y) divides each element in the array X by the corresponding element in array Y
and returns the result in the corresponding element of the output array Z.

Examples

Divide Two uint8 Arrays

This example shows how to divide two uint8 arrays.

X = uint8([255 0 75; 44 225 100]);
Y = uint8([50 50 50; 50 50 50]);

Divide each element in X by the corresponding element in Y. Note that fractional values greater than
or equal to 0.5 are rounded up to the nearest integer.

Z = imdivide(X,Y)

Z = 2x3 uint8 matrix

 5 0 2
 1 5 2

Divide each element in Y by the corresponding element in X. Note that when dividing by zero, the
output is truncated to the range of the integer type.

W = imdivide(Y,X)

W = 2x3 uint8 matrix

 0 255 1
 1 0 1

Divide Image Background

Read a grayscale image into the workspace.

I = imread('rice.png');

1 Functions

1-1464

Estimate the background.

background = imopen(I,strel('disk',15));

Divide out the background from the image.

J = imdivide(I,background);

Display the original image and the processed image.

imshow(I)

figure
imshow(J,[])

 imdivide

1-1465

Divide an Image by a Constant Factor

Read an image into the workspace.

I = imread('rice.png');

Divide each value of the image by a constant factor of 2.

J = imdivide(I,2);

Display the original image and the processed image.

imshow(I)

1 Functions

1-1466

figure
imshow(J)

 imdivide

1-1467

Input Arguments
X — First array
numeric array | logical array

First array, specified as a numeric array or logical array of any dimension.

Y — Second array
numeric scalar | numeric array | logical array

Second array (divisor) to be divided from X, specified as a numeric or logical array of the same size
and class as X, or a numeric scalar of type double.

Output Arguments
Z — Quotient
numeric array

Quotient, returned as a numeric array of the same size as X. Z is the same class as X unless X is
logical, in which case Z is data type double. If X is an integer array, elements of the output that
exceed the range of the integer type are truncated, and fractional values are rounded.

See Also
imabsdiff | imadd | imcomplement | imlincomb | immultiply | imsubtract

Introduced before R2006a

1 Functions

1-1468

imerase
Remove image pixels within rectangular region of interest

Syntax
Ierased = imerase(I,rect)
Ierased = imerase(I,rect,'FillValues',fillValues)

Description
Ierased = imerase(I,rect) remove pixels of image I within the rectangular region defined by
rect and returns the image with the erased region, Ierased.

Ierased = imerase(I,rect,'FillValues',fillValues) also specifies the fill value to apply
to the erased pixels.

Examples

Erase Pixels from Random Window

Read and display an image.

I = imread("peppers.png");
imshow(I)

 imerase

1-1469

Select a rectangular region of size 50-by-100 pixels from a random location in the image.

rect = randomWindow2d(size(I),[50 100]);

Erase the pixels from within the rectangular region.

J = imerase(I,rect);

Display the erased image. The erased pixels have the value 0.

imshow(J)

1 Functions

1-1470

Erase Pixels from Specified Window

Read and display an image.

I = imread("car1.jpg");
imshow(I)

 imerase

1-1471

Specify the size and position of the erase rectangle as a 4-element vector of the form [xmin ymin
width height].

rect = [1040 1525 250 200];

Erase the pixels from within the rectangular region, and fill the erased pixels with the color green.

J = imerase(I,rect,"FillValues",[0 255 0]);

Display the erased image.

imshow(J)

1 Functions

1-1472

Fill Erased Region with Random Colors

Read and display a color image.

I = imread('flamingos.jpg');
imshow(I)

 imerase

1-1473

Select a random square window from the image. The area of the window is between 2% and 13% of
the area of the entire image.

win = randomWindow2d(size(I),"Scale",[0.02 0.13],"DimensionRatio",[1 1;1 1]);

Determine the height and width of the erase region.

hwin = diff(win.YLimits)+1;
wwin = diff(win.XLimits)+1;

Erase the pixels within the erase region. Fill each pixel with a random color.

J = imerase(I,win,"FillValues",randi([1 255],[hwin wwin 3]));

Display the erased image.

imshow(J)

1 Functions

1-1474

Input Arguments
I — Image with region to be erased
numeric matrix | numeric array

Image with a region to be erased, specified as a numeric matrix representing a grayscale image or a
numeric array with three channels representing a color image.

rect — Size and position of erase rectangle
4-element numeric vector | Rectangle object

Size and position of the erase rectangle, specified as a 4-element numeric vector of the form [xmin
ymin width height] or a Rectangle object.

fillValues — Fill value
0 (default) | numeric scalar | 3-element numeric vector | numeric matrix | numeric array

Fill value to apply to erased pixels, specified as one of these values.

 imerase

1-1475

Fill Value Result
numeric scalar Fill erased pixels of a grayscale or RGB image

with the specified gray value.
3-element numeric vector Fill erased pixels of an RGB image with the

specified color.
numeric matrix Fill each erased pixel of a grayscale or RGB

image with the corresponding gray value in
fillValue. The matrix specified by fillValue
must have the same height and width as the
erase rectangle, rect.

numeric array with 3 planes Fill each erased pixel of an RGB image with the
color in the corresponding pixel of fillValue.
The array specified by fillValue must have the
same height and width as the erase rectangle,
rect.

Output Arguments
Ierased — Image with erased region
numeric matrix | numeric array

Image with erased region, returned as a numeric matrix or numeric array of the same size as the
input image, I.

See Also
Rectangle | imcrop

Introduced in R2021a

1 Functions

1-1476

imerode
Erode image

Syntax
J = imerode(I,SE)
J = imerode(I,nhood)
J = imerode(___ ,packopt,m)
J = imerode(___ ,shape)

Description
J = imerode(I,SE) erodes the grayscale, binary, or packed binary image I using the structuring
element SE.

J = imerode(I,nhood) erodes the image I, where nhood is a matrix of 0s and 1s that specifies
the structuring element neighborhood.

This syntax is equivalent to imerode(I,strel(nhood)).

J = imerode(___ ,packopt,m) specifies whether input image I is a packed binary image. m
specifies the row dimension of the original unpacked image.

J = imerode(___ ,shape) specifies the size of the output image.

Examples

Erode Binary Image with Line Structuring Element

Read binary image into the workspace.

originalBW = imread('text.png');

Create a flat, line-shaped structuring element.

se = strel('line',11,90);

Erode the image with the structuring element.

erodedBW = imerode(originalBW,se);

View the original image and the eroded image.

figure
imshow(originalBW)

 imerode

1-1477

figure
imshow(erodedBW)

1 Functions

1-1478

Erode Grayscale Image with Rolling Ball

Read grayscale image into the workspace.

originalI = imread('cameraman.tif');

Create a nonflat offsetstrel object.

se = offsetstrel('ball',5,5);

Erode the image.

erodedI = imerode(originalI,se);

Display original image and eroded image.

figure
imshow(originalI)

figure
imshow(erodedI)

 imerode

1-1479

Erode MRI Stack Volume Using Cubic Structuring Element

Create a binary volume.

load mristack
BW = mristack < 100;

Create a cubic structuring element.

se = strel('cube',3)

se =
strel is a cube shaped structuring element with properties:

 Neighborhood: [3x3x3 logical]
 Dimensionality: 3

Erode the volume with a cubic structuring element.

erodedBW = imerode(BW, se);

Input Arguments
I — Input image
grayscale image | binary image | packed binary image

Input image, specified as a grayscale image, binary image, or packed binary image of any dimension.

1 Functions

1-1480

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

SE — Structuring element
strel object | offsetstrel object | array of strel objects | array of offsetstrel objects

Structuring element, specified as a scalar strel object or offsetstrel object. SE can also be an
array of strel object or offsetstrel objects, in which case imerode performs multiple erosions of
the input image, using each structuring element in succession.

imerode performs grayscale erosion for all images except images of data type logical. In this case,
the structuring element must be flat and imerode performs binary erosion.

nhood — Structuring element neighborhood
matrix of 0s and 1s

Structuring element neighborhood, specified as a matrix of 0s and 1s.
Example: [0 1 0; 1 1 1; 0 1 0]

packopt — Indicator of packed binary image
'notpacked' (default) | 'packed'

Indicator of packed binary image, specified as one of the following.

Value Description
'notpacked' I is treated as a normal array.
'ispacked' I is treated as a packed binary image as produced by bwpack. I must be

a 2-D uint32 array and SE must be a flat 2-D structuring element. The
value of shape must be 'same'.

Data Types: char | string

m — Row dimension of original unpacked image
positive integer

Row dimension of the original unpacked image, specified as a positive integer.
Data Types: double

shape — Size of output image
'same' (default) | 'full'

Size of the output image, specified as one of the following.

Value Description
'same' The output image is the same size as the input image. If the value of

packopt is 'ispacked', then shape must be 'same'.
'full' Compute the full erosion.

Data Types: char | string

 imerode

1-1481

Output Arguments
J — Eroded image
grayscale image | binary image | packed binary image

Eroded image, returned as a grayscale image, binary image, or packed binary image. If the input
image I is packed binary, then J is also packed binary. J has the same data type as I.

More About
Binary Erosion

The binary erosion of A by B, denoted A ϴ B, is defined as the set operation A ϴ B = {z|(Bz ⊆ A}. In
other words, it is the set of pixel locations z, where the structuring element translated to location z
overlaps only with foreground pixels in A.

For more information on binary erosion, see [1] on page 1-1483.

Grayscale Erosion

In the general form of grayscale erosion, the structuring element has a height. The grayscale erosion
of A(x, y) by B(x, y) is defined as:

(A ϴ B)(x, y) = min {A(x + x′, y + y′) − B(x′, y′) | (x′, y′) ∊ DB},

DB is the domain of the structuring element B and A(x,y) is assumed to be +∞ outside the domain of
the image. To create a structuring element with nonzero height values, use the syntax
strel(nhood,height), where height gives the height values and nhood corresponds to the
structuring element domain, DB.

Most commonly, grayscale erosion is performed with a flat structuring element (B(x,y) = 0). Grayscale
erosion using such a structuring element is equivalent to a local-minimum operator:

(A ϴ B)(x, y) = min {A(x + x′, y + y′) | (x′, y′) ∊ DB}.

All of the strel syntaxes except for strel(nhood,height),
strel('arbitrary',nhood,height), and strel('ball', ...) produce flat structuring
elements.

Tips
• If the dimensionality of the image I is greater than the dimensionality of the structuring element,

then the imerode function applies the same morphological erosion to all planes along the higher
dimensions.

You can use this behavior to perform morphological erosion on RGB images. Specify a 2-D
structuring element for RGB images to operate on each color channel separately.

• When you specify a structuring element neighborhood, imerode determines the center element of
nhood by floor((size(nhood)+1)/2).

• imerode automatically takes advantage of the decomposition of a structuring element object (if it
exists). Also, when performing binary erosion with a structuring element object that has a
decomposition, imerode automatically uses binary image packing to speed up the erosion [3].

1 Functions

1-1482

References
[1] Gonzalez, Rafael C., Richard E. Woods, and Steven L. Eddins. Digital Image Processing Using

MATLAB. Third edition. Knoxville: Gatesmark Publishing, 2020.

[2] Haralick, Robert M., and Linda G. Shapiro. Computer and Robot Vision. 1st ed. USA: Addison-
Wesley Longman Publishing Co., Inc., 1992, pp. 158-205.

[3] Boomgaard, Rein van den, and Richard van Balen. “Methods for Fast Morphological Image
Transforms Using Bitmapped Binary Images.” CVGIP: Graphical Models and Image
Processing 54, no. 3 (May 1, 1992): 252–58. https://doi.org/10.1016/1049-9652(92)90055-3.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imerode supports the generation of C code (requires MATLAB Coder). Note that if you choose the
generic MATLAB Host Computer target platform, imerode generates code that uses a
precompiled, platform-specific shared library. Use of a shared library preserves performance
optimizations but limits the target platforms for which code can be generated. For more
information, see “Types of Code Generation Support in Image Processing Toolbox”.

• The input image, I, must be 2-D or 3-D.
• The structuring element argument SE must be a single element——arrays of structuring elements

are not supported. To obtain the same result as that obtained using an array of structuring
elements, call the function sequentially.

• When the target is MATLAB Host Computer, the packopt and shape arguments must be
compile-time constants. When the target is any other platform, the packopt syntax is not
supported.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The input image I must be 2-D or 3-D.
• Packed binary input images (packopt syntax) are not supported.
• For 3-D input images with more than three channels, only C/C++ code is generated.
• The structuring element argument SE must be a compile-time constant. CUDA code is generated

only for 1-D or 2-D structuring elements. If the structuring element is 3-D, C/C++ code is
generated. Code generation is not supported for structuring elements with more than three
dimensions.

• For non-flat structuring elements, only C/C++ code is generated.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

 imerode

1-1483

• gpuArray input must be of type uint8 or logical
• The structuring element SE must be flat and 2-D.
• The packopt argument is not supported on the GPU.

For more information, see “Image Processing on a GPU”.

See Also
Functions
bwpack | bwunpack | conv2 | filter2 | imclose | imdilate | imopen

Objects
strel | offsetstrel

Introduced before R2006a

1 Functions

1-1484

imextendedmax
Extended-maxima transform

Syntax
BW = imextendedmax(I,H)
BW = imextendedmax(I,H,conn)

Description
BW = imextendedmax(I,H) returns the extended-maxima transform for I, which is the regional
maxima of the H-maxima transform. Regional maxima are connected components of pixels with a
constant intensity value, and whose external boundary pixels all have a lower value.

BW = imextendedmax(I,H,conn) computes the extended-maxima transform, where conn
specifies the pixel connectivity.

Examples

Perform Extended-Maxima transform

Read image into workspace.

I = imread('glass.png');

Calculate the extended-maxima transform.

BW = imextendedmax(I,80);

Display original image and transformed image side-by-side.

imshowpair(I,BW,'montage')

 imextendedmax

1-1485

Input Arguments
I — Input image
numeric array

Input image, specified as a numeric array of any dimension.
Example: I = imread('glass.png');
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

H — H-maxima transform
nonnegative scalar

H-maxima transform, specified as a nonnegative scalar.
Example: BW = imextendedmax(I,80);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

conn — Pixel connectivity
4 | 8 | 6 | 18 | 26 | 3-by-3-by- ... -by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of the values in this table. The default connectivity is 8 for 2-D
images, and 26 for 3-D images.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch. The

neighborhood of a pixel are the adjacent pixels
in the horizontal or vertical direction.

8-connected Pixels are connected if their edges or corners
touch. The neighborhood of a pixel are the
adjacent pixels in the horizontal, vertical, or
diagonal direction.

Three-Dimensional Connectivities
6-connected Pixels are connected if their faces touch. The

neighborhood of a pixel are the adjacent pixels
in:

• One of these directions: in, out, left, right,
up, and down

1 Functions

1-1486

Value Meaning
18-connected Pixels are connected if their faces or edges

touch. The neighborhood of a pixel are the
adjacent pixels in:

• One of these directions: in, out, left, right,
up, and down

• A combination of two directions, such as
right-down or in-up

26-connected Pixels are connected if their faces, edges, or
corners touch. The neighborhood of a pixel are
the adjacent pixels in:

• One of these directions: in, out, left, right,
up, and down

• A combination of two directions, such as
right-down or in-up

• A combination of three directions, such as
in-right-up or in-left-down

For higher dimensions, imextendedmax uses the default value conndef(ndims(I),'maximal').

Connectivity can also be defined in a more general way for any dimension by specifying a 3-by-3-
by- ... -by-3 matrix of 0s and 1s. The 1-valued elements define neighborhood locations relative to the
center element of conn. Note that conn must be symmetric about its center element. See “Specifying
Custom Connectivities” for more information.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
BW — Transformed image
logical array

Transformed image, returned as a logical array the same size as I.

References
[1] Soille, P. Morphological Image Analysis: Principles and Applications. Springer-Verlag, 1999, pp.

170-171.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imextendedmax supports the generation of C code (requires MATLAB Coder). Note that if you
choose the generic MATLAB Host Computer target platform, imextendedmax generates code
that uses a precompiled, platform-specific shared library. Use of a shared library preserves

 imextendedmax

1-1487

performance optimizations but limits the target platforms for which code can be generated. For
more information, see “Types of Code Generation Support in Image Processing Toolbox”.

• When generating code, the optional third input argument, conn, must be a compile-time constant.

See Also
conndef | imextendedmin | imhmax | imreconstruct | imregionalmax

Introduced before R2006a

1 Functions

1-1488

imextendedmin
Extended-minima transform

Syntax
BW = imextendedmin(I,H)
BW = imextendedmin(I,H,conn)

Description
BW = imextendedmin(I,H) computes the extended-minima transform, which is the regional
minima of the H-minima transform. Regional minima are connected components of pixels with a
constant intensity value, and whose external boundary pixels all have a higher value. h is a
nonnegative scalar.

BW = imextendedmin(I,H,conn) computes the extended-minima transform, which is the regional
minima of the H-minima transform.

Examples

Perform Extended-Minima transform

Read image into the workspace.

I = imread('glass.png');

Calculate the extended-minima transform.

BW = imextendedmin(I,50);

Display the original image and the transformation side-by-side.

imshowpair(I,BW,'montage');

 imextendedmin

1-1489

Input Arguments
I — Input image
numeric array

Input array, specified as a numeric array of any dimension.
Example: I = imread('glass.png');
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

H — H-minima transform
nonnegative scalar

H-minima transform, specified as a nonnegative scalar.
Example: BW = imextendedmin(I,80);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

conn — Pixel connectivity
4 | 8 | 6 | 18 | 26 | 3-by-3-by- ... -by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of the values in this table. The default connectivity is 8 for 2-D
images, and 26 for 3-D images.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch. The

neighborhood of a pixel are the adjacent pixels
in the horizontal or vertical direction.

8-connected Pixels are connected if their edges or corners
touch. The neighborhood of a pixel are the
adjacent pixels in the horizontal, vertical, or
diagonal direction.

Three-Dimensional Connectivities
6-connected Pixels are connected if their faces touch. The

neighborhood of a pixel are the adjacent pixels
in:

• One of these directions: in, out, left, right,
up, and down

1 Functions

1-1490

Value Meaning
18-connected Pixels are connected if their faces or edges

touch. The neighborhood of a pixel are the
adjacent pixels in:

• One of these directions: in, out, left, right,
up, and down

• A combination of two directions, such as
right-down or in-up

26-connected Pixels are connected if their faces, edges, or
corners touch. The neighborhood of a pixel are
the adjacent pixels in:

• One of these directions: in, out, left, right,
up, and down

• A combination of two directions, such as
right-down or in-up

• A combination of three directions, such as
in-right-up or in-left-down

For higher dimensions, imextendedmin uses the default value conndef(ndims(I),'maximal').

Connectivity can also be defined in a more general way for any dimension by specifying a 3-by-3-
by- ... -by-3 matrix of 0s and 1s. The 1-valued elements define neighborhood locations relative to the
center element of conn. Note that conn must be symmetric about its center element. See “Specifying
Custom Connectivities” for more information.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
BW — Transformed image
logical array

Transformed image, returned as a logical array the same size as I.

References
[1] Soille, P. Morphological Image Analysis: Principles and Applications. Springer-Verlag, 1999, pp.

170-171.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imextendedmin supports the generation of C code (requires MATLAB Coder). Note that if you
choose the generic MATLAB Host Computer target platform, imextendedmin generates code
that uses a precompiled, platform-specific shared library. Use of a shared library preserves

 imextendedmin

1-1491

performance optimizations but limits the target platforms for which code can be generated. For
more information, see “Types of Code Generation Support in Image Processing Toolbox”.

• When generating code, the optional third input argument, conn, must be a compile-time constant.

See Also
conndef | imextendedmax | imhmin | imreconstruct | imregionalmin

Introduced before R2006a

1 Functions

1-1492

imfill
Fill image regions and holes

Syntax
BW2 = imfill(BW,locations)
BW2 = imfill(BW,locations,conn)
BW2 = imfill(BW,'holes')
BW2 = imfill(BW,conn,'holes')

I2 = imfill(I)
I2 = imfill(I,conn)

BW2 = imfill(BW)
BW2 = imfill(BW,0,conn)
[BW2, locations_out] = imfill(BW)

Description
BW2 = imfill(BW,locations) performs a flood-fill operation on background pixels of the input
binary image BW, starting from the points specified in locations.

BW2 = imfill(BW,locations,conn) fills the area defined by locations, where conn specifies
the connectivity.

BW2 = imfill(BW,'holes') fills holes in the input binary image BW. In this syntax, a hole is a set
of background pixels that cannot be reached by filling in the background from the edge of the image.

BW2 = imfill(BW,conn,'holes') fills holes in the binary image BW, where conn specifies the
connectivity.

I2 = imfill(I) fills holes in the grayscale image I. In this syntax, a hole is defined as an area of
dark pixels surrounded by lighter pixels.

I2 = imfill(I,conn) fills holes in the grayscale image I, where conn specifies the connectivity.

BW2 = imfill(BW) displays the binary image BW on the screen and lets you define the region to fill
by selecting points interactively with the mouse. To use this syntax, BW must be a 2-D image.

Press Backspace or Delete to remove the previously selected point. Shift-click, right-click, or
double-click to select a final point and start the fill operation. Press Return to finish the selection
without adding a point.

BW2 = imfill(BW,0,conn) lets you override the default connectivity as you interactively specify
locations.

[BW2, locations_out] = imfill(BW) returns the locations of points selected interactively in
locations_out. To use this syntax, BW must be a 2-D image.

 imfill

1-1493

Examples

Fill Image from Specified Starting Point

BW1 = logical([1 0 0 0 0 0 0 0
 1 1 1 1 1 0 0 0
 1 0 0 0 1 0 1 0
 1 0 0 0 1 1 1 0
 1 1 1 1 0 1 1 1
 1 0 0 1 1 0 1 0
 1 0 0 0 1 0 1 0
 1 0 0 0 1 1 1 0]);

BW2 = imfill(BW1,[3 3],8)

BW2 = 8x8 logical array

 1 0 0 0 0 0 0 0
 1 1 1 1 1 0 0 0
 1 1 1 1 1 0 1 0
 1 1 1 1 1 1 1 0
 1 1 1 1 1 1 1 1
 1 0 0 1 1 1 1 0
 1 0 0 0 1 1 1 0
 1 0 0 0 1 1 1 0

Fill Holes in a Binary Image

Read image into workspace.

I = imread('coins.png');
figure
imshow(I)
title('Original Image')

1 Functions

1-1494

Convert image to binary image.

BW = imbinarize(I);
figure
imshow(BW)
title('Original Image Converted to Binary Image')

Fill holes in the binary image and display the result.

 imfill

1-1495

BW2 = imfill(BW,'holes');
figure
imshow(BW2)
title('Filled Image')

Fill Holes in a Grayscale Image

I = imread('tire.tif');
I2 = imfill(I);
figure, imshow(I), figure, imshow(I2)

1 Functions

1-1496

Input Arguments
BW — Binary image
logical array

Binary image, specified as a logical array of any dimension.
Example: BW = imread('text.png');
Data Types: logical

locations — Linear indices identifying pixel locations
numeric vector of positive integers | 2-D numeric matrix of positive integers

 imfill

1-1497

Linear indices identifying pixel locations, specified as a numeric vector or 2-D numeric matrix of
positive integers. If locations is a p-by-1 vector, then it contains the linear indices of the starting
locations. If locations is a p-by-ndims(BW) matrix, then each row contains the array indices of one
of the starting locations.
Example: [3 3]
Data Types: double

I — Grayscale image
numeric array

Grayscale image, specified as a numeric array of any dimension.
Example: I = imread('cameraman.tif');
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

conn — Pixel connectivity
4 | 8 | 6 | 18 | 26 | 3-by-3-by- ... -by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of the values in this table. The default connectivity is 4 for 2-D
images, and 6 for 3-D images.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch. The

neighborhood of a pixel are the adjacent pixels
in the horizontal or vertical direction.

8-connected Pixels are connected if their edges or corners
touch. The neighborhood of a pixel are the
adjacent pixels in the horizontal, vertical, or
diagonal direction.

Three-Dimensional Connectivities
6-connected Pixels are connected if their faces touch. The

neighborhood of a pixel are the adjacent pixels
in:

• One of these directions: in, out, left, right,
up, and down

18-connected Pixels are connected if their faces or edges
touch. The neighborhood of a pixel are the
adjacent pixels in:

• One of these directions: in, out, left, right,
up, and down

• A combination of two directions, such as
right-down or in-up

1 Functions

1-1498

Value Meaning
26-connected Pixels are connected if their faces, edges, or

corners touch. The neighborhood of a pixel are
the adjacent pixels in:

• One of these directions: in, out, left, right,
up, and down

• A combination of two directions, such as
right-down or in-up

• A combination of three directions, such as
in-right-up or in-left-down

For higher dimensions, imfill uses the default value conndef(ndims(BW),'minimal').

Connectivity can also be defined in a more general way for any dimension by specifying a 3-by-3-
by- ... -by-3 matrix of 0s and 1s. The 1-valued elements define neighborhood locations relative to the
center element of conn. Note that conn must be symmetric about its center element. See “Specifying
Custom Connectivities” for more information.
Data Types: double | logical

Output Arguments
BW2 — Filled binary image
logical array

Filled binary image, returned as logical array.

locations_out — Linear indices of pixel locations
numeric vector | numeric matrix

Linear indices of pixel locations, returned as a numeric vector or matrix.

I2 — Filled grayscale image
numeric array

Filled grayscale image, returned as a numeric array.

Algorithms
imfill uses an algorithm based on morphological reconstruction [1].

References
[1] Soille, P., Morphological Image Analysis: Principles and Applications, Springer-Verlag, 1999, pp.

173–174.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 imfill

1-1499

Usage notes and limitations:

• imfill supports the generation of C code (requires MATLAB Coder). Note that if you choose the
generic MATLAB Host Computer target platform, imfill generates code that uses a
precompiled, platform-specific shared library. Use of a shared library preserves performance
optimizations but limits the target platforms for which code can be generated. For more
information, see “Types of Code Generation Support in Image Processing Toolbox”.

• The optional input arguments, conn and 'holes', must be compile-time constants.
• Input argument 'holes' is not supported, if the input is a binary image.
• imfill supports up to 3-D inputs only. (No N-D support.)
• The interactive syntaxes to select points are not supported. For example, the syntax

imfill(BW,0,CONN) is not supported.
• With the locations input argument, once you select a format at compile time, you cannot

change it at run time. However, the number of points in locations can be varied at run time.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• Inputs must be 2-D, supporting only the 2-D connectivities (4 and 8).
• The interactive syntaxes to select points are not supported. For example, the syntax imfill(BW)

is not supported.

For more information, see “Image Processing on a GPU”.

See Also
conndef | bwselect | imreconstruct | regionfill

Introduced before R2006a

1 Functions

1-1500

imfilter
N-D filtering of multidimensional images

Syntax
B = imfilter(A,h)
B = imfilter(A,h,options,...)

Description
B = imfilter(A,h) filters the multidimensional array A with the multidimensional filter h and
returns the result in B.

B = imfilter(A,h,options,...) performs multidimensional filtering according to one or more
specified options.

Examples

Create Filter and Apply It

Read a color image into the workspace and display it.

originalRGB = imread('peppers.png');
imshow(originalRGB)

 imfilter

1-1501

Create a motion-blur filter using the fspecial function.

h = fspecial('motion', 50, 45);

Apply the filter to the original image to create an image with motion blur. Note that imfilter is
more memory efficient than some other filtering functions in that it outputs an array of the same data
type as the input image array. In this example, the output is an array of uint8.

filteredRGB = imfilter(originalRGB, h);
figure, imshow(filteredRGB)

1 Functions

1-1502

Filter the image again, this time specifying the replicate boundary option.

boundaryReplicateRGB = imfilter(originalRGB, h, 'replicate');
figure, imshow(boundaryReplicateRGB)

 imfilter

1-1503

Filter Images Using imfilter with Convolution

By default, imfilter uses correlation because the toolbox filter design functions produce correlation
kernels. Use the optional parameter to use convolution.

Create a sample matrix.

A = magic(5)

A = 5×5

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

Create a filter.

h = [-1 0 1];

1 Functions

1-1504

Filter using correlation, the default.

imfilter(A,h)

ans = 5×5

 24 -16 -16 14 -8
 5 -16 9 9 -14
 6 9 14 9 -20
 12 9 9 -16 -21
 18 14 -16 -16 -2

Filter using convolution, specifying imfilter with the optional parameter.

imfilter(A,h,'conv')

ans = 5×5

 -24 16 16 -14 8
 -5 16 -9 -9 14
 -6 -9 -14 -9 20
 -12 -9 -9 16 21
 -18 -14 16 16 2

Convert Image Class to Avoid Negative Output Values

In this example, the output of imfilter has negative values when the input is of class double. To
avoid negative values, convert the image to a different data type before calling imfilter. For
example, when the input type is uint8, imfilter truncates output values to 0. It might also be
appropriate to convert the image to a signed integer type.

A = magic(5)

A = 5×5

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

Filter the image with imfilter.

h = [-1 0 1];
imfilter(A,h)

ans = 5×5

 24 -16 -16 14 -8
 5 -16 9 9 -14
 6 9 14 9 -20
 12 9 9 -16 -21
 18 14 -16 -16 -2

 imfilter

1-1505

Notice that the result has negative values. To avoid negative values in the output image, convert the
input image to uint8 before performing the filtering. Since the input to imfilter is of class uint8,
the output also is of class uint8, and imfilter truncates negative values to 0.

A = uint8(magic(5));
imfilter(A,h)

ans = 5x5 uint8 matrix

 24 0 0 14 0
 5 0 9 9 0
 6 9 14 9 0
 12 9 9 0 0
 18 14 0 0 0

Input Arguments
A — Image to be filtered
numeric array

Image to be filtered, specified as a numeric array of dimension.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

h — Multidimensional filter
N-D array of data type double

Multidimensional filter, specified as an N-D array of data type double.
Data Types: double

options — Options that control the filtering operation
character vector | string scalar | numeric scalar

Options that control the filtering operation, specified as a character vector, string scalar, or numeric
scalar. The following table lists all supported options.

1 Functions

1-1506

Boundary Options

Option Description
Padding Options
numeric scalar, X Input array values outside the bounds of the array are assigned the value X.

When no padding option is specified, the default is 0.
'symmetric' Input array values outside the bounds of the array are computed by mirror-

reflecting the array across the array border.
'replicate' Input array values outside the bounds of the array are assumed to equal the

nearest array border value.
'circular' Input array values outside the bounds of the array are computed by implicitly

assuming the input array is periodic.
Output Size
'same' The output array is the same size as the input array. This is the default

behavior when no output size options are specified.
'full' The output array is the full filtered result, and so is larger than the input array.
Correlation and Convolution Options
'corr' imfilter performs multidimensional filtering using correlation, which is the

same way that filter2 performs filtering. When no correlation or convolution
option is specified, imfilter uses correlation.

'conv' imfilter performs multidimensional filtering using convolution.

Output Arguments
B — Filtered image
numeric array

Filtered image, returned as a numeric array of the same size and class as the input image, A.

Tips
• This function may take advantage of hardware optimization for data types uint8, uint16, int16,

single, and double to run faster.

Algorithms
• The imfilter function computes the value of each output pixel using double-precision, floating-
point arithmetic. If the result exceeds the range of the data type, then imfilter truncates the
result to the allowed range of the data type. If it is an integer data type, then imfilter rounds
fractional values.

• If you specify an even-sized kernel h, then the center of the kernel is floor((size(h) + 1)/2).

For example, the center of 4-element filter [0.25 0.75 -0.75 -0.25] is the second element,
0.75. This filter gives identical results as filtering with the 5-element filter [0 0.25 0.75
-0.75 -0.25].

 imfilter

1-1507

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imfilter supports the generation of C code (requires MATLAB Coder). Note that if you choose
the generic MATLAB Host Computer target platform, imfilter generates code that uses a
precompiled, platform-specific shared library. Use of a shared library preserves performance
optimizations but limits the target platforms for which code can be generated. For more
information, see “Types of Code Generation Support in Image Processing Toolbox”.

• When generating code, the input image, A, must be 2-D or 3-D. The value of the input argument,
options, must be a compile-time constant.

• If you specify a large kernel h, a kernel that contains large values, or specify an image containing
large values, you can see different results between MATLAB and generated code for floating point
data types. This happens because of accumulation errors due to different algorithm
implementations.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• When generating code, the input image, A, must be 2-D or 3-D. The value of the input argument,
options, must be a compile-time constant.

• If you specify a large kernel h, a kernel that contains large values, or specify an image containing
large values, you can see different results between MATLAB and generated code for floating point
data types. This happens because of accumulation errors due to different algorithm
implementations.

• With CUDA toolkit v9.0, a bug in the NVIDIA® optimization causes numerical mismatch between
the results from the generated code and MATLAB. As a workaround, turn off the optimization by
passing the following flags to the configuration object (cfg) before generating the code.

cfg.GpuConfig.CompilerFlags = ‘-Xptxas -O0’

NVIDIA is expected to fix this bug in CUDA toolkit v9.1.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The filtering kernel h must be a vector or 2-D matrix of data type double.
• If the image is filtered using a GPU, then imfilter computes the value of each output pixel using

either single- or double-precision floating point, depending on the data type of A. If A contains
double-precision or uint32 values, then imfilter uses double-precision values. For all other
data types, imfilter uses single-precision. If A is an integer or logical array, then imfilter
truncates output elements that exceed the range of the given type, and rounds fractional values.

For more information, see “Image Processing on a GPU”.

1 Functions

1-1508

See Also
conv2 | convn | filter2 | fspecial

Topics
“Filter Grayscale and Truecolor (RGB) Images using imfilter Function”
“imfilter Boundary Padding Options”
“What Is Image Filtering in the Spatial Domain?”

Introduced before R2006a

 imfilter

1-1509

imfindcircles
Find circles using circular Hough transform

Syntax
centers = imfindcircles(A,radius)
[centers,radii] = imfindcircles(A,radiusRange)
[centers,radii,metric] = imfindcircles(A,radiusRange)
[___] = imfindcircles(___ ,Name,Value)

Description
centers = imfindcircles(A,radius) finds the circles in image A whose radii are approximately
equal to radius. The output, centers, is a two-column matrix containing the (x,y) coordinates of the
circles centers in the image.

[centers,radii] = imfindcircles(A,radiusRange) finds circles with radii in the range
specified by radiusRange. The additional output argument, radii, contains the estimated radii
corresponding to each circle center in centers.

[centers,radii,metric] = imfindcircles(A,radiusRange) also returns a column vector,
metric, containing the magnitudes of the accumulator array peaks for each circle (in descending
order). The rows of centers and radii correspond to the rows of metric.

[___] = imfindcircles(___ ,Name,Value) specifies additional options with one or more
Name,Value pair arguments, using any of the previous syntaxes.

Examples

Detect Five Strongest Circles in an Image

This example shows how to find all circles in an image, and how to retain and display the strongest
circles.

Read a grayscale image into the workspace and display it.

A = imread('coins.png');
imshow(A)

1 Functions

1-1510

Find all the circles with radius r pixels in the range [15, 30].

[centers, radii, metric] = imfindcircles(A,[15 30]);

Retain the five strongest circles according to the metric values.

centersStrong5 = centers(1:5,:);
radiiStrong5 = radii(1:5);
metricStrong5 = metric(1:5);

Draw the five strongest circle perimeters over the original image.

viscircles(centersStrong5, radiiStrong5,'EdgeColor','b');

 imfindcircles

1-1511

Draw Lines Around Bright and Dark Circles in Image

Read the image into the workspace and display it.

A = imread('circlesBrightDark.png');
imshow(A)

1 Functions

1-1512

Define the radius range.

Rmin = 30;
Rmax = 65;

Find all the bright circles in the image within the radius range.

[centersBright, radiiBright] = imfindcircles(A,[Rmin Rmax],'ObjectPolarity','bright');

Find all the dark circles in the image within the radius range.

[centersDark, radiiDark] = imfindcircles(A,[Rmin Rmax],'ObjectPolarity','dark');

Draw blue lines around the edges of the bright circles.

viscircles(centersBright, radiiBright,'Color','b');

 imfindcircles

1-1513

Draw red dashed lines around the edges of the dark circles.

viscircles(centersDark, radiiDark,'LineStyle','--');

1 Functions

1-1514

Input Arguments
A — Input image
grayscale image | truecolor image | binary image

Input image is the image in which to detect circular objects, specified as a grayscale, truecolor, or
binary image.
Data Types: single | double | int16 | uint8 | uint16 | logical

radius — Circle radius
positive number

 imfindcircles

1-1515

Circle radius, or the approximate radius of the circular objects you want to detect, specified as a
positive number.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

radiusRange — Range of radii
2-element vector of positive integers

Range of radii for the circular objects you want to detect, specified as a 2-element vector of positive
integers of the form [rmin rmax], where rmin is less than rmax.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'ObjectPolarity','bright' specifies bright circular objects on a dark background.

ObjectPolarity — Object polarity
'bright' (default) | 'dark'

Object polarity, specified as the comma-separated pair consisting of 'ObjectPolarity' and one of
the values in the table.

'bright' The circular objects are brighter than the background.
'dark' The circular objects are darker than the background.

Method — Computation method
'PhaseCode' (default) | 'TwoStage'

Computation method is the technique used to compute the accumulator array, specified as the
comma-separated pair consisting of 'Method' and one of the values in the table.

'PhaseCode' Atherton and Kerbyson's [1] phase coding method.
'TwoStage' The method used in two-stage circular Hough transform [2], [3].

Example: 'Method','PhaseCode' specifies the Atherton and Kerbyson's phase coding method.

Sensitivity — Sensitivity factor
0.85 (default) | number in the range [0, 1]

Sensitivity factor is the sensitivity for the circular Hough transform accumulator array, specified as
the comma-separated pair consisting of 'Sensitivity' and a number in the range [0, 1]. As you
increase the sensitivity factor, imfindcircles detects more circular objects, including weak and
partially obscured circles. Higher sensitivity values also increase the risk of false detection.

EdgeThreshold — Edge gradient threshold
number in the range [0, 1]

Edge gradient threshold sets the gradient threshold for determining edge pixels in the image,
specified as the comma-separated pair consisting of 'EdgeThreshold' and a number in the range
[0, 1]. Specify 0 to set the threshold to zero-gradient magnitude. Specify 1 to set the threshold to the

1 Functions

1-1516

maximum gradient magnitude. imfindcircles detects more circular objects (with both weak and
strong edges) when you set the threshold to a lower value. It detects fewer circles with weak edges
as you increase the value of the threshold. By default, imfindcircles chooses the edge gradient
threshold automatically using the function graythresh.
Example: 'EdgeThreshold',0.5

Output Arguments
centers — Coordinates of circle centers
P-by-2 matrix

Coordinates of the circle centers, returned as a P-by-2 matrix containing the x-coordinates of the
circle centers in the first column and the y-coordinates in the second column. The number of rows, P,
is the number of circles detected. centers is sorted based on the strength of the circles, from
strongest to weakest.
Data Types: double

radii — Estimated radii
column vector

The estimated radii for the circle centers, returned as a column vector. The radius value at radii(j)
corresponds to the circle centered at centers(j,:).
Data Types: double

metric — Circle strengths
column vector

Circle strengths is the relative strengths for the circle centers, returned as a vector. The value at
metric(j) corresponds to the circle with radius radii(j) centered at centers(j,:).
Data Types: double

Tips
• The accuracy of imfindcircles is limited when the value of radius (or rmin) is less than or

equal to 5.
• The radius estimation step is typically faster if you use the (default) 'PhaseCode' method instead

of 'TwoStage'.
• Both computation methods, 'PhaseCode' and 'TwoStage' are limited in their ability to detect

concentric circles. The results for concentric circles can vary depending on the input image.
• imfindcircles does not find circles with centers outside the domain of the image.
• imfindcircles preprocesses binary (logical) images to improve the accuracy of the result. It

converts truecolor images to grayscale using the function rgb2gray before processing them.

Algorithms
imfindcircles uses a Circular Hough Transform (CHT) based algorithm for finding circles in
images. This approach is used because of its robustness in the presence of noise, occlusion and
varying illumination.

 imfindcircles

1-1517

The CHT is not a rigorously specified algorithm, rather there are a number of different approaches
that can be taken in its implementation. However, by and large, there are three essential steps which
are common to all.

1 Accumulator Array Computation

Foreground pixels of high gradient are designated as being candidate pixels and are allowed to
cast ‘votes’ in the accumulator array. In a classical CHT implementation, the candidate pixels
vote in pattern around them that forms a full circle of a fixed radius. Figure 1a shows an example
of a candidate pixel lying on an actual circle (solid circle) and the classical CHT voting pattern
(dashed circles) for the candidate pixel.

Classical CHT Voting Pattern
2 Center Estimation

The votes of candidate pixels belonging to an image circle tend to accumulate at the accumulator
array bin corresponding to the circle’s center. Therefore, the circle centers are estimated by
detecting the peaks in the accumulator array. Figure 1b shows an example of the candidate pixels
(solid dots) lying on an actual circle (solid circle), and their voting patterns (dashed circles)
which coincide at the center of the actual circle.

3 Radius Estimation

If the same accumulator array is used for more than one radius value, as is commonly done in
CHT algorithms, radii of the detected circles have to be estimated as a separate step.

1 Functions

1-1518

imfindcircles provides two algorithms for finding circles in images: Phase-Coding (default) and
Two-Stage. Both share some common computational steps, but each has its own unique aspects as
well.

The common computational features shared by both algorithms are as follow:

• Use of 2-D Accumulator Array

The classical Hough Transform requires a 3-D array for storing votes for multiple radii, which
results in large storage requirements and long processing times. Both the Phase-Coding and Two-
Stage methods solve this problem by using a single 2-D accumulator array for all the radii.
Although this approach requires an additional step of radius estimation, the overall computational
load is typically lower, especially when working over large radius range. This is a widely adopted
practice in modern CHT implementations.

• Use of Edge Pixels

Overall memory requirements and speed is strongly governed by the number of candidate pixels.
To limit their number, the gradient magnitude of the input image is threshold so that only pixels of
high gradient are included in tallying votes.

• Use of Edge Orientation Information

Another way to optimize performance is to restrict the number of bins available to candidate
pixels. This is accomplished by utilizing locally available edge information to only permit voting in
a limited interval along direction of the gradient (Figure 2).

Voting Mode: Multiple Radii, Along Direction of Gradient

rmin Minimum search radius
rmax Maximum search radius

 imfindcircles

1-1519

ractual Radius of the circle that the candidate pixel belongs to
cmin Center of the circle of radius rmin

cmax Center of the circle of radius rmax

cactual Center of the circle of radius ractual

The two CHT methods employed by function imfindcircles fundamentally differ in the manner by
which the circle radii are computed.

• Two-Stage

Radii are explicitly estimated utilizing the estimated circle centers along with image information.
The technique is based on computing radial histograms [2] [3].

• Phase-Coding

The key idea in Phase Coding [1] is the use of complex values in the accumulator array with the
radius information encoded in the phase of the array entries. The votes cast by the edge pixels
contain information not only about the possible center locations but also about the radius of the
circle associated with the center location. Unlike the Two-Stage method where radius has to be
estimated explicitly using radial histograms, in Phase Coding the radius can be estimated by
simply decoding the phase information from the estimated center location in the accumulator
array.

Compatibility Considerations
imfindcircles uses new filter size for logical images
Behavior changed in R2019a

Staring in R2019a, the imfindcircles function uses a 5-by-5 filter size for smoothing logical
images. imfindcircles may now return a different answer than in previous releases, when the
filter size was 6-by-6. For example, in some instances, the function may return a different number of
circles.

References
[1] T.J Atherton, D.J. Kerbyson. "Size invariant circle detection." Image and Vision Computing. Volume

17, Number 11, 1999, pp. 795-803.

[2] H.K Yuen, .J. Princen, J. Illingworth, and J. Kittler. "Comparative study of Hough transform
methods for circle finding." Image and Vision Computing. Volume 8, Number 1, 1990, pp. 71–
77.

[3] E.R. Davies, Machine Vision: Theory, Algorithms, Practicalities. Chapter 10. 3rd Edition. Morgan
Kauffman Publishers, 2005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

1 Functions

1-1520

• imfindcircles supports the generation of C code (requires MATLAB Coder). Note that if you
choose the generic MATLAB Host Computer target platform, imfindcircles generates code
that uses a precompiled, platform-specific shared library. Use of a shared library preserves
performance optimizations but limits the target platforms for which code can be generated. For
more information, see “Types of Code Generation Support in Image Processing Toolbox”.

• When generating code, all character vector input parameters and values must be a compile-time
constant.

See Also
hough | houghpeaks | houghlines | viscircles

Topics
“Detect and Measure Circular Objects in an Image”

Introduced in R2012a

 imfindcircles

1-1521

imflatfield
2-D image flat-field correction

Syntax
J = imflatfield(I,sigma)
J = imflatfield(I,sigma,mask)
J = imflatfield(___ ,'FilterSize',filterSize)

Description
J = imflatfield(I,sigma) applies flat-field correction to the grayscale or RGB image I. The
correction uses Gaussian smoothing with a standard deviation of sigma to approximate the shading
component of I. The corrected image is returned in J.

J = imflatfield(I,sigma,mask) applies flat-field correction to image I only where the binary
mask is true. Where the mask is false, the output image J contains the unmodified values of image
I.

J = imflatfield(___ ,'FilterSize',filterSize) specifies the size of the Gaussian
smoothing filter.

Examples

Correct Shading Distortion in Grayscale Image

Load a grayscale image. This image has severe shading distortion on the left side and in the upper-
right corner.

I = imread('printedtext.png');
imshow(I)
title('Distorted Image')

1 Functions

1-1522

Perform the flat-field correction.

sigma = 30;
Iflatfield = imflatfield(I,sigma);

Display the result. The corrected image has more uniform brightness.

imshow(Iflatfield)
title(['Flat-Field Corrected Image, \sigma = ',num2str(sigma)])

 imflatfield

1-1523

Correct Vignetting Defect in Color Image

Load a color image that has vignetting, or darkening of the corners.

I = imread('fabric.png');
imshow(I)
title('Image with Vignetting')

1 Functions

1-1524

Perform the flat-field correction.

sigma = 20;
Iflatfield = imflatfield(I,sigma);

Display the result. The corrected image has more uniform brightness.

imshow(Iflatfield)
title(['Flat-Field Corrected Image, \sigma = ',num2str(sigma)])

 imflatfield

1-1525

Apply Flat-Field Correction Using Binary Mask

Load a color image. This image has a shading defect in the lower right corner.

I = imread('hands1.jpg');
imshow(I)
title('Image with Dark Corner')

1 Functions

1-1526

Try applying flat-field correction to the entire image.

sigma = 25;
Iflatfield = imflatfield(I,25);
imshow(Iflatfield)
title(['Flat-Field Corrected Image, \sigma = ',num2str(sigma)])

 imflatfield

1-1527

The shading defect in the corner is corrected, but the center of the image is too bright and the hand
has changed color. To avoid this brightening artifact, apply flat-field correction just to the background
of the image.

Load the mask of this image. In the original mask, maskHand, the segmented hand is the region of
interest (ROI). Invert the mask so that the background is the ROI. Display the mask, which shows the
ROI in white.

maskHand = imread('hands1-mask.png');
maskBackground = ~maskHand;
imshow(maskBackground)
title('Background Mask')

Perform the flat-field correction on the background of the image using the mask maskBackground.
The hand is not a region of interest in the mask, therefore flat-field correction is not applied to pixels
in the hand.

Iflatfield2 = imflatfield(I,sigma,maskBackground);

Display the corrected image. The shading defect in the corner is corrected, and the hand retains its
original color.

imshow(Iflatfield2)
title(['Flat-Field Corrected Background, \sigma = ',num2str(sigma)])

1 Functions

1-1528

Input Arguments
I — Distorted image
2-D grayscale image | 2-D RGB image

Distorted image, specified as a 2-D grayscale image of size m-by-n or a 2-D RGB image of size m-by-n-
by-3.
Data Types: single | double | int16 | uint8 | uint16

sigma — Standard deviation of Gaussian smoothing filter
positive number | 2-element vector of positive numbers

Standard deviation of the Gaussian smoothing filter, specified as a positive number or a 2-element
vector of positive numbers. If you specify a scalar, then imflatfield uses a square Gaussian kernel.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

mask — Binary mask
2-D numeric matrix | 2-D logical matrix

Binary mask, specified as a 2-D numeric or logical matrix of size m-by-n. For numeric input, any
nonzero pixels are considered to be 1 (true).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

filterSize — Size of Gaussian filter
positive, odd integer | 2-element vector of positive, odd integers

Size of the Gaussian filter, specified as a scalar or 2-element vector of positive, odd integers. If you
specify a scalar, then imflatfield uses a square filter. The default filter size is 2*ceil(2*sigma)
+1.

 imflatfield

1-1529

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
J — Corrected image
2-D grayscale image | 2-D RGB image

Corrected image, returned as a 2-D grayscale or RGB image of the same size and data type as the
input image, I.

Tips
• When I is an RGB image, then imflatfield converts the image to the HSV color space using

rgb2hsv and applies the flat-field correction to the HSV Value channel. The image is converted
back to RGB color space by using hsv2rgb.

• If you specify a mask, then imflatfield dilates the mask and pads the image boundaries to
reduce edge artifacts during the flat-field estimation.

See Also
rgb2hsv | hsv2rgb

Introduced in R2018b

1 Functions

1-1530

imfuse
Composite of two images

Syntax
C = imfuse(A,B)
[C RC] = imfuse(A,RA,B,RB)
C = imfuse(___ ,method)
C = imfuse(___ ,Name,Value)

Description
C = imfuse(A,B) creates a composite image from two images, A and B. If A and B are different
sizes, imfuse pads the smaller dimensions with zeros so that both images are the same size before
creating the composite. The output, C, is a numeric matrix containing a fused version of images A and
B.

[C RC] = imfuse(A,RA,B,RB) creates a composite image from two images, A and B, using the
spatial referencing information provided in RA and RB. The output RC defines the spatial referencing
information for the output fused image C.

C = imfuse(___ ,method) uses the algorithm specified by method.

C = imfuse(___ ,Name,Value) specifies additional options with one or more Name,Value pair
arguments, using any of the previous syntaxes.

Examples

Create Blended Overlay of Two Images

Load an image into the workspace. Create a copy with a rotation offset applied.

A = imread('cameraman.tif');
B = imrotate(A,5,'bicubic','crop');

Create blended overlay image, scaling the intensities of A and B jointly as a single data set. View the
fused image.

C = imfuse(A,B,'blend','Scaling','joint');
imshow(C)

 imfuse

1-1531

Save the resulting image as a .png file.

imwrite(C,'my_blend_overlay.png');

Create Overlay Image Using Color to Distinguish Areas of Similar Intensity

Load an image into the workspace. Create a copy and apply a rotation offset.

A = imread('cameraman.tif');
B = imrotate(A,5,'bicubic','crop');

Create a blended overlay image, using red for image A, green for image B, and yellow for areas of
similar intensity between the two images. Then, display the overlay image.

C = imfuse(A,B,'falsecolor','Scaling','joint','ColorChannels',[1 2 0]);
imshow(C)

1 Functions

1-1532

Save the resulting image as a .png file.

imwrite(C,'my_blend_red-green.png');

Create Overlay of Two Spatially Referenced Images

Load an image into the workspace and create a spatial referencing object associated with it.

A = dicomread('knee1.dcm');
RA = imref2d(size(A));

Create a second image by resizing image A and create a spatial referencing object associated with
that image.

B = imresize(A,2);
RB = imref2d(size(B));

Set referencing object parameters to specify the limits of the coordinates in world coordinates.

RB.XWorldLimits = RA.XWorldLimits;
RB.YWorldLimits = RA.YWorldLimits;

Create a blended overlay image using color to indicate areas of similar intensity. This example uses
red for image A, green for image B, and yellow for areas of similar intensity between the two images.

C = imfuse(A,B,'falsecolor','Scaling','joint','ColorChannels',[1 2 0]);

Display the fused image. Note how the images do not appear to share many areas of similar intensity.
For this example, the fused image is shrunk for easier display.

 imfuse

1-1533

C = imresize(C,0.5);
imshow(C)

Create a new fused image, this time using the spatial referencing information in RA and RB.

[D,RD] = imfuse(A,RA,B,RB,'ColorChannels',[1 2 0]);

Display the new fused image. In this version, the image appears yellow because the images A and B
have the same extent in the world coordinate system. The images actually are aligned, even though B
is twice the size of A. For this example, the fused image is shrunk for easier display.

D = imresize(D,0.5);
imshow(D)

1 Functions

1-1534

Input Arguments
A — Image to be combined into a composite image
grayscale image | truecolor image | binary image

Image to be combined into a composite image, specified as a grayscale, truecolor, or binary image.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

B — Image to be combined into a composite image
grayscale image | truecolor image | binary image

Image to be combined into a composite image, specified as a grayscale, truecolor, or binary image.

 imfuse

1-1535

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

RA — Spatial referencing information associated with the input image A
spatial referencing object

Spatial referencing information associated with the input image A, specified as a spatial referencing
object of class imref2d.

RB — Spatial referencing information associated with the input image B
spatial referencing object

Spatial referencing information associated with the input image B, specified as a spatial referencing
object of class imref2d.

method — Algorithm used to combine images
'falsecolor' (default) | 'blend' | 'diff' | 'montage'

Algorithm used to combine images, specified as one of the following values.

Method Description
'falsecolor' Creates a composite RGB image showing A and B overlaid in different

color bands. Gray regions in the composite image show where the two
images have the same intensities. Magenta and green regions show
where the intensities are different. This is the default method.

'blend' Overlays A and B using alpha blending.
'checkerboard' Creates an image with alternating rectangular regions from A and B.
'diff' Creates a difference image from A and B.
'montage' Puts A and B next to each other in the same image.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Scaling','joint' scales the intensity values of A and B together as a single data set.

Scaling — Intensity scaling option
'independent' (default) | 'joint' | 'none'

Intensity scaling option, specified as one of the following values:

'independent' Scales the intensity values of A and B independently when C is
created.

'joint' Scales the intensity values in the images jointly as if they were
together in the same image. This option is useful when you
want to visualize registrations of monomodal images, where
one image contains fill values that are outside the dynamic
range of the other image.

'none' No additional scaling.

1 Functions

1-1536

ColorChannels — Output color channel for each input image
'green-magenta' (default) | [R G B] | 'red-cyan'

Output color channel for each input image, specified as one of the following values:

[R G B] A three element vector that specifies which image to assign to the
red, green, and blue channels. The R, G, and B values must be 1
(for the first input image), 2 (for the second input image), and 0
(for neither image).

'red-cyan' A shortcut for the vector [1 2 2], which is suitable for red/cyan
stereo anaglyphs

'green-magenta' A shortcut for the vector [2 1 2], which is a high contrast option,
ideal for people with many kinds of color blindness

Output Arguments
C — Fused image that is a composite of the input images
grayscale image | truecolor image | binary image

Fused image that is a composite of the input images, returned as a grayscale, truecolor, or binary
image.
Data Types: uint8

RC — Spatial referencing information associated with the output image
spatial referencing object

Spatial referencing information, returned as a spatial referencing object.

Tips
• Use imfuse to create composite visualizations that you can save to a file. Use imshowpair to

display composite visualizations to the screen.

See Also
imregister | imshowpair | imtransform

Introduced in R2012a

 imfuse

1-1537

imgaborfilt
Apply Gabor filter or filter bank to 2-D image

Syntax
[mag,phase] = imgaborfilt(A,wavelength,orientation)
[mag,phase] = imgaborfilt(A,wavelength,orientation,Name,Value)
[mag,phase] = imgaborfilt(A,gaborbank)

Description
[mag,phase] = imgaborfilt(A,wavelength,orientation) computes the magnitude and
phase response of a Gabor filter for the input grayscale image A. wavelength describes the
wavelength in pixels/cycle of the sinusoidal carrier. orientation is the orientation of the filter in
degrees.

[mag,phase] = imgaborfilt(A,wavelength,orientation,Name,Value) applies a single
Gabor filter using name-value arguments to control various aspects of filtering.

[mag,phase] = imgaborfilt(A,gaborbank) applies the Gabor filter bank, gaborbank, to the
input image A.

Examples

Apply Single Gabor Filter to Input Image

Read an image into the workspace and convert the image to grayscale.

I = imread('board.tif');
I = im2gray(I);

Apply a Gabor filter to the image.

wavelength = 4;
orientation = 90;
[mag,phase] = imgaborfilt(I,wavelength,orientation);

Display the original image with plots of the magnitude and phase response calculated by the Gabor
filter.

tiledlayout(1,3)
nexttile
imshow(I)
title('Original Image')
nexttile
imshow(mag,[])
title('Gabor Magnitude')
nexttile
imshow(phase,[])
title('Gabor Phase')

1 Functions

1-1538

Apply Array of Gabor Filters to Input Image

Read image into the workspace.

I = imread('cameraman.tif');

Create array of Gabor filters, called a filter bank. This filter bank contains two orientations and two
wavelengths.

gaborArray = gabor([4 8],[0 90]);

Apply filters to input image.

gaborMag = imgaborfilt(I,gaborArray);

Display results. The figure shows the magnitude response for each filter.

figure
subplot(2,2,1);
for p = 1:4
 subplot(2,2,p)
 imshow(gaborMag(:,:,p),[]);
 theta = gaborArray(p).Orientation;
 lambda = gaborArray(p).Wavelength;
 title(sprintf('Orientation=%d, Wavelength=%d',theta,lambda));
end

 imgaborfilt

1-1539

Input Arguments
A — 2-D grayscale image
numeric matrix

2-D grayscale image, specified as a numeric matrix.

wavelength — Wavelength of sinusoidal carrier
number

Wavelength of the sinusoidal carrier, specified as a number greater than or equal to 2, in pixels/cycle.
Typical values of wavelength range from 2 up to the hypotenuse length of the input image [1].

orientation — Orientation of filter
number

Orientation of the filter in degrees, specified as a numeric scalar in the range [0, 360]. The
orientation is defined as the normal direction to the sinusoidal plane wave.

gaborbank — Gabor filter bank
gabor object | array of gabor object

Gabor filter bank, specified as a gabor object or an array of gabor objects.

1 Functions

1-1540

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'SpatialFrequencyBandwidth',2 specifies a spatial frequency bandwidth of two
octaves

SpatialFrequencyBandwidth — Spatial-frequency bandwidth
1 (default) | numeric scalar

Spatial-frequency bandwidth, specified as a numeric scalar in units of octaves. The spatial-frequency
bandwidth determines the cutoff of the filter response as frequency content in the input image varies
from the preferred frequency, 1/lambda. Typical values for spatial-frequency bandwidth are in the
range [0.5, 2.5].

SpatialAspectRatio — Ratio of semimajor and semiminor axes of Gaussian envelope
0.5 (default) | positive number

Ratio of the semimajor and semiminor axes of Gaussian envelope (semiminor/semimajor), specified as
a positive number. This argument controls the ellipticity of the Gaussian envelope. Typical values for
spatial aspect ratio are in the range [0.23, 0.92].

Output Arguments
mag — Magnitude response
numeric matrix | numeric array

Magnitude response for the Gabor filter or filter bank, returned as a numeric matrix for a single filter
or a numeric array for a filter bank. The p-th plane of mag is the magnitude response for the Gabor
filter of the same index, gaborbank(p).
Data Types: double

phase — Phase response
numeric matrix | numeric array

Phase response for the Gabor filter or filter bank, returned as a numeric matrix for a single filter or a
numeric array for a filter bank. The p-th plane of phase is the phase response for the Gabor filter of
the same index, gaborbank(p).
Data Types: double

Tips
• If the image contains Infs or NaNs, then the behavior of imgaborfilt is undefined because

Gabor filtering is performed in the frequency domain.
• For all input data types other than single, imgaborfilt performs the computation in double.

Input images of type single are filtered in type single. Performance optimizations may result
from casting the input image to single prior to calling imgaborfilt.

 imgaborfilt

1-1541

References
[1] Jain, Anil K., and Farshid Farrokhnia. "Unsupervised Texture Segmentation Using Gabor Filters."

Pattern Recognition 24, no. 12 (January 1991): 1167–86. https://doi.org/
10.1016/0031-3203(91)90143-S.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imgaborfilt supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

• The wavelength, orientation, SpatialFrequencyBandwidth, and SpatialAspectRatio
must be compile-time constants.

• The filter bank syntax is not supported.

See Also
gabor | edge | imfilter | imgradient | fspecial

Topics
“Texture Segmentation Using Gabor Filters”

Introduced in R2015b

1 Functions

1-1542

imgaussfilt
2-D Gaussian filtering of images

Syntax
B = imgaussfilt(A)
B = imgaussfilt(A,sigma)
B = imgaussfilt(___ ,Name,Value)

Description
B = imgaussfilt(A) filters image A with a 2-D Gaussian smoothing kernel with standard deviation
of 0.5, and returns the filtered image in B.

B = imgaussfilt(A,sigma) filters image A with a 2-D Gaussian smoothing kernel with standard
deviation specified by sigma.

B = imgaussfilt(___ ,Name,Value) uses name-value arguments to control aspects of the
filtering.

Examples

Smooth Image with Gaussian Filter

Read image to be filtered.

I = imread('cameraman.tif');

Filter the image with a Gaussian filter with standard deviation of 2.

Iblur = imgaussfilt(I,2);

Display the original and filtered image in a montage.

montage({I,Iblur})
title('Original Image (Left) Vs. Gaussian Filtered Image (Right)')

 imgaussfilt

1-1543

Input Arguments
A — Image to be filtered
numeric array

Image to be filtered, specified as a numeric array of any dimension.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

sigma — Standard deviation of Gaussian distribution
0.5 (default) | positive number | 2-element vector of positive numbers

Standard deviation of the Gaussian distribution, specified as a positive number or a 2-element vector
of positive numbers. If you specify a scalar, then imgaussfilt uses a square Gaussian kernel.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'FilterSize',3

FilterSize — Size of Gaussian filter
positive, odd integer | 2-element vector of positive, odd integers

Size of the Gaussian filter, specified as a positive, odd integer or 2-element vector of positive, odd
integers. If you specify a scalar, then imgaussfilt uses a square filter. The default filter size is
2*ceil(2*sigma)+1.

1 Functions

1-1544

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Padding — Image padding
'replicate' (default) | numeric scalar | 'circular' | 'symmetric'

Image padding, specified as one of the following.

Value Description
numeric scalar Pad image with elements of constant value.
'circular' Pad with circular repetition of elements within the dimension.
'replicate' Pad by repeating border elements of array.
'symmetric' Pad image with mirror reflections of itself.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string

FilterDomain — Domain in which to perform filtering
'auto' (default) | 'spatial' | 'frequency'

Domain in which to perform filtering, specified as one of the following values:

Value Description
'auto' Perform convolution in the spatial or frequency domain, based on internal

heuristics.
'frequency' Perform convolution in the frequency domain.
'spatial' Perform convolution in the spatial domain.

Data Types: char | string

Output Arguments
B — Filtered image
numeric array

Filtered image, returned as a numeric array of the same class and size as the input image, A.

Tips
• If image A contains elements with values Inf or NaN, then the behavior of imgaussfilt for

frequency domain filtering is undefined. This can happen if you set the 'FilterDomain' name-
value argument to 'frequency' or if you set it to 'auto' and imgaussfilt uses frequency
domain filtering. To restrict the propagation of Infs and NaNs in the output in a manner similar to
imfilter, consider setting the 'FilterDomain' name-value argument to 'spatial'.

• If you set the 'FilterDomain' name-value argument to 'auto', then imgaussfilt uses an
internal heuristic to determine whether spatial or frequency domain filtering is faster. This
heuristic is machine dependent and may vary for different configurations. For optimal
performance, try both options, 'spatial' and 'frequency', to determine the best filtering
domain for your image and kernel size.

• If you do not specify the 'Padding' name-value argument, then imgaussfilt uses
'replicate' padding by default, which is different from the default used by imfilter.

 imgaussfilt

1-1545

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imgaussfilt supports the generation of C code (requires MATLAB Coder). Note that if you
choose the generic MATLAB Host Computer target platform, imgaussfilt generates code that
uses a precompiled, platform-specific shared library. Use of a shared library preserves
performance optimizations but limits the target platforms for which code can be generated. For
more information, see “Types of Code Generation Support in Image Processing Toolbox”.

• imgaussfilt does not support the FilterDomain name-value argument specified as
'frequency'. Filtering is always done in the spatial domain in generated code.

• When generating code, all string and character vector input arguments must be compile-time
constants.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• imgaussfilt does not support the FilterDomain name-value argument specified as
'frequency'. Filtering is always done in the spatial domain in generated code.

• When generating code, all string and character vector input arguments must be compile-time
constants.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on a GPU”.

See Also
imgaussfilt3 | imfilter | fspecial

Introduced in R2015a

1 Functions

1-1546

imgaussfilt3
3-D Gaussian filtering of 3-D images

Syntax
B = imgaussfilt3(A)
B = imgaussfilt3(A,sigma)
B = imgaussfilt3(___ ,Name,Value)

Description
B = imgaussfilt3(A) filters 3-D image A with a 3-D Gaussian smoothing kernel with standard
deviation of 0.5, and returns the filtered image in B.

B = imgaussfilt3(A,sigma) filters 3-D image A with a 3-D Gaussian smoothing kernel with
standard deviation specified by sigma.

B = imgaussfilt3(___ ,Name,Value) uses name-value pair arguments to control aspects of the
filtering.

Examples

Smooth MRI volume with 3-D Gaussian filter

Load MRI data and display it.

vol = load('mri');
figure
montage(vol.D)
title('Original image volume')

 imgaussfilt3

1-1547

Smooth the image with a 3-D Gaussian filter.

siz = vol.siz;
vol = squeeze(vol.D);
sigma = 2;

volSmooth = imgaussfilt3(vol, sigma);

figure
montage(reshape(volSmooth,siz(1),siz(2),1,siz(3)))
title('Gaussian filtered image volume')

1 Functions

1-1548

Input Arguments
A — Image to be filtered
3-D numeric array

Image to be filtered, specified as a 3-D numeric array.
Data Types: single | double | int8 | uint8 | int16 | uint16 | int32 | uint32

sigma — Standard deviation of the Gaussian distribution
0.5 (default) | positive number | 3-element vector of positive numbers

Standard deviation of the Gaussian distribution, specified as positive number or a 3-element vector of
positive numbers. If sigma is a scalar, then imgaussfilt3 uses a cubic Gaussian kernel.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

 imgaussfilt3

1-1549

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: volSmooth = imgaussfilt3(vol,sigma,'padding','circular');

FilterSize — Size of the Gaussian filter
positive, odd, integer | 3-element vector of positive, odd, integers

Size of the Gaussian filter, specified as a scalar or 3-element vector of positive, odd, integers. If you
specify a scalar, then imgaussfilt3 uses a cubic filter. The default filter size is 2*ceil(2*sigma)
+1.
Example: volSmooth = imgaussfilt3(vol,sigma,'FilterSize',5);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Padding — Image padding
'replicate' (default) | 'circular' | 'symmetric' | numeric scalar

Image padding, specified as one of the following.

Value Description
numeric scalar Pad image with elements of constant value.
'circular' Pad with circular repetition of elements within the dimension.
'replicate' Pad by repeating border elements of array.
'symmetric' Pad image with mirror reflections of itself.

Example: volSmooth = imgaussfilt3(vol,sigma,'padding','circular');
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string

FilterDomain — Domain in which to perform filtering
'auto' (default) | 'frequency' | 'spatial'

Domain in which to perform filtering, specified as one of the following values.

Filter Domain Description
'auto' Perform convolution in the spatial or frequency domain, based on internal

heuristics.
'frequency' Perform convolution in the frequency domain.
'spatial' Perform convolution in the spatial domain.

Example: volSmooth = imgaussfilt3(vol,sigma,'FilterDomain','frequency');
Data Types: char | string

Output Arguments
B — Filtered image
numeric array

1 Functions

1-1550

Filtered image, returned as a numeric array of the same class and size as input image.

Tips
• If image A contains Infs or NaNs, then the behavior of imgaussfilt3 for frequency domain
filtering is undefined. This can happen if you set the 'FilterDomain' parameter to
'frequency' or if you set it to 'auto' and imgaussfilt3 uses frequency domain filtering. To
restrict the propagation of Infs and NaNs in the output in a manner similar to imfilter,
consider setting the 'FilterDomain' parameter to 'spatial'.

• If you set the 'FilterDomain' parameter to 'auto', then imgaussfilt3 uses an internal
heuristic to determine whether spatial or frequency domain filtering is faster. This heuristic is
machine-dependent and may vary for different configurations. For optimal performance, try both
options, 'spatial' and 'frequency', to determine the best filtering domain for your image and
kernel size.

• If you do not specify the 'Padding' parameter, then imgaussfilt3 uses 'replicate' padding
by default, which is different from the default used by imfilter.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on a GPU”.

See Also
imgaussfilt | imfilter

Introduced in R2015a

 imgaussfilt3

1-1551

imgca
Get current axes containing image

Syntax
ax = imgca
ax = imgca(fig)

Description
ax = imgca returns the current axes that contains an image. The current axes can be in a regular
figure window or in an Image Tool window. Note that the current axes that contains an image might
not be the same as the most recently accessed axes.

If no figure contains an axes that contains an image, then imgca creates a new axes.

ax = imgca(fig) returns the current axes that contains an image in the specified figure.

Examples

Get Axes Containing Image

Read a grayscale image into the workspace.

I = imread('coins.png');
imshow(I)

1 Functions

1-1552

Convert the image into a binary image.

bw = imbinarize(I);
imshow(bw)

Fill holes in the binary objects, then calculate the centroids of the objects.

bw2 = imfill(bw,'holes');
s = regionprops(bw2, 'centroid');
centroids = cat(1,s.Centroid);

Display the original image and a plot of the centroids in the same figure window. Note that the
current axes contains the plot of the centroids, not the displayed image.

subplot(1,2,1)
imshow(I)
subplot(1,2,2)
plot(centroids(:,1),centroids(:,2),'*')
axis image

 imgca

1-1553

The direction of the y-axis is reversed for images. For equivalent comparison of the image and the
plot of the centroids, reverse the y-axis direction of the plot. To get the most recent axes, which
contains the plot of the centroids, use the gca function.

h = gca;
h.YDir = 'reverse';

Use imgca to get the most recent axes containing an image. Note that this axes is not the most
recent axes. Overlay the centroids in red asterisks on the image.

hIm = imgca;
hold(hIm,'on')
plot(hIm,centroids(:,1),centroids(:,2),'r*')
hold(hIm,'off')

1 Functions

1-1554

Input Arguments
fig — Figure
figure object

Figure, specified as a figure object.

Output Arguments
ax — Axes
axes object

Current axes containing an image, returned as an axes object.

Tips
• imgca can be useful in returning the axes object in the Image Tool. You cannot retrieve this axes

using gca.

See Also
gca | gcf | imgcf | imhandles

Introduced before R2006a

 imgca

1-1555

imgcf
Get current figure containing image

Syntax
fig = imgcf

Description
fig = imgcf returns the current figure that contains an image. The figure may be a regular figure
window that contains at least one image or an Image Tool window.

If none of the figures currently open contains an image, then imgcf creates a new figure.

Examples

Use Figure Handle in Image Tool Window

Open an image in an Image Tool window.

I = imread('strawberries.jpg');
imtool(I)

1 Functions

1-1556

Use the handle of a figure containing an Image Tool window to center the window on the screen.

sz = get(groot,'ScreenSize');
pos = get(imgcf,'Position');
pos = [(sz(3)-pos(3))/2 (sz(4)-pos(4))/2 pos(3) pos(4)];
set(imgcf,'Position',pos)

 imgcf

1-1557

Output Arguments
fig — Figure
figure object

Current figure containing an image, returned as a figure object.

Tips
• imgcf can be useful in getting the figure used by the Image Tool. You cannot retrieve the tool
figure using gcf.

See Also
gca | gcf | imgca | imhandles

1 Functions

1-1558

Introduced before R2006a

 imgcf

1-1559

imgetfile
Display Open Image dialog box

Syntax
[filename,user_canceled] = imgetfile
[filename,user_canceled] = imgetfile(Name,Value)

Description
[filename,user_canceled] = imgetfile displays the Open Image dialog box. Use this dialog
box in imaging applications to get the name of the image file a user wants to open. The Open Image
dialog box includes only files that use supported image file formats (listed in imformats) and DICOM
files. When the user selects a file and clicks Open, imgetfile returns the full path of the file in
filename and sets the user_canceled return value to false. If the user clicks Cancel,
imgetfile returns an empty character vector ('') in filename and sets the user_canceled
return value to true.

Note The Open Image dialog box is modal; it blocks the MATLAB command line until the user
responds.

[filename,user_canceled] = imgetfile(Name,Value) supports name-value parameter
arguments that you can use to control aspects of its behavior.

Examples

Get Name of File Selected from Specified Folder

Open the Open Image dialog box, and show the folder that contains the Image Processing Toolbox
sample images.

sample_image_folder = fullfile(matlabroot,'toolbox/images/imdata');

[filename,user_canceled] = imgetfile('InitialPath',sample_image_folder)

1 Functions

1-1560

Select an image in the list, and click Open. imgetfile returns the full path of the image file selected
as a character vector. The user_canceled return value is set to false.

filename =

C:\Program Files\MATLAB\R2016b\toolbox\images\imdata\cameraman.tif

user_canceled =

 logical

 0

Get Names of Multiple Files from Specified Folder

Open the Open Image dialog box. This example assumes you have a folder that contains sample
images on your system C: drive.

[filename,user_canceled] = imgetfile('InitialPath','C:\Temp\SampleImages','MultiSelect',true)

Select several images in the list using Shift+Click or Ctrl+Click.

 imgetfile

1-1561

Click Open. imgetfile returns a cell array of character vectors that contain the full path of each
image file. The user_canceled return value is set to false.

filename =

 1×5 cell array

 Columns 1 through 3

 'C:\Temp\SampleIma…' 'C:\Temp\SampleIma…' 'C:\Temp\SampleIma…'

 Columns 4 through 5

 'C:\Temp\SampleIma…' 'C:\Temp\SampleIma…'

user_canceled =

 logical

1 Functions

1-1562

 0

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [fname,user_canc] = imgetfile('InitialPath','C:\temp')

InitialPath — Folder displayed when the Open Image dialog box opens
character vector | string scalar

Folder displayed when the Open Image dialog box opens, specified as a string scalar or character
vector. If you do not specify an initial path, imgetfile opens the dialog box at the last location
where an image was successfully selected.
Data Types: char

MultiSelect — Selection mode
false (default) | true | 'on' | 'off'

Selection mode, specified as 'on' or 'off', or a Boolean value true or false. The value true or
'on' turns on multiple selection, enabling a user to select more than one image in the dialog box
using Shift+click or Ctrl+click. The value false or 'off' turns off multiple selection. If multiple
selection is on, the output parameter filename is a cell array of character vectors containing the full
paths to the selected files.
Data Types: logical | char

Output Arguments
filename — Full path of image or images selected by the user
character vector | cell array of character vectors

Full path of image or images selected by the user, returned as a character vector or cell array of
character vectors. If the user clicked Cancel, filename is an empty character vector ('').

user_canceled — User clicked Cancel
false | true

User clicked Cancel, returned as a Boolean scalar. The value is true if the user clicked Cancel or
false if the user selected an image or images.

See Also
Image Viewer | imformats | imputfile | uigetfile

Introduced before R2006a

 imgetfile

1-1563

imgradient
Find gradient magnitude and direction of 2-D image

Syntax
[Gmag,Gdir] = imgradient(I)
[Gmag,Gdir] = imgradient(I,method)
[Gmag,Gdir] = imgradient(Gx,Gy)

Description
[Gmag,Gdir] = imgradient(I) returns the gradient magnitude, Gmag, and the gradient
direction, Gdir, of the 2-D grayscale or binary image I.

[Gmag,Gdir] = imgradient(I,method) returns the gradient magnitude and direction using the
specified method.

[Gmag,Gdir] = imgradient(Gx,Gy) returns the gradient magnitude and direction from the
directional gradients Gx and Gy in the x and y directions, respectively.

Examples

Calculate Gradient Magnitude and Direction Using Prewitt Method

Read an image into workspace.

I = imread('coins.png');

Calculate the gradient magnitude and direction, specifying the Prewitt gradient operator.

[Gmag, Gdir] = imgradient(I,'prewitt');

Display the gradient magnitude and direction.

figure
imshowpair(Gmag, Gdir, 'montage');
title('Gradient Magnitude, Gmag (left), and Gradient Direction, Gdir (right), using Prewitt method')

1 Functions

1-1564

Calculate Gradient Magnitude and Direction Using Directional Gradients

Read an image into workspace.

I = imread('coins.png');

Calculate the x- and y-directional gradients. By default, imgradientxy uses the Sobel gradient
operator.

[Gx,Gy] = imgradientxy(I);

Display the directional gradients.

imshowpair(Gx,Gy,'montage')
title('Directional Gradients Gx and Gy, Using Sobel Method')

 imgradient

1-1565

Calculate the gradient magnitude and direction using the directional gradients.

[Gmag,Gdir] = imgradient(Gx,Gy);

Display the gradient magnitude and direction.

imshowpair(Gmag,Gdir,'montage')
title('Gradient Magnitude (Left) and Gradient Direction (Right)')

Input Arguments
I — Input image
2-D grayscale image | 2-D binary image

1 Functions

1-1566

Input image, specified as a 2-D grayscale or 2-D binary image.
Data Types: single | double | int8 | int32 | uint8 | uint16 | uint32 | logical

method — Gradient operator
'sobel' (default) | 'prewitt' | 'central' | 'intermediate' | 'roberts'

Gradient operator, specified as one of the following values.

Method Description
'sobel' Sobel gradient operator. The gradient of a pixel is a weighted sum

of pixels in the 3-by-3 neighborhood. For gradients in the vertical
(y) direction, the weights are:

[1 2 1
 0 0 0
 -1 -2 -1]

In the x direction, the weights are transposed.
'prewitt' Prewitt gradient operator. The gradient of a pixel is a weighted

sum of pixels in the 3-by-3 neighborhood. For gradients in the
vertical (y) direction, the weights are:

[1 1 1
 0 0 0
 -1 -1 -1]

In the x direction, the weights are transposed.
'central' Central difference gradient. The gradient of a pixel is a weighted

difference of neighboring pixels. In the y direction, dI/dy =
(I(y+1) - I(y-1))/2.

'intermediate' Intermediate difference gradient. The gradient of a pixel is the
difference between an adjacent pixel and the current pixel. In the
y direction, dI/dy = I(y+1) - I(y).

'roberts' Roberts gradient operator. The gradient of a pixel is the
difference between diagonally adjacent pixels. For gradients in
one direction, the weights are:

[1 0
 0 -1]

In the orthogonal direction, the weights are flipped along the
vertical axis.

Data Types: char | string

Gx — Horizontal gradient
numeric matrix

Horizontal gradient, specified as a numeric matrix. The horizontal (x) axis points in the direction of
increasing column subscripts. You can use the imgradientxy function to calculate Gx.
Data Types: single | double | int8 | int32 | uint8 | uint16 | uint32

 imgradient

1-1567

Gy — Vertical gradient
numeric matrix

Vertical gradient, specified as a numeric matrix of the same size as Gx. The vertical (y) axis points in
the direction of increasing row subscripts. You can use the imgradientxy function to calculate Gy.
Data Types: single | double | int8 | int32 | uint8 | uint16 | uint32

Output Arguments
Gmag — Gradient magnitude
numeric matrix

Gradient magnitude, returned as a numeric matrix of the same size as image I or the directional
gradients Gx and Gy. Gmag is of class double, unless the input image or directional gradients are of
data type single, in which case it is of data type single.
Data Types: double | single

Gdir — Gradient direction
numeric matrix

Gradient direction, returned as a numeric matrix of the same size as gradient magnitude Gmag. Gdir
contains angles in degrees within the range [-180, 180] measured counterclockwise from the positive
x-axis. (The x-axis points in the direction of increasing column subscripts.) Gdir is of class double,
unless the input image I or directional gradients are of data type single, in which case it is of data
type single.
Data Types: double | single

Tips
• When applying the gradient operator at the boundaries of the image, values outside the bounds of

the image are assumed to equal the nearest image border value. This is similar to the
'replicate' boundary option in imfilter.

Algorithms
The algorithmic approach taken in imgradient for each of the listed gradient methods is to first
compute directional gradients, Gx and Gy, in the x and y directions, respectively. The horizontal (x)
axis points in the direction of increasing column subscripts. The vertical (y) axis points in the
direction of increasing row subscripts. The gradient magnitude and direction are then computed from
their orthogonal components Gx and Gy.

imgradient does not normalize the gradient output. If the range of the gradient output image has to
match the range of the input image, consider normalizing the gradient image, depending on the
method argument used. For example, with a Sobel kernel, the normalization factor is 1/8, for Prewitt,
it is 1/6, and for Roberts it is 1/2.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Functions

1-1568

Usage notes and limitations:

• imgradient supports the generation of C code (requires MATLAB Coder). Note that if you choose
the generic MATLAB Host Computer target platform, imgradient generates code that uses a
precompiled, platform-specific shared library. Use of a shared library preserves performance
optimizations but limits the target platforms for which code can be generated. For more
information, see “Types of Code Generation Support in Image Processing Toolbox”.

• The value of method must be a compile time constant.
• The generated code does not always produce the same results as MATLAB for the Gdir output.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on a GPU”.

See Also
imgradientxy | imgradientxyz | imgradient3 | edge | fspecial

Introduced in R2012b

 imgradient

1-1569

imgradient3
Find gradient magnitude and direction of 3-D image

Syntax
[Gmag,Gazimuth,Gelevation] = imgradient3(I)
[Gmag,Gazimuth,Gelevation] = imgradient3(I,method)
[Gmag,Gazimuth,Gelevation] = imgradient3(Gx,Gy,Gz)

Description
[Gmag,Gazimuth,Gelevation] = imgradient3(I) returns the gradient magnitude, Gmag,
gradient direction, Gazimuth, and gradient elevation Gelevation of the 3-D grayscale or binary
image I.

[Gmag,Gazimuth,Gelevation] = imgradient3(I,method) calculates the gradient magnitude,
direction, and elevation using the specified method.

[Gmag,Gazimuth,Gelevation] = imgradient3(Gx,Gy,Gz) calculates the gradient magnitude,
direction, and elevation from the directional gradients Gx, Gy, and Gz in the x, y, and z directions,
respectively.

Examples

Compute 3-D Gradient Magnitude and Direction Using Sobel Method

Read 3-D data into the workspace and prepare it for processing.

volData = load('mri');
sz = volData.siz;
vol = squeeze(volData.D);

Calculate the gradients.

[Gmag, Gaz, Gelev] = imgradient3(vol);

Visualize the gradient magnitude as a montage.

figure,
montage(reshape(Gmag,sz(1),sz(2),1,sz(3)),'DisplayRange',[])
title('Gradient magnitude')

1 Functions

1-1570

Input Arguments
I — Input image
3-D grayscale image | 3-D binary image

Input image, specified as a 3-D grayscale image or 3-D binary image.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

method — Gradient operator
'sobel' (default) | 'prewitt' | 'central' | 'intermediate'

Gradient operator, specified as one of the following values.

 imgradient3

1-1571

Value Meaning
'sobel' Sobel gradient operator. The gradient of a pixel is a weighted sum of pixels in the

3-by-3-by-3 neighborhood. For example, in the depth (z) direction, the weights in
the three planes are:

plane z-1 plane z plane z+1
[1 3 1
 3 6 3
 1 3 1]

[0 0 0
 0 0 0
 0 0 0]

[-1 -3 -1
 -3 -6 -3
 -1 -3 -1]

'prewitt' Prewitt gradient operator. The gradient of a pixel is a weighted sum of pixels in the
3-by-3-by-3 neighborhood. For example, in the depth (z) direction, the weights in
the three planes are:

plane z-1 plane z plane z+1
[1 1 1
 1 1 1
 1 1 1]

[0 0 0
 0 0 0
 0 0 0]

[-1 -1 -1
 -1 -1 -1
 -1 -1 -1]

'central' Central difference gradient. The gradient of a pixel is a weighted difference of
neighboring pixels. For example, in the depth (z) direction, dI/dz = (I(z+1) -
I(z-1))/2.

'intermediat
e'

Intermediate difference gradient. The gradient of a pixel is the difference between
an adjacent pixel and the current pixel. For example, in the depth (z) direction,
dI/dz = I(z+1) - I(z).

When applying the gradient operator at the boundaries of the image, imgradient3 assumes values
outside the bounds of the image equal the nearest image border value. This behavior is similar to the
'replicate' boundary option in imfilter.
Data Types: char | string

Gx — Horizontal gradient
3-D numeric array

Horizontal gradient, specified as a 3-D numeric array. The horizontal (x) axis points in the direction of
increasing column subscripts. You can use the imgradientxyz function to calculate Gx.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Gy — Vertical gradient
3-D numeric array

Vertical gradient, specified as a 3-D numeric array of the same size as Gx. The vertical (y) axis points
in the direction of increasing row subscripts. You can use the imgradientxyz function to calculate
Gy.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Gz — Depth gradient
3-D numeric array

Depth gradient, specified as a 3-D numeric array of the same size as Gx. The depth (z) axis points in
the direction of increasing plane subscripts. You can use the imgradientxyz function to calculate
Gz.

1 Functions

1-1572

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
Gmag — Magnitude of the gradient vector
3-D numeric array

Magnitude of the gradient vector, returned as a 3-D numeric array of the same size as image I or the
directional gradients, Gx, Gy, and Gz.

Gmag is of class double, unless the input image or any of the directional gradients are of class
single. In this case, Gmag is of class single.

Gazimuth — Azimuthal angle
3-D numeric array

Azimuthal angle, returned as a 3-D numeric array of the same size as the gradient magnitude, Gmag.
Gazimuth contains angles in degrees within the range [-180, 180] measured between positive x-axis
and the projection of the point on the x-y plane.

Gazimuth is of class double, unless the input image or any of the directional gradients are of class
single. In this case, Gmag is of class single.

 imgradient3

1-1573

Gazimuth and Gelevation

Gelevation — Gradient elevation
3-D numeric array

Gradient elevation, returned as a 3-D numeric array of the same size as the gradient magnitude,
Gmag. Gelevation contains angles in degrees within the range [-90, 90] measured between the
radial line and the x-y plane.

Gelevation is of class double, unless the input image or any of the directional gradients are of
class single. In this case, Gmag is of class single.

Algorithms
imgradient3 does not normalize the gradient output. If the range of the gradient output image has
to match the range of the input image, consider normalizing the gradient image, depending on the
method argument used. For example, with a Sobel kernel, the normalization factor is 1/44 and for
Prewitt, the normalization factor is 1/18.

1 Functions

1-1574

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imgradient3 supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

• When generating code, the input argument method must be a compile-time constant.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• When generating code, the input argument method must be a compile-time constant.

See Also
imgradientxyz | imgradient | imgradientxy

Introduced in R2016a

 imgradient3

1-1575

imgradientxy
Find directional gradients of 2-D image

Syntax
[Gx,Gy] = imgradientxy(I)
[Gx,Gy] = imgradientxy(I,method)

Description
[Gx,Gy] = imgradientxy(I) returns the directional gradients, Gx and Gy of the grayscale or
binary image I.

[Gx,Gy] = imgradientxy(I,method) returns the directional gradients using the specified
method.

Examples

Calculate Directional Gradients Using Prewitt Method

Read an image into workspace.

I = imread('coins.png');

Calculate the x- and y-directional gradients using the Prewitt gradient operator.

[Gx, Gy] = imgradientxy(I,'prewitt');

Display the directional gradients.

figure
imshowpair(Gx, Gy, 'montage');
title('Directional Gradients: x-direction, Gx (left), y-direction, Gy (right), using Prewitt method')

1 Functions

1-1576

Calculate Gradient Magnitude and Direction Using Directional Gradients

Read an image into workspace.

I = imread('coins.png');

Calculate the x- and y-directional gradients. By default, imgradientxy uses the Sobel gradient
operator.

[Gx,Gy] = imgradientxy(I);

Display the directional gradients.

imshowpair(Gx,Gy,'montage')
title('Directional Gradients Gx and Gy, Using Sobel Method')

 imgradientxy

1-1577

Calculate the gradient magnitude and direction using the directional gradients.

[Gmag,Gdir] = imgradient(Gx,Gy);

Display the gradient magnitude and direction.

imshowpair(Gmag,Gdir,'montage')
title('Gradient Magnitude (Left) and Gradient Direction (Right)')

Input Arguments
I — Input image
2-D grayscale image | 2-D binary image

1 Functions

1-1578

Input image, specified as a 2-D grayscale image or 2-D binary image.
Data Types: single | double | int8 | int32 | uint8 | uint16 | uint32 | logical

method — Gradient operator
'sobel' (default) | 'prewitt' | 'central' | 'intermediate'

Gradient operator, specified as one of the following values.

Method Description
'sobel' Sobel gradient operator. The gradient of a pixel is a weighted sum

of pixels in the 3-by-3 neighborhood. In the vertical (y) direction,
the weights are:

[1 2 1
 0 0 0
 -1 -2 -1]

In the x direction, the weights are transposed.
'prewitt' Prewitt gradient operator. The gradient of a pixel is a weighted

sum of pixels in the 3-by-3 neighborhood. In the vertical (y)
direction, the weights are:

[1 1 1
 0 0 0
 -1 -1 -1]

In the x direction, the weights are transposed.
'central' Central difference gradient. The gradient of a pixel is a weighted

difference of neighboring pixels. In the y direction, dI/dy =
(I(y+1) - I(y-1))/2.

'intermediate' Intermediate difference gradient. The gradient of a pixel is the
difference between an adjacent pixel and the current pixel. In the
y direction, dI/dy = I(y+1) - I(y).

Data Types: char | string

Output Arguments
Gx — Horizontal gradient
numeric matrix

Horizontal gradient, returned as a numeric matrix of the same size as image I. The horizontal (x) axis
points in the direction of increasing column subscripts. Gx is of data type double, unless the input
image I is of data type single, in which case Gx is of data type single.
Data Types: single | double

Gy — Vertical gradient
numeric matrix

Vertical gradient, returned as a numeric matrix of the same size as image I. The vertical (y) axis
points in the direction of increasing row subscripts. Gy is of data type double, unless the input image
I is of data type single, in which case Gy is of data type single.

 imgradientxy

1-1579

Data Types: single | double

Tips
• When applying the gradient operator at the boundaries of the image, values outside the bounds of

the image are assumed to equal the nearest image border value.

Algorithms
The algorithmic approach is to compute directional gradients with respect to the x-axis and y-axis.
The x-axis is defined along the columns going right and the y-axis is defined along the rows going
down.

imgradientxy does not normalize the gradient output. If the range of the gradient output image has
to match the range of the input image, consider normalizing the gradient image, depending on the
method argument used. For example, with a Sobel kernel, the normalization factor is 1/8, and for
Prewitt, it is 1/6.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imgradientxy supports the generation of C code (requires MATLAB Coder). Note that if you
choose the generic MATLAB Host Computer target platform, imgradientxy generates code
that uses a precompiled, platform-specific shared library. Use of a shared library preserves
performance optimizations but limits the target platforms for which code can be generated. For
more information, see “Types of Code Generation Support in Image Processing Toolbox”.

• The value of method must be a compile time constant.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on a GPU”.

See Also
edge | fspecial | imgradient | imgradient3 | imgradientxyz

Introduced in R2012b

1 Functions

1-1580

imgradientxyz
Find directional gradients of 3-D image

Syntax
[Gx,Gy,Gz] = imgradientxyz(I)
[Gx,Gy,Gz] = imgradientxyz(I,method)

Description
[Gx,Gy,Gz] = imgradientxyz(I) returns the directional gradients Gx, Gy, and Gz of the 3-D
grayscale or binary image I.

[Gx,Gy,Gz] = imgradientxyz(I,method) calculates the directional gradients using the
specified method.

Examples

Compute 3-D Directional Image Gradients Using Sobel Method

Read 3-D data and prepare it for processing.

volData = load('mri');
sz = volData.siz;
vol = squeeze(volData.D);

Calculate the directional gradients.

[Gx, Gy, Gz] = imgradientxyz(vol);

Visualize the directional gradients as a montage.

figure, montage(reshape(Gx,sz(1),sz(2),1,sz(3)),'DisplayRange',[])
title('Gradient magnitude along X')

 imgradientxyz

1-1581

figure, montage(reshape(Gy,sz(1),sz(2),1,sz(3)),'DisplayRange',[])
title('Gradient magnitude along Y')

1 Functions

1-1582

figure, montage(reshape(Gz,sz(1),sz(2),1,sz(3)),'DisplayRange',[])
title('Gradient magnitude along Z')

 imgradientxyz

1-1583

Input Arguments
I — Input image
3-D grayscale image | 3-D binary image

Input image, specified as a 3-D grayscale image or 3-D binary image.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

method — Gradient operator
'sobel' (default) | 'prewitt' | 'central' | 'intermediate'

Gradient operator, specified as one of the following values.

1 Functions

1-1584

Value Meaning
'sobel' Sobel gradient operator. The gradient of a pixel is a weighted sum of pixels in the

3-by-3-by-3 neighborhood. For example, in the depth (z) direction, the weights in
the three planes are:

plane z-1 plane z plane z+1
[1 3 1
 3 6 3
 1 3 1]

[0 0 0
 0 0 0
 0 0 0]

[-1 -3 -1
 -3 -6 -3
 -1 -3 -1]

'prewitt' Prewitt gradient operator. The gradient of a pixel is a weighted sum of pixels in the
3-by-3-by-3 neighborhood. For example, in the depth (z) direction, the weights in
the three planes are:

plane z-1 plane z plane z+1
[1 1 1
 1 1 1
 1 1 1]

[0 0 0
 0 0 0
 0 0 0]

[-1 -1 -1
 -1 -1 -1
 -1 -1 -1]

'central' Central difference gradient. The gradient of a pixel is a weighted difference of
neighboring pixels. For example, in the depth (z) direction, dI/dz = (I(z+1) -
I(z-1))/2.

'intermediat
e'

Intermediate difference gradient. The gradient of a pixel is the difference between
an adjacent pixel and the current pixel. For example, in the depth (z) direction,
dI/dz = I(z+1) - I(z).

When applying the gradient operator at the boundaries of the image, imgradientxyz assumes
values outside the bounds of the image are equal to the nearest image border value. This behavior is
similar to the 'replicate' boundary option in imfilter.
Data Types: char | string

Output Arguments
Gx — Horizontal gradient
3-D numeric array

Horizontal gradient, returned as a numeric matrix of the same size as image I. The horizontal (x) axis
points in the direction of increasing column subscripts. Gx is of class double, unless the input image
I is of class single, in which case Gx is of class single.
Data Types: single | double

Gy — Vertical gradient
3-D numeric array

Vertical gradient, returned as a numeric matrix of the same size as image I. The vertical (y) axis
points in the direction of increasing row subscripts. Gy is of class double, unless the input image I is
of class single, in which case Gy is of class single.
Data Types: single | double

Gz — Depth gradient
3-D numeric array

 imgradientxyz

1-1585

Depth gradient, returned as a 3-D numeric array of the same size as image I. The depth (z) axis
points in the direction of increasing plane subscripts. Gz is of class double, unless the input image I
is of class single, in which case Gz is of class single.

Algorithms
imgradientxyz does not normalize the gradient output. If the range of the gradient output image
has to match the range of the input image, consider normalizing the gradient image, depending on
the method argument used. For example, with a Sobel kernel, the normalization factor is 1/44, for
Prewitt, the normalization factor is 1/18.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imgradientxyz supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

• When generating code, the input argument method must be a compile-time constant.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• When generating code, the input argument method must be a compile-time constant.

See Also
imgradient3 | imgradient | imgradientxy

Introduced in R2016a

1 Functions

1-1586

imguidedfilter
Guided filtering of images

Syntax
B = imguidedfilter(A,G)
B = imguidedfilter(A)
B = imguidedfilter(___ ,Name,Value)

Description
B = imguidedfilter(A,G) filters binary, grayscale, or RGB image A using a filter guided by image
G.

B = imguidedfilter(A) filters input image A under self-guidance, using A itself as the guidance
image. This syntax can be used for edge-preserving smoothing of image A.

B = imguidedfilter(___ ,Name,Value) filters the image A using name-value pairs to control
aspects of guided filtering.

Examples

Perform Edge-Preserving Smoothing Using Guided Filtering

Read and display an image.

A = imread('pout.tif');
imshow(A)

 imguidedfilter

1-1587

Smooth the image using imguidedfilter. In this syntax, imguidedfilter uses the image itself as
the guidance image.

Iguided = imguidedfilter(A);

For comparison, smooth the original image using a Gaussian filter defined by imgaussfilt. Set the
standard deviation of the filter to 2.5 so that the degree of smoothing approximately matches that of
the guided filter.

Igaussian = imgaussfilt(A,2);

Display the result of guided filtering and the result of Gaussian filtering. Observe that the flat regions
of the two filtered images, such as the jacket and the face, have similar amounts of smoothing.
However, the guided filtered image better preserves the sharpness of edges, such as around the
trellis and the collar of the white shirt.

montage({Iguided,Igaussian})

1 Functions

1-1588

Input Arguments
A — Image to be filtered
binary image | grayscale image | RGB image

Image to be filtered, specified as a binary, grayscale, or RGB image.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

G — Image to use as a guide during filtering
binary image | grayscale image | RGB image

Image to use as a guide during filtering, specified as a binary, grayscale, or RGB image of the same
height and width as image A.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: Ismooth = imguidedfilter(A,'NeighborhoodSize',[4 4]);

 imguidedfilter

1-1589

NeighborhoodSize — Size of the rectangular neighborhood around each pixel used in
guided filtering
[5 5] (default) | positive integer | 2-element vector of positive integers

Size of the rectangular neighborhood around each pixel used in guided filtering, specified as a
positive integer or a 2-element vector of positive integers. If you specify a scalar value, such as Q,
then the neighborhood is a square of size [Q Q]. Do not specify a value greater than the size of the
image.
Example: 'NeighborhoodSize',[7 7]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

DegreeOfSmoothing — Amount of smoothing
positive number

Amount of smoothing in the output image, specified as a positive number. If you specify a small value,
only neighborhoods with small variance (uniform areas) will get smoothed and neighborhoods with
larger variance (such as around edges) will not be smoothed. If you specify a larger value, high
variance neighborhoods, such as stronger edges, will get smoothed in addition to the relatively
uniform neighborhoods. Start with the default value, check the results, and adjust the default up or
down to achieve the effect you desire.

If you specify a guide image G, then the default value of DegreeOfSmoothing depends on the data
type of G, and is calculated as 0.01*diff(getrangefromclass(G)).^2. For example, the default
degree of smoothing is 650.25 for images of data type uint8, and the default is 0.01 for images of
data type double with pixel values in the range [0, 1]. If you do not specify a guide image, then the
default value depends on the data type of image A.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
B — Filtered image
numeric array

Filtered image, returned as a numeric array of the same size and data type as A

Tips
• The DegreeOfSmoothing argument specifies a soft threshold on variance for the given

neighborhood. If a pixel's neighborhood has variance much lower than the threshold, it will see
some amount of smoothing. If a pixel's neighborhood has variance much higher than the threshold
it will have little to no smoothing.

• Input images A and G can be of different classes. If either A or G is of class integer or logical, then
imguidedfilter converts them to floating-point precision for internal computation.

• Input images A and G can have different number of channels.

• If both A and G are RGB images, then imguidedfilter filters each channel of A
independently using the corresponding channel of G.

• If A is an RGB image and G is a single-channel image, then imguidedfilter filters each
channel of A independently using the same guidance image, G.

1 Functions

1-1590

• If A is a single-channel image and G is an RGB image, then imguidedfilter filters A using
the combined color statistics of all the three channels of G.

References
[1] Kaiming He, Jian Sun, Xiaoou Tang. Guided Image Filtering. IEEE Transactions on Pattern

Analysis and Machine Intelligence, Volume 35, Issue 6, pp. 1397-1409, June 2013.

See Also
edge | imdiffuseest | imfilter | imgaussfilt | locallapfilt | imnlmfilt | imsharpen

Topics
“Perform Flash/No-flash Denoising with Guided Filter”
“What is Guided Image Filtering?”

Introduced in R2014a

 imguidedfilter

1-1591

imhandles
Get all image objects

Syntax
himage = imhandles(hparent)

Description
himage = imhandles(hparent) returns all of the image objects whose ancestor is hparent.
imhandles returns an error if the image objects do not have the same figure as their parent.
imhandles ignores color bars.

Examples

Get Images From Parent Graphics Objects

Display an image.

imshow('kobi.png')

1 Functions

1-1592

Return the image object in the current axes.

imageobj = imhandles(gca)

imageobj =
 Image with properties:

 CData: [1224x1632x3 uint8]
 CDataMapping: 'direct'

 Show all properties

Display two images in the same figure and use imhandles to get both of the image objects in the
figure.

figure
subplot(1,2,1)
imshow('kobi.png')
subplot(1,2,2)
imshow('sherlock.jpg')

 imhandles

1-1593

imageobjs = imhandles(gcf)

imageobjs =
 2x1 Image array:

 Image
 Image

Inspect the first image in the imageobjs array.

imageobjs(1)

ans =
 Image with properties:

 CData: [640x960x3 uint8]
 CDataMapping: 'direct'

 Show all properties

Input Arguments
hparent — Parent graphics object
figure | axes | uipanel | image

1 Functions

1-1594

Parent graphics object, specified as a handle to a figure, axes, uipanel, or image graphics objects.

Output Arguments
himage — Image objects
image | array of images

Image objects whose ancestor is hparent, returned as an image or array of images.

See Also
imgca | imgcf

Introduced before R2006a

 imhandles

1-1595

imhist
Histogram of image data

Syntax
[counts,binLocations] = imhist(I)
[counts,binLocations] = imhist(I,n)
[counts,binLocations] = imhist(X,cmap)

imhist(___)

Description
[counts,binLocations] = imhist(I) calculates the histogram for the grayscale image I. The
imhist function returns the histogram counts in counts and the bin locations in binLocations.
The number of bins in the histogram is determined by the image type.

[counts,binLocations] = imhist(I,n) specifies the number of bins, n, used to calculate the
histogram.

[counts,binLocations] = imhist(X,cmap) calculates the histogram for the indexed image X
with colormap cmap. The histogram has one bin for each entry in the colormap.

imhist(___) displays a plot of the histogram. If the input image is an indexed image, then the
histogram shows the distribution of pixel values above a color bar of the colormap cmap.

Examples

Calculate Histogram

Read a grayscale image into the workspace.

I = imread('pout.tif');

Display a histogram of the image. Since I is grayscale, by default the histogram will have 256 bins.

imhist(I)

1 Functions

1-1596

Display the Histogram of a 3-D Intensity Image

Load a 3-D dataset.

load mristack

Display the histogram of the data. Since the image is grayscale, imhist uses 256 bins by default.

imhist(mristack)

 imhist

1-1597

Input Arguments
I — Grayscale image
numeric array

Grayscale image, specified as a numeric array of any dimension. If the image has data type single
or double, then values must be in the range [0, 1]. If I has values outside the range [0, 1], then you
can use the rescale function to rescale values to the expected range.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

n — Number of bins
positive integer

Number of bins, specified as a positive integer. If I is a grayscale image, then imhist uses a default
value of 256 bins. If I is a binary image, then imhist uses two bins.
Example: 50
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

X — Indexed image
numeric array

Indexed image, specified as a numeric array of any dimension.

1 Functions

1-1598

Data Types: single | double | uint8 | uint16 | logical

cmap — Colormap
c-by-3 numeric matrix

Colormap associated with indexed image X, specified as a c-by-3 numeric matrix with values in the
range [0, 1]. Each row is a three-element RGB triplet that specifies the red, green, and blue
components of a single color of the colormap.The colormap must be at least as long as the largest
index in X.
Data Types: double

Output Arguments
counts — Histogram counts
numeric array

Histogram counts, returned as a numeric array. If the histogram is computed for an indexed image, X,
then the length of counts is the same as the length of the colormap, cmap.

binLocations — Bin locations
numeric array

Bin locations, returned as a numeric array.

Tips
• For grayscale images, the n bins of the histogram are each half-open intervals of width A/(n−1). In

particular, the pth bin is the half-open interval

A(p− 1.5)
(n− 1) − B ≤ x < A(p− 0.5)

(n− 1) − B,

where x is the intensity value. The scale factor A and offset B depend on the type of the image
class as follows:

Data Type A B
double 1 0
single 1 0
int8 255 128
int16 65,535 32,768
int32 4,294,967,295 2,147,483,648
uint8 255 0
uint16 65,535 0
uint32 4,294,967,295 0
logical 1 0

• To display the histogram from counts and binLocations, use the command
stem(binLocations,counts).

 imhist

1-1599

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imhist supports the generation of C code (requires MATLAB Coder). Note that if you choose the
generic MATLAB Host Computer target platform, imhist generates code that uses a
precompiled, platform-specific shared library. Use of a shared library preserves performance
optimizations but limits the target platforms for which code can be generated. For more
information, see “Types of Code Generation Support in Image Processing Toolbox”.

• If the first input is a binary image, then n must be a scalar constant of value 2 at compile time.
• Nonprogrammatic syntaxes are not supported. For example, the syntax imhist(I), where

imhist displays the histogram, is not supported.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• If the first input is a binary image, then n must be a scalar constant of value 2 at compile time.
• Nonprogrammatic syntaxes are not supported. For example, the syntax imhist(I), where

imhist displays the histogram, is not supported.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• imhist does not support indexed images on a GPU.
• When you omit output arguments on a GPU, imhist does not display the histogram. In this case,

the function returns the histogram counts in the variable ans and does not return the histogram
bin locations.

For more information, see “Image Processing on a GPU”.

See Also
histeq | histogram | stem

Introduced before R2006a

1 Functions

1-1600

imhistmatch
Adjust histogram of 2-D image to match histogram of reference image

Syntax
J = imhistmatch(I,ref)
J = imhistmatch(I,ref,nbins)
J = imhistmatch(___ ,Name,Value)
[J,hgram] = imhistmatch(___)

Description
J = imhistmatch(I,ref) transforms the 2-D grayscale or truecolor image I returning output
image J whose histogram approximately matches the histogram of the reference image ref.

• If both I and ref are truecolor images, then imhistmatch matches each color channel of I
independently to the corresponding color channel of ref.

• If I is a truecolor RGB image and ref is a grayscale image, then imhistmatch matches each
channel of I against the single histogram derived from ref.

• If I is a grayscale image, then ref must also be a grayscale image.

Images I and ref can be any of the permissible data types and need not be equal in size.

J = imhistmatch(I,ref,nbins) uses nbins equally spaced bins within the appropriate range
for the given image data type. The returned image J has no more than nbins discrete levels.

• If the data type of the image is either single or double, then the histogram range is [0, 1].
• If the data type of the image is uint8, then the histogram range is [0, 255].
• If the data type of the image is uint16, then the histogram range is [0, 65535].
• If the data type of the image is int16, then the histogram range is [-32768, 32767].

J = imhistmatch(___ ,Name,Value) uses name-value pairs to change the behavior of the
histogram matching algorithm.

[J,hgram] = imhistmatch(___) returns the histogram of the reference image ref used for
matching in hgram. hgram is a 1-by-nbins (when ref is grayscale) or a 3-by-nbins (when ref is
truecolor) matrix, where nbins is the number of histogram bins. Each row in hgram stores the
histogram of a single color channel of ref.

Examples

Match Histogram of Aerial Images

These aerial images, taken at different times, represent overlapping views of the same terrain in
Concord, Massachusetts. This example demonstrates that input images A and Ref can be of different
sizes and image types.

 imhistmatch

1-1601

Load an RGB image and a reference grayscale image.

A = imread('concordaerial.png');
Ref = imread('concordorthophoto.png');

Get the size of A.

size(A)

ans = 1×3

 2036 3060 3

Get the size of Ref.

size(Ref)

ans = 1×2

 2215 2956

Note that image A and Ref are different in size and type. Image A is a truecolor RGB image, while
image Ref is a grayscale image. Both images are of data type uint8.

Generate the histogram matched output image. The example matches each channel of A against the
single histogram of Ref. Output image B takes on the characteristics of image A - it is an RGB image
whose size and data type is the same as image A. The number of distinct levels present in each RGB
channel of image B is the same as the number of bins in the histogram built from grayscale image
Ref. In this example, the histogram of Ref and B have the default number of bins, 64.

B = imhistmatch(A,Ref);

Display the RGB image A, the reference image Ref, and the histogram matched RGB image B. The
images are resized before display.

imshow(A)
title('RGB Image with Color Cast')

1 Functions

1-1602

imshow(Ref)
title('Reference Grayscale Image')

 imhistmatch

1-1603

imshow(B)
title('Histogram Matched RGB Image')

1 Functions

1-1604

Histogram-Match Image Using Polynomial Method

Read a color image and a reference image. To demonstrate the polynomial method, assign the
reference image to be the darker of the two images.

I = imread('office_4.jpg');
ref = imread('office_2.jpg');
montage({I,ref})
title('Input Image (Left) vs Reference Image (Right)');

 imhistmatch

1-1605

Use the polynomial method to adjust the intensity of image I so that it matches the histogram of
reference image ref. For comparison, also adjust the intensity of image I using the uniform method.

J = imhistmatch(I,ref,'method','polynomial');
K = imhistmatch(I,ref,'method','uniform');
montage({J,K})
title('Histogram-Matched Image Using Polynomial Method (Left) vs Uniform Method (Right)');

The histogram-matched image using the uniform method introduces false colors in the sky and road.
The histogram-matched image using the polynomial method does not exhibit this artifact.

Match Histogram with Multiple Bin Values

This example shows how you can vary the number of bins in the target histogram to improve
histogram equalization.

1 Functions

1-1606

Load two images of data type uint8 into the workspace. The images were taken with a digital
camera and represent two different exposures of the same scene. A is an underexposed image and
appears dark. ref is a reference image with good exposure and brightness.

A = imread('office_2.jpg');
ref = imread('office_4.jpg');

Display the images in a montage.

montage({A,ref})
title('Dark Image (Left) and Reference Image (Right)')

Display the histogram of each color channel using 256 bins. You can use the helper function,
displayHistogramChannels, that is included with the example.

displayHistogramChannels(A,ref)

Image A, being the darker image, has most of its pixels in the lower bins. The reference image, ref,
fully populates all 256 bins values in all three RGB channels.

 imhistmatch

1-1607

Count the number of unique 8-bit level values for each color channel of the dark and reference image.
You can use the helper function, countUniqueValues, that is included with the example.

numVals = countUniqueValues(A,ref);
table(numVals(:,1),numVals(:,2),numVals(:,3), ...
 'VariableNames',["Red" "Green" "Blue"], ...
 'RowNames',["A" "ref"])

ans=2×3 table
 Red Green Blue
 ___ _____ ____

 A 205 193 224
 ref 256 256 256

Equalize the histogram of the dark image using three different values of nbins: 64, 128 and 256. 64
is the default number of bins and 256 is the maximum number of bins for uint8 pixel data.

[B64,hgram64] = imhistmatch(A,ref,64);
[B128,hgram128] = imhistmatch(A,ref,128);
[B256,hgram256] = imhistmatch(A,ref,256);

figure
montage({B64,B128,B256},'Size',[1 3])
title('Output Image B64 | Output Image B128 | Output Image B256')

Display the histogram of each color channel using 256 bins. You can use the helper function,
displayThreeHistogramChannels, that is included with the example.

displayThreeHistogramChannels(B64,B128,B256)

1 Functions

1-1608

Count the number of unique 8-bit level values for each color channel of the three histogram equalized
images. As nbins increases, the number of levels in each RGB channel of output image B also
increases.

numVals = countUniqueValues(B64,B128,B256);
table(numVals(:,1),numVals(:,2),numVals(:,3), ...
 'VariableNames',["Red" "Green" "Blue"], ...
 'RowNames',["B64" "B128" "B256"])

ans=3×3 table
 Red Green Blue
 ___ _____ ____

 B64 57 60 58
 B128 101 104 104
 B256 134 135 136

Match Histogram of 16-Bit Grayscale MRI Image

This example shows how to perform histogram matching with different numbers of bins.

Load a 16-bit DICOM image of a knee imaged via MRI.

K = dicomread('knee1.dcm'); % read in original 16-bit image
LevelsK = unique(K(:)); % determine number of unique code values
disp(['image K: ',num2str(length(LevelsK)),' distinct levels']);

image K: 448 distinct levels

disp(['max level = ' num2str(max(LevelsK))]);

max level = 473

disp(['min level = ' num2str(min(LevelsK))]);

min level = 0

All 448 discrete values are at low code values, which causes the image to look dark. To rectify this,
scale the image data to span the entire 16-bit range of [0, 65535].

 imhistmatch

1-1609

Kdouble = double(K); % cast uint16 to double
kmult = 65535/(max(max(Kdouble(:)))); % full range multiplier
Ref = uint16(kmult*Kdouble); % full range 16-bit reference image

Darken the reference image Ref to create an image A that can be used in the histogram matching
operation.

%Build concave bow-shaped curve for darkening |Ref|.
ramp = [0:65535]/65535;
ppconcave = spline([0 .1 .50 .72 .87 1],[0 .025 .25 .5 .75 1]);
Ybuf = ppval(ppconcave, ramp);
Lut16bit = uint16(round(65535*Ybuf));
% Pass image |Ref| through a lookup table (LUT) to darken the image.
A = intlut(Ref,Lut16bit);

View the reference image Ref and the darkened image A. Note that they have the same number of
discrete code values, but differ in overall brightness.

subplot(1,2,1)
imshow(Ref)
title('Ref: Reference Image')
subplot(1,2,2)
imshow(A)
title('A: Darkened Image');

Generate histogram-matched output images using histograms with different number of bins. First use
the default number of bins, 64. Then use the number of values present in image A, 448 bins.

1 Functions

1-1610

B16bit64 = imhistmatch(A(:,:,1),Ref(:,:,1)); % default: 64 bins

N = length(LevelsK); % number of unique 16-bit code values in image A.
B16bitUniq = imhistmatch(A(:,:,1),Ref(:,:,1),N);

View the results of the two histogram matching operations.

figure
subplot(1,2,1)
imshow(B16bit64)
title('B16bit64: 64 bins')
subplot(1,2,2)
imshow(Ref)
title(['B16bitUniq: ',num2str(N),' bins'])

Input Arguments
I — Input image
2-D truecolor image | 2-D grayscale image

Input image to be transformed, specified as a 2-D truecolor or grayscale image. The returned image
will take the data type class of the input image.
Data Types: single | double | int16 | uint8 | uint16

ref — Reference image whose histogram is the reference histogram
2-D truecolor image | 2-D grayscale image

 imhistmatch

1-1611

Reference image whose histogram is the reference histogram, specified as a 2-D truecolor or
grayscale image. The reference image provides the equally spaced nbins bin reference histogram
which output image J is trying to match.
Data Types: single | double | int16 | uint8 | uint16

nbins — Number of equally spaced bins in reference histogram
64 (default) | positive integer

Number of equally spaced bins in reference histogram, specified as a positive integer. In addition to
specifying the number of equally spaced bins in the histogram for image ref, nbins also represents
the upper limit of the number of discrete data levels present in output image J.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: imhistmatch(I,ref,'Method','polynomial') matches the histogram of image I to
that of reference image ref using the polynomial mapping technique.

Method — Mapping technique
'uniform' (default) | 'polynomial'

Mapping technique used to map the histogram of ref to image I, specified as the comma-separated
pair consisting of 'Method' and one of these values:

• 'uniform' — Use a histogram-based intensity function and histogram equalization.
• 'polynomial' — Calculate a cubic Hermite polynomial mapping function from the cumulative

histograms of the source and reference images. The polynomial method is useful when the
reference image is darker than the input image. In this situation, the polynomial method gives a
smoother color transition than the uniform method.

Output Arguments
J — Output image
2-D truecolor RGB image | 2-D grayscale image

Output image, returned as a 2-D truecolor or grayscale image. The output image is derived from
image I whose histogram is an approximate match to the histogram of input image ref built with
nbins equally-spaced bins. Image J is of the same size and data type as input image I. Input
argument nbins represents the upper limit of the number of discrete levels contained in image J.
Data Types: single | double | int16 | uint8 | uint16

hgram — Histogram counts derived from reference image ref
1-by-nbins vector | 3-by-nbins matrix

Histogram counts derived from reference image ref, specified as a vector or matrix. When ref is a
truecolor image, hgram is a 3-by-nbins matrix. When ref is a grayscale image, hgram is a 1-by-
nbins vector.
Data Types: double

1 Functions

1-1612

Algorithms
The objective of imhistmatch is to transform image I such that the histogram of image J matches
the histogram derived from image ref. It consists of nbins equally spaced bins which span the full
range of the image data type. A consequence of matching histograms in this way is that nbins also
represents the upper limit of the number of discrete data levels present in image J.

An important behavioral aspect of this algorithm to note is that as nbins increases in value, the
degree of rapid fluctuations between adjacent populated peaks in the histogram of image J tends to
increase. This can be seen in the following histogram plots taken from the 16–bit grayscale MRI
example.

An optimal value for nbins represents a trade-off between more output levels (larger values of
nbins) while minimizing peak fluctuations in the histogram (smaller values of nbins).

See Also
histeq | imadjust | imhist | imhistmatchn

Topics
“Contrast Enhancement Techniques”

Introduced in R2012b

 imhistmatch

1-1613

imhistmatchn
Adjust histogram of N-D image to match histogram of reference image

Syntax
B = imhistmatchn(A,ref)
B = imhistmatchn(A,ref,nbins)
[B,hgram] = imhistmatchn(___)

Description
B = imhistmatchn(A,ref) transforms the N-D grayscale image A and returns output image B
whose histogram approximately matches the histogram of the reference image ref. Both A and ref
must be grayscale images, but they do not need to have the same data type, size, or number of
dimensions.

B = imhistmatchn(A,ref,nbins) uses nbins equally spaced bins within the appropriate range
for the given image data type. The returned image B has no more than nbins discrete levels.

If the data type of the image is:

• single or double, the histogram range is [0, 1].
• uint8, the histogram range is [0, 255].
• uint16, the histogram range is [0, 65535].
• int16, the histogram range is [-32768, 32767].

[B,hgram] = imhistmatchn(___) returns the histogram of the reference image ref used for
matching in hgram. hgram is a 1-by-nbins vector, where nbins is the number of histogram bins.

Examples

Match Histograms of Multidimensional Images

Load an N-D grayscale image into the workspace. Also load a grayscale image to provide a reference
histogram.

load mri D
load mristack

Display the original volume as slices.

figure
montage(D,'DisplayRange',[])
title('Original 3-D Image')

1 Functions

1-1614

Reshape the reference as a stack of grayscale slices for display.

ref = reshape(mristack,[256,256,1,21]);

Display the reference volume as slices. To display correctly on the screen, the reference volume is
downsized by a factor of 0.5 using imresize.

ref_downsized = imresize(ref,0.5);
figure
montage(ref_downsized,'DisplayRange',[])
title('Reference 3-D Image')

 imhistmatchn

1-1615

Match the histogram of D to the histogram of the fullsize ref.

Dmatched = imhistmatchn(D,ref);

Display the output. Observe that the brightness levels of the output more closely match the reference
image than the original image.

figure
montage(Dmatched,'DisplayRange',[])
title('Histogram Matched MRI')

1 Functions

1-1616

Input Arguments
A — Input image
N-D grayscale image

Input image to be transformed, specified as an N-D grayscale image.
Data Types: single | double | int16 | uint8 | uint16

ref — Reference image whose histogram is the reference histogram
grayscale image

Reference image whose histogram is the reference histogram, specified as a grayscale image. The
reference image provides the equally spaced nbins bin reference histogram which output image B is
trying to match.
Data Types: single | double | int16 | uint8 | uint16

 imhistmatchn

1-1617

nbins — Number of equally spaced bins in reference histogram
64 (default) | positive integer

Number of equally spaced bins in reference histogram, specified as a positive integer. nbins also
represents the upper limit of the number of discrete data levels present in output image B.
Data Types: double

Output Arguments
B — Output image
N-D grayscale image

Output image, returned as an N-D grayscale image. The output image is derived from image A whose
histogram is an approximate match to the histogram of input image ref built with nbins equally
spaced bins. Image B is of the same size and data type as input image A. Input argument nbins
represents the upper limit of the number of discrete levels contained in image B.
Data Types: single | double | int16 | uint8 | uint16

hgram — Histogram counts derived from reference image ref
1-by-nbins vector

Histogram counts derived from reference image ref, returned as a 1-by-nbins vector.
Data Types: double

See Also
imhistmatch | histeq | imadjust | imhist

Introduced in R2017a

1 Functions

1-1618

imhmax
H-maxima transform

Syntax
J = imhmax(I,H)
J = imhmax(I,H,conn)

Description
J = imhmax(I,H) suppresses all maxima in the intensity image I whose height is less than H.
Regional maxima are connected components of pixels with a constant intensity value, and whose
external boundary pixels all have a lower value.

J = imhmax(I,H,conn) computes the H-maxima transform, where conn specifies the connectivity.

Examples

Create H-Maxima Transform

Create simple sample array of zeros with several maxima.

a = zeros(10,10);
a(2:4,2:4) = 3;
a(6:8,6:8) = 8

a = 10×10

 0 0 0 0 0 0 0 0 0 0
 0 3 3 3 0 0 0 0 0 0
 0 3 3 3 0 0 0 0 0 0
 0 3 3 3 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 8 8 8 0 0
 0 0 0 0 0 8 8 8 0 0
 0 0 0 0 0 8 8 8 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0

Calculate the maxima equal to 4 or more. Note how the area of the image set to 3 is not included.

b = imhmax(a,4)

b = 10×10

 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0

 imhmax

1-1619

 0 0 0 0 0 4 4 4 0 0
 0 0 0 0 0 4 4 4 0 0
 0 0 0 0 0 4 4 4 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0

Input Arguments
I — Input image
numeric array

Input image, specified as a numeric array of any dimension.
Example: I = imread('glass.png');
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

H — H-maxima transform
nonnegative scalar

H-maxima transform, specified as a nonnegative scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

conn — Pixel connectivity
4 | 8 | 6 | 18 | 26 | 3-by-3-by- ... -by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of the values in this table. The default connectivity is 8 for 2-D
images, and 26 for 3-D images.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch. The

neighborhood of a pixel are the adjacent pixels
in the horizontal or vertical direction.

8-connected Pixels are connected if their edges or corners
touch. The neighborhood of a pixel are the
adjacent pixels in the horizontal, vertical, or
diagonal direction.

Three-Dimensional Connectivities
6-connected Pixels are connected if their faces touch. The

neighborhood of a pixel are the adjacent pixels
in:

• One of these directions: in, out, left, right,
up, and down

1 Functions

1-1620

Value Meaning
18-connected Pixels are connected if their faces or edges

touch. The neighborhood of a pixel are the
adjacent pixels in:

• One of these directions: in, out, left, right,
up, and down

• A combination of two directions, such as
right-down or in-up

26-connected Pixels are connected if their faces, edges, or
corners touch. The neighborhood of a pixel are
the adjacent pixels in:

• One of these directions: in, out, left, right,
up, and down

• A combination of two directions, such as
right-down or in-up

• A combination of three directions, such as
in-right-up or in-left-down

For higher dimensions, imhmax uses the default value conndef(ndims(I),'maximal').

Connectivity can also be defined in a more general way for any dimension by specifying a 3-by-3-
by- ... -by-3 matrix of 0s and 1s. The 1-valued elements define neighborhood locations relative to the
center element of conn. Note that conn must be symmetric about its center element. See “Specifying
Custom Connectivities” for more information.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
J — Transformed image
numeric array

Transformed image, returned as a numeric array of the same size and class as I.

References
[1] Soille, P. Morphological Image Analysis: Principles and Applications. Springer-Verlag, 1999, pp.

170-171.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imhmax supports the generation of C code (requires MATLAB Coder). Note that if you choose the
generic MATLAB Host Computer target platform, imhmax generates code that uses a
precompiled, platform-specific shared library. Use of a shared library preserves performance

 imhmax

1-1621

optimizations but limits the target platforms for which code can be generated. For more
information, see “Types of Code Generation Support in Image Processing Toolbox”.

• When generating code, the optional third input argument, conn, must be a compile-time constant.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• When generating code, the optional third input argument, conn, must be a compile-time constant.

See Also
conndef | imextendedmax | imhmin | imreconstruct | imregionalmax

Introduced before R2006a

1 Functions

1-1622

imhmin
H-minima transform

Syntax
J = imhmin(I,H)
J = imhmin(I,H,conn)

Description
J = imhmin(I,H) suppresses all minima in the grayscale image I whose depth is less than H.
Regional minima are connected components of pixels with a constant intensity value, t, whose
external boundary pixels all have a value greater than t.

J = imhmin(I,H,conn) computes the H-minima transform, where conn specifies the connectivity.

Examples

Calculate H-Minima Transform

Create a sample image with two regional minima.

a = 10*ones(10,10);
a(2:4,2:4) = 7;
a(6:8,6:8) = 2

a = 10×10

 10 10 10 10 10 10 10 10 10 10
 10 7 7 7 10 10 10 10 10 10
 10 7 7 7 10 10 10 10 10 10
 10 7 7 7 10 10 10 10 10 10
 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 2 2 2 10 10
 10 10 10 10 10 2 2 2 10 10
 10 10 10 10 10 2 2 2 10 10
 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 10 10 10 10 10

Suppress all minima below a specified value. Note how the region with pixels valued 7 disappears in
the transformed image because its depth is less than the specified h value.

b = imhmin(a,4)

b = 10×10

 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 10 10 10 10 10

 imhmin

1-1623

 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 6 6 6 10 10
 10 10 10 10 10 6 6 6 10 10
 10 10 10 10 10 6 6 6 10 10
 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 10 10 10 10 10

Input Arguments
I — Input image
numeric array

Input image, specified as a numeric array of any dimension.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

H — H-minima transform
nonnegative scalar

H-minima transform, specified as a nonnegative scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

conn — Pixel connectivity
4 | 8 | 6 | 18 | 26 | 3-by-3-by- ... -by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of the values in this table. The default connectivity is 8 for 2-D
images, and 26 for 3-D images.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch. The

neighborhood of a pixel are the adjacent pixels
in the horizontal or vertical direction.

8-connected Pixels are connected if their edges or corners
touch. The neighborhood of a pixel are the
adjacent pixels in the horizontal, vertical, or
diagonal direction.

Three-Dimensional Connectivities
6-connected Pixels are connected if their faces touch. The

neighborhood of a pixel are the adjacent pixels
in:

• One of these directions: in, out, left, right,
up, and down

1 Functions

1-1624

Value Meaning
18-connected Pixels are connected if their faces or edges

touch. The neighborhood of a pixel are the
adjacent pixels in:

• One of these directions: in, out, left, right,
up, and down

• A combination of two directions, such as
right-down or in-up

26-connected Pixels are connected if their faces, edges, or
corners touch. The neighborhood of a pixel are
the adjacent pixels in:

• One of these directions: in, out, left, right,
up, and down

• A combination of two directions, such as
right-down or in-up

• A combination of three directions, such as
in-right-up or in-left-down

For higher dimensions, imhmin uses the default value conndef(ndims(I),'maximal').

Connectivity can also be defined in a more general way for any dimension by specifying a 3-by-3-
by- ... -by-3 matrix of 0s and 1s. The 1-valued elements define neighborhood locations relative to the
center element of conn. Note that conn must be symmetric about its center element. See “Specifying
Custom Connectivities” for more information.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
J — Transformed image
numeric array

Transformed image, returned as a numeric array of the same size and data type as I.

References
[1] Soille, P. Morphological Image Analysis: Principles and Applications. Springer-Verlag, 1999, pp.

170-171.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imhmin supports the generation of C code (requires MATLAB Coder). Note that if you choose the
generic MATLAB Host Computer target platform, imhmin generates code that uses a
precompiled, platform-specific shared library. Use of a shared library preserves performance

 imhmin

1-1625

optimizations but limits the target platforms for which code can be generated. For more
information, see “Types of Code Generation Support in Image Processing Toolbox”.

• When generating code, the optional third input argument, conn, must be a compile-time constant.

See Also
conndef | imextendedmin | imhmax | imreconstruct | imregionalmin

Introduced before R2006a

1 Functions

1-1626

imimposemin
Impose minima

Syntax
J = imimposemin(I,BW)
J = imimposemin(I,BW,conn)

Description
J = imimposemin(I,BW) modifies the grayscale mask image I using morphological reconstruction
so it only has regional minima wherever binary marker image BW is nonzero.

J = imimposemin(I,BW,conn) specifies the pixel connectivity for the morphological
reconstruction.

Examples

Impose Regional Minimum at One Location

This example shows how to modify an image so that one area is always a regional minimum.

Read an image and display it. This image is called the mask image.

mask = imread('glass.png');
imshow(mask)

Create a binary image that is the same size as the mask image and sets a small area of the binary
image to 1. These pixels define the location in the mask image where a regional minimum will be
imposed. The resulting image is called the marker image.

 imimposemin

1-1627

marker = false(size(mask));
marker(65:70,65:70) = true;

Superimpose the marker over the mask to show where these pixels of interest fall on the original
image. The small white square marks the spot. This code is not essential to the impose minima
operation.

J = mask;
J(marker) = 255;
figure
imshow(J)
title('Marker Image Superimposed on Mask')

Impose the regional minimum on the input image using the imimposemin function. Note how all the
dark areas of the original image, except the marked area, are lighter.

K = imimposemin(mask,marker);
figure
imshow(K)

1 Functions

1-1628

To illustrate how this operation removes all minima in the original image except the imposed
minimum, compare the regional minima in the original image with the regional minimum in the
processed image. These calls to imregionalmin return binary images that specify the locations of
all the regional minima in both images.

BW = imregionalmin(mask);
figure
subplot(1,2,1)
imshow(BW)
title('Regional Minima in Original Image')

BW2 = imregionalmin(K);
subplot(1,2,2)
imshow(BW2)
title('Regional Minima After Processing')

 imimposemin

1-1629

Input Arguments
I — Grayscale mask image
numeric array

Grayscale mask image, specified as a numeric array of any dimension.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

BW — Binary marker image
numeric array | logical array

Binary marker image, specified as a numeric or logical array of the same size as the grayscale mask
image I. For numeric input, any nonzero pixels are considered to be 1 (true).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

conn — Pixel connectivity
4 | 8 | 6 | 18 | 26 | 3-by-3-by- ... -by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of the values in this table. The default connectivity is 8 for 2-D
images, and 26 for 3-D images.

1 Functions

1-1630

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch. The

neighborhood of a pixel are the adjacent pixels
in the horizontal or vertical direction.

8-connected Pixels are connected if their edges or corners
touch. The neighborhood of a pixel are the
adjacent pixels in the horizontal, vertical, or
diagonal direction.

Three-Dimensional Connectivities
6-connected Pixels are connected if their faces touch. The

neighborhood of a pixel are the adjacent pixels
in:

• One of these directions: in, out, left, right,
up, and down

18-connected Pixels are connected if their faces or edges
touch. The neighborhood of a pixel are the
adjacent pixels in:

• One of these directions: in, out, left, right,
up, and down

• A combination of two directions, such as
right-down or in-up

26-connected Pixels are connected if their faces, edges, or
corners touch. The neighborhood of a pixel are
the adjacent pixels in:

• One of these directions: in, out, left, right,
up, and down

• A combination of two directions, such as
right-down or in-up

• A combination of three directions, such as
in-right-up or in-left-down

For higher dimensions, imimposemin uses the default value conndef(ndims(I),'maximal').

Connectivity can also be defined in a more general way for any dimension by specifying a 3-by-3-
by- ... -by-3 matrix of 0s and 1s. The 1-valued elements define neighborhood locations relative to the
center element of conn. Note that conn must be symmetric about its center element. See “Specifying
Custom Connectivities” for more information.
Data Types: double | logical

 imimposemin

1-1631

Output Arguments
J — Reconstructed image
numeric array

Reconstructed image, returned as a numeric or logical array of the same size and data type as I.

Algorithms
imimposemin uses a technique based on morphological reconstruction.

See Also
conndef | imreconstruct | imregionalmin

Topics
“Morphological Reconstruction”

Introduced before R2006a

1 Functions

1-1632

imlincomb
Linear combination of images

Syntax
Z = imlincomb(K1,A1,K2,A2,...,Kn,An)
Z = imlincomb(K1,A1,K2,A2,...,Kn,An,K)
Z = imlincomb(___ ,outputClass)

Description
Z = imlincomb(K1,A1,K2,A2,...,Kn,An) computes the linear combination of images, A1, A2,
… , An, with weights K1, K2, … , Kn according to:

Z = K1*A1 + K2*A2 + ... + Kn*An

Z = imlincomb(K1,A1,K2,A2,...,Kn,An,K) adds an offset, K, to the linear combination:
Z = K1*A1 + K2*A2 + ... + Kn*An + K

Z = imlincomb(___ ,outputClass) specifies the output class of Z.

Examples

Scale an Image Using Linear Combinations

Read an image into the workspace.

I = imread('cameraman.tif');

Scale the image using a coefficient of 1.5 in the linear combination.

J = imlincomb(1.5,I);

Display the original image and the processed image.

imshow(I)

 imlincomb

1-1633

figure
imshow(J)

1 Functions

1-1634

Form a Difference Image with Zero Value Shifted to 128

Read an image into the workspace.

I = imread('cameraman.tif');

Create a low-pass filtered copy of the image.

J = uint8(filter2(fspecial('gaussian'), I));

Find the difference image and shift the zero value to 128 using a linear combination of I and J.

K = imlincomb(1,I,-1,J,128); %K(r,c) = I(r,c) - J(r,c) + 128

Display the resulting difference image.

imshow(K)

Add Two Images and Specify Output Class Using Linear Combinations

Read two grayscale uint8 images into the workspace.

I = imread('rice.png');
J = imread('cameraman.tif');

Add the images using a linear combination. Specify the output as type uint16 to avoid truncating the
result.

K = imlincomb(1,I,1,J,'uint16');

Display the result.

 imlincomb

1-1635

imshow(K,[])

Compare Methods for Averaging Images

This example shows the difference between nesting calls and using linear combinations when
performing a series of arithmetic operations on images. To illustrate how imlincomb performs all the
arithmetic operations before truncating the result, compare the results of calculating the average of
two arrays, X and Y, using nested arithmetic functions and using imlincomb.

Create two arrays.

X = uint8([255 0 75; 44 225 100]);
Y = uint8([50 50 50; 50 50 50]);

Average the arrays using nested arithmetic functions. To calculate the average returned in Z(1,1),
the function imadd adds 255 and 50 and truncates the result to 255 before passing it to imdivide.
The average returned in Z(1,1) is 128.

Z = imdivide(imadd(X,Y),2)

Z = 2x3 uint8 matrix

 128 25 63
 47 128 75

In contrast, imlincomb performs the addition and division in double precision and only truncates the
final result. The average returned in Z2(1,1) is 153.

Z2 = imlincomb(.5,X,.5,Y)

1 Functions

1-1636

Z2 = 2x3 uint8 matrix

 153 25 63
 47 138 75

Input Arguments
K1, K2, Kn — Image coefficients
numeric scalar

Image coefficients, specified as numeric scalars.
Data Types: double

A1, A2, An — Input images
numeric array

Input images, specified as numeric arrays of the same size and class.

K — Offset
numeric scalar

Offset, specified as a numeric scalar.
Data Types: double

outputClass — Output class
string scalar | character vector

Output class of Z, specified as a string scalar or character vector containing the name of a numeric
class.
Example: 'uint16'
Example: "double"

Output Arguments
Z — Linearly combined image
numeric array

Linearly combined image, returned as a numeric array of the same size as A1. If A1 is logical, then
Z is double, otherwise Z has the same class as A1.

Tips
• When performing a series of arithmetic operations on a pair of images, you can achieve more

accurate results if you use imlincomb to combine the operations, rather than nesting calls to the
individual arithmetic functions, such as imadd. When you nest calls to the arithmetic functions,
and the input arrays are of an integer class, each function truncates and rounds the result before
passing it to the next function, thus losing accuracy in the final result. imlincomb computes each
element of the output Z individually, in double-precision floating point. If Z is an integer array,
imlincomb clips elements of Z that exceed the range of the integer type and rounds off fractional
values.

 imlincomb

1-1637

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imlincomb supports the generation of C code (requires MATLAB Coder). Note that if you choose
the generic MATLAB Host Computer target platform, imlincomb generates code that uses a
precompiled, platform-specific shared library. Use of a shared library preserves performance
optimizations but limits the target platforms for which code can be generated. For more
information, see “Types of Code Generation Support in Image Processing Toolbox”.

• You can specify up to 4 input image arguments.
• The output_class argument must be a compile-time constant.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on a GPU”.

See Also
imadd | imcomplement | imdivide | immultiply | imsubtract

Introduced before R2006a

1 Functions

1-1638

imlocalbrighten
Brighten low-light image

Syntax
B = imlocalbrighten(A)
B = imlocalbrighten(A,amount)
B = imlocalbrighten(___ ,'AlphaBlend',alphaBlend)
[B,D] = imlocalbrighten(___)

Description
B = imlocalbrighten(A) brightens low-light areas in RGB or grayscale image A.

B = imlocalbrighten(A,amount) brightens low-light areas in A by a specified amount.

B = imlocalbrighten(___ ,'AlphaBlend',alphaBlend) also specifies whether to preserve
bright areas of the input image by performing alpha blending.

[B,D] = imlocalbrighten(___) also returns the darkness estimate D of each pixel in the input
image.

Examples

Brighten Low-Light Images

Read a low-light image into the workspace.

A = imread('lowlight_2.jpg');

Brighten the low-light image using default parameters. Display the original and brightened image
side-by-side in a montage.

B = imlocalbrighten(A);
montage({A,B})

 imlocalbrighten

1-1639

Brighten the low-light image again, this time specifying the amount of lightening to apply to the
image. Display the two brightened images side-by-side in a montage.

B2 = imlocalbrighten(A,0.8);
montage({B,B2})

Use the AlphaBlend option to preserve content from the original image in the lightened image. View
the lightened output image from the first example with the alpha blended output image. Compare the
detail shown in the wall above arched entryway near the center of the image in the alpha-blended
version with the original lightened image.

Bblend = imlocalbrighten(A,'AlphaBlend',true);
montage({B,Bblend})

1 Functions

1-1640

Get the estimated darkness-per-pixel matrix return value. View the original image and the darkness
estimate matrix.

[~,D] = imlocalbrighten(A);
montage({A,D})

Input Arguments
A — Image to be brightened
RGB image | grayscale image

Image to be brightened, specified as an RGB image or grayscale image.
Data Types: single | double | uint8 | uint16

amount — Amount to brighten image
1 (default) | number in the range [0, 1]

 imlocalbrighten

1-1641

Amount to brighten the image, specified as a number in the range [0, 1]. When the value is 1 (the
default), imlocalbrighten brightens the low-light areas of A as much as possible. When the value is
0, imlocalbrighten returns the input image unmodified.
Example: 0.2
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

alphaBlend — Alpha blend input and enhanced image
false (default) | true

Alpha blend input and enhanced image, specified as false or true. Alpha blending combines the
input image with the enhanced image to preserve brighter areas of the input image. When true,
imlocalbrighten uses the estimate of darkness matrix, D, to preserve content of the input image
proportional to the amount of light in each pixel.

Output Arguments
B — Brightened image
numeric array

Brightened image, returned as a numeric array of the same size and data type as the input image A.

D — Darkness estimate
numeric matrix

Darkness estimate of each pixel in the input image, returned as a numeric matrix. D is the same size
as the first two dimensions of the input image.
Data Types: double

References
[1] Dong, X., G. Wang, Y. Pang, W. Li, J. Wen, W. Meng, and Y. Lu. "Fast efficient algorithm for

enhancement of low lighting video." Proceedings of IEEE® International Conference on
Multimedia and Expo (ICME). 2011, pp. 1–6.

[2] He, Kaiming. "Single Image Haze Removal Using Dark Channel Prior." Thesis, The Chinese
University of Hong Kong, 2011.

[3] Dubok Park; Hyungjo Park; David K. Han; Hanseok Ko "Single Image Dehazing with Image
Entropy and Information Fidelity." ICIP, 2014.

See Also
adapthisteq | histeq | imreducehaze

Introduced in R2019b

1 Functions

1-1642

immagbox
Magnification box for image displayed in scroll panel

Syntax
hbox = immagbox(hparent,himage)

Description
Use the immagbox function to add a magnification box to the same figure as an image contained in a
scroll panel. A magnification box is an editable text box that contains the current magnification of the
target image. When you enter a new value in the magnification box, the magnification of the target
image changes. When the magnification of the target image changes for any reason, the
magnification box updates the magnification value.

hbox = immagbox(hparent,himage) creates a magnification box for an image displayed in a
scroll panel. himage is a handle to the target image in the scroll panel. hparent is a handle to the
figure or uipanel object that will contain the magnification box. The function returns hbox, a handle
to the magnification box.

Examples

Add Magnification Box to Scrollable Image

Display an image in a figure. The example suppresses the standard toolbar and menubar in the figure
window because these do not work with the scroll panel.

hFig = figure('Toolbar','none','Menubar','none');
hIm = imshow('pears.png');

Create a scroll panel to contain the image.

hSP = imscrollpanel(hFig,hIm);
set(hSP,'Units','normalized','Position',[0 .1 1 .9])

 immagbox

1-1643

Add a magnification box to the figure. Set the position of the magnification box to the lower left
corner of the figure.

hMagBox = immagbox(hFig,hIm);
pos = get(hMagBox,'Position');
set(hMagBox,'Position',[0 0 pos(3) pos(4)])

1 Functions

1-1644

Get the scroll panel API so that you can control the view programmatically.

apiSP = iptgetapi(hSP);

Set the magnification of the image to 200% by using the scroll panel API function
setMagnification. Notice how the magnification box updates.

apiSP.setMagnification(2)

 immagbox

1-1645

Input Arguments
hparent — Handle to figure or uipanel object
handle

Handle to a figure or uipanel object that contains the magnification box, specified as a handle.

himage — Handle to target image
handle

Handle to target image, specified as a handle. The image must be displayed in a scroll panel created
by imscrollpanel.

Output Arguments
hbox — Handle to magnification box
handle

Handle to magnification box, returned as a handle. A magnification box is a type of uipanel object.

1 Functions

1-1646

More About
Magnification Box API Structure

A magnification box contains a structure of function handles, called an API. You can use the functions
in this API to manipulate the magnification box. To retrieve this structure, use the iptgetapi
function, as in the following example.

api = iptgetapi(hbox)

This table lists the magnification box API functions, in the order they appear in the structure.

Function Description
setMagnification Set the magnification of the target image in units of screen pixels per image

pixel.

mag = api.setMagnification(new_mag)

new_mag is a scalar magnification factor.

See Also
imscrollpanel | iptgetapi

Introduced before R2006a

 immagbox

1-1647

immovie
Make movie from multiframe image

Syntax
mov = immovie(X,cmap)
mov = immovie(RGB)

Description
mov = immovie(X,cmap) returns the movie structure array mov from the images in the multiframe
indexed image X with colormap cmap.

mov = immovie(RGB) returns the movie structure array mov from the images in the multiframe
truecolor image RGB.

Examples

Make Movie from Indexed Image Sequence

load mri
mov = immovie(D,map);
implay(mov)

Input Arguments
X — Multiframe indexed image
m-by-n-by-1-by-k numeric array

Multiframe indexed image, specified as an m-by-n-by-1-by-k numeric array, where k is the number of
frames. Each frame uses the same colormap, cmap.
Data Types: single | double | uint8 | uint16 | logical

cmap — Colormap
c-by-3 numeric matrix

Colormap associated with multiframe indexed image X, specified as a c-by-3 numeric matrix
containing the RGB values of c colors.

RGB — Multiframe truecolor image
m-by-n-by-3-by-k numeric array

Multiframe truecolor image, specified as an m-by-n-by-3-by-k numeric array, where k is the number of
frames.
Data Types: single | double | uint8 | uint16

1 Functions

1-1648

Output Arguments
mov — Movie
k-by-1 array of movie frame structures

Movie, returned as an k-by-1 array of movie frame structures. For details about the movie frame
structure, see getframe.

Tips
• To play the movie, use the Video Viewer app.
• To create a movie that can be played outside the MATLAB environment, use a VideoWriter

object.

See Also
Video Viewer | VideoWriter | getframe | movie | montage

Introduced before R2006a

 immovie

1-1649

immse
Mean-squared error

Syntax
err = immse(X,Y)

Description
err = immse(X,Y) calculates the mean-squared error (MSE) between the arrays X and Y.

Examples

Calculate Mean-Squared Error in Noisy Image

Read image and display it.

ref = imread('pout.tif');
imshow(ref)

Create another image by adding noise to a copy of the reference image.

A = imnoise(ref,'salt & pepper', 0.02);
imshow(A)

1 Functions

1-1650

Calculate mean-squared error between the two images.

err = immse(A, ref);
fprintf('\n The mean-squared error is %0.4f\n', err);

 The mean-squared error is 353.7631

Input Arguments
X — Input array
numeric array

Input array, specified as a numeric array of any dimension.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Y — Input array
numeric array

Input array, specified as a numeric array of the same size and data type as X.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Output Arguments
err — Mean-squared error
positive number

 immse

1-1651

Mean-squared error, returned as a positive number. The data type of err is double unless the input
arguments are of data type single, in which case err is of data type single
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

immse supports the generation of C code (requires MATLAB Coder). For more information, see “Code
Generation for Image Processing”.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
mean | median | psnr | ssim | sum | var

Introduced in R2014b

1 Functions

1-1652

immultiply
Multiply two images or multiply image by constant

Syntax
Z = immultiply(X,Y)

Description
Z = immultiply(X,Y) multiplies each element in array X by the corresponding element in array Y
and returns the product in the corresponding element of the output array Z.

Examples

Multiply an Image by Itself

Read a grayscale image into the workspace, then convert the image to uint8.

I = imread('moon.tif');
I16 = uint16(I);

Multiply the image by itself. Note that immultiply converts the class of the image from uint8 to
uint16 before performing the multiplication to avoid truncating the results.

J = immultiply(I16,I16);

Show the original image and the processed image.

imshow(I)

 immultiply

1-1653

figure
imshow(J)

1 Functions

1-1654

Scale an Image by a Constant Factor

Read an image into the workspace.

I = imread('moon.tif');

Scale each value of the image by a constant factor of 0.5.

J = immultiply(I,0.5);

Display the original image and the processed image.

 immultiply

1-1655

imshow(I)

figure
imshow(J)

1 Functions

1-1656

Input Arguments
X — First array
numeric array | logical array

First array, specified as a numeric array or logical array of any dimension.

Y — Second array
numeric scalar | numeric array | logical array

Second array to be multiplied with X, specified as a numeric scalar, numeric array, or logical array.

 immultiply

1-1657

• If X is numeric, then the size and class of Y can have one of the following values:

• Y is the same size and class as X.
• Y is the same size as X and is logical.
• Y is a scalar of type double.

• If X is logical, then Y must have the same size as X. Y can be any class.

Output Arguments
Z — Product
numeric array

Product, returned as a numeric array.

• If X is numeric, then Z has the same size and class as X.
• If X is logical, then Z has the same size and class as Y.

immultiply computes each element of Z individually in double-precision floating point. If X or Y is
an integer array, then elements of Z exceeding the range of the integer type are truncated, and
fractional values are rounded.

Tips
• If X and Y are numeric arrays of the same size and class, then you can use the expression X.*Y

instead of immultiply.

See Also
imabsdiff | imadd | imcomplement | imdivide | imlincomb | imsubtract

Introduced before R2006a

1 Functions

1-1658

imnlmfilt
Non-local means filtering of image

Syntax
J = imnlmfilt(I)
J = imnlmfilt(I,Name,Value)
[J,estDoS] = imnlmfilt(___)

Description
J = imnlmfilt(I) applies a non-local means-based filter to the grayscale or color image I and
returns the resulting image in J.

J = imnlmfilt(I,Name,Value) uses name-value pairs to change the behavior of the non-local
means filter.

[J,estDoS] = imnlmfilt(___) also returns the degree of smoothing, estDoS, used to estimate
the denoised pixel value.

Examples

Denoise Grayscale Image Using Non-Local Means Filter

Read a grayscale image.

I = imread('cameraman.tif');

Add zero-mean white Gaussian noise with 0.0015 variance to the image using the imnoise function.

noisyImage = imnoise(I,'gaussian',0,0.0015);

Remove noise from the image through non-local means filtering. The imnlmfilt function estimates
the degree of smoothing based on the standard deviation of noise in the image.

[filteredImage,estDoS] = imnlmfilt(noisyImage);

Display the noisy image (left) and the non-local means filtered image (right) as a montage. Display the
estimated degree of smoothing, estDoS, in the figure title.

The non-local means filter removes noise from the input image but preserves the sharpness of strong
edges, such as the silhouette of the man and buildings. This function also smooths textured regions,
such as the grass in the foreground of the image, resulting in less detail when compared to the noisy
image.

montage({noisyImage,filteredImage})
title(['Estimated Degree of Smoothing, ', 'estDoS = ',num2str(estDoS)])

 imnlmfilt

1-1659

Denoise Color Image Using Non-Local Means Filter

Read a color image.

imRGB = imread('peppers.png');

Add white Gaussian noise with zero mean and 0.0015 variance to the image using the imnoise
function. Display the noisy RGB image.

noisyRGB = imnoise(imRGB,'gaussian',0,0.0015);
imshow(noisyRGB)

1 Functions

1-1660

Convert the noisy RGB image to the L*a*b color space, so that the non-local means filter smooths
perceptually similar colors.

noisyLAB = rgb2lab(noisyRGB);

Extract a homogeneous L*a*b patch from the noisy background to compute the noise standard
deviation.

roi = [210,24,52,41];
patch = imcrop(noisyLAB,roi);

In this L*a*b patch, compute the Euclidean distance from the origin, edist. Then, calculate the
standard deviation of edist to estimate the noise.

patchSq = patch.^2;
edist = sqrt(sum(patchSq,3));
patchSigma = sqrt(var(edist(:)));

Set the 'DegreeOfSmoothing' value to be higher than the standard deviation of the patch. Filter the
noisy L*a*b* image using non-local means filtering.

DoS = 1.5*patchSigma;
denoisedLAB = imnlmfilt(noisyLAB,'DegreeOfSmoothing',DoS);

 imnlmfilt

1-1661

Convert the filtered L*a*b image to the RGB color space. Display the filtered RGB image.

denoisedRGB = lab2rgb(denoisedLAB,'Out','uint8');
imshow(denoisedRGB)

Compare a patch from the noisy RGB image (left) and the same patch from the non-local means
filtered RGB image (right).

roi2 = [178,68,110,110];
montage({imcrop(noisyRGB,roi2),imcrop(denoisedRGB,roi2)})

1 Functions

1-1662

Input Arguments
I — Image to filter
2-D grayscale image | 2-D color image

Image to filter, specified as a 2-D grayscale image of size m-by-n or a 2-D color image of size m-by-n-
by-3. The size of I must be greater than or equal to 21-by-21.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: J = imnlmfilt(I,'DegreeOfSmoothing',10);

DegreeOfSmoothing — Degree of smoothing
positive number

Degree of smoothing, specified as the comma-separated pair consisting of 'DegreeOfSmoothing'
and a positive number. As this value increases, the smoothing in the resulting image J increases. If
you do not specify 'DegreeOfSmoothing', then the default value is the standard deviation of noise
estimated from the image. For more information, see “Default Degree of Smoothing” on page 1-1664.

SearchWindowSize — Search window size
21 (default) | odd-valued positive integer

Search window size, specified as the comma-separated pair consisting of 'SearchWindowSize' and
an odd-valued positive integer, s. The search for similar neighborhoods to a pixel is limited to the s-

 imnlmfilt

1-1663

by-s region surrounding that pixel. SearchWindowSize affects the performance linearly in terms of
time. SearchWindowSize cannot be larger than the size of the input image, I.

ComparisonWindowSize — Comparison window size
5 (default) | odd-valued positive integer

Comparison window size, specified as the comma-separated pair consisting of
'ComparisonWindowSize' and an odd-valued positive integer, c. The imnlmfilt function
computes similarity weights using the c-by-c neighborhood surrounding pixels.
ComparisonWindowSize must be less than or equal to SearchWindowSize. For more information,
see “Estimate Denoised Pixel Value” on page 1-1664.

Output Arguments
J — Non-local means filtered image
2-D grayscale image | 2-D color image

Non-local means filtered image, returned as a 2-D grayscale image or 2-D color image of the same
size and data type as the input image, I.

estDoS — Estimated degree of smoothing
positive number

Estimated degree of smoothing, returned as a positive number. If you specify DegreeOfSmoothing,
then imnlmfilt returns the same value in estDoS. Otherwise, imnlmfilt returns the default
degree of smoothing estimated using “Default Degree of Smoothing” on page 1-1664.

Tips
• To smooth perceptually close colors in an RGB image, convert the image to the CIE L*a*b* color

space using rgb2lab before applying the non-local means filter. To view the results, first convert
the filtered L*a*b* image to the RGB color space using lab2rgb.

• If the data type of I is double, then computations are performed in data type double. Otherwise,
computations are performed in data type single.

Algorithms
Default Degree of Smoothing

The default value of 'DegreeOfSmoothing' is the standard deviation of noise estimated from the
image. To estimate the standard deviation, imnlmfilt convolves the image with a 3-by-3 filter
proposed by J. Immerkær [2]. When I is a color image, the default value of 'DegreeOfSmoothing'
is the standard deviations of noise averaged across the channels.

Estimate Denoised Pixel Value

The non-local means filtering algorithm estimates the denoised value of pixel p using these steps.

1 For a specific pixel, q, in the search window, calculate the weighted Euclidean distance between
pixel values in the c-by-c comparison windows surrounding p and q. For color images, include all
channels in the Euclidean distance calculation.

1 Functions

1-1664

The weight is a decreasing exponential function whose rate of decay is determined by the square
of 'DegreeOfSmoothing'. When an image is noisy, 'DegreeOfSmoothing' is large and all
pixels contribute to the Euclidean distance calculation. When an image has little noise,
'DegreeOfSmoothing' is small and only pixels with similar values contribute to the Euclidean
distance calculation.

The result is a numeric scalar that indicates the similarity between the neighborhood of p and the
neighborhood of q.

Note In the implementation by A. Buades et al. [1], the Euclidean distance between two
comparison windows is convolved with a Gaussian kernel of size c-by-c. This convolution gives
more weight to the Euclidean distance between pixel values for pixels near the center of the
comparison window. The imnlmfilt function omits this step for computational efficiency.

2 Repeat this computation for each of the other pixels in the s-by-s search window, finding the
weighted Euclidean distance between pixel p and each of those pixels. The result is an s-by-s
similarity matrix that indicates similarity between the neighborhood of p and the other
neighborhoods in the search window.

3 Normalize the similarity matrix.
4 Using the weights in the normalized similarity matrix, compute the weighted average of pixel

values in the s-by-s search window around pixel p. The result is the denoised value of p.

References
[1] Buades, A., B. Coll, and J.-M. Morel. "A Non-Local Algorithm for Image Denoising." 2005 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition. Vol. 2, June 2005,
pp. 60–65.

[2] Immerkær, J. "Fast Noise Variance Estimation." Computer Vision and Image Understanding. Vol.
64, Number 2, Sept. 1996, pp. 300–302.

See Also
imbilatfilt | imdiffusefilt | imguidedfilter | locallapfilt

Introduced in R2018b

 imnlmfilt

1-1665

imnoise
Add noise to image

Syntax
J = imnoise(I,'gaussian')
J = imnoise(I,'gaussian',m)
J = imnoise(I,'gaussian',m,var_gauss)
J = imnoise(I,'localvar',var_local)
J = imnoise(I,'localvar',intensity_map,var_local)
J = imnoise(I,'poisson')
J = imnoise(I,'salt & pepper')
J = imnoise(I,'salt & pepper',d)
J = imnoise(I,'speckle')
J = imnoise(I,'speckle',var_speckle)

Description
J = imnoise(I,'gaussian') adds zero-mean, Gaussian white noise with variance of 0.01 to
grayscale image I.

J = imnoise(I,'gaussian',m) adds Gaussian white noise with mean m and variance of 0.01.

J = imnoise(I,'gaussian',m,var_gauss) adds Gaussian white noise with mean m and variance
var_gauss.

J = imnoise(I,'localvar',var_local) adds zero-mean, Gaussian white noise of local variance
var_local.

J = imnoise(I,'localvar',intensity_map,var_local) adds zero-mean, Gaussian white
noise. The local variance of the noise, var_local, is a function of the image intensity values in I.
The mapping of image intensity value to noise variance is specified by the vector intensity_map.

J = imnoise(I,'poisson') generates Poisson noise from the data instead of adding artificial
noise to the data. See “Algorithms” on page 1-1669 for more information.

J = imnoise(I,'salt & pepper') adds salt and pepper noise, with default noise density 0.05.
This affects approximately 5% of pixels.

J = imnoise(I,'salt & pepper',d) adds salt and pepper noise, where d is the noise density.
This affects approximately d*numel(I) pixels.

J = imnoise(I,'speckle') adds multiplicative noise using the equation J = I+n*I, where n is
uniformly distributed random noise with mean 0 and variance 0.05.

J = imnoise(I,'speckle',var_speckle) adds multiplicative noise with variance
var_speckle.

Examples

1 Functions

1-1666

Add Noise to an Image

Read a grayscale image and display it.

I = imread('eight.tif');
imshow(I)

Add salt and pepper noise, with a noise density of 0.02, to the image. Display the result.

J = imnoise(I,'salt & pepper',0.02);
imshow(J)

 imnoise

1-1667

Input Arguments
I — Grayscale image
numeric array

Grayscale image, specified as a numeric array of any dimensionality.

imnoise expects pixel values of data type double and single to be in the range [0, 1]. You can use
the rescale function to adjust pixel values to the expected range. If your image is type double or
single with values outside the range [0,1], then imnoise clips input pixel values to the range [0, 1]
before adding noise.

Note For Poisson noise, imnoise does not support images of data type int16.

Data Types: single | double | int16 | uint8 | uint16

m — Mean of Gaussian noise
0 (default) | numeric scalar

Mean of Gaussian noise, specified as a numeric scalar.

var_gauss — Variance of Gaussian noise
0.01 (default) | numeric scalar

Variance of Gaussian noise, specified as a numeric scalar.

var_local — Local variance of Gaussian noise
numeric matrix | numeric vector

1 Functions

1-1668

Local variance of Gaussian noise, specified as one of the following:

• A numeric matrix of the same size as I.
• A numeric vector the same length of intensity_map.

intensity_map — Intensity values
numeric vector

Intensity values that are mapped to Gaussian noise variance, specified as a numeric vector. The
values are normalized to the range [0, 1].

You can plot the functional relationship between noise variance var_local and image intensity using
the command plot(intensity_map,var_local).

d — Noise density
0.05 (default) | numeric scalar

Noise density for salt and pepper noise, specified as a numeric scalar. The noise is applied to
approximately d*numel(I) pixels.

var_speckle — Variance of multiplicative noise
0.05 (default) | numeric scalar

Variance of multiplicative noise, specified as a numeric scalar.

Output Arguments
J — Noisy image
numeric matrix

Noisy image, returned as a numeric matrix of the same data type as input image I. For images of
data type double or single, the imnoise function clips output pixel values to the range [0, 1] after
adding noise.

Algorithms
• The mean and variance parameters for 'gaussian', 'localvar', and 'speckle' noise types

are always specified as if the image were of class double in the range [0, 1]. If the input image is
a different class, the imnoise function converts the image to double, adds noise according to the
specified type and parameters, clips pixel values to the range [0, 1], and then converts the noisy
image back to the same class as the input.

• The Poisson distribution depends on the data type of input image I:

• If I is double precision, then input pixel values are interpreted as means of Poisson
distributions scaled up by 1e12. For example, if an input pixel has the value 5.5e-12, then the
corresponding output pixel will be generated from a Poisson distribution with mean of 5.5 and
then scaled down by 1e12.

• If I is single precision, the scale factor used is 1e6.
• If I is uint8 or uint16, then input pixel values are used directly without scaling. For

example, if a pixel in a uint8 input has the value 10, then the corresponding output pixel will
be generated from a Poisson distribution with mean 10.

 imnoise

1-1669

• To add 'salt & pepper' noise with density d to an image, imnoise first assigns each pixel a
random probability value from a standard uniform distribution on the open interval (0, 1).

• For pixels with probability value in the range (0, d/2), the pixel value is set to 0. The number of
pixels that are set to 0 is approximately d*numel(I)/2.

• For pixels with probability value in the range [d/2, d), the pixel value is set to the maximum
value of the image data type. The number of pixels that are set to the maximum value is
approximately d*numel(I)/2.

• For pixels with probability value in the range [d, 1), the pixel value is unchanged.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imnoise supports the generation of C code (requires MATLAB Coder). For more information, see
“Code Generation for Image Processing”.

• The value of string input arguments must be compile time constants.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on a GPU”.

See Also
rand | randn

Introduced before R2006a

1 Functions

1-1670

imopen
Morphologically open image

Syntax
J = imopen(I,SE)
J = imopen(I,nhood)

Description
J = imopen(I,SE) performs morphological opening on the grayscale or binary image I using the
structuring element SE. The morphological opening operation is an erosion followed by a dilation,
using the same structuring element for both operations.

J = imopen(I,nhood) opens the image I, where nhood is a matrix of 0s and 1s that specifies the
structuring element neighborhood.

This syntax is equivalent to imopen(I,strel(nhood)).

Examples

Morphologically Open Image with a Disk-Shaped Structuring Element

Read the image into the workspace and display it.

original = imread('snowflakes.png');
imshow(original);

Create a disk-shaped structuring element with a radius of 5 pixels.

se = strel('disk',5);

Remove snowflakes having a radius less than 5 pixels by opening it with the disk-shaped structuring
element.

 imopen

1-1671

afterOpening = imopen(original,se);
figure
imshow(afterOpening,[]);

Input Arguments
I — Input image
grayscale image | binary image

Input image, specified as a grayscale image or binary image of any dimension.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

SE — Structuring element
strel object | offsetstrel object

Structuring element, specified as a strel object or offsetstrel object. If the image I is of data
type logical, the structuring element must be flat.

nhood — Structuring element neighborhood
matrix of 0s and 1s

Structuring element neighborhood, specified as a matrix of 0s and 1s.
Example: [0 1 0; 1 1 1; 0 1 0]

Output Arguments
J — Opened image
grayscale image | binary image

Opened image, returned as a grayscale image or binary image. J has the same data type as input
image I.

Tips
• If the dimensionality of the image I is greater than the dimensionality of the structuring element,

then the imopen function applies the same morphological opening to all planes along the higher
dimensions.

1 Functions

1-1672

You can use this behavior to perform morphological opening on RGB images. Specify a 2-D
structuring element for RGB images to operate on each color channel separately.

• When you specify a structuring element neighborhood, imopen determines the center element of
nhood by floor((size(nhood)+1)/2).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imopen supports the generation of C code (requires MATLAB Coder). Note that if you choose the
generic MATLAB Host Computer target platform, imopen generates code that uses a
precompiled, platform-specific shared library. Use of a shared library preserves performance
optimizations but limits the target platforms for which code can be generated. For more
information, see “Types of Code Generation Support in Image Processing Toolbox”.

• The input image I must be 2-D or 3-D.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The input image I must be 2-D or 3-D.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• gpuArray input must be of type uint8 or logical.
• The structuring element SE must be flat and 2-D.

For more information, see “Image Processing on a GPU”.

See Also
Functions
imclose | imdilate | imerode

Objects
strel | offsetstrel

Introduced before R2006a

 imopen

1-1673

imoverlay
Burn binary mask into 2-D image

Syntax
B = imoverlay(A,BW)
B = imoverlay(A,BW,color)

Description
B = imoverlay(A,BW) fills the grayscale or RGB image A with a solid color where the input binary
mask, BW, is true.

B = imoverlay(A,BW,color) specifies the color that imoverlay uses to fill the image.

Examples

Burn Binary Image into Grayscale Image

Read a grayscale image into the workspace.

A = imread('cameraman.tif');

Read a binary image into the workspace.

BW = imread('text.png');

Burn the binary image into the grayscale image, specifying the color to be used for the binary mask.

B = imoverlay(A,BW,'yellow');

Display the result.

imshow(B)

1 Functions

1-1674

Burn Binary Image into RGB Image

Read an RGB image into the workspace.

RGB = imread('peppers.png');

Read a binary image into the workspace.

BW = imread('text.png');

Crop the RGB image to make it the same size as the binary mask.

RGB_cropped = imcrop(RGB,[64,128,255,255]);

Burn the binary image into the cropped RGB image, choosing the color to be used.

B = imoverlay(RGB_cropped,BW,'red');

Display the result.

figure
imshow(B)

 imoverlay

1-1675

Input Arguments
A — Input image
2-D grayscale image | 2-D RGB image

Input image, specified as a 2-D grayscale image or 2-D RGB image.
Data Types: single | double | int16 | uint8 | uint16 | logical

BW — Mask image
2-D binary matrix | 2-D numeric matrix

Mask image, specified 2-D binary matrix or 2-D numeric matrix of the same size as the first two
dimensions of image A. For numeric input, any nonzero pixels are considered to be 1 (true).
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

color — Color used for overlay
"yellow" (default) | RGB triplet | color name | short color name

Color used for the overlay, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

1 Functions

1-1676

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'r'
Example: 'green'
Example: [0 0.4470 0.7410]

Output Arguments
B — Output image
2-D RGB image

Output image, returned as a 2-D RGB image.
Data Types: uint8

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imoverlay supports the generation of C code (requires MATLAB Coder). For more information,
see “Code Generation for Image Processing”.

• When generating code, if you specify color as a character vector, then the value must be a
compile-time constant.

 imoverlay

1-1677

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• When generating code, if you specify color as a character vector, then the value must be a
compile-time constant.

See Also
superpixels | boundarymask | labeloverlay

Introduced in R2016a

1 Functions

1-1678

imoverview
Overview tool for image displayed in scroll panel

Syntax
imoverview(himage)
htool = imoverview(___)

Description
Use the imoverview function to create an Overview tool in a new figure window. The Overview tool
is a navigation aid when exploring a zoomed-in version of the image.

The Overview tool displays the target image in its entirety, scaled to fit. The tool overlays a rectangle,
called the detail rectangle, over the scaled version of the image. The detail rectangle shows the
portion of the target image that is currently visible in the scroll panel. To view portions of the image
that are not currently visible in the scroll panel, move the detail rectangle in the Overview tool.

imoverview(himage) creates an Overview tool associated with the image specified by the handle
himage, called the target image.

htool = imoverview(___) returns htool, a handle to the Overview tool figure.

Examples

 imoverview

1-1679

Create Overview Tool in New Figure

Display an image in a figure. Suppress the standard toolbar and menubar in the figure window
because these do not work with the scroll panel.

hFig = figure('Toolbar','none','Menubar','none');
hIm = imshow('foggysf1.jpg');

Create a scroll panel to contain the image. Create an overview tool in a new figure window.

hSP = imscrollpanel(hFig,hIm);
imoverview(hIm)

1 Functions

1-1680

Get the scroll panel API so that you can control the view programmatically.

api = iptgetapi(hSP);

Set the magnification of the image to 200% by using the scroll panel API function
setMagnification. Notice how the detail rectangle of the overview tool shrinks because a smaller
portion of the image is displayed.

api = iptgetapi(hSP);
api.setMagnification(2);

 imoverview

1-1681

1 Functions

1-1682

Input Arguments
himage — Handle to image
handle

Handle to image, specified as a handle. The image must be displayed in a scroll panel created by
imscrollpanel.

Output Arguments
htool — Handle to Overview tool
handle

Handle to Overview tool figure, returned as a handle.

Tips
• To create an Overview tool that can be embedded in an existing figure or uipanel object, use

imoverviewpanel.

See Also
imoverviewpanel | imscrollpanel

Introduced before R2006a

 imoverview

1-1683

imoverviewpanel
Overview tool panel for image displayed in scroll panel

Syntax
hpanel = imoverviewpanel(hparent,himage)

Description
Use the imoverviewpanel function to add an Overview tool to the same figure as an image
contained in a scroll panel. The Overview tool is a navigation aid when exploring a zoomed-in version
of the image.

The Overview tool displays the target image in its entirety, scaled to fit. The tool overlays a rectangle,
called the detail rectangle, over the scaled version of the image. The detail rectangle shows the
portion of the target image that is currently visible in the scroll panel. To view portions of the image
that are not currently visible in the scroll panel, move the detail rectangle in the Overview tool.

hpanel = imoverviewpanel(hparent,himage) creates an Overview tool for an image displayed
in a scroll panel. himage is a handle to the target image in the scroll panel. hparent is the handle to
the figure or uipanel object that will contain the Overview tool. hpanel is the handle to the Overview
tool.

Examples

Add Overview Tool to Scrollable Image

Display an image in a figure. The example suppresses the standard toolbar and menubar in the figure
window because these do not work with the scroll panel.

hFig = figure('Toolbar','none','Menubar','none');
hIm = imshow('foggysf1.jpg');

Create a scroll panel to contain the image. Set the size and position of the scroll panel so that the
image occupies the top half of the figure window.

hSP = imscrollpanel(hFig,hIm);
set(hSP,'Units','normalized','Position',[0 .5 1 .5])

1 Functions

1-1684

Add an overview tool to the figure. Set the size and position of the overview tool to occupy the bottom
half of the figure window.

To explore details of the displayed image, try dragging the detail rectangle over the overview tool.

hOvPanel = imoverviewpanel(hFig,hIm);
set(hOvPanel,'Units','Normalized','Position',[0 0 1 .5])

 imoverviewpanel

1-1685

Input Arguments
hparent — Handle to figure or uipanel object
handle

Handle to a figure or uipanel object that contains the Overview tool, specified as a handle.

himage — Handle to target image
handle

Handle to target image, specified as a handle. The image must be displayed in a scroll panel created
by imscrollpanel.

Output Arguments
hpanel — Handle to Overview tool
handle

Handle to Overview tool, returned as a handle. An Overview tool is a type of uipanel object.

1 Functions

1-1686

Tips
• To create an Overview tool in a separate figure window, use imoverview. When created using

imoverview, the Overview tool includes zoom-in and zoom-out buttons.

See Also
imoverview | imscrollpanel

Introduced before R2006a

 imoverviewpanel

1-1687

impixel
Pixel color values

Syntax
P = impixel
P = impixel(I)
P = impixel(X,cmap)

P = impixel(I,xi,yi)
P = impixel(X,cmap,xi,yi)
P = impixel(xref,yref,I,xi,yi)
P = impixel(xref,yref,X,cmap,xi,yi)

[xi2,yi2,P] = impixel(___)

Description
Select Pixels Interactively

P = impixel lets you select pixels interactively from the image in the current axes. When you finish
selecting pixels, impixel returns the pixel values in p.

Use normal button clicks to select pixels. Press Backspace or Delete to remove the previously
selected pixel. To add a final pixel and finish pixel selection in one step, press shift-click, or right-click
or double-click. To finish selecting pixels without adding a final pixel, press Return. With this syntax
and the other interactive syntaxes, the pixel selection tool blocks the MATLAB command line until you
complete the operation.

P = impixel(I) displays the grayscale, RGB, or binary image I in a figure window and waits for
you to select pixels in the image using the mouse.

P = impixel(X,cmap) displays the indexed image X with colormap cmap in a figure window and
waits for you to select pixels in the image using the mouse.

Select Pixels by Specifying Coordinates

P = impixel(I,xi,yi) returns the values of pixels in grayscale, truecolor, or binary image I. The
pixels have (x, y) coordinates xi and yi.

P = impixel(X,cmap,xi,yi) returns the values of pixels in indexed image X with colormap cmap.
The pixels have (x, y) coordinates xi and yi.

P = impixel(xref,yref,I,xi,yi) returns the values of pixels in image I using the world
coordinate system defined by xref and yref. The pixel vertices have (x, y) coordinates xi and yi in
this coordinate system.

P = impixel(xref,yref,X,cmap,xi,yi) returns the values of pixels in the indexed image X
with colormap cmap, using the world coordinate system defined by xref and yref. The pixel vertices
have (x, y) coordinates xi and yi in this coordinate system.

1 Functions

1-1688

Additionally Return Selected Pixel Coordinates

[xi2,yi2,P] = impixel(___) additionally returns the (x, y) coordinates of the selected pixels,
xi2 and yi2. You can use the input arguments of any other syntax.

Examples

Return Individual Pixel Values from Image

Read a truecolor image into the workspace.

RGB = imread('peppers.png');

Determine the column c and row r indices of the pixels to extract.

c = [1 12 146 410];
r = [1 104 156 129];

Return the data at the selected pixel locations.

pixels = impixel(RGB,c,r)

pixels = 4×3

 62 29 64
 62 34 63
 166 54 60
 59 28 47

Input Arguments
I — Image
numeric matrix | numeric array | logical matrix

Image, specified as one of the following.

• m-by-n numeric matrix representing a grayscale image
• m-by-n-by-3 numeric array representing a truecolor image
• m-by-n logical matrix representing a binary mask.

Data Types: single | double | int16 | uint8 | uint16 | logical

X — Indexed image
matrix of integers

Indexed image, specified as a matrix of integers.
Data Types: single | double | uint8 | uint16 | logical

cmap — Colormap
c-by-3 numeric matrix

 impixel

1-1689

Colormap associated with the indexed image X, specified as a c-by-3 numeric matrix. Each row is a
three-element RGB triplet that specifies the red, green, and blue components of a single color of the
colormap. Values with data type single or double must be in the range [0, 1].
Data Types: single | double | uint8

xi — x-coordinate of pixels to sample
numeric vector

x-coordinate of pixels to sample, specified as a numeric vector of the same length and data type as
yi. If you specify image limits in a world coordinate system using xref, then xi is in this coordinate
system. Otherwise, xi is in the default spatial coordinate system.
Data Types: single | double

yi — y-coordinate of pixels to sample
numeric vector

y-coordinate of pixels to sample, specified as a numeric vector of the same length and data type as
xi. If you specify image limits in a world coordinate system using yref, then yi is in this coordinate
system. Otherwise, yi is in the default spatial coordinate system.
Data Types: single | double

xref — Image limits in world coordinates along x-dimension
2-element numeric vector

Image limits in world coordinates along the x-dimension, specified as a 2-element numeric vector of
the form [xmin xmax]. The value of xref sets the image XData. The data type of xref and yref
must match.
Data Types: single | double

yref — Image limits in world coordinates along y-dimension
2-element numeric vector

Image limits in world coordinates along the y-dimension, specified as a 2-element numeric vector of
the form [ymin ymax]. The value of yref sets the image YData. The data type of xref and yref
must match.
Data Types: single | double

Output Arguments
P — Sampled pixel values
p-by-3 matrix

Sampled pixel values, returned as a p-by-3 matrix. impixel always returns pixel values as RGB
triplets, regardless of the image type. The values in each row of the matrix depends on the image
type.

Image Type Result
RGB Returns the actual RGB data for the pixel. The values are data type

double.

1 Functions

1-1690

Image Type Result
Grayscale Returns the intensity value as an RGB triplet, where R=G=B. The values

are data type double.
Indexed Returns the RGB triplet stored in the row of the colormap that the pixel

value points to. The values have the same data type as the colormap,
cmap.

Binary Returns the intensity value as an RGB triplet, where R=G=B. The values
are data type double.

xi2 — x-coordinates of sampled pixels
numeric vector

x-coordinates of sampled pixels, returned as a numeric vector.

• If you select pixels interactively using the mouse, then xi2 is interpreted as column indices.
• If you specify pixel coordinates to sample when you call impixel, then xi2 is interpreted as x-

coordinates in the same coordinate system as xi.

yi2 — y-coordinates of sampled pixels
numeric vector

y-coordinates of sampled pixels, returned as a numeric vector.

• If you select pixels interactively using the mouse, then yi2 is interpreted as row indices.
• If you specify pixel coordinates to sample when you call impixel, then yi2 is interpreted as y-

coordinates in the same coordinate system as yi.

See Also
improfile | getpts

Topics
“Image Types in the Toolbox”
“Define World Coordinate System of Image”

Introduced before R2006a

 impixel

1-1691

impixelinfo
Pixel Information tool

Syntax
impixelinfo
impixelinfo(h)
impixelinfo(hparent,himage)
htool = impixelinfo(___)

Description
Use the impixelinfo function to create a Pixel Information tool. The Pixel Information tool displays
information about the pixel in an image that the pointer is positioned over. If the figure contains
multiple images, the tool displays pixel information for all the images. For more information about the
tool, see “Pixel Information Tool” on page 1-1693.

impixelinfo creates a Pixel Information tool in the current figure.

impixelinfo(h) creates a Pixel Information tool in the figure specified by the handle h.

impixelinfo(hparent,himage) creates a Pixel Information tool in hparent that provides
information about the pixels in himage.

htool = impixelinfo(___) returns a handle to the Pixel Information tool uipanel.

Examples
Add Pixel Information Tool to Figure

Display an image and add a Pixel Information tool to the figure. The example shows how you can
change the position of the tool in the figure using properties of the tool uipanel object.

h = imshow('hestain.png');
hp = impixelinfo;
set(hp,'Position',[5 1 300 20]);

Use the Pixel Information tool in a figure containing multiple images of different types.

figure
subplot(1,2,1), imshow('liftingbody.png');
subplot(1,2,2), imshow('autumn.tif');
impixelinfo;

1 Functions

1-1692

Input Arguments
h — Handle to graphics object
handle

Handle to a figure, axes, uipanel, or image graphics object, specified as a handle. Axes, uipanel, or
figure objects must contain at least one image object.

hparent — Handle to figure or uipanel object
handle

Handle to a figure or uipanel object that contains the Pixel Information tool, specified as a handle.

himage — Handle to images
handle | array of handles

Handle to one or more images, specified as a handle or an array of image handles.

Output Arguments
htool — Handle to Pixel Information tool
handle

Handle to Pixel Information tool uipanel, returned as a handle.

More About
Pixel Information Tool

The Pixel Information tool is a uipanel object, positioned in the lower-left corner of the figure. The
tool contains the text label Pixel info: followed by the pixel information. Before you move the pointer
over the image, the tool contains the default pixel information text (X,Y) Pixel Value. Once you
move the pointer over the image, the information displayed varies by image type, as shown in the
following table. If you move the pointer off the image, the pixel information tool displays the default
pixel information label for that image type.

Image Type Pixel Information Example
Intensity (X,Y) Intensity (13,30) 82
Indexed (X,Y) <index> [R G B] (2,6) <4> [0.29 0.05 0.32]
Binary (X,Y) BW (12,1) 0
Truecolor (X,Y) [R G B] (19,10) [15 255 10]
Floating point image with CDataMapping
property set to direct

(X,Y) value <index> [R G B] (19,10) 82 <4> [15 255 10]

Tips
• If you want to display the pixel information without the "Pixel Info" label, then use the

impixelinfoval function.
• To copy the pixel information label to the clipboard, right-click while the pointer is positioned over

a pixel. In the context menu displayed, choose Copy pixel info.

 impixelinfo

1-1693

See Also
Image Viewer | impixelinfoval

Topics
“Get Started with Image Viewer App”

Introduced before R2006a

1 Functions

1-1694

impixelinfoval
Pixel Information tool without text label

Syntax
htool = impixelinfoval(hparent,himage)

Description
Use the impixelinfoval function to create a Pixel Information tool without the Pixel info: text
label. The Pixel Information tool displays information about the pixel in an image that the pointer is
positioned over. If the figure contains multiple images, the tool displays pixel information for all the
images. The information displayed depends on the image type. See impixelinfo for more details
about using the Pixel Information tool.

htool = impixelinfoval(hparent,himage) creates a Pixel Information tool in hparent that
provides information about the pixels in himage.

Examples
Add Pixel Information Tool Without Text Label

Add a Pixel Information tool to a figure, excluding the text label. Note how you can change the style
and size of the font used to display the value in the tool using standard graphics object properties.

ankle = dicomread('CT-MONO2-16-ankle.dcm');
h = imshow(ankle,[]);
hText = impixelinfoval(gcf,h);
set(hText,'FontWeight','bold')
set(hText,'FontSize',10)

Input Arguments
hparent — Handle to figure or uipanel object
handle

Handle to a figure or uipanel object that contains the Pixel Information tool, specified as a handle.

himage — Handle to images
handle | array of handles

Handle to one or more images, specified as a handle or an array of image handles.

 impixelinfoval

1-1695

Output Arguments
htool — Handle to Pixel Information tool
handle

Handle to Pixel Information tool uipanel, returned as a handle.

See Also
impixelinfo

Introduced before R2006a

1 Functions

1-1696

impixelregion
Pixel Region tool

Syntax
impixelregion
impixelregion(h)
htool = impixelregion(___)

Description
Use the impixelregion function to create a Pixel Region tool in a new figure window. The Pixel
Region tool is an aid to explore pixel values of images.

The Pixel Region tool displays an extreme close-up view of a small region of pixels in the target
image. The tool overlays a rectangle, called the pixel region rectangle, over the target image. To view
pixels in a different region, click and drag the rectangle over the target image, or scroll the Pixel
Region tool. You can resize the pixel region rectangle to change the resolution of pixels in the Pixel
Region tool. If the size of the pixels allows, the tool superimposes the numeric value of the pixel over
each pixel.

 impixelregion

1-1697

impixelregion creates a Pixel Region tool associated with the image displayed in the current
figure, called the target image.

impixelregion(h) creates a Pixel Region tool in the figure specified by the handle h.

htool = impixelregion(___) returns htool, a handle to the Pixel Region tool figure.

Examples

Create Pixel Region Tool in New Figure

Display an image.

imshow('peppers.png')

Create an pixel region tool in a new figure window. The tool associates with the image in the current
figure.

impixelregion

1 Functions

1-1698

Input Arguments
h — Handle to graphics object
handle

Handle to a figure, axes, uipanel, or image graphics object, specified as a handle. If h is an axes or
figure handle, impixelregion uses the first image returned by findobj(H,'Type','image').

Output Arguments
htool — Handle to Pixel Region tool
handle

Handle to Pixel Region tool figure, returned as a handle.

Tips
• To get a closer view of the pixels displayed in the tool, use the zoom buttons on the Pixel Region

tool toolbar.

 impixelregion

1-1699

• To get the current position of the pixel region rectangle, right-click on the rectangle and select
Copy Position from the context menu. The Pixel Region tool copies a four-element position vector
to the clipboard. To change the color of the pixel region rectangle, right-click and select Set
Color.

• To create a Pixel Region tool that can be embedded in an existing figure window or uipanel, use
impixelregionpanel.

See Also
Image Viewer | impixelinfo | impixelregionpanel

Introduced before R2006a

1 Functions

1-1700

impixelregionpanel
Pixel Region tool panel

Syntax
hpanel = impixelregionpanel(hparent,himage)

Description
Use the impixelregionpanel function to add a Pixel Region tool to the same figure as an image.
The Pixel Region tool is an aid to explore pixel values of images.

The Pixel Region tool displays an extreme close-up view of a small region of pixels in the target
image. The tool overlays a rectangle, called the pixel region rectangle, over the target image. To view
pixels in a different region, click and drag the rectangle over the target image, or scroll the Pixel
Region tool. You can resize the pixel region rectangle to change the resolution of pixels in the Pixel
Region tool. If the size of the pixels allows, the tool superimposes the numeric value of the pixel over
each pixel.

hpanel = impixelregionpanel(hparent,himage) creates a Pixel Region tool in a figure
window. himage is a handle to the target image whose pixels are to be displayed. hparent is the
handle to the figure or uipanel object that will contain the Pixel Region tool. hpanel is the handle to
the Pixel Region tool.

Examples

Add Pixel Region Tool to Figure

Display an image in a figure. This example displays the image in a subplot to create space in the
figure window for the pixel region tool.

hFig = figure;
subplot(1,2,1)
hIm = imshow('peppers.png');

 impixelregionpanel

1-1701

Create a pixel region tool in the same figure as the image. The pixel region tool covers the entire
figure window.

hpanel = impixelregionpanel(hFig,hIm);

1 Functions

1-1702

Reduce the dimensions of the pixel region tool to 40% of the height and width of the figure. Specify
the position of the bottom left corner of the tool so that the tool occupies the space in the figure to
the right of the image.

To explore pixel values across the image, try dragging and resizing the pixel region rectangle over
the target image and scrolling the pixel region tool.

set(hpanel,'Position',[0.55 0.3 .4 .4])

 impixelregionpanel

1-1703

Input Arguments
hparent — Handle to figure or uipanel object
handle

Handle to a figure or uipanel object that will contain the Pixel Region tool, specified as a handle.

himage — Handle to target image
handle

Handle to target image, specified as a handle.

Output Arguments
hpanel — Handle to Pixel Region tool
handle

Handle to Pixel Region tool, returned as a handle. A Pixel Region tool is a type of uipanel object.

Tips
• To create a Pixel Region tool in a separate figure window, use impixelregion.

1 Functions

1-1704

See Also
impixelregion | imscrollpanel

Introduced before R2006a

 impixelregionpanel

1-1705

improfile
Pixel-value cross-sections along line segments

Syntax
c = improfile
c = improfile(n)

c = improfile(I,xi,yi)
c = improfile(xref,yref,I,xi,yi)
c = improfile(___ ,n)

c = improfile(___ ,method)
[cx,cy,c] = improfile(___)
[cx,cy,c,xi2,yi2] = improfile(___)
improfile(___)

Description
Select Line Segments Interactively

c = improfile lets you select line segments interactively from the image in the current axes. When
you finish selecting line segments, improfile returns sampled pixel values along the line segments
in c.

With this syntax, you specify the line or path using the mouse, by clicking points in the image. Press
Backspace or Delete to remove the previously selected point. To finish selecting points, adding a
final point, press shift-click, right-click, or double-click. To finish selecting points without adding a
final point, press Return.

c = improfile(n) returns n sampled pixel values from line segments that you select interactively.

Select Line Segments by Specifying Endpoints

c = improfile(I,xi,yi) returns sampled pixel values along line segments in image I. The
endpoints of the line segments have (x, y) coordinates xi and yi.

c = improfile(xref,yref,I,xi,yi) returns pixel values in the world coordinate system defined
by xref and yref. The line segment endpoints have (x, y) coordinates xi and yi in this coordinate
system.

c = improfile(___ ,n) returns n sampled pixel values along the line segments.

Specify Interpolation Method or Output Options

c = improfile(___ ,method) specifies the interpolation method for pixel coordinates. Before the
method input argument, you can specify the input arguments of any other syntax.

[cx,cy,c] = improfile(___) additionally returns the (x, y) coordinates of the sampled pixels,
cx and cy. You can use the input arguments of any other syntax.

1 Functions

1-1706

[cx,cy,c,xi2,yi2] = improfile(___) additionally returns the (x, y) coordinates of the line
segment endpoints, xi and yi.

improfile(___) without output arguments displays a plot of pixel values along the line segments.
If you select a single line segment, then improfile creates a two-dimensional plot of intensity values
versus the distance along the line segment. If you select two or more line segments, then improfile
creates a three-dimensional plot of the intensity values versus their x- and y-coordinates.

Examples

Plot Multisegment Line from Image

Read an image into the workspace, and display it.

I = imread('liftingbody.png');
imshow(I)

 improfile

1-1707

Specify x- and y-coordinates that define connected line segments.

x = [19 427 416 77];
y = [96 462 37 33];

Display a 3-D plot of the pixel values of these line segments.

improfile(I,x,y),grid on;

1 Functions

1-1708

Input Arguments
n — Number of points
positive integer

Number of points to along the path to sample, specified as a positive integer. If you do not provide
this argument, then improfile chooses a value for n that is roughly equal to the number of pixels
that the path traverses.
Data Types: double

I — Input image
RGB image | grayscale image | binary image

 improfile

1-1709

Input image, specified as an RGB image, grayscale image, or binary image.
Data Types: single | double | int16 | uint8 | uint16 | logical

xi — x-coordinate of line segment endpoints
numeric vector

x-coordinate of line segment endpoints, specified as a numeric vector of the same length as yi. If you
specify image limits in a world coordinate system using xref, then xi is in this coordinate system.
Otherwise, xi is in the default spatial coordinate system.
Data Types: double

yi — y-coordinate of line segment endpoints
numeric vector

y-coordinate of line segment endpoints, specified as a numeric vector of the same length as xi. If you
specify image limits in a world coordinate system using yref, then yi is in this coordinate system.
Otherwise, yi is in the default spatial coordinate system.
Data Types: double

xref — Image limits in world coordinates along x-dimension
2-element numeric vector

Image limits in world coordinates along the x-dimension, specified as a 2-element numeric vector of
the form [xmin xmax]. The value of xref sets the image XData. The data type of xref and yref
must match.
Data Types: single | double

yref — Image limits in world coordinates along y-dimension
2-element numeric vector

Image limits in world coordinates along the y-dimension, specified as a 2-element numeric vector of
the form [ymin ymax]. The value of yref sets the image YData. The data type of xref and yref
must match.
Data Types: single | double

method — Interpolation method
'nearest' (default) | 'bilinear' | 'bicubic'

Interpolation method, specified as 'nearest' for nearest-neighbor interpolation, 'bilinear', or
'bicubic'.
Data Types: char | string

Output Arguments
c — Sampled pixel values
n-by-1 numeric vector | n-by-1-by-3 numeric array

Sampled pixel values, returned as an n-by-1 numeric vector when I is a grayscale or binary image, or
an n-by-1-by-3 numeric array when I is an RGB image.
Data Types: double

1 Functions

1-1710

cx — x-coordinate of sampled pixels
n-by-1 numeric vector

x-coordinate of sampled pixels, returned as an n-by-1 numeric vector.
Data Types: double

cy — y-coordinate of sampled pixels
n-by-1 numeric vector

y-coordinate of sampled pixels, returned as an n-by-1 numeric vector.
Data Types: double

xi2 — x-coordinate of line segment endpoints
numeric vector

x-coordinate of line segment endpoints, returned as a numeric vector. If you specify line segment
endpoints using xi, then xi2 is equal to xi.
Data Types: double

yi2 — y-coordinate of line segment endpoints
numeric vector

y-coordinate of line segment endpoints, returned as a numeric vector. If you specify line segment
endpoints using yi, then yi2 is equal to yi.
Data Types: double

See Also
impixel | interp2

Topics
“Image Types in the Toolbox”
“Define World Coordinate System of Image”

Introduced before R2006a

 improfile

1-1711

imputfile
Display Save Image dialog box

Syntax
[filename,ext,user_canceled] = imputfile

Description
[filename,ext,user_canceled] = imputfile displays the Save Image dialog box which you
can use to specify the full path and format of a file. Using the dialog box, you can navigate to folders
in a file system and select a particular file or specify the name of a new file. imputfile limits the
types of files displayed in the dialog box to the image file format selected in the Files of Type menu.

If you click Save, then imputfile returns the full path to the file in filename and the file extension
associated with the file format selected from the Files of Type menu in ext. imputfile
automatically adds the file name extension (such as .jpg) to the file name.

If you click Cancel or close the Save Image dialog box, then imputfile closes and returns control
to MATLAB, sets user_canceled to True (1), and sets filename and ext to empty character
vectors (''). Otherwise, user_canceled is False (0).

Note The Save Image dialog box is modal; it blocks the MATLAB command line until you click Save
or cancel the operation.

Examples

Get User-Specified File Name

Open the Save Image dialog box. This dialog box is modal—control in the command window is
suspended until you respond to the Save Image dialog box.

[fn, ext, ucancel] = imputfile

1 Functions

1-1712

To view only images in Portable Network Graphics format, select the format from the Save as type
menu.

 imputfile

1-1713

Specify a new file name and click Save. imputfile returns the full path of the file name you
specified, the file extension, and the Boolean value false, meaning that you did not click Cancel.
Note that imputfile automatically adds the file extension of the format you selected to the file
name.

1 Functions

1-1714

fn =

 1×37 char array

 '\\home$\Documents\MATLAB\mytest.png'

ext =

 1×3 char array

 'png'

ucancel =

 logical

 0

Output Arguments
filename — Name of file selected
character array

Name of file selected, returned as a character array.

ext — File extension of a supported file format
character array

 imputfile

1-1715

File extension of a supported file format, returned as a character array.

user_canceled — Flag indicating if user chose to cancel dialog
logical

Flag indicating if user chose to cancel dialog, returned as true or false.
Data Types: logical

See Also
Image Viewer | imformats | imgetfile | imsave

Introduced in R2007b

1 Functions

1-1716

impyramid
Image pyramid reduction and expansion

Syntax
B = impyramid(A,direction)

Description
B = impyramid(A,direction) computes a Gaussian pyramid reduction or expansion of A by one
level. direction determines whether impyramid performs a reduction or an expansion.

Examples

Compute Four-level Multiresolution Pyramid of Image

Read image into the workspace.

I = imread('cameraman.tif');

Perform a series of reductions. The first call reduces the original image. The other calls to
impyramid use the previously reduced image.

I1 = impyramid(I, 'reduce');
I2 = impyramid(I1, 'reduce');
I3 = impyramid(I2, 'reduce');

View the original image and the reduced versions.

figure, imshow(I)

 impyramid

1-1717

figure, imshow(I1)

figure, imshow(I2)

1 Functions

1-1718

figure, imshow(I3)

Input Arguments
A — Image to be reduced or expanded
numeric or logical array

Image to reduced or expanded, specified as a numeric or logical array.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

direction — Reduction or expansion
'reduce' | 'expand'

Reduction or expansion, specified as one of the following values:

Value Description
'reduce' Return an image, smaller than the original image.
'expand' Return an image that is larger than the original image.

Data Types: char | string

Output Arguments
B — Reduced or expanded image
numeric or logical array

Reduced or expanded image, returned as a numeric or logical array, the same class as A.

Algorithms
If A is m-by-n and direction is 'reduce', the size of B is ceil(M/2)-by-ceil(N/2). If direction
is 'expand', the size of B is (2*M-1)-by-(2*N-1).

Reduction and expansion take place only in the first two dimensions. For example, if A is 100-by-100-
by-3 and direction is 'reduce', then B is 50-by-50-by-3.

impyramid uses the kernel specified on page 533 of the Burt and Adelson paper on page 1-1720:

w = 1
4 −

a
2, 1

4, a, 1
4, 1

4 −
a
2 , where a = 0.375. The parameter a is set to 0.375 so that the equivalent

weighting function is close to a Gaussian shape. In addition, the weights can be readily applied using
fixed-point arithmetic.

 impyramid

1-1719

References
[1] Burt and Adelson, "The Laplacian Pyramid as a Compact Image Code," IEEE Transactions on

Communications, Vol. COM-31, no. 4, April 1983, pp. 532-540.

[2] Burt, "Fast Filter Transforms for Image Processing," Computer Graphics and Image Processing,
Vol. 16, 1981, pp. 20-51

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• impyramid supports the generation of C code (requires MATLAB Coder). For more information,
see “Code Generation for Image Processing”.

• direction must be a compile-time constant.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• direction must be a compile-time constant.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
imresize

Introduced in R2007b

1 Functions

1-1720

imquantize
Quantize image using specified quantization levels and output values

Syntax
quant_A = imquantize(A,levels)
quant_A = imquantize(___ ,values)
[quant_A,index] = imquantize(___)

Description
quant_A = imquantize(A,levels) quantizes image A using specified quantization values
contained in the N element vector levels. Output image quant_A is the same size as A and contains
N + 1 discrete integer values in the range 1 to N + 1 which are determined by the following
criteria:

• If A(k) ≤ levels(1), then quant_A(k) = 1.
• If levels(m-1) < A(k) ≤ levels(m) , then quant_A(k) = m.
• If A(k) > levels(N), then quant_A(k) = N + 1.

Note that imquantize assigns values to the two implicitly defined end intervals:

• A(k) ≤ levels(1)
• A(k) > levels(N)

quant_A = imquantize(___ ,values) adds the N + 1 element vector values where N =
length(levels). Each of the N + 1 elements of values specify the quantization value for one of
the N + 1 discrete pixel values in quant_A.

• If A(k) ≤ levels(1), then quant_A(k) = values(1).
• If levels(m-1) < A(k) ≤ levels(m) , then quant_A(k) = values(m).
• If A(k) > levels(N), then quant_A(k) = values(N + 1).

[quant_A,index] = imquantize(___) returns an array index such that:

quant_A = values(index)

Examples

Segment Image into Three Levels Using Two Thresholds

Read image and display it.

I = imread('circlesBrightDark.png');
imshow(I)
axis off
title('Original Image')

 imquantize

1-1721

Calculate two threshold levels.

thresh = multithresh(I,2);

Segment the image into three levels using imquantize .

seg_I = imquantize(I,thresh);

Convert segmented image into color image using label2rgb and display it.

RGB = label2rgb(seg_I);
figure;
imshow(RGB)
axis off
title('RGB Segmented Image')

1 Functions

1-1722

Compare Thresholding Entire Image Versus Plane-by-Plane Thresholding

Read truecolor (RGB) image and display it.

I = imread('peppers.png');
imshow(I)
axis off
title('RGB Image');

 imquantize

1-1723

Generate thresholds for seven levels from the entire RGB image.

threshRGB = multithresh(I,7);

Generate thresholds for each plane of the RGB image.

threshForPlanes = zeros(3,7);

for i = 1:3
 threshForPlanes(i,:) = multithresh(I(:,:,i),7);
end

Process the entire image with the set of threshold values computed from entire image.

value = [0 threshRGB(2:end) 255];
quantRGB = imquantize(I, threshRGB, value);

Process each RGB plane separately using the threshold vector computed from the given plane.
Quantize each RGB plane using threshold vector generated for that plane.

quantPlane = zeros(size(I));

for i = 1:3
 value = [0 threshForPlanes(i,2:end) 255];

1 Functions

1-1724

 quantPlane(:,:,i) = imquantize(I(:,:,i),threshForPlanes(i,:),value);
end

quantPlane = uint8(quantPlane);

Display both posterized images and note the visual differences in the two thresholding schemes.

imshowpair(quantRGB,quantPlane,'montage')
axis off
title('Full RGB Image Quantization Plane-by-Plane Quantization')

To compare the results, calculate the number of unique RGB pixel vectors in each output image. Note
that the plane-by-plane thresholding scheme yields about 23% more colors than the full RGB image
scheme.

dim = size(quantRGB);
quantRGBmx3 = reshape(quantRGB, prod(dim(1:2)), 3);
quantPlanemx3 = reshape(quantPlane, prod(dim(1:2)), 3);

colorsRGB = unique(quantRGBmx3, 'rows');
colorsPlane = unique(quantPlanemx3, 'rows');

disp(['Unique colors in RGB image : ' int2str(length(colorsRGB))]);

Unique colors in RGB image : 188

disp(['Unique colors in Plane-by-Plane image : ' int2str(length(colorsPlane))]);

Unique colors in Plane-by-Plane image : 231

Threshold Grayscale Image from 256 to 8 Levels

Reduce the number of discrete levels in an image from 256 to 8. This example uses two different
methods for assigning values to each of the eight output levels.

Read image and display it.

 imquantize

1-1725

I = imread('coins.png');
imshow(I)
axis off
title('Grayscale Image')

Split the image into eight levels by obtaining seven thresholds from the multithresh function.

thresh = multithresh(I,7);

Construct the valuesMax vector such that the maximum value in each quantization interval is
assigned to the eight levels of the output image.

valuesMax = [thresh max(I(:))]

valuesMax = 1x8 uint8 row vector

 65 88 119 149 169 189 215 255

[quant8_I_max, index] = imquantize(I,thresh,valuesMax);

Similarly, construct the valuesMin vector such that the minimum value in each quantization interval
is assigned to the eight levels of the output image. Instead of calling imquantize again with the
vector valuesMin, use the output argument index to assign those values to the output image.

valuesMin = [min(I(:)) thresh]

valuesMin = 1x8 uint8 row vector

 23 65 88 119 149 169 189 215

quant8_I_min = valuesMin(index);

1 Functions

1-1726

Display both eight-level output images side by side.

imshowpair(quant8_I_min,quant8_I_max,'montage')
title('Minimum Interval Value Maximum Interval Value')

Input Arguments
A — Input image
image

Input image, specified as a numeric array of any dimension.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

levels — Quantization levels
vector

Quantization levels, specified as an N element vector. Values of the discrete quantization levels must
be in monotonically increasing order.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

values — Quantization values
vector

Quantization values, specified as an N+1 element vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
quant_A — Quantized output image
image

 imquantize

1-1727

Quantized output image, returned as a numeric array the same size as A. If input argument values is
specified, then quant_A is the same data type as values. If values is not specified, then quant_A is of
class double.

index — Mapping array
array

Mapping array, returned as an array the same size as input image A. It contains integer indices which
access values to construct the output image: quant_A = values(index). If input argument values is
not defined, then index = quant_A.
Data Types: double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

imquantize supports the generation of C code (requires MATLAB Coder). For more information, see
“Code Generation for Image Processing”.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
multithresh | label2rgb | rgb2ind

Introduced in R2012b

1 Functions

1-1728

imreconstruct
Morphological reconstruction

Syntax
J = imreconstruct(marker,mask)
J = imreconstruct(marker,mask,conn)

Description
J = imreconstruct(marker,mask) performs morphological reconstruction of the image marker
under the image mask, and returns the reconstruction in J. The elements of marker must be less
than or equal to the corresponding elements of mask. If the values in marker are greater than
corresponding elements in mask, then imreconstruct clips the values to the mask level before
starting the procedure.

J = imreconstruct(marker,mask,conn) performs morphological reconstruction with the
specified connectivity, conn.

Examples

Perform Opening-by-Reconstruction to Identify High Intensity Objects

Read and display a grayscale image.

I = imread('snowflakes.png');
imshow(I)

Adjust the contrast of the image to create the mask image and display results.

mask = adapthisteq(I);
imshow(mask)

 imreconstruct

1-1729

Create a marker image that identifies high-intensity objects in the image using morphological erosion
and display results.

se = strel('disk',5);
marker = imerode(mask,se);
imshow(marker)

Perform morphological opening on the mask image, using the marker image to identify high-intensity
objects in the mask. Display the result.

obr = imreconstruct(marker,mask);
imshow(obr,[])

1 Functions

1-1730

Use Reconstruction to Segment an Image

Read a logical image into workspace and display it. This is the mask image.

mask = imread('text.png');
figure
imshow(mask)

Create a marker image that identifies the object in the image you want to extract through
segmentation. For this example, identify the "w" in the word "watershed".

marker = false(size(mask));
marker(13,94) = true;

Perform segmentation of the mask image using the marker image.

im = imreconstruct(marker,mask);
figure
imshow(im)

 imreconstruct

1-1731

Input Arguments
marker — Input image
numeric array | logical array

Input image, specified as a numeric or logical array.
Example: se = strel('disk',5); marker = imerode(mask,se);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

mask — Mask image
numeric array | logical array

Mask image, specified as a numeric or logical array of the same size and data type as marker.
Example: mask = imread('text.png');
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

conn — Pixel connectivity
4 | 8 | 6 | 18 | 26 | 3-by-3-by- ... -by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of the values in this table. The default connectivity is 8 for 2-D
images, and 26 for 3-D images.

Value Meaning
Two-Dimensional Connectivities

1 Functions

1-1732

Value Meaning
4-connected Pixels are connected if their edges touch. The

neighborhood of a pixel are the adjacent pixels
in the horizontal or vertical direction.

8-connected Pixels are connected if their edges or corners
touch. The neighborhood of a pixel are the
adjacent pixels in the horizontal, vertical, or
diagonal direction.

Three-Dimensional Connectivities
6-connected Pixels are connected if their faces touch. The

neighborhood of a pixel are the adjacent pixels
in:

• One of these directions: in, out, left, right,
up, and down

18-connected Pixels are connected if their faces or edges
touch. The neighborhood of a pixel are the
adjacent pixels in:

• One of these directions: in, out, left, right,
up, and down

• A combination of two directions, such as
right-down or in-up

26-connected Pixels are connected if their faces, edges, or
corners touch. The neighborhood of a pixel are
the adjacent pixels in:

• One of these directions: in, out, left, right,
up, and down

• A combination of two directions, such as
right-down or in-up

• A combination of three directions, such as
in-right-up or in-left-down

For higher dimensions, imreconstruct uses the default value
conndef(ndims(marker),'maximal').

Connectivity can also be defined in a more general way for any dimension by specifying a 3-by-3-
by- ... -by-3 matrix of 0s and 1s. The 1-valued elements define neighborhood locations relative to the
center element of conn. Note that conn must be symmetric about its center element. See “Specifying
Custom Connectivities” for more information.
Data Types: double | logical

 imreconstruct

1-1733

Output Arguments
J — Reconstructed image
numeric array | logical array

Reconstructed image, returned as a numeric or logical array, depending on the input image, that is
the same size as the input image.

Tips
• Morphological reconstruction is the algorithmic basis for several other Image Processing Toolbox

functions, including imclearborder, imextendedmax, imextendedmin, imfill, imhmax,
imhmin, and imimposemin.

• Performance note: This function may take advantage of hardware optimization for data types
logical, uint8, uint16, single, and double to run faster. Hardware optimization requires
marker and mask to be 2-D images and conn to be either 4 or 8.

Algorithms
imreconstruct uses the fast hybrid grayscale reconstruction algorithm described in [1].

References
[1] Vincent, L., "Morphological Grayscale Reconstruction in Image Analysis: Applications and

Efficient Algorithms," IEEE Transactions on Image Processing, Vol. 2, No. 2, April, 1993, pp.
176-201.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imreconstruct supports the generation of C code (requires MATLAB Coder). Note that if you
choose the generic MATLAB Host Computer target platform, imreconstruct generates code
that uses a precompiled, platform-specific shared library. Use of a shared library preserves
performance optimizations but limits the target platforms for which code can be generated. For
more information, see “Types of Code Generation Support in Image Processing Toolbox”.

• When generating code, the optional third input argument, conn, must be a compile-time constant,
and can only take the value 4 or 8.

• imreconstruct does not support uint64 and int64 data types for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• When generating code, the optional third input argument, conn, must be a compile-time constant,
and can only take the value 4 or 8.

1 Functions

1-1734

• imreconstruct does not support uint64 and int64 data types for code generation.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• Input images must be 2-D numeric or logical matrices. imreconstruct does not support RGB
images and 3-D images on a GPU.

• Only the 2-D connectivities (4 and 8) are supported.

For more information, see “Image Processing on a GPU”.

See Also
imclearborder | imextendedmax | imextendedmin | imfill | imhmax | imhmin | imimposemin

Topics
“Morphological Reconstruction”

Introduced before R2006a

 imreconstruct

1-1735

imreducehaze
Reduce atmospheric haze

Syntax
[J,T,L] = imreducehaze(I)
[___] = imreducehaze(I,amount)
[___] = imreducehaze(___ ,Name,Value)

Description
[J,T,L] = imreducehaze(I) reduces atmospheric haze in color or grayscale image I. The
function returns the dehazed image J, an estimate T of the haze thickness at each pixel, and the
estimated atmospheric light L.

[___] = imreducehaze(I,amount) additionally specifies the amount of haze to remove.

[___] = imreducehaze(___ ,Name,Value) changes the behavior of the dehazing algorithm
using name-value pairs.

Examples

Reduce Haze Using Default Parameters

Read a hazy image into the workspace.

A = imread('foggysf1.jpg');

Reduce the haze and display the result next to the original image in a montage.

B = imreducehaze(A);
montage({A,B})
title("Hazy Image (Left) vs. Reduced Haze Image (Right)")

1 Functions

1-1736

Reduce Haze Using approxdcp Contrast Stretching

Read a hazy image into the workspace.

A = imread('foggysf2.jpg');

Reduce 90% of the haze using the approxdcp method.

B = imreducehaze(A,0.9,'method','approxdcp');

Display in a montage the original hazy image and the image with reduced haze.

montage({A,B})

Estimate Haze Thickness and Image Depth

Read and display a hazy image.

A = imread('foggyroad.jpg');
imshow(A)
title('Hazy Image')

 imreducehaze

1-1737

Reduce haze in the image using default parameter values. Return an estimate of the haze thickness.

[~,T] = imreducehaze(A);

Display the haze thickness measurement.

imshow(T)
title('Haze Thickness')

1 Functions

1-1738

The haze thickness T provides a rough approximation of the depth D of the scene, defined up to an
unknown multiplication factor. Add eps to avoid log(0).

D = -log(1-T+eps);

Display the estimated depth in false color.

imshow(D,[])
title('Depth Estimate')
colormap hot

 imreducehaze

1-1739

Input Arguments
I — Hazy image
RGB image | grayscale image

Hazy image, specified as an RGB or grayscale image.
Data Types: single | double | uint8 | uint16

amount — Amount of haze to remove
1 (default) | number in the range [0,1]

Amount of haze to remove, specified as a number in the range [0,1]. When the value is 1,
imreducehaze reduces the maximum amount of haze. When the value is 0, imreducehaze does not
reduce haze and the input image is unchanged. Larger values can cause more severe color distortion.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

1 Functions

1-1740

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: B = imreducehaze(A,0.9,'method','approxdcp');

Method — Technique used to reduce haze
'simpledcp' (default) | 'approxdcp'

Technique used to reduce haze, specified as the comma-separated pair consisting of 'Method' and
one of these values:

• 'simpledcp' — Simple dark channel prior method [2]. This technique uses a per-pixel dark
channel to estimate haze and quadtree decomposition to estimate the atmospheric light.

• 'approxdcp' — Approximate dark channel prior method [1]. This technique uses both per-pixel
and spatial blocks when computing the dark channel and does not use quadtree decomposition.

For more information, see Algorithms on page 1-1742.
Data Types: char | string

AtmosphericLight — Maximum value to be treated as haze
1-by-3 numeric vector | numeric scalar

Maximum value to be treated as haze, specified as the comma-separated pair consisting of
'AtmosphericLight' and a 1-by-3 numeric vector for RGB images or a numeric scalar for
grayscale images. Values must be in the range [0, 1]. Atmospheric light values greater than 0.5 tend
to give better results.

If you do not specify AtmosphericLight, then the imreduzehaze function estimates a value
depending on the value of 'method'.
Data Types: double

ContrastEnhancement — Contrast enhancement technique
'global' (default) | 'boost' | 'none'

Contrast enhancement technique, specified as the comma-separated pair consisting of
'ContrastEnhancement' and 'global', 'boost', or 'none'.
Data Types: char | string

BoostAmount — Amount of per-pixel gain
0.1 (default) | number in the range (0, 1]

Amount of per-pixel gain to apply as postprocessing, specified as the comma-separated pair
consisting of 'BoostAmount' and a positive number in the range (0, 1]. This argument is only
supported if ContrastEnhancement is specified as 'boost'.
Data Types: double

Output Arguments
J — Dehazed image
numeric array

 imreducehaze

1-1741

Dehazed image, returned as numeric array of the same size as the input hazy image I.

T — Haze thickness
numeric array

Haze thickness estimated at each pixel, returned as a numeric array.

L — Estimated atmospheric light
numeric array

Estimated atmospheric light, returned as a numeric array. L represents the value of the brightest
nonspecular haze.

Algorithms
The model to describe a hazy image I is

I(x) = J(x)T(x) + L(1-T(x))

I is the observed intensity, J is the scene radiance, L is atmospheric light, and T is a transmission
map describing the portion of light that reaches the camera.

Dehazing algorithms recover the scene radiance (dehazed image) J from an estimation of the
transmission map and atmospheric light according to:

J(x) = (I(x)-A)/(max(t(x),t0)) + A

imreducehaze uses two different dehazing algorithms, simpledcp and approxdcp. These methods
both rely on a dark channel prior, which is based on the observation that nonhazy images of outdoor
scenes usually contain some pixels that have low signal in one or more color channels. The methods
differ in how they estimate the dark channel prior and atmospheric light.

The dehazing algorithms in imreducehaze follow five steps:

1 Estimate the atmospheric light L using a dark channel prior.
2 Estimate the transmission map T.
3 Refine the estimated transmission map.
4 Restore the image.
5 Perform optional contrast enhancement.

References
[1] He, Kaiming. "Single Image Haze Removal Using Dark Channel Prior." Thesis, The Chinese

University of Hong Kong. 2011.

[2] Dubok, et al. "Single Image Dehazing with Image Entropy and Information Fidelity." ICIP. 2014,
pp. 4037–4041.

See Also
imadjust | stretchlim

Topics
“Low-Light Image Enhancement”

1 Functions

1-1742

“Quadtree Decomposition”

Introduced in R2017b

 imreducehaze

1-1743

imref2d
Reference 2-D image to world coordinates

Description
An imref2d object stores the relationship between the intrinsic coordinates anchored to the rows
and columns of a 2-D image and the spatial location of the same row and column locations in a world
coordinate system.

The image is sampled regularly in the planar world-x and world-y coordinate system such that
intrinsic-x values align with world-x values, and intrinsic-y values align with world-y values. The
resolution in each dimension can be different.

Creation
You can create an imref2d object in these ways.

• affineOutputView — Store the spatial extent of an image that is warped by a 2-D affine
geometric transformation.

• The imref2d function described here

Syntax
R = imref2d
R = imref2d(imageSize)
R = imref2d(imageSize,pixelExtentInWorldX,pixelExtentInWorldY)
R = imref2d(imageSize,xWorldLimits,yWorldLimits)

Description

R = imref2d creates an imref2d object with default property settings.

R = imref2d(imageSize) sets the optional ImageSize on page 1-0 property.

R = imref2d(imageSize,pixelExtentInWorldX,pixelExtentInWorldY) sets the optional
ImageSize on page 1-0 , PixelExtentInWorldX on page 1-0 , and
PixelExtentInWorldY on page 1-0 properties.

R = imref2d(imageSize,xWorldLimits,yWorldLimits) sets the optional ImageSize on
page 1-0 , XWorldLimits on page 1-0 , and YWorldLimits on page 1-0
properties.

Properties
ImageExtentInWorldX — Span of image in the x-dimension in the world coordinate system
numeric scalar

1 Functions

1-1744

Span of image in the x-dimension in the world coordinate system, specified as a numeric scalar. The
imref2d object sets this value as PixelExtentInX * ImageSize(2).
Data Types: double

ImageExtentInWorldY — Span of image in the y-dimension in the world coordinate system
numeric scalar

Span of image in the y-dimension in the world coordinate system, specified as a numeric scalar. The
imref2d object sets this value as PixelExtentInY * ImageSize(1).
Data Types: double

ImageSize — Number of elements in each spatial dimension
2-element positive row vector

Number of elements in each spatial dimension, specified as a 2-element positive row vector.
ImageSize is the same form as that returned by the size function.
Data Types: double

PixelExtentInWorldX — Size of a single pixel in the x-dimension measured in the world
coordinate system
positive number

Size of a single pixel in the x-dimension measured in the world coordinate system, specified as a
positive number.
Data Types: double

PixelExtentInWorldY — Size of a single pixel in the y-dimension measured in the world
coordinate system
positive number

Size of a single pixel in the y-dimension measured in the world coordinate system, specified as a
positive number.
Data Types: double

XWorldLimits — Limits of image in world x-dimension
2-element numeric row vector

Limits of image in world x-dimension, specified as a 2-element row numeric vector [xMin xMax].
Data Types: double

YWorldLimits — Limits of image in world y-dimension
2-element numeric row vector

Limits of image in world y-dimension, specified as a 2-element numeric row vector [yMin yMax].
Data Types: double

XIntrinsicLimits — Limits of image in intrinsic units in the x-dimension
2-element row vector

Limits of image in intrinsic units in the x-dimension, specified as a 2-element row vector [xMin
xMax]. For an m-by-n image (or an m-by-n-by-p image), XIntrinsicLimits equals [0.5, n+0.5].

 imref2d

1-1745

Data Types: double

YIntrinsicLimits — Limits of image in intrinsic units in the y-dimension
2-element row vector

Limits of image in intrinsic units in the y-dimension, specified as a 2-element row vector [yMin
yMax]. For an m-by-n image (or an m-by-n-by-p image), YIntrinsicLimits equals [0.5, m+0.5].
Data Types: double

Object Functions
contains Determine if image contains points in world coordinate system
intrinsicToWorld Convert from intrinsic to world coordinates
sizesMatch Determine if object and image are size-compatible
worldToIntrinsic Convert from world to intrinsic coordinates
worldToSubscript Convert world coordinates to row and column subscripts

Examples

Create 2-D Spatial Referencing Object Knowing Image Size and World Limits

Read a 2-D grayscale image into the workspace.

A = imread('pout.tif');

Create an imref2d object, specifying the size and world limits of the image associated with the
object.

xWorldLimits = [2 5];
yWorldLimits = [3 6];
RA = imref2d(size(A),xWorldLimits,yWorldLimits)

RA =
 imref2d with properties:

 XWorldLimits: [2 5]
 YWorldLimits: [3 6]
 ImageSize: [291 240]
 PixelExtentInWorldX: 0.0125
 PixelExtentInWorldY: 0.0103
 ImageExtentInWorldX: 3
 ImageExtentInWorldY: 3
 XIntrinsicLimits: [0.5000 240.5000]
 YIntrinsicLimits: [0.5000 291.5000]

Display the image, specifying the spatial referencing object. The axes coordinates reflect the world
coordinates.

figure
imshow(A,RA);

1 Functions

1-1746

Create 2-D Spatial Referencing Object Knowing Image Size and Resolution

Read a 2-D grayscale image into the workspace.

m = dicominfo('knee1.dcm');
A = dicomread(m);

Create an imref2d object, specifying the size and the resolution of the pixels. The DICOM file
contains a metadata field PixelSpacing that specifies the image resolution in each dimension in
millimeters per pixel.

RA = imref2d(size(A),m.PixelSpacing(2),m.PixelSpacing(1))

RA =
 imref2d with properties:

 XWorldLimits: [0.1562 160.1562]
 YWorldLimits: [0.1562 160.1562]
 ImageSize: [512 512]
 PixelExtentInWorldX: 0.3125
 PixelExtentInWorldY: 0.3125
 ImageExtentInWorldX: 160
 ImageExtentInWorldY: 160
 XIntrinsicLimits: [0.5000 512.5000]
 YIntrinsicLimits: [0.5000 512.5000]

 imref2d

1-1747

Display the image, specifying the spatial referencing object. The axes coordinates reflect the world
coordinates.

figure
imshow(A,RA,'DisplayRange',[0 512])

Compare the width of the image in world coordinates and intrinsic coordinates. This image width in
intrinsic coordinates, with units of pixels, is:

RA.ImageSize(1)

ans = 512

The image width in world coordinates, with units of millimeters, is:

RA.ImageExtentInWorldX

1 Functions

1-1748

ans = 160

More About
Intrinsic Coordinate System

The intrinsic coordinate values (x,y) of the center point of any pixel are identical to the values of the
column and row subscripts for that pixel. For example, the center point of the pixel in row 5, column
3 has intrinsic coordinates x = 3.0, y = 5.0.

The order of coordinate specification (3.0,5.0) is reversed in intrinsic coordinates relative to pixel
subscripts (5,3). Intrinsic coordinates are defined on a continuous plane, while the subscript locations
are discrete locations with integer values.

Tips
• You can create an imref2d object for an RGB image. If you create the object specifying the

ImageSize on page 1-0 property as a three-element vector (such as that returned by the
size function), only the first two elements are used to set ImageSize.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imref2d supports the generation of C code (requires MATLAB Coder). For more information, see
“Code Generation for Image Processing”.

• When generating code, you can only specify singular objects—arrays of objects are not supported.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
imref3d | imwarp | imshow

Topics
“Specify Fill Values in Geometric Transformation Output”

Introduced in R2013a

 imref2d

1-1749

imref3d
Reference 3-D image to world coordinates

Description
An imref3d object stores the relationship between the intrinsic coordinates anchored to the
columns, rows, and planes of a 3-D image and the spatial location of the same column, row, and plane
locations in a world coordinate system.

The image is sampled regularly in the planar world-x, world-y, and world-z coordinates of the
coordinate system such that intrinsic-x, -y and -z values align with world-x, -y, and -z values,
respectively. The resolution in each dimension can be different.

Creation
You can create an imref3d object in these ways.

• affineOutputView — Store the spatial extent of an image that is warped by a 3-D affine
geometric transformation.

• The imref2d function described here

Syntax
R = imref3d
R = imref3d(imageSize)
R =
imref3d(imageSize,pixelExtentInWorldX,pixelExtentInWorldY,pixelExtentInWorldZ
)
R = imref3d(imageSize,xWorldLimits,yWorldLimits,zWorldLimits)

Description

R = imref3d creates an imref3d object with default property settings.

R = imref3d(imageSize) sets the optional ImageSize on page 1-0 property.

R =
imref3d(imageSize,pixelExtentInWorldX,pixelExtentInWorldY,pixelExtentInWorldZ
) sets the optional ImageSize on page 1-0 , PixelExtentInWorldX on page 1-0 ,
PixelExtentInWorldY on page 1-0 , and PixelExtentInWorldZ on page 1-0
properties.

R = imref3d(imageSize,xWorldLimits,yWorldLimits,zWorldLimits) sets the optional
ImageSize on page 1-0 , XWorldLimits on page 1-0 , YWorldLimits on page 1-
0 , and ZWorldLimits on page 1-0 properties.

1 Functions

1-1750

Properties
ImageExtentInWorldX — Span of image in the x-dimension in the world coordinate system
numeric scalar

Span of image in the x-dimension in the world coordinate system, specified as a numeric scalar. The
imref3d object calculates this value as PixelExtentInX * ImageSize(2).
Data Types: double

ImageExtentInWorldY — Span of image in the y-dimension in the world coordinate system
numeric scalar

Span of image in the y-dimension in the world coordinate system, specified as a numeric scalar. The
imref3d object calculates this value as PixelExtentInY * ImageSize(1).
Data Types: double

ImageExtentInWorldZ — Span of image in the z-dimension in the world coordinate system
numeric scalar

Span of image in the z-dimension in the world coordinate system, specified as a numeric scalar. The
imref3d object calculates this value as PixelExtentInZ * ImageSize(3).
Data Types: double

ImageSize — Number of elements in each spatial dimension
3-element positive row vector

Number of elements in each spatial dimension, specified as a 3-element positive row vector.
ImageSize is the same form as that returned by the size function.
Data Types: double

PixelExtentInWorldX — Size of a single pixel in the x-dimension measured in the world
coordinate system
positive number

Size of a single pixel in the x-dimension measured in the world coordinate system, specified as a
positive number.
Data Types: double

PixelExtentInWorldY — Size of a single pixel in the y-dimension measured in the world
coordinate system
positive number

Size of a single pixel in the y-dimension measured in the world coordinate system, specified as a
positive number.
Data Types: double

PixelExtentInWorldZ — Size of a single pixel in the z-dimension measured in the world
coordinate system
positive number

Size of a single pixel in the z-dimension measured in the world coordinate system, specified as a
positive number.

 imref3d

1-1751

Data Types: double

XWorldLimits — Limits of image in world x-dimension
2-element numeric row vector

Limits of image in world x, specified as a 2-element row vector, [xMin xMax].
Data Types: double

YWorldLimits — Limits of image in world y-dimension
2-element numeric row vector

Limits of image in world y, specified as a 2-element row vector, [yMin yMax].
Data Types: double

ZWorldLimits — Limits of image in world z-dimension
2-element numeric row vector

Limits of image in world z, specified as a 2-element row vector, [zMin zMax].
Data Types: double

XIntrinsicLimits — Limits of image in intrinsic units in the x-dimension
2-element row vector

Limits of image in intrinsic units in the x-dimension, specified as a 2-element row vector [xMin
xMax]. For an m-by-n-by-p image, it equals [0.5, n+0.5].
Data Types: double

YIntrinsicLimits — Limits of image in intrinsic units in the y-dimension
2-element row vector

Limits of image in intrinsic units in the y-dimension, specified as a 2-element row vector [yMin
yMax]. For an m-by-n-by-p image, it equals [0.5, m+0.5].
Data Types: double

ZIntrinsicLimits — Limits of image in intrinsic units in the z-dimension
2-element row vector

Limits of image in intrinsic units in the z-dimension, specified as a 2-element row vector [zMin
zMax]. For an m-by-n-by-p image, it equals [0.5, p+0.5].
Data Types: double

Object Functions
contains Determine if image contains points in world coordinate system
intrinsicToWorld Convert from intrinsic to world coordinates
sizesMatch Determine if object and image are size-compatible
worldToIntrinsic Convert from world to intrinsic coordinates
worldToSubscript Convert world coordinates to row and column subscripts

Examples

1 Functions

1-1752

Create imref3d Object Knowing Image Size and Resolution in Each Dimension

Read image.

m = analyze75info('brainMRI.hdr');
A = analyze75read(m);

Create an imref3d object associated with the image, specifying the size of the pixels. The
PixelDimensions field of the metadata of the file specifies the resolution in each dimension in
millimeters/pixel.

RA = imref3d(size(A),m.PixelDimensions(2),m.PixelDimensions(1),m.PixelDimensions(3));

RA =

 imref3d with properties:

 XWorldLimits: [0.5000 128.5000]
 YWorldLimits: [0.5000 128.5000]
 ZWorldLimits: [0.5000 27.5000]
 ImageSize: [128 128 27]
 PixelExtentInWorldX: 1
 PixelExtentInWorldY: 1
 PixelExtentInWorldZ: 1
 ImageExtentInWorldX: 128
 ImageExtentInWorldY: 128
 ImageExtentInWorldZ: 27
 XIntrinsicLimits: [0.5000 128.5000]
 YIntrinsicLimits: [0.5000 128.5000]
 ZIntrinsicLimits: [0.5000 27.5000]

Examine the extent of the image in each dimension in millimeters.

RA.ImageExtentInWorldX
RA.ImageExtentInWorldY
RA.ImageExtentInWorldZ

ans =

 128

ans =

 128

ans =

 27

More About
Intrinsic Coordinate System

The intrinsic coordinate values (x,y,z) of the center point of any pixel are identical to the values of the
column, row, and plane subscripts for that pixel. For example, the center point of the pixel in row 5,
column 3, plane 4 has intrinsic coordinates x = 3.0, y = 5.0, z = 4.0.

 imref3d

1-1753

The order of the coordinate specification (3.0,5.0,4.0) is reversed in intrinsic coordinates relative to
pixel subscripts (5,3,4). Intrinsic coordinates are defined on a continuous plane, while the subscript
locations are discrete locations with integer values.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imref3d supports the generation of C code (requires MATLAB Coder). For more information, see
“Code Generation for Image Processing”.

• When generating code, you can only specify singular objects—arrays of objects are not supported.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
imref2d | imregister

Introduced in R2013a

1 Functions

1-1754

imregionalmax
Regional maxima

Syntax
BW = imregionalmax(I)
BW = imregionalmax(I,conn)

Description
BW = imregionalmax(I) returns the binary image BW that identifies the regional maxima in
grayscale image I. Regional maxima are connected components of pixels with a constant intensity
value, surrounded by pixels with a lower value.

BW = imregionalmax(I,conn) specifies the pixel connectivity, conn.

Examples

Find Regional Maxima in Simple Sample Image

Create a simple sample image with several regional maxima.

A = 10*ones(10,10);
A(2:4,2:4) = 22;
A(6:8,6:8) = 33;
A(2,7) = 44;
A(3,8) = 45;
A(4,9) = 44

A = 10×10

 10 10 10 10 10 10 10 10 10 10
 10 22 22 22 10 10 44 10 10 10
 10 22 22 22 10 10 10 45 10 10
 10 22 22 22 10 10 10 10 44 10
 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 33 33 33 10 10
 10 10 10 10 10 33 33 33 10 10
 10 10 10 10 10 33 33 33 10 10
 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 10 10 10 10 10

Find the regional maxima. Note that the result includes the regional maxima at (3,8).

regmax = imregionalmax(A)

regmax = 10x10 logical array

 0 0 0 0 0 0 0 0 0 0
 0 1 1 1 0 0 0 0 0 0

 imregionalmax

1-1755

 0 1 1 1 0 0 0 1 0 0
 0 1 1 1 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 1 1 1 0 0
 0 0 0 0 0 1 1 1 0 0
 0 0 0 0 0 1 1 1 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0

Input Arguments
I — Grayscale image
numeric array

Grayscale image, specified as a numeric array of any dimension.
Example: I = imread('cameraman.tif');
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

conn — Pixel connectivity
4 | 8 | 6 | 18 | 26 | 3-by-3-by- ... -by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of the values in this table. The default connectivity is 8 for 2-D
images, and 26 for 3-D images.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch. The

neighborhood of a pixel are the adjacent pixels
in the horizontal or vertical direction.

8-connected Pixels are connected if their edges or corners
touch. The neighborhood of a pixel are the
adjacent pixels in the horizontal, vertical, or
diagonal direction.

Three-Dimensional Connectivities
6-connected Pixels are connected if their faces touch. The

neighborhood of a pixel are the adjacent pixels
in:

• One of these directions: in, out, left, right,
up, and down

1 Functions

1-1756

Value Meaning
18-connected Pixels are connected if their faces or edges

touch. The neighborhood of a pixel are the
adjacent pixels in:

• One of these directions: in, out, left, right,
up, and down

• A combination of two directions, such as
right-down or in-up

26-connected Pixels are connected if their faces, edges, or
corners touch. The neighborhood of a pixel are
the adjacent pixels in:

• One of these directions: in, out, left, right,
up, and down

• A combination of two directions, such as
right-down or in-up

• A combination of three directions, such as
in-right-up or in-left-down

For higher dimensions, imregionalmax uses the default value conndef(ndims(I),'maximal').

Connectivity can also be defined in a more general way for any dimension by specifying a 3-by-3-
by- ... -by-3 matrix of 0s and 1s. The 1-valued elements define neighborhood locations relative to the
center element of conn. Note that conn must be symmetric about its center element. See “Specifying
Custom Connectivities” for more information.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
BW — Locations of regional maxima
logical array

Locations of regional maxima, returned as a logical array of the same size as I. Pixels with the value
1 indicate regional maxima; all other pixels are set to 0.
Data Types: logical

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imregionalmax supports the generation of C code (requires MATLAB Coder). Note that if you
choose the generic MATLAB Host Computer target platform, imregionalmax generates code
that uses a precompiled, platform-specific shared library. Use of a shared library preserves
performance optimizations but limits the target platforms for which code can be generated. For
more information, see “Types of Code Generation Support in Image Processing Toolbox”.

 imregionalmax

1-1757

• When generating code, the optional second input argument, conn, must be a compile-time
constant.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• Inputs must be 2-D, supporting only the 2-D connectivities (4 and 8).

For more information, see “Image Processing on a GPU”.

See Also
conndef | imextendedmax | imhmax | imreconstruct | imregionalmin

Introduced before R2006a

1 Functions

1-1758

imregionalmin
Regional minima

Syntax
BW = imregionalmin(I)
BW = imregionalmin(I,conn)

Description
BW = imregionalmin(I) returns the binary image BW that identifies the regional minima in
grayscale image I. Regional minima are connected components of pixels with a constant intensity
value, surrounded by pixels with a higher value.

BW = imregionalmin(I,conn) specifies the desired connectivity, conn.

Examples

Find Regional Minima in Simple Sample Image

Create a simple sample array with several regional minima.

A = 10*ones(10,10);
A(2:4,2:4) = 3;
A(6:8,6:8) = 8

A = 10×10

 10 10 10 10 10 10 10 10 10 10
 10 3 3 3 10 10 10 10 10 10
 10 3 3 3 10 10 10 10 10 10
 10 3 3 3 10 10 10 10 10 10
 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 8 8 8 10 10
 10 10 10 10 10 8 8 8 10 10
 10 10 10 10 10 8 8 8 10 10
 10 10 10 10 10 10 10 10 10 10
 10 10 10 10 10 10 10 10 10 10

Calculate the regional minima. The function returns a binary image, the same size as the input image,
in which pixels with the value 1 represent the regional minima. imregionalmin sets all other pixels
in to 0.

regmin = imregionalmin(A)

regmin = 10x10 logical array

 0 0 0 0 0 0 0 0 0 0
 0 1 1 1 0 0 0 0 0 0
 0 1 1 1 0 0 0 0 0 0

 imregionalmin

1-1759

 0 1 1 1 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 1 1 1 0 0
 0 0 0 0 0 1 1 1 0 0
 0 0 0 0 0 1 1 1 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0

Input Arguments
I — Grayscale image
numeric array

Grayscale image, specified as a numeric array of any dimension.
Example: I = imread('cameraman.tif');
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

conn — Pixel connectivity
4 | 8 | 6 | 18 | 26 | 3-by-3-by- ... -by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of the values in this table. The default connectivity is 8 for 2-D
images, and 26 for 3-D images.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch. The

neighborhood of a pixel are the adjacent pixels
in the horizontal or vertical direction.

8-connected Pixels are connected if their edges or corners
touch. The neighborhood of a pixel are the
adjacent pixels in the horizontal, vertical, or
diagonal direction.

Three-Dimensional Connectivities
6-connected Pixels are connected if their faces touch. The

neighborhood of a pixel are the adjacent pixels
in:

• One of these directions: in, out, left, right,
up, and down

1 Functions

1-1760

Value Meaning
18-connected Pixels are connected if their faces or edges

touch. The neighborhood of a pixel are the
adjacent pixels in:

• One of these directions: in, out, left, right,
up, and down

• A combination of two directions, such as
right-down or in-up

26-connected Pixels are connected if their faces, edges, or
corners touch. The neighborhood of a pixel are
the adjacent pixels in:

• One of these directions: in, out, left, right,
up, and down

• A combination of two directions, such as
right-down or in-up

• A combination of three directions, such as
in-right-up or in-left-down

For higher dimensions, imregionalmin uses the default value conndef(ndims(I),'maximal').

Connectivity can also be defined in a more general way for any dimension by specifying a 3-by-3-
by- ... -by-3 matrix of 0s and 1s. The 1-valued elements define neighborhood locations relative to the
center element of conn. Note that conn must be symmetric about its center element. See “Specifying
Custom Connectivities” for more information.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
BW — Locations of regional minima
logical array

Locations of regional minima, returned as a logical array of the same size as I. Pixels with the value 1
indicate regional maxima; all other pixels are set to 0.
Data Types: logical

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imregionalmin supports the generation of C code (requires MATLAB Coder). Note that if you
choose the generic MATLAB Host Computer target platform, imregionalmin generates code
that uses a precompiled, platform-specific shared library. Use of a shared library preserves
performance optimizations but limits the target platforms for which code can be generated. For
more information, see “Types of Code Generation Support in Image Processing Toolbox”.

 imregionalmin

1-1761

• When generating code, the optional second input argument, conn, must be a compile-time
constant.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• Inputs must be 2-D, supporting only the 2-D connectivities (4 and 8).

For more information, see “Image Processing on a GPU”.

See Also
conndef | imextendedmin | imhmin | imimposemin | imreconstruct | imregionalmax

Introduced before R2006a

1 Functions

1-1762

imregconfig
Configurations for intensity-based registration

Syntax
[optimizer,metric] = imregconfig(modality)

Description
[optimizer,metric] = imregconfig(modality) creates optimizer and metric
configurations that you pass to imregister to perform intensity-based image registration, where
modality specifies the image capture modality. imregconfig returns optimizer and metric with
default settings to provide a basic registration configuration.

Examples

Register Multimodal MRI Images with Optimizer

Read two images. This example uses two magnetic resonance (MRI) images of a knee. The fixed
image is a spin echo image, while the moving image is a spin echo image with inversion recovery. The
two sagittal slices were acquired at the same time but are slightly out of alignment.

fixed = dicomread('knee1.dcm');
moving = dicomread('knee2.dcm');

View the misaligned images.

imshowpair(fixed, moving,'Scaling','joint')

 imregconfig

1-1763

Create the optimizer and metric, setting the modality to 'multimodal' since the images come from
different sensors.

[optimizer, metric] = imregconfig('multimodal')

optimizer =
 registration.optimizer.OnePlusOneEvolutionary

 Properties:
 GrowthFactor: 1.050000e+00
 Epsilon: 1.500000e-06
 InitialRadius: 6.250000e-03
 MaximumIterations: 100

1 Functions

1-1764

metric =
 registration.metric.MattesMutualInformation

 Properties:
 NumberOfSpatialSamples: 500
 NumberOfHistogramBins: 50
 UseAllPixels: 1

Tune the properties of the optimizer to get the problem to converge on a global maxima and to allow
for more iterations.

optimizer.InitialRadius = 0.009;
optimizer.Epsilon = 1.5e-4;
optimizer.GrowthFactor = 1.01;
optimizer.MaximumIterations = 300;

Perform the registration.

movingRegistered = imregister(moving, fixed, 'affine', optimizer, metric);

View the registered images.

figure
imshowpair(fixed, movingRegistered,'Scaling','joint')

 imregconfig

1-1765

Input Arguments
modality — Image capture modality
'monomodal' | 'multimodal'

Image capture modality describes how your images have been captured, specified as either
'monomodal' on page 1-1767 (with similar brightness and contrast) or 'multimodal' on
page 1-1767 (with different brightness or contrast).
Data Types: char | string

1 Functions

1-1766

Output Arguments
optimizer — Optimization configuration
RegularStepGradientDescent or OnePlusOneEvolutionary optimizer object

Optimization configuration, returned as a RegularStepGradientDescent or
OnePlusOneEvolutionary optimizer object.

metric — Metric configuration
MeanSquares or MattesMutualInformation metric object

Metric configuration describes the image similarity metric to be optimized during registration,
returned as a MeanSquares or MattesMutualInformation metric object.

More About
Monomodal

Monomodal images have similar brightness and contrast. The images are captured on the same type
of scanner or sensor.

Multimodal

Multimodal images have different brightness and contrast. The images can come from two different
types of devices, such as two camera models or two types of medical imaging modalities (like CT and
MRI). The images can also come from a single device, such as a camera using different exposure
settings, or an MRI scanner using different imaging sequences.

Tips
• If you adjust the optimizer or metric parameters, the registration results can improve. For

example, if you increase the number of iterations in the optimizer, reduce the optimizer step size,
or change the number of samples in a stochastic metric, the registration improves to a point, at
the expense of performance.

Extended Capabilities
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
Apps
Registration Estimator

Functions
imshowpair | imregister

 imregconfig

1-1767

Objects
MattesMutualInformation | MeanSquares | RegularStepGradientDescent |
OnePlusOneEvolutionary

Topics
“Create an Optimizer and Metric for Intensity-Based Image Registration”
“Intensity-Based Automatic Image Registration”

Introduced in R2012a

1 Functions

1-1768

imregcorr
Estimate geometric transformation that aligns two 2-D images using phase correlation

Syntax
tform = imregcorr(moving,fixed)
tform = imregcorr(moving,Rmoving,fixed,Rfixed)
tform = imregcorr(___ ,transformType)
tform = imregcorr(___ ,'Window',window)
[tform,peakcorr] = imregcorr(___)

Description
tform = imregcorr(moving,fixed) estimates the geometric transformation that aligns an
image, moving, with a reference image, fixed. The function returns a geometric transformation
object, tform, that maps pixels in moving to pixels in fixed.

tform = imregcorr(moving,Rmoving,fixed,Rfixed) estimates the geometric transformation
that aligns an image, moving, with a reference image, fixed. Rmoving and Rfixed are spatial
referencing objects that contain spatial information about the moving and fixed images,
respectively. The transformation object returned, tform, defines the point mapping in the world
coordinate system.

tform = imregcorr(___ ,transformType) also specifies the type of transformation,
transformType.

tform = imregcorr(___ ,'Window',window) also specifies whether to perform windowing in
the frequency domain. To increase the stability of registration results, specify window as true.
However, if the common features in your images are oriented along the edges, then setting window to
false can sometimes provide superior registration results.

[tform,peakcorr] = imregcorr(___) also returns the peak correlation, peakcorr, of the
phase difference between the two images.

Examples

Register Images Using Phase Correlation

Read a reference image into the workspace.

fixed = imread('cameraman.tif');

Create a synthetic moving image by scaling and rotating the fixed image.

theta = 20;
S = 2.3;
tform = affine2d([S.*cosd(theta) -S.*sind(theta) 0; ...
 S.*sind(theta) S.*cosd(theta) 0; ...
 0 0 1]);

 imregcorr

1-1769

moving = imwarp(fixed,tform);
moving = moving + uint8(10*rand(size(moving)));

Display the fixed and the moving image alongside each other.

imshowpair(fixed,moving,'montage')

Estimate the transformation needed to align the images using imregcorr.

tformEstimate = imregcorr(moving,fixed);

Apply estimated geometric transform to the moving image. This example uses the 'OutputView'
parameter to obtain a registered image the same size and with the same world limits as the reference
image.

Rfixed = imref2d(size(fixed));
movingReg = imwarp(moving,tformEstimate,'OutputView',Rfixed);

View the original image and the registered image side-by-side to check the registration. Then view
the registered image overlaid on the original using the 'falsecolor' option to highlight any areas
where the images differ.

imshowpair(fixed,movingReg,'montage')

1 Functions

1-1770

imshowpair(fixed,movingReg,'falsecolor');

Input Arguments
moving — Image to be registered
grayscale image | binary image | RGB image

 imregcorr

1-1771

Image to be registered, specified as a grayscale, binary, or RGB image. If you specify an RGB image,
imregcorr converts it to a grayscale image using rgb2gray before processing.

Note The aspect ratio of moving affects the output transform tform. For best results, use a square
image.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

fixed — Reference image in the target orientation
grayscale image | binary image | RGB image

Reference image in the target orientation, specified as a grayscale, binary, or RGB image. If you
specify an RGB image, imregcorr converts it to a grayscale image using rgb2gray before
processing.

Note The aspect ratio of fixed affects the output transform tform. For best results, use a square
image.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

transformType — Type of transformation to estimate
'similarity' (default) | 'rigid' | 'translation'

Type of transformation to estimate, specified as one of the following values.

Value Description
'translation' Translation
'rigid' Translation and rotation
'similarity' Translation, rotation, and scaling

When using the 'similarity' option, the phase correlation algorithm
is only scale invariant within some range of scale difference between the
fixed and moving images. imregcorr limits the search space to scale
differences within the range [1/4, 4]. imregcorr does not detect scale
differences less than 1/4 or greater than 4.

Data Types: char | string

Rmoving — Spatial referencing information associated with the image to be registered
imref2d object

Spatial referencing information associated with the image to be registered, specified as an imref2d
object.

Rfixed — Spatial referencing information associated with the reference (fixed) image
imref2d object

Spatial referencing information associated with the reference (fixed) image, specified as an imref2d
object.

1 Functions

1-1772

window — Use windowing to suppress spectral leakage effects
true or 1 (default) | false or 0

Use windowing to suppress spectral leakage effects in the frequency domain, specified as a numeric
or logical 1 (true) or 0 (false). When true, the imregcorr function performs windowing using a
Blackman filter.

Output Arguments
tform — Geometric transformation
affine2d object

Geometric transformation, returned as an affine2d object.

peakcorr — Peak correlation of phase difference
numeric scalar

Peak correlation value of the phase difference between the two images, returned as a numeric scalar.

Tips
• If your image is of type double, you can achieve performance improvements by casting the image

to single with im2single before registration. Input images of type double cause the algorithm
to compute FFTs in double.

References
[1] Reddy, B. S. and Chatterji, B. N., An FFT-Based Technique for Translation, Rotation, and Scale-

Invariant Image Registration, IEEE Transactions on Image Processing, Vol. 5, No. 8, August
1996

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

imregcorr supports the generation of C code (requires MATLAB Coder). For more information, see
“Code Generation for Image Processing”.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
Apps
Registration Estimator

 imregcorr

1-1773

Functions
imwarp | imshowpair | imregister | imregtform

Introduced in R2014a

1 Functions

1-1774

imregdemons
Estimate displacement field that aligns two 2-D or 3-D images

Syntax
[D,moving_reg] = imregdemons(moving,fixed)
[D,moving_reg] = imregdemons(moving,fixed,N)
[D,moving_reg] = imregdemons(___,Name,Value)

Description
[D,moving_reg] = imregdemons(moving,fixed) estimates the displacement field D that aligns
the image to be registered, moving, with the reference image, fixed. The displacement vectors at
each pixel location map locations from the fixed image grid to a corresponding location in the
moving image. moving_reg is a warped version of the moving image that is warped according to
the displacement field D and resampled using linear interpolation.

[D,moving_reg] = imregdemons(moving,fixed,N) specifies the number of iterations to be
computed. This function does not use a convergence criterion and therefore is always guaranteed to
run for the specified or default number of iterations.

[D,moving_reg] = imregdemons(___,Name,Value) registers the moving image using name-
value pairs to control aspects of weight computation.

Examples

Register Two Images with Local Distortions

This example shows how to solve a registration problem in which the same hand has been
photographed in two different poses. The misalignment of the images varies locally throughout each
image. This is therefore a non-rigid registration problem.

Read the two images into the workspace.

fixed = imread('hands1.jpg');
moving = imread('hands2.jpg');

Convert the images to grayscale for processing.

fixed = im2gray(fixed);
moving = im2gray(moving);

Observe the initial misalignment. Fingers are in different poses.

imshowpair(fixed,moving,'montage')

 imregdemons

1-1775

Overlay the two images to make it easy to see where the images differ. The differences are
highlighted in green and magenta.

imshowpair(fixed,moving)

Correct illumination differences between the moving and fixed images using histogram matching.
This is a common pre-processing step.

moving = imhistmatch(moving,fixed);

Estimate the transformation needed to bring the two images into alignment.

1 Functions

1-1776

[~,movingReg] = imregdemons(moving,fixed,[500 400 200],...
 'AccumulatedFieldSmoothing',1.3);

Display the results of the registration. In the first figure, the images are overlaid to show the
alignment.

imshowpair(fixed,movingReg)

imshowpair(fixed,movingReg,'montage')

 imregdemons

1-1777

Input Arguments
moving — Image to be registered
2-D grayscale image | 3-D grayscale image

Image to be registered, specified as a 2-D or 3-D grayscale image.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

fixed — Reference image in the target orientation
3-D grayscale image | 2-D grayscale image

Reference image in the target orientation, specified as a 2-D or 3-D grayscale image.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

N — Number of iterations
100 (default) | positive integer scalar or vector

Number of iterations, specified as a positive integer scalar or vector.

When you specify a vector, N is the number of iterations per pyramid level (resolution level). For
example, if there are 3 pyramid levels, then you can specify the vector [100,50,25], where
imregdemons performs 100 iterations at the lowest resolution level, 50 iterations at the next
pyramid level, and 25 iterations at the last iteration level — the level with full resolution. Because it
takes less time to process the lower resolution levels, running more iterations at low resolution and
fewer iterations at the higher resolutions of the pyramid can help performance.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'AccumulatedFieldSmoothing',1.5 applies Gaussian smoothing with a standard
deviation of 1.5 at each iteration

AccumulatedFieldSmoothing — Smoothing applied at each iteration
1.0 (default) | positive scalar

Smoothing applied at each iteration, specified as the comma-separated pair consisting of
'AccumulatedFieldSmoothing' and a numeric value. This parameter controls the amount of
diffusion-like regularization. imregdemons applies the standard deviation of the Gaussian smoothing
to regularize the accumulated field at each iteration. Larger values result in smoother output
displacement fields. Smaller values result in more localized deformation in the output displacement
field. Values typically are in the range [0.5, 3.0]. When you specify multiple PyramidLevels, the
standard deviation used in the Gaussian smoothing remains the same at each pyramid level.
Data Types: double

PyramidLevels — Number of multi-resolution image pyramid levels to use
3 (default) | positive integer

Number of multi-resolution image pyramid levels to use, specified as the comma-separated pair
consisting of 'PyramidLevels' and a positive integer.

1 Functions

1-1778

Data Types: double

DisplayWaitbar — Display wait bar to indicate progress
true (default) | false

Display wait bar to indicate progress, specified as the comma-separated pair consisting of
'DisplayWaitbar' and the value true or false. When set to true, imregdemons displays a wait
bar to indicate progress for long-running operations. To prevent imregdemons from displaying a wait
bar, set DisplayWaitbar to false.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Output Arguments
D — Displacement field
numeric array

Displacement field, specified as a numeric array. Displacement values are in units of pixels.

• If fixed is a 2-D grayscale image of size m-by-n, then the displacement field array is m-by-n-by-2.
D(:,:,1) contains displacements along the x-axis and D(:,:,2) contains displacements along
the y-axis.

• If fixed is a 3-D grayscale image of size m-by-n-by-p, then the displacement field array is m-by-n-
by-p-by-3. D(:,:,:,1) contains displacements along the x-axis, D(:,:,:,2) contains
displacements along the y-axis, and D(:,:,:,3) contains displacements along the z-axis.

Data Types: double

moving_reg — Aligned image
2-D or 3-D grayscale image

Registered image, returned as a 2-D or 3-D grayscale image. The image is warped according to the
displacement field D and resampled using linear interpolation.

Tips
• To transform an image using the displacement field D, use imwarp.

References
[1] Thirion, J.-P. "Image matching as a diffusion process: an analogy with Maxwell’s demons". Medical

Image Analysis. Vol. 2, Number 3, 1998, pp. 243–260.

[2] Vercauteren, T., X. Pennec, A. Perchant, N. Ayache, "Diffeomorphic Demons: Efficient Non-
parametric Image Registration", NeuroImage. Vol. 45, Number 1, Supplement 1, March 2009,
pp. 61–72.

Extended Capabilities
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

 imregdemons

1-1779

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The DisplayWaitbar name-value pair argument is not supported on the GPU.

For more information, see “Image Processing on a GPU”.

See Also
Apps
Registration Estimator

Functions
imregcorr | imregister | imregtform | imshowpair | imwarp

Introduced in R2014b

1 Functions

1-1780

imregister
Intensity-based image registration

Syntax
moving_reg = imregister(moving,fixed,transformType,optimizer,metric)
[moving_reg,R_reg] = imregister(moving,Rmoving,fixed,Rfixed,transformType,
optimizer,metric)
___ = imregister(___ ,Name,Value)

Description
moving_reg = imregister(moving,fixed,transformType,optimizer,metric) transforms
the 2-D or 3-D grayscale image, moving, so that it is registered with the reference image, fixed.
transformType defines the type of transformation to perform. metric defines the quantitative
measure of similarity between the images to optimize. optimizer describes the method for
optimizing the metric. The function returns the registered image, moving_reg.

[moving_reg,R_reg] = imregister(moving,Rmoving,fixed,Rfixed,transformType,
optimizer,metric) transforms the spatially referenced image moving so that it is registered with
the spatially referenced image fixed. Rmoving and Rfixed are spatial referencing objects that
describe the world coordinate limits and the resolution of moving and fixed.

___ = imregister(___ ,Name,Value) specifies additional options with one or more name-value
pair arguments.

Examples

Register Multimodal MRI Images with Optimizer

Read two images. This example uses two magnetic resonance (MRI) images of a knee. The fixed
image is a spin echo image, while the moving image is a spin echo image with inversion recovery. The
two sagittal slices were acquired at the same time but are slightly out of alignment.

fixed = dicomread('knee1.dcm');
moving = dicomread('knee2.dcm');

View the misaligned images.

imshowpair(fixed, moving,'Scaling','joint')

 imregister

1-1781

Create the optimizer and metric, setting the modality to 'multimodal' since the images come from
different sensors.

[optimizer, metric] = imregconfig('multimodal')

optimizer =
 registration.optimizer.OnePlusOneEvolutionary

 Properties:
 GrowthFactor: 1.050000e+00
 Epsilon: 1.500000e-06
 InitialRadius: 6.250000e-03
 MaximumIterations: 100

1 Functions

1-1782

metric =
 registration.metric.MattesMutualInformation

 Properties:
 NumberOfSpatialSamples: 500
 NumberOfHistogramBins: 50
 UseAllPixels: 1

Tune the properties of the optimizer to get the problem to converge on a global maxima and to allow
for more iterations.

optimizer.InitialRadius = 0.009;
optimizer.Epsilon = 1.5e-4;
optimizer.GrowthFactor = 1.01;
optimizer.MaximumIterations = 300;

Perform the registration.

movingRegistered = imregister(moving, fixed, 'affine', optimizer, metric);

View the registered images.

figure
imshowpair(fixed, movingRegistered,'Scaling','joint')

 imregister

1-1783

Input Arguments
moving — Image to be registered
numeric matrix | 3-D numeric array

Image to be registered, specified as numeric matrix representing a 2-D grayscale image or a 3-D
numeric array representing a 3-D grayscale volume.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Rmoving — Spatial referencing information associated with image to be registered
imref2d object | imref3d object

1 Functions

1-1784

Spatial referencing information associated with the image to be registered, specified as an imref2d
object or imref3d object.

fixed — Reference image
numeric matrix | 3-D numeric array

Reference image in the target orientation, specified as numeric matrix representing a 2-D grayscale
image or a 3-D numeric array representing a 3-D grayscale volume. The reference image must have
the same dimensionality as the image to be registered, moving.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Rfixed — Spatial referencing information associated with reference image
imref2d object | imref3d object

Spatial referencing information associated with the reference (fixed) image, specified as an imref2d
object or imref3d object.

transformType — Geometric transformation to be applied to image to be registered
'translation' | 'rigid' | 'similarity' | 'affine'

Geometric transformation to be applied to the moving image, specified as one of the following values:

Value Description
'translation' (x,y) translation in 2-D, or (x,y,z) translation in 3-D.
'rigid' Rigid transformation consisting of translation and rotation.
'similarity' Nonreflective similarity transformation consisting of translation,

rotation, and scale.
'affine' Affine transformation consisting of translation, rotation, scale, and shear.

The 'similarity' and 'affine' transformation types always involve nonreflective
transformations.
Data Types: char | string

optimizer — Method for optimizing similarity metric
RegularStepGradientDescent or OnePlusOneEvolutionary optimizer object

Method for optimizing the similarity metric, specified as a RegularStepGradientDescent or
OnePlusOneEvolutionary optimizer object.

metric — Image similarity metric to be optimized during registration
MeanSquares or MattesMutualInformation metric object

Image similarity metric to be optimized during registration, specified as a MeanSquares or
MattesMutualInformation metric object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'DisplayOptimization',1 enables the verbose optimization mode.

 imregister

1-1785

DisplayOptimization — Verbose optimization flag
false (default) | true

Verbose optimization flag, specified as the comma-separated pair consisting of
'DisplayOptimization', and the logical value true or false. Controls whether imregister
displays optimization information in the command window during the registration process.
Data Types: logical

InitialTransformation — Starting geometric transformation
affine2d object | affine3d object

Starting geometric transformation, specified as the comma-separated pair consisting of
'InitialTransformation' and an affine2d object or affine3d object.

PyramidLevels — Number of pyramid levels used during registration process
3 (default) | positive integer

Number of pyramid levels used during the registration process, specified as the comma-separated
pair consisting of 'PyramidLevels' and a positive integer.
Example: 'PyramidLevels',4 sets the number of pyramid levels to 4.
Data Types: double

Output Arguments
moving_reg — Registered image
numeric matrix | 3-D numeric array

Registered image, returned as a 2-D numeric matrix representing a 2-D grayscale image or a 3-D
numeric array representing a 3-D grayscale volume. Any fill pixels introduced that do not correspond
to locations in the original image are 0.

R_reg — Spatial referencing information associated with registered image
imref2d object | imref3d object

Spatial referencing information associated with the registered image, returned as an imref2d object
or imref3d object.

Tips
• Both imregtform and imregister use the same underlying registration algorithm. imregister

performs the additional step of resampling moving to produce the registered output image from
the geometric transformation estimate calculated by imregtform. Use imregtform when you
want access to the geometric transformation that relates moving to fixed. Use imregister
when you want a registered output image.

• Create an optimizer and metric with the imregconfig function before calling imregister.
Getting good results from optimization-based image registration usually requires modifying
optimizer or metric settings for the pair of images being registered. The imregconfig function
provides a default configuration that should only be considered a starting point. For example, if
you increase the number of iterations in the optimizer, reduce the optimizer step size, or change
the number of samples in a stochastic metric, the registration improves to a point, at the expense

1 Functions

1-1786

of performance. See the output of imregconfig for more information on the different parameters
that you can modify.

• If the spatial scaling of your images differs by more than 10%, resize them with imresize before
registering them.

• Use imshowpair or imfuse to visualize the results of registration.
• You can use imregister in an automated workflow to register several images.
• When you have spatial referencing information about the image to be registered, specify the

information to imregister using spatial referencing objects. This helps imregister converge to
better results more quickly because scale differences can be taken into account.

See Also
Apps
Registration Estimator

Functions
imregconfig | imregcorr | imregtform | imwarp | imshowpair | imfuse

Objects
imref2d | imref3d

Topics
“Create an Optimizer and Metric for Intensity-Based Image Registration”
“Intensity-Based Automatic Image Registration”

Introduced in R2012a

 imregister

1-1787

imregmtb
Register 2-D images using median threshold bitmaps

Syntax
[R1,R2,...,Rn,shift] = imregmtb(M1,M2,...,Mn,F)

Description
[R1,R2,...,Rn,shift] = imregmtb(M1,M2,...,Mn,F) registers an arbitrary number of
moving images M1,M2,...,Mn with respect to the fixed (reference) image, F, using the median
threshold bitmap technique. The registered images are returned in R1,R2,...,Rn, and the
estimated displacement of the registered images is returned in shift.

The median threshold bitmap technique is effective for registering images captured with variable
exposures. imregmtb considers only translations, not rotations or other types of geometric
transformations.

Examples

Register Images with Jitter Using Median Threshold Bitmaps

Read a series of images with different exposures.

I1 = imread('office_1.jpg');
I2 = imread('office_2.jpg');
I3 = imread('office_3.jpg');
I4 = imread('office_4.jpg');
I5 = imread('office_5.jpg');
I6 = imread('office_6.jpg');

The images were captured from a fixed camera, and there are no moving objects in the scene. For
this example, simulate camera motion, or jitter, by translating each image horizontally and vertically
by a random amount in the range [–30, 30] pixels. Store the translation values for all five moving
images in the 5-by-2 matrix t. Designate the sixth image, I6, as the fixed (or reference) image. Do
not apply jitter to this image.

t = randi([-30 30],5,2);
I1 = imtranslate(I1,t(1,:));
I2 = imtranslate(I2,t(2,:));
I3 = imtranslate(I3,t(3,:));
I4 = imtranslate(I4,t(4,:));
I5 = imtranslate(I5,t(5,:));

To compare the image positions, display a region of interest (ROI) from the center of each image. The
vector roi specifies the x- and y-coordinate of the top left corner, and the width and height of the
ROI.

roi = [140 260 200 200];
montage({imcrop(I1,roi),imcrop(I2,roi),imcrop(I3,roi), ...

1 Functions

1-1788

 imcrop(I4,roi),imcrop(I5,roi),imcrop(I6,roi)})
title('Misaligned Images')

Register the spatially shifted images using median threshold bitmaps. Display an ROI from the center
of each image.

[R1,R2,R3,R4,R5,shift] = imregmtb(I1,I2,I3,I4,I5,I6);
montage({imcrop(R1,roi),imcrop(R2,roi),imcrop(R3,roi), ...
 imcrop(R4,roi),imcrop(R5,roi),imcrop(I6,roi)})
title('Registered Images')

 imregmtb

1-1789

The images look well-aligned.

Examine the estimated displacement, shift, of each moving image with respect to the fixed image.
shift represents the estimated transformation that must be applied to the moving image to align it
with the fixed image.

shift

shift = 5×2

 -26 25
 -25 14
 23 -3
 -25 -28
 -8 -28

Compare the estimated displacement to the actual displacement. Recall that the transformation t
was applied to the fixed image to simulate the jitter of each moving image. Therefore, the
transformation -t is analogous to the transformation returned by shift.

-t

ans = 5×2

 -19 25

1 Functions

1-1790

 -25 14
 23 -3
 -25 -28
 -8 -28

The imregmtb function does a good job estimating the displacement of each frame.

Input Arguments
M1,M2,...,Mn — Moving images
grayscale images | RGB images

Moving images, specified as a series of grayscale images or RGB images with identical or variable
exposures. The images must have the same size and data type.
Data Types: single | double | uint8 | uint16

F — Fixed image
grayscale image | RGB image

Fixed image, specified as a grayscale image or RGB image. F must have the same size and data type
as the moving images, M1,M2,...,Mn.
Data Types: single | double | uint8 | uint16

Output Arguments
R1,R2,...,Rn — Registered images
grayscale images | RGB images

Registered images, returned as a series of grayscale images or RGB images. The registered images
have the same size and data type as the moving images, M1,M2,...,Mn.

shift — Estimated displacement
n-by-2 numeric matrix

Estimated displacement in the horizontal and vertical direction of the n registered images, returned
as an n-by-2 numeric matrix.

References
[1] Reinhard, E., W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, K. Myszkowski. High Dynamic Range

Imaging, Second Edition. San Francisco, CA: Morgan Kaufmann Publishers Inc., 2010, pp.
155–170.

Extended Capabilities
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

 imregmtb

1-1791

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
blendexposure | imtranslate | imregister | imregcorr

Introduced in R2018a

1 Functions

1-1792

imregtform
Estimate geometric transformation that aligns two 2-D or 3-D images

Syntax
tform = imregtform(moving,fixed,transformType,optimizer,metric)
tform = imregtform(moving,Rmoving,fixed,Rfixed,transformType,optimizer,
metric)
tform = imregtform(___ ,Name,Value)

Description
tform = imregtform(moving,fixed,transformType,optimizer,metric) estimates the
geometric transformation that aligns the moving image moving with the fixed image fixed.
transformType is a string scalar or character vector that defines the type of transformation to
estimate. optimizer is an object that describes the method for optimizing the metric. metric is an
object that defines the quantitative measure of similarity between the images to optimize. The output
tform is a geometric transformation object that maps moving to fixed.

tform = imregtform(moving,Rmoving,fixed,Rfixed,transformType,optimizer,
metric) estimates the geometric transformation where Rmoving and Rfixed specify the spatial
referencing objects associated with the moving and fixed images. The output tform is a geometric
transformation object in units defined by the spatial referencing objects Rmoving and Rfixed.

tform = imregtform(___ ,Name,Value) estimates the geometric transformation using name-
value pairs to control aspects of the operation.

Examples

Estimate Transformation Needed for Image Registration

Read two images. This example uses two magnetic resonance (MRI) images of a knee. The fixed
image is a spin echo image, while the moving image is a spin echo image with inversion recovery. The
two sagittal slices were acquired at the same time but are slightly out of alignment.

fixed = dicomread('knee1.dcm');
moving = dicomread('knee2.dcm');

View the misaligned images.

imshowpair(fixed, moving,'Scaling','joint')

 imregtform

1-1793

Create the optimizer and metric, setting the modality to 'multimodal' since the images come from
different sensors.

[optimizer, metric] = imregconfig('multimodal')

optimizer =
 registration.optimizer.OnePlusOneEvolutionary

 Properties:
 GrowthFactor: 1.050000e+00
 Epsilon: 1.500000e-06
 InitialRadius: 6.250000e-03
 MaximumIterations: 100

1 Functions

1-1794

metric =
 registration.metric.MattesMutualInformation

 Properties:
 NumberOfSpatialSamples: 500
 NumberOfHistogramBins: 50
 UseAllPixels: 1

Tune the properties of the optimizer to get the problem to converge on a global maxima and to allow
for more iterations.

optimizer.InitialRadius = 0.009;
optimizer.Epsilon = 1.5e-4;
optimizer.GrowthFactor = 1.01;
optimizer.MaximumIterations = 300;

Find the geometric transformation that maps the image to be registered (moving) to the reference
image (fixed).

tform = imregtform(moving, fixed, 'affine', optimizer, metric)

tform =
 affine2d with properties:

 T: [3x3 double]
 Dimensionality: 2

Apply the transformation to the image being registered (moving) using the imwarp function. The
example uses the 'OutputView' parameter to preserve world limits and resolution of the reference
image when forming the transformed image.

movingRegistered = imwarp(moving,tform,'OutputView',imref2d(size(fixed)));

View the registered images.

figure
imshowpair(fixed, movingRegistered,'Scaling','joint')

 imregtform

1-1795

Input Arguments
moving — Image to be registered
2-D or 3-D grayscale image

Image to be registered, specified as a 2-D or 3-D grayscale image.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Rmoving — Spatial referencing information associated with the image to be registered
imref2d or imref3d object

Spatial referencing information associated with the image to be registered, specified as an imref2d
or imref3d object.

1 Functions

1-1796

fixed — Reference image in the target orientation
2-D or 3-D grayscale image

Reference image in the target orientation, specified as a 2-D or 3-D grayscale image.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Rfixed — Spatial referencing information associated with the reference (fixed) image
imref2d or imref3d object

Spatial referencing information associated with the reference (fixed) image, specified as an imref2d
or imref3d object.

transformType — Geometric transformation to be applied to the image to be registered
'translation' | 'rigid' | 'similarity' | 'affine'

Geometric transformation to be applied to the image to be registered, specified as one of the
following values:

Value Description
'translation' (x,y) translation.
'rigid' Rigid transformation consisting of translation and rotation.
'similarity' Nonreflective similarity transformation consisting of translation,

rotation, and scale.
'affine' Affine transformation consisting of translation, rotation, scale, and shear.

The 'similarity' and 'affine' transformation types always involve nonreflective
transformations.
Data Types: char | string

optimizer — Method for optimizing the similarity metric
RegularStepGradientDescent or OnePlusOneEvolutionary optimizer object

Method for optimizing the similarity metric, specified as a RegularStepGradientDescent or
OnePlusOneEvolutionary optimizer object.

metric — Image similarity metric to be optimized during registration
MeanSquares or MattesMutualInformation metric object

Image similarity metric to be optimized during registration, specified as a MeanSquares or
MattesMutualInformation metric object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'DisplayOptimization',1 enables verbose optimization mode.

DisplayOptimization — Verbose optimization flag
false (default) | true

 imregtform

1-1797

Verbose optimization flag, specified as the comma-separated pair consisting of
'DisplayOptimization', and the logical value true or false. Controls whether imregister
displays optimization information in the command window during the registration process.
Data Types: logical

InitialTransformation — Starting geometric transformation
affine2d or affine3d object

Starting geometric transformation, specified as the comma-separated pair consisting of
'InitialTransformation' and an affine2d or affine3d object.

PyramidLevels — Number of multi-level image pyramid levels used during the registration
process
3 (default) | positive integer

Number of pyramid levels used during the registration process, specified as the comma-separated
pair consisting of 'PyramidLevels' and a positive integer.
Example: 'PyramidLevels',4 sets the number of pyramid levels to 4.

Output Arguments
tform — Geometric transformation
affine2d or affine3d object

Geometric transformation, returned as an affine2d or affine3d object. If the input matrices are 3-
D, imregtform returns an affine3d object.

Tips
• When you have spatial referencing information available, it is important to provide this

information to imregtform, using spatial referencing objects. This information helps
imregtform converge to better results more quickly because scale differences can be considered.

• Both imregtform and imregister use the same underlying registration algorithm. imregister
performs the additional step of resampling moving to produce the registered output image from
the geometric transformation estimate calculated by imregtform. Use imregtform when you
want access to the geometric transformation that relates moving to fixed. Use imregister
when you want a registered output image.

• Getting good results from optimization-based image registration usually requires modifying
optimizer and/or metric settings for the pair of images being registered. The imregconfig
function provides a default configuration that should only be considered a starting point. See the
output of the imregconfig for more information on the different parameters that can be
modified.

See Also
Apps
Registration Estimator

Functions
imregconfig | imregister | imshowpair | imwarp

1 Functions

1-1798

Objects
affine2d | affine3d

Topics
“Create an Optimizer and Metric for Intensity-Based Image Registration”

Introduced in R2013a

 imregtform

1-1799

imresize3
Resize 3-D volumetric intensity image

Syntax
B = imresize3(V,scale)
B = imresize3(V,[numrows numcols numplanes])
B = imresize3(___ ,method)
B = imresize3(___ ,Name,Value)

Description
B = imresize3(V,scale) returns the volume B that is scale times the size of 3-D numeric or
categorical volume V.

B = imresize3(V,[numrows numcols numplanes]) returns the volume B that has the number
of rows, columns, and planes specified by the 3-element vector [numrows numcols numplanes].

B = imresize3(___ ,method) returns the volume B, where method specifies the interpolation
method used.

B = imresize3(___ ,Name,Value) returns a resized volume where Name,Value pairs control
aspects of the operation.

Examples

Resize 3-D Volumetric Image

Read MRI volume into the workspace.

s = load('mri');
mriVolumeOriginal = squeeze(s.D);
sizeO = size(mriVolumeOriginal);

Visualize the volume.

figure;
slice(double(mriVolumeOriginal),sizeO(2)/2,sizeO(1)/2,sizeO(3)/2);
shading interp, colormap gray;
title('Original');

1 Functions

1-1800

Resize the volume, reducing the size of all dimensions by one-half. This example uses the default
interpolation method and antialiasing.

mriVolumeResized = imresize3(mriVolumeOriginal, 0.5);
sizeR = size(mriVolumeResized);

Visualize the resized volume.

figure;
slice(double(mriVolumeResized),sizeR(2)/2,sizeR(1)/2,sizeR(3)/2);
shading interp, colormap gray;
title('Resized');

 imresize3

1-1801

Input Arguments
V — Volume to be resized
3-D numeric array | 3-D categorical array

Volume to be resized, specified as a 3-D numeric array or 3-D categorical array.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | categorical

scale — Scale factor
numeric scalar

Scale factor, specified as a numeric scalar.

• If scale is less than 1, then the output image is smaller than the input volume.
• If scale is greater than 1, then the output image is larger than the input volume.

imresize3 applies the scale factor to each dimension in the volume. To apply a different resize
factor to each dimension, use the Scale name-value pair argument.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

[numrows numcols numplanes] — Size of output volume
3-element vector of positive integers

1 Functions

1-1802

Size of output volume, specified as a 3-element vector of positive integers in the form [rows
columns planes]. If you specify one numeric value and the other two values as NaNs, then
imresize3 computes the other two elements automatically to preserve the aspect ratio.
Data Types: single | double

method — Interpolation method
'nearest' | 'linear' | 'box' | 'triangle' | 'lanczos2' | 'lanczos3'

Interpolation method, specified as one of the values in the following table that identifies a general
method or a named interpolation kernel.

Method Description
'nearest' Nearest-neighbor interpolation.

Nearest-neighbor interpolation is the only interpolation method supported
for categorical images and it is the default method for images of this type.

'linear' Linear interpolation
'cubic' Cubic interpolation. Cubic interpolation is the default for numeric volumes.

Note Cubic interpolation can produce pixel values outside the original
range.

Interpolation Kernel Description
'box' Box-shaped kernel.

The box-shaped kernel is the only interpolation kernel supported for
categorical images.

'triangle' Triangular kernel (equivalent to 'linear')
'lanczos2' Lanczos-2 kernel
'lanczos3' Lanczos-3 kernel

Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Antialiasing',false

Antialiasing — Perform antialiasing when shrinking a volume
true | false

Perform antialiasing when shrinking a volume, specified as the comma-separated pair consisting of
'Antialiasing' and true or false.

• If method is 'nearest', then the default value of 'Antialiasing' is false.
• If the interpolation method is the 'box' interpolation kernel and the input volume is categorical,

then the default value of 'Antialiasing' is false.

 imresize3

1-1803

• For all other interpolation methods, the default value of 'Antialiasing' is true.

Data Types: logical

Method — Interpolation method
'cubic' (default) | character vector

Interpolation method, specified as the comma-separated pair consisting of 'Method' and string
scalar or character vector. For details, see method.
Data Types: char | string

OutputSize — Size of output volume
3-element vector of positive integers

Size of the output volume, specified as the comma-separated pair consisting of 'OutputSize' and a
3-element vector of positive integers of the form [rows cols planes].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Scale — Resize scale factor
positive number | 3-element vector of positive numbers

Resize scale factor, specified as the comma-separated pair consisting of 'Scale' and a positive
number or 3-element vector of positive numbers. If you specify a scalar, then imresize3 applies the
same scale factor to each dimension in the volume. If you specify a 3-element vector, then imresize3
applies a different scale value to each dimension.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
B — Resized volume
array

Resized volume, returned as an array of the same class as the input volume, V.

Extended Capabilities
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
imresize | imrotate | imrotate3 | imwarp

Introduced in R2017a

1 Functions

1-1804

imroi class
(Not recommended) Region-of-interest (ROI) base class

Note The imroi abstract class and its inherited classes are not recommended. Use new ROI objects
instead. For more information, see “Compatibility Considerations”.

Description
The imroi class is an abstract base class that specifies the Image Processing Toolbox interface for
working with regions of interest (ROIs). You can use classes that inherit from the imroi interface to
create interactive ROIs over an image.

The imroi class is a handle class.

Class Attributes

Abstract true

For information on class attributes, see “Class Attributes”.

Creation
The imroi class is abstract, and creating an instance of the imroi class is not allowed. To learn how
to create an ROI object from a concrete subclass of imroi, see imellipse, imfreehand, imline,
impoint, impoly, or imrect.

Properties
Deletable — ROI can be deleted
true (default) | false

ROI can be deleted, specified as true or false.

Attributes:

GetAccess public
SetAccess public

Data Types: logical

Methods
Public Methods
addNewPositionCallback Add new-position callback to ROI object
createMask Create mask within image
getColor Get color used to draw ROI object

 imroi class

1-1805

getPosition Return current position of ROI object
getPositionConstraintFcn Return function handle to current position constraint function
removeNewPositionCallback Remove new-position callback from ROI object
resume (Not recommended) Resume execution of MATLAB command line
setColor (Not recommended) Set color used to draw ROI object
setConstrainedPosition Set ROI object to new position
setPositionConstraintFcn Set position constraint function of ROI object
wait (Not recommended) Block MATLAB command line until ROI creation

is finished

Specialized Operators and Functions

These methods specialize standard MATLAB operators and functions for objects in this class.

delete

Compatibility Considerations
imroi is not recommended
Not recommended starting in R2018b

Starting in R2018b, a new set of ROI objects replaces the existing set of ROI objects. The new objects
provide more functional capabilities, such as face color transparency. The new classes also support
events that you can use to respond to changes in your ROI such as moving or being clicked. Although
there are no plans to remove the old ROI objects at this time, switch to the new ROIs to take
advantage of the additional capabilities and flexibility. For more information on creating ROIs using
the new ROI functions, see “Create ROI Shapes”.

For more information on updating code using instances of imroi objects to the new ROI objects, see
“ROI Migration”.

See Also
AssistedFreehand | Circle | Crosshair | Cuboid | Ellipse | Freehand | Line | Point |
Polygon | Polyline | Rectangle

Topics
“Create ROI Shapes”
“ROI Migration”

Introduced in R2008a

1 Functions

1-1806

imdistline
Distance tool

Description
An imdistline object encapsulates a Distance tool, which consists of an interactive line over an
image, paired with a text label that displays the distance between the line endpoints.

You can adjust the size and position of the line by using the mouse. The line also has a context menu
that controls aspects of its appearance and behavior. For more information, see “Usage” on page 1-
1822.

Creation

Syntax
h = imdistline
h = imdistline(hparent)
h = imdistline(___ ,x,y)

Description

h = imdistline creates a Distance tool on the current axes. The function returns h, a handle to an
imdistline object.

h = imdistline(hparent) creates a draggable Distance tool on the object specified by hparent.

h = imdistline(___ ,x,y) creates a Distance tool with endpoints at the positions specified by x
and y.

Input Arguments

hparent — Handle to parent object
handle

Handle to parent object, specified as a handle. The parent is typically an axes object, but can also be
any other object that can be the parent of an hggroup object.

x — x-coordinates of endpoints
2-element numeric vector

x-coordinates of endpoints, specified as a 2-element numeric vector.
Example: h = imdistline(gca,[10 100],[20 40]); sets the first endpoint at the (x, y)
coordinate (10, 20) and the second endpoint at the coordinate (100, 40).

y — y-coordinates of endpoints
2-element numeric vector

 imdistline

1-1807

y-coordinates of endpoints, specified as a 2-element numeric vector.
Example: h = imdistline(gca,[10 100],[20 40]); sets the first endpoint at the (x, y)
coordinate (10, 20) and the second endpoint at the coordinate (100, 40).

Properties
Deletable — ROI can be deleted
true (default) | false

ROI can be deleted, specified as true or false.
Data Types: logical

Usage

To move the Distance tool, position the pointer over the line, the shape changes to the fleur, .
Click and drag the line using the mouse. To resize the Distance tool, move the pointer over either of

the endpoints of the line, the shape changes to the pointing finger, . Click and drag the endpoint
of the line using the mouse.

The line also supports a context menu that allows you to control various aspects of its functioning and
appearance. Right-click the line to access the context menu.

Distance Tool Behavior Context Menu Item
Export endpoint and distance
data to the workspace

Select Export to Workspace from the context menu.

Toggle the distance label on/off. Select Show Distance Label from the context menu.
Specify horizontal and vertical
drag constraints

Select Constrain Drag from the context menu.

Change the color used to display
the line.

Select Set Color from the context menu.

Delete the Distance tool object Select Delete from the context menu.

Object Functions
addNewPositionCallback Add new-position callback to ROI object
createMask Create mask within image
delete Delete handle object

1 Functions

1-1808

getAngleFromHorizontal Return angle between Distance tool and horizontal axis
getColor Get color used to draw ROI object
getDistance Return distance between endpoints of Distance tool
getLabelHandle Return handle to text label of Distance tool
getLabelTextFormatter Return format of text label of Distance tool
getLabelVisible Return visibility of text label of Distance tool
getPosition Return current position of ROI object
getPositionConstraintFcn Return function handle to current position constraint function
removeNewPositionCallback Remove new-position callback from ROI object
resume (Not recommended) Resume execution of MATLAB command line
setColor (Not recommended) Set color used to draw ROI object
setConstrainedPosition Set ROI object to new position
setLabelTextFormatter Set format used to display text label of Distance tool
setLabelVisible Set visibility of text label of Distance tool
setPosition (Not recommended) Move ROI object to new position
setPositionConstraintFcn Set position constraint function of ROI object
wait (Not recommended) Block MATLAB command line until ROI creation

is finished

Examples
Insert Distance Tool into an Image

Insert a Distance tool into an image. Use makeConstrainToRectFcn to specify a drag constraint
function that prevents the Distance tool from being dragged outside the extent of the image. Right-
click the Distance tool and explore the context menu options.
imshow('pout.tif')
h = imdistline;
fcn = makeConstrainToRectFcn('imline',get(gca,'XLim'),get(gca,'YLim'));
setDragConstraintFcn(h,fcn);

Position Endpoints of Distance Tool

Position endpoints of the Distance tool at the specified locations.

imshow('pout.tif')
h = imdistline(gca,[10 100],[10 100]);

Delete the Distance tool.

delete(h)

Use Distance Tool with Spatial Referencing

Use the Distance tool with XData and YData of associated image in non-pixel units. This example
requires the boston.tif image from the Mapping Toolbox™ software, which includes material
copyrighted by GeoEye™, all rights reserved.
start_row = 1478;
end_row = 2246;
meters_per_pixel = 1;
rows = [start_row meters_per_pixel end_row];
start_col = 349;
end_col = 1117;
cols = [start_col meters_per_pixel end_col];
img = imread('boston.tif','PixelRegion',{rows,cols});
figure

 imdistline

1-1809

hImg = imshow(img);
title('1 meter per pixel')

Specify the initial position of distance tool on Harvard Bridge.
hline = imdistline(gca,[271 471],[108 650]);
setLabelTextFormatter(hline,'%02.0f meters');

Repeat the process but work with a 2 meter per pixel sampled image. Verify that the same distance is
obtained.
meters_per_pixel = 2;
rows = [start_row meters_per_pixel end_row];
cols = [start_col meters_per_pixel end_col];
img = imread('boston.tif','PixelRegion',{rows,cols});
figure
hImg = imshow(img);
title('2 meters per pixel')

Convert XData and YData to meters using conversion factor.
XDataInMeters = get(hImg,'XData')*meters_per_pixel;
YDataInMeters = get(hImg,'YData')*meters_per_pixel;

Set XData and YData of the image to reflect desired units.
set(hImg,'XData',XDataInMeters,'YData',YDataInMeters);
set(gca,'XLim',XDataInMeters,'YLim',YDataInMeters);

Specify the initial position of distance tool on Harvard Bridge.
hline = imdistline(gca,[271 471],[108 650]);
setLabelTextFormatter(hline,'%02.0f meters');

Tips
• If you use imdistline with an axes that contains an image object, and do not specify a drag

constraint function, then you can drag the line outside the extent of the image. When used with an
axes created by the plot function, the axes limits automatically expand to accommodate the
movement of the line.

• You can also use the Line ROI object to create an interactive customizable distance tool. For an
example, see “Measure Distances in an Image”.

See Also
Line | drawline

Introduced before R2006a

1 Functions

1-1810

imellipse
(Not recommended) Create draggable ellipse

Note imellipse is not recommended. Use the Ellipse ROI object instead. You can also use the
ROI creation convenience function drawellipse. If you used imellipse to create a circular ROI,
use the Circle ROI object instead. For more information, see “Compatibility Considerations”.

Description
An imellipse object encapsulates an interactive ellipse over an image.

You can adjust the size and position of the ellipse by using the mouse. The ellipse also has a context
menu that controls aspects of its appearance and behavior. For more information, see “Usage” on
page 1-1812.

Creation
Syntax
h = imellipse
h = imellipse(hparent)
h = imellipse(hparent,position)
h = imellipse(___ ,Name,Value)

Description

h = imellipse begins interactive placement of an ellipse on the current axes, and returns an
imellipse object.

h = imellipse(hparent) begins interactive placement of an ellipse on the object specified by
hparent.

h = imellipse(hparent,position) creates a draggable ellipse at the position position on the
object specified by hparent.

h = imellipse(___ ,Name,Value) specifies name-value pairs that control the behavior of the
ellipse.

Input Arguments

hparent — Handle to parent object
handle

Handle to parent object, specified as a handle. The parent is typically an axes object, but can also be
any other object that can be the parent of an hggroup object.

position — Position of ellipse
4-element vector

 imellipse

1-1811

Position of the ellipse as defined by a bounding rectangle, specified as a 4-element vector of the form
[xmin ymin width height]. The initial size of the bounding rectangle is width-by-height, and
the upper-left corner of the rectangle is at the (x,y) coordinate (xmin,ymin).

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

PositionConstraintFcn — Position constraint function
function handle

Position constraint function, specified as the comma-separated pair consisting of
'PositionConstraintFcn' and a function handle. fcn is called whenever the mouse is dragged.
You can use this function to control where the ellipse can be dragged. See the help for the
setPositionConstraintFcn function for information about valid function handles.

Properties
Deletable — ROI can be deleted
true (default) | false

ROI can be deleted, specified as true or false.
Data Types: logical

Usage

When you call imellipse with an interactive syntax, the pointer changes to a cross hairs when
over an image. Click and drag the mouse to specify the size and position of the ellipse. The ellipse
also supports a context menu that you can use to control aspects of its appearance and behavior.
Right-click on the ellipse to access this context menu.

1 Functions

1-1812

The table lists the interactive behavior supported by imellipse.

Interactive Behavior Description
Moving the entire ellipse. Move the pointer inside the ellipse. The pointer changes to a fleur

shape . Click and drag the mouse to move the ellipse.
Resizing the ellipse. Move the pointer over a resizing handle on the ellipse. The pointer

changes to a double-ended arrow shape . Click and drag the
mouse to resize the ellipse.

Changing the color used to
display the ellipse.

Move the pointer inside the ellipse. Right-click and select Set Color
from the context menu.

Retrieving the current position
of the ellipse.

Move the pointer inside the ellipse. Right-click and select Copy
Position from the context menu. imellipse copies a four-element
position vector [xmin ymin width height] to the clipboard.

Preserving the current aspect
ratio of the ellipse during
resizing.

Move the pointer inside the ellipse. Right-click and select Fix
Aspect Ratio from the context menu.

Deleting the ellipse Move the pointer inside the ellipse. Right-click and select Delete
from the context menu. To remove this option from the context
menu, set the Deletable property to false: h = imellipse();
h.Deletable = false;

 imellipse

1-1813

Object Functions
Each imellipse object supports a number of methods. Type methods imellipse to see a
complete list.
addNewPositionCallback Add new-position callback to ROI object
createMask Create mask within image
delete Delete handle object
getColor Get color used to draw ROI object
getPosition Return current position of ROI object
getPositionConstraintFcn Return function handle to current position constraint function
getVertices Return vertices on perimeter of ellipse ROI object
removeNewPositionCallback Remove new-position callback from ROI object
resume (Not recommended) Resume execution of MATLAB command line
setColor (Not recommended) Set color used to draw ROI object
setConstrainedPosition Set ROI object to new position
setFixedAspectRatioMode Preserve aspect ratio when resizing ROI object
setPosition (Not recommended) Move ROI object to new position
setPositionConstraintFcn Set position constraint function of ROI object
setResizable Set resize behavior of ROI object
wait (Not recommended) Block MATLAB command line until ROI creation

is finished

Examples
Update Title when Ellipse Moves

Create an ellipse, using callbacks to display the updated position in the title of the figure. The
example illustrates using the makeConstrainToRectFcn to keep the ellipse inside the original XLim
and YLim ranges.
imshow('coins.png')
h = imellipse(gca,[10 10 100 100]);
addNewPositionCallback(h,@(p) title(mat2str(p,3)));
fcn = makeConstrainToRectFcn('imellipse',get(gca,'XLim'),get(gca,'YLim'));
setPositionConstraintFcn(h,fcn);

Click and Drag to Place Ellipse

Interactively place an ellipse by clicking and dragging. Use wait to block the MATLAB command line.
Double-click on the ellipse to resume execution of the MATLAB command line.
imshow('coins.png')
h = imellipse;
position = wait(h);

Tips
If you use imellipse with an axes that contains an image object, and do not specify a position
constraint function, users can drag the ellipse outside the extent of the image and lose the ellipse.
When used with an axes created by the plot function, the axes limits automatically expand to
accommodate the movement of the ellipse.

1 Functions

1-1814

Compatibility Considerations
imellipse is not recommended
Not recommended starting in R2018b

Starting in R2018b, a new set of ROI objects replaces the existing set of ROI objects. The new objects
provide more functional capabilities, such as face color transparency. The new classes also support
events that you can use to respond to changes in your ROI such as moving or being clicked. Although
there are no plans to remove the old ROI objects at this time, switch to the new ROIs to take
advantage of the additional capabilities and flexibility. For more information on creating ROIs using
the new ROI functions, see “Create ROI Shapes”.

Replace use of the imellipse object with the new Ellipse ROI object. You can also use the ROI
convenience function drawellipse.

Update ROI Creation Code

Update all instances of imellipse.

Discouraged Usage Recommended Replacement
This example creates an ellipse ROI.

imshow('cameraman.tif');
h = imellipse(gca,[10 10 100 150]);

Here is roughly equivalent code, replacing the old
ROI object with the new ROI object. Note that,
with the previous ROIs, you defined an ellipse by
the size of the bounding rectangle,
[x,y,width,height]. With the new ROIs, you
define an ellipse by specifying the center point of
the ellipse and the length of the semi-major and
semi-minor axes.

imshow('cameraman.tif');
h = drawellipse(gca,'Center',[65 90],'Semi',[50 75]);

Other ROI Code Updates

Update code that uses any of the object functions of the imellipse ROI object. In many cases, you
can replace the call to an imellipse object function by simply accessing or setting the value of an
Ellipse ROI object property. For example, replace calls to getColor or setColor with use of the
Color property. In some cases, you must replace the imellipse object function with an object
function of the new Ellipse ROI. Each of the individual imellipse ROI object methods include
information about migrating to the new Ellipse ROI object. For a migration overview, see “ROI
Migration”.

See Also
Ellipse | drawellipse

Topics
“Create ROI Shapes”
“ROI Migration”

Introduced in R2007b

 imellipse

1-1815

imfreehand
(Not recommended) Create draggable freehand region

Note imfreehand is not recommended. Use the new Freehand ROI object instead. You can also use
the new ROI creation convenience function drawfreehand. Another option is the
AssistedFreehand object, which enables you to hand-draw a shape that automatically follows the
edges in the underlying image. For more information, see “Compatibility Considerations”.

Description
An imfreehand object encapsulates an interactive freehand region over an image.

You can add vertices and adjust the size and position of the polygon by using the mouse. The polygon
also has a context menu that controls aspects of its appearance and behavior. For more information,
see “Usage” on page 1-1817.

Creation
Syntax
h = imfreehand
h = imfreehand(hparent)
h = imfreehand(___ ,Name,Value)

Description

h = imfreehand begins interactive placement of a freehand region on the current axes, and returns
an imfreehand object.

h = imfreehand(hparent) begins interactive placement of a freehand region on the object
specified by hparent.

h = imfreehand(___ ,Name,Value) specifies name-value pairs that control the behavior of the
freehand region.

Input Arguments

hparent — Handle to parent object
handle

Handle to parent object, specified as a handle. The parent is typically an axes object, but can also be
any other object that can be the parent of an hggroup object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

1 Functions

1-1816

PositionConstraintFcn — Position constraint function
function handle

Position constraint function, specified as the comma-separated pair consisting of
'PositionConstraintFcn' and a function handle. fcn is called whenever the mouse is dragged.
You can use this function to control where the freehand region can be dragged. See the help for the
setPositionConstraintFcn function for information about valid function handles.

Closed — Freehand region is closed
true (default) | false

Freehand region is closed, specified as the comma-separated pair consisting of 'Closed' and true
or false. When set to true (the default), imfreehand draws a straight line to connect the
endpoints of the freehand line to create a closed region. If set to false, imfreehand leaves the
region open.
Data Types: logical

Properties
Deletable — ROI can be deleted
true (default) | false

ROI can be deleted, specified as true or false.
Data Types: logical

Usage

When you call imfreehand with an interactive syntax, the pointer changes to a cross hairs when
positioned over an image. Click and drag the mouse to draw the freehand region and adjust the
position of the region. By default, imfreehand draws a straight line connecting the last point you
drew with the first point, but you can control this behavior using the Closed parameter.

The freehand region also supports a context menu that you can use to control aspects of its
appearance and behavior.

 imfreehand

1-1817

The table lists the interactive features supported by imfreehand.

Interactive Behavior Description
Moving the region. Move the pointer inside the freehand region. The pointer changes to

a fleur shape . Click and hold the left mouse button to move the
region.

Changing the color used to draw
the region.

Move the pointer inside the freehand region. Right-click and select
Set Color from the context menu.

Retrieving the current position
of the freehand region.

Move the pointer inside the freehand region. Right-click and select
Copy Position from the context menu. imfreehand copies an n-
by-2 array of coordinates on the boundary of the ROI to the
clipboard.

Deleting the region Move the pointer inside the region. Right-click and select Delete
from the context menu. To remove this option from the context
menu, set the Deletable property to false: h = imfreehand();
h.Deletable = false;

Object Functions
Each imfreehand object supports a number of methods. Type methods imfreehand to see a
complete list.
addNewPositionCallback Add new-position callback to ROI object
createMask Create mask within image
delete Delete handle object
getColor Get color used to draw ROI object
getPosition Return current position of ROI object

1 Functions

1-1818

getPositionConstraintFcn Return function handle to current position constraint function
removeNewPositionCallback Remove new-position callback from ROI object
resume (Not recommended) Resume execution of MATLAB command line
setClosed Set closure behavior of ROI object
setColor (Not recommended) Set color used to draw ROI object
setConstrainedPosition Set ROI object to new position
setPositionConstraintFcn Set position constraint function of ROI object
wait (Not recommended) Block MATLAB command line until ROI creation

is finished

Examples
Click and Drag to Place Freehand Region

Interactively place a closed freehand region of interest by clicking and dragging over an image.

imshow('pout.tif')
h = imfreehand;

Interactively move the freehand region by clicking and dragging. Use the wait function to block the
MATLAB command line. Double-click on the freehand region to resume execution of the MATLAB
command line.

position = wait(h);

Tips
• If you use imfreehand with an axes that contains an image object, and do not specify a position

constraint function, users can drag the freehand region outside the extent of the image and lose
the freehand region. When used with an axes created by the plot function, the axes limits
automatically expand to accommodate the movement of the freehand region.

• To cancel the interactive placement, press the Esc key. imfreehand returns an empty object.

Compatibility Considerations
imfreehand is not recommended
Not recommended starting in R2018b

Starting in R2018b, a new set of ROI objects replaces the existing set of ROI objects. The new objects
provide more functional capabilities, such as face color transparency. The new classes also support
events that you can use to respond to changes in your ROI such as moving or being clicked. Although
there are no plans to remove the old ROI objects at this time, switch to the new ROIs to take
advantage of the additional capabilities and flexibility. For more information on creating ROIs using
the new ROI functions, see “Create ROI Shapes”.

Replace use of the imfreehand ROI object with the Freehand or AssistedFreehand object. You
can also use the ROI convenience functions drawfreehand or drawassisted.

Update ROI Creation Code

Update all instances of imfreehand.

 imfreehand

1-1819

Discouraged Usage Recommended Replacement
This example enables drawing of a free-hand ROI.

imshow('cameraman.tif');
h = imfreehand

Here is equivalent code, replacing the old ROI
object with the new ROI object. This example
uses the ROI creation convenience function.

imshow('cameraman.tif');
h = drawfreehand

Other ROI Code Updates

Update code that uses any of the object functions of the imfreehand ROI object. In many cases, you
can replace the call to an imfreehand object function by simply accessing or setting the value of an
Freehand ROI object property. For example, replace calls to getColor or setColor with use of the
Color property. In some cases, you must replace the imfreehand object function with an object
function of the new Freehand ROI. Each of the individual imfreehand ROI object functions include
information about migrating to the new Freehand ROI object. For a migration overview, see “ROI
Migration”.

See Also
Freehand | AssistedFreehand | drawassisted | drawfreehand

Topics
“Create ROI Shapes”
“ROI Migration”

Introduced in R2007b

1 Functions

1-1820

imline
(Not recommended) Create draggable, resizable line

Note imline is not recommended. Use the new Line ROI object instead. You can also use the ROI
creation convenience function drawline. For more information, see “Compatibility Considerations”.

Description
An imline object encapsulates an interactive line over an image.

You can adjust the size and position of the line by using the mouse. The line also has a context menu
that controls aspects of its appearance and behavior. For more information, see “Usage” on page 1-
1822.

Creation

Syntax
h = imline
h = imline(hparent)
h = imline(hparent,position)
h = imline(hparent,x,y)
h = imline(___ ,Name,Value)

Description

h = imline begins interactive placement of a line on the current axes, and returns an imline
object.

h = imline(hparent) begins interactive placement of a line on the object specified by hparent.

h = imline(hparent,position) creates a draggable, resizeable line, with coordinates defined by
position.

h = imline(hparent,x,y) creates a draggable, resizeable line, with x- and y-coordinates of the
endpoints defined by x and y.

h = imline(___ ,Name,Value) specifies name-value pairs that control the behavior of the line.

Input Arguments

hparent — Handle to parent object
handle

Handle to parent object, specified as a handle. The parent is typically an axes object, but can also be
any other object that can be the parent of an hggroup object.

 imline

1-1821

position — Position of line endpoints
2-element vector

Position of line endpoints, specified as a 2-by-2 array of the form [x1 y1; x2 y2].

x — x-coordinates of line endpoints
2-element vector

x-coordinates of line endpoints, specified as a 2-element vector of the form x = [x1 x2].

y — y-coordinates of line endpoints
2-element vector

y-coordinates of line endpoints, specified as a 2-element vector of the form y = [y1 y2].

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

PositionConstraintFcn — Position constraint function
function handle

Position constraint function, specified as the comma-separated pair consisting of
'PositionConstraintFcn' and a function handle. fcn is called whenever the mouse is dragged.
You can use this function to control where the line can be dragged. See the help for the
setPositionConstraintFcn function for information about valid function handles.

Properties
Deletable — ROI can be deleted
true (default) | false

ROI can be deleted, specified as true or false.
Data Types: logical

Usage

When you call imline with an interactive syntax, the pointer changes to a cross hairs when over
the image. Click and drag the mouse to specify the position and length of the line. The line supports a
context menu that you can use to control aspects of its appearance and behavior.

1 Functions

1-1822

The table describes the interactive behavior supported by imline.

Interactive Behavior Description
Moving the line. Move the pointer over the line. The pointer changes to a fleur shape

. Click and drag the mouse to move the line.
Moving the endpoints of the
line.

Move the pointer over either end of the line. The pointer changes to

the pointing finger, . Click and drag the mouse to resize the line.
Changing the color used to
display the line.

Move the pointer over the line. Right-click and select Set Color
from the context menu.

Retrieving the coordinates of
the endpoints of the line.

Move the pointer over the line. Right-click and select Copy
Position from the context menu. imline copies a 2-by-2 array to
the clipboard specifying the coordinates of the endpoints of the line
in the form [X1 Y1; X2 Y2].

Deleting the line Move the pointer on top of the line. Right-click and select Delete
from the context menu. To remove this option from the context
menu, set the Deletable property to false: h = imline();
h.Deletable = false;

Object Functions
Each imline object supports a number of functions. Type methods imline to see a complete list.
addNewPositionCallback Add new-position callback to ROI object
createMask Create mask within image
delete Delete handle object
getColor Get color used to draw ROI object

 imline

1-1823

getPosition Return current position of ROI object
getPositionConstraintFcn Return function handle to current position constraint function
removeNewPositionCallback Remove new-position callback from ROI object
resume (Not recommended) Resume execution of MATLAB command line
setColor (Not recommended) Set color used to draw ROI object
setConstrainedPosition Set ROI object to new position
setPosition (Not recommended) Move ROI object to new position
setPositionConstraintFcn Set position constraint function of ROI object
wait (Not recommended) Block MATLAB command line until ROI creation

is finished

Examples
Update Title when Line Moves

Use a custom color for displaying the line. Use addNewPositionCallback function. Move the line,
note that the 2-by-2 position vector of the line is displayed in the title above the image. Explore the
context menu of the line by right clicking on the line.

imshow('pout.tif')
h = imline(gca,[10 100],[100 100]);
setColor(h,[0 1 0]);
id = addNewPositionCallback(h,@(pos) title(mat2str(pos,3)));

After observing the callback behavior, remove the callback using the removeNewPositionCallback
function.

removeNewPositionCallback(h,id);

Click and Drag to Place Line

Interactively place a line by clicking and dragging. Use wait to block the MATLAB command line.
Double-click on the line to resume execution of the MATLAB command line.

imshow('pout.tif')
h = imline;
position = wait(h);

Tips
• If you use imline with an axes that contains an image object, and do not specify a position

constraint function, users can drag the line outside the extent of the image and lose the line.
When used with an axes created by the plot function, the axis limits automatically expand to
accommodate the movement of the line.

• Use imdistline to create an interactive line with a text box that displays the distance between
line endpoints.

Compatibility Considerations
imline is not recommended
Not recommended starting in R2018b

Starting in R2018b, a new set of ROI objects replaces the existing set of ROI objects. The new objects
provide more functional capabilities, such as face color transparency. The new classes also support

1 Functions

1-1824

events that you can use to respond to changes in your ROI such as moving or being clicked. Although
there are no plans to remove the old ROI objects at this time, switch to the new ROIs to take
advantage of the additional capabilities and flexibility. For more information on creating ROIs using
the new ROI functions, see “Create ROI Shapes”.

Replace use of the imline ROI object with the new Line ROI object. You can also use the ROI
creation convenience function drawline.

Update ROI Creation Code

Update all instances of imline.

Discouraged Usage Recommended Replacement
This example creates a line ROI.

imshow('cameraman.tif');
h = imline(gca,[10 10; 100 150]);

Here is equivalent code, replacing the old ROI
with the equivalent new ROI object. This example
uses the ROI creation convenience function. Note
that you must specify the size and position
information as a name,value pair.

imshow('cameraman.tif');
h = drawline(gca,'Position',[10 10; 100 150]);

Other ROI Code Updates

Update instances where your code uses one of the object functions of imline. In many cases, you
replace the call to an object function by simply accessing or setting the value of an Line ROI object
property. For example, replace calls to getColor or setColor with use of the Color property. In
some cases, you must replace the imline object function with an object function of the new Line
ROI. Each of the individual imline ROI object functions include information about migrating to the
new Line ROI object. For a migration overview, see “ROI Migration”.

See Also
imdistline | Line | drawline

Topics
“Create ROI Shapes”
“ROI Migration”

Introduced before R2006a

 imline

1-1825

impoint
(Not recommended) Create draggable point

Note impoint is not recommended. Use the new Point ROI object instead. You can also use the
new ROI creation convenience function drawpoint. For more information, see “Compatibility
Considerations”.

Description
An impoint object encapsulates an interactive point over an image.

You can adjust the position of the point by using the mouse. The point also has a context menu that
controls aspects of its appearance and behavior. For more information, see “Usage” on page 1-1827.

Creation

Syntax
h = impoint
h = impoint(hparent)
h = impoint(hparent,position)
h = impoint(hparent,x,y)
h = impoint(___ ,Name,Value)

Description

h = impoint begins interactive placement of a point on the current axes, and returns an impoint
object.

h = impoint(hparent) begins interactive placement of a point on the object specified by
hparent.

h = impoint(hparent,position) creates a draggable point with coordinates defined by
position.

h = impoint(hparent,x,y) creates a draggable point with (x, y) coordinates defined by x and y.

h = impoint(___ ,Name,Value) specifies name-value pairs that control the behavior of the point.

Input Arguments

hparent — Handle to parent object
handle

Handle to parent object, specified as a handle. The parent is typically an axes object, but can also be
any other object that can be the parent of an hggroup object.

1 Functions

1-1826

position — Position of point
2-element vector

Position of point, specified as a 2-element vector of the form [x y].

x — x-coordinate of point
numeric scalar

x-coordinate of the point, specified as a numeric scalar.

y — y-coordinate of point
numeric scalar

y-coordinate of the point, specified as a numeric scalar.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

PositionConstraintFcn — Position constraint function
function handle

Position constraint function, specified as the comma-separated pair consisting of
'PositionConstraintFcn' and a function handle. fcn is called whenever the mouse is dragged.
You can use this function to control where the point can be dragged. See the help for the
setPositionConstraintFcn function for information about valid function handles.

Properties
Deletable — ROI can be deleted
true (default) | false

ROI can be deleted, specified as true or false.
Data Types: logical

Usage

When you call impoint with an interactive syntax, the pointer changes to a cross hairs when
over the image. Click and drag the mouse to specify the position of the point. The point supports a
context menu that you can use to control aspects of its appearance and behavior.

 impoint

1-1827

The table describes the interactive behavior supported by impoint.

Interactive Behavior Description
Moving the point. Move the mouse pointer over the point. The mouse pointer changes

to a fleur shape . Click and drag the mouse to move the point.
Changing the color used to
display the point.

Move the mouse pointer over the point. Right-click and select Set
Color from the context menu and specify the color you want to use.

Retrieving the coordinates of
the point.

Move the mouse pointer over the point. Right-click and select Copy
Position from the context menu to copy a 1-by-2 array to the
clipboard specifying the coordinates of the point [X Y].

Deleting the point Move the pointer on top of the point. Right-click and select Delete
from the context menu. To remove this option from the context
menu, set the Deletable property to false: h = impoint();
h.Deletable = false;

Object Functions
Each impoint object supports a number of functions. Type methods impoint to see a complete
list.
addNewPositionCallback Add new-position callback to ROI object
createMask Create mask within image
delete Delete handle object
getColor Get color used to draw ROI object
getPosition Return current position of ROI object
getPositionConstraintFcn Return function handle to current position constraint function
removeNewPositionCallback Remove new-position callback from ROI object

1 Functions

1-1828

resume (Not recommended) Resume execution of MATLAB command line
setColor (Not recommended) Set color used to draw ROI object
setConstrainedPosition Set ROI object to new position
setPosition (Not recommended) Move ROI object to new position
setPositionConstraintFcn Set position constraint function of ROI object
setString Set text label for point ROI object
wait (Not recommended) Block MATLAB command line until ROI creation

is finished

Examples
Enforce Boundary Constraint when Point Moves

Use impoint functions to set custom color, set a label, enforce a boundary constraint, and update
position in title as point moves.
imshow('rice.png')
h = impoint(gca,100,200);

Update the title with the new position by using addNewPositionCallback.
addNewPositionCallback(h,@(h) title(sprintf('(%1.0f,%1.0f)',h(1),h(2))));

Construct a boundary constraint function by using makeConstrainToRectFcn.
fcn = makeConstrainToRectFcn('impoint',get(gca,'XLim'),get(gca,'YLim'));

Enforce the boundary constraint function using setPositionConstraintFcn.
setPositionConstraintFcn(h,fcn);
setColor(h,'r');
setString(h,'Point label');

Click and Drag to Move Point

Interactively place a point. Use wait to block the MATLAB command line. Double-click on the point
to resume execution of the MATLAB command line

imshow('pout.tif')
h = impoint(gca,[]);
position = wait(h);

Tips
If you use impoint with an axes that contains an image object, and do not specify a drag constraint
function, then users can drag the point outside the extent of the image and lose the point. When used
with an axes created by the plot function, the axes limits automatically expand to accommodate the
movement of the point.

Compatibility Considerations
impoint is not recommended
Not recommended starting in R2018b

Starting in R2018b, a new set of ROI objects replaces the existing set of ROI objects. The new objects
provide more functional capabilities, such as face color transparency. The new classes also support

 impoint

1-1829

events that you can use to respond to changes in your ROI such as moving or being clicked. Although
there are no plans to remove the old ROI objects at this time, switch to the new ROIs to take
advantage of the additional capabilities and flexibility. For more information on creating ROIs using
the new ROI functions, see “Create ROI Shapes”.

Replace use of the impoint ROI object with the new Point ROI object. You can also use the ROI
creation convenience function drawpoint.

Update ROI Creation Code

Update all instances of impoint.

Discouraged Usage Recommended Replacement
This example creates a point ROI.

imshow('cameraman.tif');
h = impoint(gca,[25 50]);

Here is equivalent code, replacing the old ROI
object with the new ROI object. This example
uses the ROI creation convenience function. Note
that you must specify the size and position
information as a name,value pair

imshow('cameraman.tif');
h = drawpoint(gca,'Position',[25 50]);

Other ROI Code Updates

Update code that uses any of the object functions of the impoint ROI object. In many cases, you can
replace the call to an impoint object function by simply accessing or setting the value of an Point
ROI object property. For example, replace calls to getColor or setColor with use of the Color
property. In some cases, you must replace the impoint object function with an object function of the
new Point ROI. Each of the individual impoint ROI object functions include information about
migrating to the new Point ROI object. For a migration overview, see “ROI Migration”.

See Also
Point | drawpoint

Topics
“Create ROI Shapes”
“ROI Migration”

Introduced before R2006a

1 Functions

1-1830

impoly
(Not recommended) Create draggable, resizable polygon

Note impoly is not recommended. Use the new Polygon object instead. You can also use the new
ROI creation convenience function drawpolygon. Another option is the Polyline object, which
enables you to create an open polygon, or polyline shape. For more information, see “Compatibility
Considerations”.

Description
An impoly object encapsulates an interactive polygon over an image.

You can add vertices and adjust the size and position of the polygon by using the mouse. The polygon
also has a context menu that controls aspects of its appearance and behavior. For more information,
see “Usage” on page 1-1832.

Creation

Syntax
h = impoly
h = impoly(hparent)
h = impoly(hparent,position)
h = impoly(___ ,Name,Value)

Description

h = impoly begins interactive placement of a polygon on the current axes, and returns an impoly
object.

h = impoly(hparent) begins interactive placement of a polygon on the object specified by
hparent.

h = impoly(hparent,position) creates a draggable, resizeable polygon with vertices at
coordinates defined by position.

h = impoly(___ ,Name,Value) specifies name-value pairs that control the behavior of the
polygon.

Input Arguments

hparent — Handle to parent object
handle

Handle to parent object, specified as a handle. The parent is typically an axes object, but can also be
any other object that can be the parent of an hggroup object.

 impoly

1-1831

position — Position of polygon vertices
n-by-2 matrix

Position of polygon vertices, specified as an n-by-2 matrix. The two columns define the x- and y-
coordinate, respectively, of each of the n vertices.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

PositionConstraintFcn — Position constraint function
function handle

Position constraint function, specified as the comma-separated pair consisting of
'PositionConstraintFcn' and a function handle. fcn is called whenever the mouse is dragged.
You can use this function to control where the polygon can be dragged. See the help for the
setPositionConstraintFcn function for information about valid function handles.

Closed — Polygon is closed
true (default) | false

Polygon is closed, specified as the comma-separated pair consisting of 'Closed' and true or false.
When set to true (the default), impoly creates a closed polygon, that is, it draws a straight line
between the last vertex specified and the first vertex specified to create a closed region. When
Closed is false, impoly does not connect the last vertex with the first vertex, creating an open
polygon (or polyline).
Data Types: logical

Properties
Deletable — ROI can be deleted
true (default) | false

ROI can be deleted, specified as true or false.
Data Types: logical

Usage

When you call impoly with an interactive syntax, the pointer changes to a cross hairs when over
the image. Click and drag the mouse to define the vertices of the polygon and adjust the size, shape,
and position of the polygon. By default, impoly draws a straight line connecting the last point you
drew with the first point, but you can control this behavior using the Closed parameter.

The polygon also supports a context menu that you can use to control aspects of its appearance and
behavior. The choices in the context menu vary whether you position the pointer on an edge of the
polygon (or anywhere inside the region) or on one of the vertices. The figure shows the context menu
when the pointer is on the polygon but not on a vertex.

1 Functions

1-1832

The table lists the interactive behaviors supported by impoly.

Interactive Behavior Description
Closing the polygon. Use any of the following mechanisms:

• Move the pointer over the initial vertex of the polygon that you
selected. The pointer changes to a circle . Click either mouse
button.

• Double-click the left mouse button. This action creates a vertex
at the point under the mouse and draws a straight line
connecting this vertex with the initial vertex.

• Click the right mouse button. This action draws a line
connecting the last vertex selected with the initial vertex; it does
not create a new vertex.

Adding a new vertex. Move the pointer over an edge of the polygon. Press and hold the A
key. The shape of the pointer changes . Click the left mouse
button to create a new vertex at that position on the line.

Moving a vertex. (Reshaping the
polygon.) Move the pointer over a vertex. The pointer changes to a circle .

Click and drag the vertex to its new position.
Deleting a vertex. Move the pointer over a vertex. The shape changes to a circle .

Right-click and select Delete Vertex from the vertex context menu.
This action deletes the vertex and adjusts the shape of the polygon,
drawing a new straight line between the two vertices that were
neighbors of the deleted vertex.

 impoly

1-1833

Interactive Behavior Description
Deleting the polygon Move the pointer inside the polygon or on one of the lines that

define the polygon, not on a vertex. Right-click and select Delete
from the context menu. To remove this option from the context
menu, set the Deletable property to false: h = impoly();
h.Deletable = false;

Moving the polygon. Move the pointer inside the polygon. The pointer changes to a fleur

shape . Click and drag the mouse to move the polygon.
Changing the color of the
polygon

Move the pointer inside the polygon. Right-click and select Set
Color from the context menu.

Retrieving the coordinates of
the vertices

Move the pointer inside the polygon. Right-click and select Copy
Position from the context menu. impoly copies an n-by-2 array
containing the x- and y-coordinates of each vertex to the clipboard.
n is the number of vertices you specified.

Object Functions
Each impoly object supports a number of methods. Type methods impoly to see a complete list.
addNewPositionCallback Add new-position callback to ROI object
createMask Create mask within image
delete Delete handle object
getColor Get color used to draw ROI object
getPosition Return current position of ROI object
getPositionConstraintFcn Return function handle to current position constraint function
removeNewPositionCallback Remove new-position callback from ROI object
resume (Not recommended) Resume execution of MATLAB command line
setClosed Set closure behavior of ROI object
setColor (Not recommended) Set color used to draw ROI object
setConstrainedPosition Set ROI object to new position
setPosition (Not recommended) Move ROI object to new position
setPositionConstraintFcn Set position constraint function of ROI object
setVerticesDraggable Set vertex behavior of ROI object
wait (Not recommended) Block MATLAB command line until ROI creation

is finished

Examples

Draw Polygon on Image and Specify Position Constraint Function

Display an image.

imshow('gantrycrane.png')

1 Functions

1-1834

Draw a polygon on the image, specifying the location of five vertices.

h = impoly(gca,[188,30; 189,142; 93,141; 13,41; 14,29]);

 impoly

1-1835

Set the color of the polygon to yellow.

setColor(h,'yellow');

1 Functions

1-1836

Define a function for the new position callback. This function displays the current position of the
polygon whenever it is moved.

addNewPositionCallback(h, @(p) title(mat2str(p,3)));

 impoly

1-1837

Create the function that constrains the movement of the polygon by using
makeConstrainToRectFcn, specifying the boundary of the image as the limits. Enforce the
boundary constraint function using setPositionConstraintFcn.

fcn = makeConstrainToRectFcn('impoly',get(gca,'XLim'),get(gca,'YLim'));
setPositionConstraintFcn(h,fcn);

1 Functions

1-1838

Interactively Create a Polygon by Clicking to Specify Vertex Locations

Display image.

figure
imshow('gantrycrane.png');

 impoly

1-1839

Create a polygon, specifying several vertices, but leave it unfinished so that you can finish it
interactively. The example sets Closed to false so that the polygon is left open. When you move the
cursor over one of the endpoints of the polygon, the cursor shape changes to a circle.

h = impoly(gca,[203,30; 202,142; 294,142],'Closed',false);

1 Functions

1-1840

Complete the polygon. Grab one of the ends of the existing lines. Extend the line by dragging it to
another corner of the shape you want to create. Then, while positioning the cursor over the line,
press and hold the A key to add a vertex to the line. Once you create the vertex you can drag it
anywhere you want to create the shape you want. Continue dragging the line and adding vertices as
you want. For more information, see “Usage” on page 1-1832.

 impoly

1-1841

Tips
If you use impoly with an axes that contains an image object, and do not specify a position constraint
function, users can drag the polygon outside the extent of the image and lose the polygon. When used
with an axes created by the plot function, the axes limits automatically expand when the polygon is
dragged outside the extent of the axes.

Compatibility Considerations
impoly is not recommended
Not recommended starting in R2018b

Starting in R2018b, a new set of ROI objects replaces the existing set of ROI objects. The new objects
provide more functional capabilities, such as face color transparency. The new classes also support
events that you can use to respond to changes in your ROI such as moving or being clicked. Although
there are no plans to remove the old ROI objects at this time, switch to the new ROIs to take
advantage of the additional capabilities and flexibility. For more information on creating ROIs using
the new ROI functions, see “Create ROI Shapes”.

1 Functions

1-1842

Replace use of the impoly object with the Polygon or Polyline object. You can also use the
drawpolygon or drawpolyline function to create an these objects.

Update ROI Creation Code

Update all instances of impoly.

Discouraged Usage Recommended Replacement
This example creates a closed polygonal ROI.

imshow('cameraman.tif');
h = impoly(gca,[10 10; 10 100; 80 100]);

Here is equivalent code, replacing the old ROI
object with the new ROI object. This example
uses the ROI creation convenience function. Note
that you must specify the position information as
a name,value pair

imshow('cameraman.tif');
h = drawpolygon(gca,'Position',[10 10; 10 100; 80 100]);

Other ROI Code Updates

Update code that uses any of the object methods of the impoly ROI object. In many cases, you can
replace the call to an impoly object method by simply accessing or setting the value of a Polygon
ROI object property. For example, replace calls to getColor or setColor with use of the Color
property. In some case, you must replace the impoly object method with an object method of the new
ROI. The documentation for each impoly ROI object method includes information about migrating to
the new ROI object. For a migration overview, see “ROI Migration”.

See Also
Polygon | Polyline | drawpolygon | drawpolyline

Topics
“Create ROI Shapes”
“ROI Migration”

Introduced in R2007b

 impoly

1-1843

imrect
(Not recommended) Create draggable rectangle

Note imrect is not recommended. Use the new Rectangle ROI object instead. You can also use the
new ROI convenience function drawrectangle. For more information, see “Compatibility
Considerations”.

Description
An imrect object encapsulates an interactive rectangle over an image.

You can adjust the size and position of the rectangle by using the mouse. The rectangle also has a
context menu that controls aspects of its appearance and behavior. For more information, see
“Usage” on page 1-1845.

Creation
Syntax
h = imrect
h = imrect(hparent)
h = imrect(hparent,position)
h = imrect(___ ,Name,Value)

Description

h = imrect begins interactive placement of a rectangle on the current axes, and returns an imrect
object.

h = imrect(hparent) begins interactive placement of a rectangle on the object specified by
hparent.

h = imrect(hparent,position) creates a draggable rectangle at the position position on the
object specified by hparent.

h = imrect(___ ,Name,Value) specifies name-value pairs that control the behavior of the
rectangle.

Input Arguments

hparent — Handle to parent object
handle

Handle to parent object, specified as a handle. The parent is typically an axes object, but can also be
any other object that can be the parent of an hggroup object.

position — Position of rectangle
4-element vector

1 Functions

1-1844

Position of the rectangle, specified as a 4-element vector of the form [xmin ymin width height].
The initial size of the rectangle is width-by-height, and the upper-left corner of the rectangle is at
the (x,y) coordinate (xmin,ymin).

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

PositionConstraintFcn — Position constraint function
function handle

Position constraint function, specified as the comma-separated pair consisting of
'PositionConstraintFcn' and a function handle. fcn is called whenever the mouse is dragged.
You can use this function to control where the rectangle can be dragged. See the help for the
setPositionConstraintFcn function for information about valid function handles.

Properties
Deletable — ROI can be deleted
true (default) | false

ROI can be deleted, specified as true or false.
Data Types: logical

Usage

When you call imrect with an interactive syntax, the pointer changes to a cross hairs when over
the image. You can create the rectangle and adjust its size and position using the mouse. The
rectangle also supports a context menu that you can use to control aspects of its appearance and
behavior. Right-click on the rectangle to access this context menu.

 imrect

1-1845

The table lists the interactive behaviors supported by imrect.

Interactive Behavior Description
Moving the rectangle. Move the pointer inside the rectangle. The pointer changes to a

fleur shape . Click and drag the mouse to move the rectangle.
Resizing the rectangle. Move the pointer over any of the edges or corners of the rectangle,

the shape changes to a double-ended arrow, . Click and drag
the edge or corner using the mouse.

Changing the color of the
rectangle.

Move the pointer inside the rectangle. Right-click and select Set
Color from the context menu.

Retrieving the coordinates of
the current position

Move the pointer inside the polygon. Right-click and select Copy
Position from the context menu. imrect copies a four-element
position vector to the clipboard.

Preserve the current aspect
ratio of the rectangle during
interactive resizing.

Move the pointer inside the rectangle. Right-click and select Fix
Aspect Ratio from the context menu.

Deleting the rectangle Move the pointer inside the rectangle or on an edge of the
rectangle. Right-click and select Delete from the context menu. To
remove this option from the context menu, set the Deletable
property to false: h = imrect(); h.Deletable = false;

When you use setResizeable to make the rectangle non-resizable, the Fix Aspect Ratio context
menu item is not provided.

1 Functions

1-1846

Object Functions
Each imrect object supports a number of functions. Type methods imrect to see a complete list.
addNewPositionCallback Add new-position callback to ROI object
createMask Create mask within image
delete Delete handle object
getColor Get color used to draw ROI object
getPosition Return current position of ROI object
getPositionConstraintFcn Return function handle to current position constraint function
removeNewPositionCallback Remove new-position callback from ROI object
resume (Not recommended) Resume execution of MATLAB command line
setColor (Not recommended) Set color used to draw ROI object
setConstrainedPosition Set ROI object to new position
setFixedAspectRatioMode Preserve aspect ratio when resizing ROI object
setPosition (Not recommended) Move ROI object to new position
setPositionConstraintFcn Set position constraint function of ROI object
setResizable Set resize behavior of ROI object
wait (Not recommended) Block MATLAB command line until ROI creation

is finished

Examples
Update Title when Rectangle Moves

Display a rectangle ROI over an image. Display the position of the rectangle in the title. The title
updates when you move the rectangle. Try dragging one side of the rectangle outside the boundary of
the image.

imshow('cameraman.tif')
h = imrect(gca,[10 10 100 100]);
addNewPositionCallback(h,@(p) title(mat2str(p,3)));

Specify a position constraint function using makeConstrainToRectFcn to keep the rectangle inside
the original XLim and YLim ranges of the image.

fcn = makeConstrainToRectFcn('imrect',get(gca,'XLim'),get(gca,'YLim'));
setPositionConstraintFcn(h,fcn);

Now drag the rectangle using the mouse. Observe that the rectangle can no longer extend past the
image boundary.

Click and Drag to Place Rectangle

Interactively place a rectangle by clicking and dragging. Use wait to block the MATLAB command
line. Double-click on the rectangle to resume execution of the MATLAB command line.

imshow('pout.tif');
h = imrect;
position = wait(h);

Tips
If you use imrect with an axes that contains an image object, and do not specify a position constraint
function, users can drag the rectangle outside the extent of the image. When used with an axes

 imrect

1-1847

created by the plot function, the axes limits automatically expand to accommodate the movement of
the rectangle.

Compatibility Considerations
imrect is not recommended
Not recommended starting in R2018b

Starting in R2018b, a new set of ROI objects replaces the existing set of ROI objects. The new objects
provide more functional capabilities, such as face color transparency. The new classes also support
events that you can use to respond to changes in your ROI such as moving or being clicked. Although
there are no plans to remove the old ROI objects at this time, switch to the new ROIs to take
advantage of the additional capabilities and flexibility. For more information on creating ROIs using
the new ROI functions, see “Create ROI Shapes”.

Replace use of the imrect ROI object with the new Rectangle ROI object. You can also use the ROI
creation convenience function drawrectangle.

Update ROI Creation Code

Update all instances of imrect.

Discouraged Usage Recommended Replacement
This example creates a rectangular ROI.

imshow('cameraman.tif');
h = imrect(gca,[10 10 100 150]);

Here is equivalent code, replacing the old ROI
object with the new ROI object. This example
uses the ROI creation convenience function. Note
that you must specify the size and position
information as a name,value pair.

imshow('cameraman.tif');
h = drawrectangle(gca,'Position',[10 10 100 150]);

Other ROI Code Updates

Update code that uses any of the object functions of the imrect ROI object. In many cases, you can
replace the call to an imrect object function by simply accessing or setting the value of an
Rectangle ROI object property. For example, replace calls to getColor or setColor with use of
the Color property. In some cases, you must replace the imrect object function with an object
function of the new Rectangle ROI. Each of the individual imrect ROI object functions include
information about migrating to the new Rectangle ROI object. For a migration overview, see “ROI
Migration”.

See Also
Rectangle | drawrectangle

Topics
“Create ROI Shapes”
“ROI Migration”

Introduced before R2006a

1 Functions

1-1848

addNewPositionCallback
Add new-position callback to ROI object

Note addNewPositionCallback is not recommended. With the new ROIs, use the addlistener
object function instead. For more information, see “Compatibility Considerations”.

Syntax
id = addNewPositionCallback(h,fcn)

Description
id = addNewPositionCallback(h,fcn) adds the function handle fcn to the list of new-position
callback functions of the ROI object h. Whenever the ROI object changes its position, each function in
the list is called with the syntax:

fcn(pos)

pos is of the form returned by the object's getPosition method. The return value, id, is used only
with removeNewPositionCallback.

Examples
Display Updated Position in Title

Create a rectangle ROI object. Display the position of the rectangle in the title. The title updates
when you move the rectangle.

imshow('cameraman.tif')
h = imrect(gca, [10 10 100 100]);
addNewPositionCallback(h,@(p) title(mat2str(p,3)));

Now drag the rectangle using the mouse to observe the callback behavior.

Input Arguments
h — ROI object
imellipse | imfreehand | imline | impoint | impoly | imrect

ROI object, specified as an imellipse, imfreehand, imline, impoint, impoly, or imrect object.

fcn — Function handle
handle

Function handle, specified as a handle. The function must accept a numeric array as input. The array
must have the same form as returned when calling getPosition on the object. For more
information, see “Create Function Handle”.

 addNewPositionCallback

1-1849

Output Arguments
id — Identifier of new-position callback function
struct

Identifier of new-position callback function, returned as a struct.

Compatibility Considerations
addNewPositionCallback is not recommended
Not recommended starting in R2018b

Starting in R2018b, a new set of ROI objects replaces the existing set of ROI objects. The new objects
provide more functional capabilities, such as face color transparency. The new classes also support
events that you can use to respond to changes in your ROI such as moving or being clicked. Although
there are no plans to remove the old ROI objects at this time, switch to the new ROIs to take
advantage of the additional capabilities and flexibility. For more information on creating ROIs using
the new ROI functions, see “Create ROI Shapes”.

With the new ROIs, the Position property contains the current location of the ROI. To receive
notification when this value changes, set up a listener using the addlistener object function. To
listen for position information, set up a listener for the 'MovingROI' or 'ROIMoved' events.

Update Code

Update all instances of addNewPositionCallback.

Discouraged Usage Recommended Replacement
This example uses the
addNewPositionCallback method to specify a
callback function to execute when the ROI
changes position. In this example, the callback
function displays the current position in a title.

imshow('cameraman.tif')
h = imrect(gca, [10 10 100 100]);

addNewPositionCallback(h,@(pos) myCallback(pos));

function myCallback(pos)

 title(mat2str(pos,3));

end

Here is equivalent code, replacing the
addNewPositionCallback object function with
the addlistener object function. This example
listens for the 'MovingROI' event.

imshow('cameraman.tif')
h = drawrectangle(gca,'Position', [10 10 100 100]);

addlistener(h,'MovingROI',@(src,evt) myCallback(evt));

function myCallback(evt)

 title(mat2str(evt.CurrentPosition,3));

end

See Also
imroi | removeNewPositionCallback | makeConstrainToRectFcn |
setPositionConstraintFcn | getPositionConstraintFcn | getPosition

Topics
“ROI Migration”
“Create Function Handle”
“Anonymous Functions”

1 Functions

1-1850

“Parameterizing Functions”

Introduced in R2008a

 addNewPositionCallback

1-1851

createMask
Create mask within image

Note createMask is not recommended. Use the createMask object function associated with the
new ROI objects instead, described in “Compatibility Considerations”.

Syntax
BW = createMask(h)
BW = createMask(h,himage)

Description
BW = createMask(h) returns a mask, or binary image, with 1s inside the ROI object h and 0s
everywhere else. The input image must be contained within the same axes as the ROI object.

BW = createMask(h,himage) returns a mask the same size as the image himage, with 1s inside
the ROI object h and 0s everywhere else. This syntax is required when the axes that contains the ROI
holds more than one image.

Examples
Create Binary Mask from Ellipse

Create an ellipse ROI.

imshow('coins.png');
e = imellipse;

Use the mouse to reshape and reposition the ellipse. Then, create a binary mask from the ROI. Pixels
inside the ROI have the value 1, and pixels outside the ROI have the value 0. Display the mask in a
new figure.

BW = createMask(e);
figure; imshow(BW)

Input Arguments
h — ROI object
imellipse | imline | impoint | impoly | imrect

ROI object, specified as an imellipse, imline, impoint, impoly, or imrect object.

himage — Handle to image
handle

Handle to one image, specified as a handle.

1 Functions

1-1852

Output Arguments
BW — Mask
binary matrix

Mask, returned as a binary matrix. The mask is the same size as the input image contained in the
same axes as h, or the image himage.

Compatibility Considerations
createMask is not recommended
Not recommended starting in R2018b

Starting in R2018b, a new set of ROI objects replaces the existing set of ROI objects. The new objects
provide more functional capabilities, such as face color transparency. The new classes also support
events that you can use to respond to changes in your ROI such as moving or being clicked. Although
there are no plans to remove the old ROI objects at this time, switch to the new ROIs to take
advantage of the additional capabilities and flexibility. For more information on creating ROIs using
the new ROI functions, see “Create ROI Shapes”.

To create a binary mask image using the new ROIs, use the createMask object function associated
with the new ROIs.

Update Code

Update all instances of createMask.

Discouraged Usage Recommended Replacement
This example uses the createMask method to
create a binary mask image from an ROI.

imshow('cameraman.tif')
h = imrect(gca, [10 10 100 100]);
bw = createMask(h);
imshow(bw);

Here is equivalent code, creating a binary mask
image using one of the new ROI objects. Call the
createMask object function associated with the
new ROIs as you did with the previous ROIs.

imshow('cameraman.tif')
h = drawrectangle(gca,'Position',[10 10 100 100]);
bw = createMask(h);
imshow(bw);

See Also
roifilt2 | regionfill | imroi

Topics
“ROI Migration”
“Specify ROI as Binary Mask”

Introduced in R2008a

 createMask

1-1853

getAngleFromHorizontal
Return angle between Distance tool and horizontal axis

Note getAngleFromHorizontal is not recommended. Use one of the ROI classes instead,
described in “Create ROI Shapes”.

Syntax
angle = getAngleFromHorizontal(h)

Description
angle = getAngleFromHorizontal(h) returns the angle, in degrees, between the line defined by
the Distance tool, h, and the horizontal axis.

Input Arguments
h — Distance tool
imdistline

Distance tool, specified as an imdistline object.

Output Arguments
angle — Angle
numeric scalar

Angle, returned as a numeric scalar in the range [0, 180] degrees.
Data Types: double

Algorithms
To understand how imdistline calculates the angle returned by getAngleToHorizontal, draw an
imaginary horizontal vector from the bottom endpoint of the distance line, extending to the right. The
value returned by getAngleToHorizontal is the angle from this horizontal vector to the distance
line, which can range from 0 to 180 degrees.

See Also
getDistance

Introduced before R2006a

1 Functions

1-1854

getColor
Get color used to draw ROI object

Note getColor is not recommended. Using the new ROIs, retrieve the color of the ROI by accessing
the value of Color property instead. For more information, see “Compatibility Considerations”.

Syntax
color = getColor(h)

Description
color = getColor(h) gets the color used to draw the ROI object h.

Input Arguments
h — ROI object
imellipse | imfreehand | imline | impoint | impoly | imrect

ROI object, specified as an imellipse, imfreehand, imline, impoint, impoly, or imrect object.

Output Arguments
color — RGB color value
3-element numeric vector

RGB color value, returned as a 3-element numeric vector.

Compatibility Considerations
getColor is not recommended
Not recommended starting in R2018b

Starting in R2018b, a new set of ROI objects replaces the existing set of ROI objects. The new objects
provide more functional capabilities, such as face color transparency. The new classes also support
events that you can use to respond to changes in your ROI such as moving or being clicked. Although
there are no plans to remove the old ROI objects at this time, switch to the new ROIs to take
advantage of the additional capabilities and flexibility. For more information on creating ROIs using
the new ROI functions, see “Create ROI Shapes”.

To retrieve the color of the new ROIs, access the value of the Color property of the ROI.

Update Code

Update all instances of getColor.

 getColor

1-1855

Discouraged Usage Recommended Replacement
This example creates an ROI and uses getColor
to retrieve the color of the ROI.

imshow('cameraman.tif');
h = imrect(gca,[10 10 100 100]);
rgb = getColor(h)

Here is equivalent code, replacing the old ROI
with the new ROI object and then accessing the
value of the Color property of the ROI.

imshow('cameraman.tif');
h = drawrectangle(gca,'Position',[10 10 100 100]);
rgb = h.Color

See Also
imroi | setColor

Topics
“ROI Migration”

Introduced before R2006a

1 Functions

1-1856

getDistance
Return distance between endpoints of Distance tool

Note getDistance is not recommended. Use one of the ROI classes instead, described in “Create
ROI Shapes”.

Syntax
dist = getDistance(h)

Description
dist = getDistance(h) returns the distance between the endpoints of the Distance tool, h.

Input Arguments
h — Distance tool
imdistline

Distance tool, specified as an imdistline object.

Output Arguments
dist — Distance between endpoints
numeric scalar

Distance between endpoints, returned as a numeric scalar. The data units of the distance are
determined by the XData and YData properties of the underlying image. By default, the distance is
measured in pixels.

See Also
getPosition | getAngleFromHorizontal

Introduced before R2006a

 getDistance

1-1857

getLabelHandle
Return handle to text label of Distance tool

Note getLabelHandle is not recommended. Use one of the ROI classes instead, described in
“Create ROI Shapes”.

Syntax
hlabel = getLabelHandle(h)

Description
hlabel = getLabelHandle(h) returns a handle to the text label of the Distance tool, h.

Input Arguments
h — Distance tool
imdistline

Distance tool, specified as an imdistline object.

Output Arguments
hlabel — Handle to text label
handle

Handle to text label, returned as a handle to a Text object.

See Also
Text

Introduced before R2006a

1 Functions

1-1858

getLabelTextFormatter
Return format of text label of Distance tool

Note getLabelTextFormatter is not recommended. Use one of the ROI classes instead, described
in “Create ROI Shapes”.

Syntax
str = getLabelTextFormatter(h)

Description
str = getLabelTextFormatter(h) returns a character array specifying the format used to
display the label text of the Distance tool, h.

Input Arguments
h — Distance tool
imdistline

Distance tool, specified as an imdistline object.

Output Arguments
str — Text format
character array

Text format of Distance tool label, returned as a character array in a format expected by sprintf.

See Also
getLabelVisible | setLabelTextFormatter | setLabelVisible

Introduced before R2006a

 getLabelTextFormatter

1-1859

getLabelVisible
Return visibility of text label of Distance tool

Note getLabelVisible is not recommended. Use one of the ROI classes instead, described in
“Create ROI Shapes”.

Syntax
visible = getLabelVisible(h)

Description
visible = getLabelVisible(h) returns the visibility of the text label of the Distance tool, h.

Input Arguments
h — Distance tool
imdistline

Distance tool, specified as an imdistline object.

Output Arguments
visible — Label visibility
'on' | 'off'

Label visibility, returned as 'on' or 'off'.

See Also
setLabelTextFormatter | getLabelTextFormatter | setLabelVisible

Introduced before R2006a

1 Functions

1-1860

getPosition
Return current position of ROI object

Note getPosition is not recommended. Using the new ROIs, retrieve the position of the ROI by
accessing the value of Position property instead. For more information, see “Compatibility
Considerations”.

Syntax
pos = getPosition(h)

Description
pos = getPosition(h) returns the current position of the ROI object, h.

Input Arguments
h — ROI object
imellipse | imfreehand | imline | impoint | impoly | imrect

ROI object, specified as an imellipse, imfreehand, imline, impoint, impoly, or imrect object.

Output Arguments
pos — Position of ROI object
numeric array

Position of the ROI object, returned as a numeric array. The shape of the array depends on the type of
ROI object.

ROI Object Returned position
imellipse 4-element vector of the form [xmin ymin width height],

representing the size and position of a bounding box around the
ellipse. The initial size of the bounding box is width-by-height
pixels. The upper-left corner of the box is at the (x,y) coordinate
(xmin,ymin).

imfreehand n-by-2 matrix. The two columns define the x- and y-coordinates,
respectively, of the n points along the boundary of the freehand
region.

imline 2-by-2 matrix of the form [x1 y1; x2 y2], representing the
position of the two endpoints of the line.

impoint 1-by-2 vector of the form [x y].
impoly n-by-2 matrix. The two columns define the x- and y-coordinates,

respectively, of each of the n vertices.

 getPosition

1-1861

ROI Object Returned position
imrect 4-element vector of the form [xmin ymin width height]. The

initial size of the rectangle is width-by-height pixels. The upper-
left corner of the rectangle is at the (x,y) coordinate (xmin,ymin).

Compatibility Considerations
getPosition is not recommended
Not recommended starting in R2018b

Starting in R2018b, a new set of ROI objects replaces the existing set of ROI objects. The new objects
provide more functional capabilities, such as face color transparency. The new classes also support
events that you can use to respond to changes in your ROI such as moving or being clicked. Although
there are no plans to remove the old ROI objects at this time, switch to the new ROIs to take
advantage of the additional capabilities and flexibility. For more information on creating ROIs using
the new ROI functions, see “Create ROI Shapes”.

To retrieve the current position of the ROI, access the value of the Position property of the ROI.

Update Code

Update all instances of getPosition.

Discouraged Usage Recommended Replacement
This example creates an ROI and uses
getPosition to retrieve the current location of
the ROI.

imshow('cameraman.tif');
h = imrect(gca,[10 10 100 100]);
pos = getPosition(h)

Here is equivalent code, replacing the old ROI
with a new ROI object and then accessing the
value of the Position property of the ROI.

imshow('cameraman.tif');
h = drawrectangle(gca,'Position',[10 10 100 100]);
pos = h.Position

See Also
imroi | setPosition | getPositionConstraintFcn

Topics
“ROI Migration”

Introduced in R2008a

1 Functions

1-1862

getPositionConstraintFcn
Return function handle to current position constraint function

Note getPositionConstraintFcn is not recommended. With the new ROIs, use the
DrawingArea property instead. For more information, see “Compatibility Considerations”.

Syntax
fcn = getPositionConstraintFcn(h)

Description
fcn = getPositionConstraintFcn(h) returns a function handle fcn to the current position
constraint function of the ROI object h.

Input Arguments
h — ROI object
imellipse | imline | impoint | impoly | imrect

ROI object, specified as an imellipse, imline, impoint, impoly, or imrect object.

Output Arguments
fcn — Function handle
handle

Function handle, returned as a handle. For more information, see “Create Function Handle”.

Compatibility Considerations
getPositionConstraintFcn is not recommended
Not recommended starting in R2018b

Starting in R2018b, a new set of ROI objects replaces the existing set of ROI objects. The new objects
provide more functional capabilities, such as face color transparency. The new classes also support
events that you can use to respond to changes in your ROI such as moving or being clicked. Although
there are no plans to remove the old ROI objects at this time, switch to the new ROIs to take
advantage of the additional capabilities and flexibility. For more information on creating ROIs using
the new ROI functions, see “Create ROI Shapes”.

Using the new ROIs, you do not need to create and register a position constraint function. You use the
DrawingArea property of the ROI to control where you can draw and move an ROI. Therefore, there
is no need for a function to retrieve the current constraint function.
Update Code

Update all instances of getPositionConstraintFcn.

 getPositionConstraintFcn

1-1863

Discouraged Usage Recommended Replacement
This example creates a point ROI and uses the
setPositionConstraintFcn method to
confine ROI creation and movement to within the
boundaries of the underlying image.

imshow('cell.tif')
h = impoint(gca,20,60);
% Create a position constraint function.
x = get(gca,'XLim');
y = get(gca,'YLim');
fcn = makeConstrainToRectFcn('impoint',x,y);;
% Register the constraint function with the ROI.
setPositionContraintFcn(h,fcn);
% Retrieve the handle of the current position constraint function.
fcn = getPositionContraintFcn(h);

With the new ROIs, there is no equivalent to
getting a handle to the current position
constraint function. The new ROIs use the
DrawingArea property to specify the limits of
the area where you can create and move an ROI.
For example, this code creates a 10-pixel margin
inside the image boundary where you cannot
draw or move the ROI.

imshow('cell.tif')
h = drawpoint(gca,'Position',[20 60])
[height width] = size(I); %Get image dimensions
h.DrawingArea = [10,10,(width-20),(height-20)];

See Also
imroi | makeConstrainToRectFcn | setPositionConstraintFcn | setConstrainedPosition
| getPosition

Topics
“ROI Migration”

Introduced in R2008a

1 Functions

1-1864

getVertices
Return vertices on perimeter of ellipse ROI object

Note getVertices is not recommended. Using the new Ellipse ROI, access the value of the
Vertices property instead. For more information, see “Compatibility Considerations”.

Syntax
v = getVertices(h)

Description
v = getVertices(h) returns a set of vertices that lie along the perimeter of an ellipse ROI object.

Input Arguments
h — ROI object
imellipse

ROI object, specified as an imellipse object.

Output Arguments
v — Vertices
n-by-2 matrix

Vertices, returned as an n-by-2 matrix. The two columns define the x- and y-coordinates, respectively,
of each of the n vertices.

Compatibility Considerations
getVertices is not recommended
Not recommended starting in R2018b

Starting in R2018b, a new set of ROI objects replaces the existing set of ROI objects. The new objects
provide more functional capabilities, such as face color transparency. The new classes also support
events that you can use to respond to changes in your ROI such as moving or being clicked. Although
there are no plans to remove the old ROI objects at this time, switch to the new ROIs to take
advantage of the additional capabilities and flexibility. For more information on creating ROIs using
the new ROI functions, see “Create ROI Shapes”.

To retrieve the vertices of a new Ellipse ROI, access the value of the Vertices property of the
ROI.

Update Code

Update all instances of getVertices.

 getVertices

1-1865

Discouraged Usage Recommended Replacement
This example creates an Ellipse ROI and uses
getVertices to retrieve the vertices of the ROI.

imshow('cameraman.tif')
h = imellipse(gca,[10 10 100 100]);
v = getVertices(h)

Here is equivalent code, creating a new Ellipse
ROI and then accessing the value of the Ellipse
ROIs Vertices property.

imshow('cameraman.tif')
h = drawellipse(gca,'Center',[60,35],'SemiAxes',[50,25]);
v = h.Vertices

See Also
wait | getPosition | getColor

Topics
“ROI Migration”

Introduced in R2007b

1 Functions

1-1866

removeNewPositionCallback
Remove new-position callback from ROI object

Note removeNewPositionCallback is not recommended. With the new ROIs, use the
addlistener object function instead. For more information, see “Compatibility Considerations”.

Syntax
removeNewPositionCallback(h,id)

Description
removeNewPositionCallback(h,id) removes the corresponding function from the new-position
callback list of the ROI object, h.

Examples
Add and Remove New Position Callback

Create a line ROI object. Display the position of the line in the title. Use addNewPositionCallback
to update the title each time you move the line.

imshow('pout.tif')
h = imline(gca,[10 100],[100 100]);
id = addNewPositionCallback(h,@(pos) title(mat2str(pos,3)));

Move the line to observe the callback behavior.

After observing the callback behavior, remove the callback. The title no longer changes when you
move the line.

removeNewPositionCallback(h,id);

Input Arguments
h — ROI object
imellipse | imline | impoint | impoly | imrect

ROI object, specified as an imellipse, imline, impoint, impoly, or imrect object.

id — Identifier of new-position callback function
struct

Identifier of new-position callback function, specified as a struct.

Compatibility Considerations
removeNewPositionCallback is not recommended
Not recommended starting in R2018b

 removeNewPositionCallback

1-1867

Starting in R2018b, a new set of ROI objects replaces the existing set of ROI objects. The new objects
provide more functional capabilities, such as face color transparency. The new classes also support
events that you can use to respond to changes in your ROI such as moving or being clicked. Although
there are no plans to remove the old ROI objects at this time, switch to the new ROIs to take
advantage of the additional capabilities and flexibility. For more information on creating ROIs using
the new ROI functions, see “Create ROI Shapes”.

With the new ROIs, the Position property contains the current location of the ROI. To receive
notification when this value changes, set up a listener using the addlistener object function. To
remove this callback, delete the listener object.

Update Code

Update all instances of removeNewPositionCallback.

Discouraged Usage Recommended Replacement
This example uses the
addNewPositionCallback method to specify a
callback function to execute when the ROI
changes position. The code then uses
removeNewPositionCallback to remove the
callback.

imshow('cameraman.tif')
h = imrect(gca, [10 10 100 100]);
% Add callback that updates the title with position.
id = addNewPositionCallback(h,@(p) title(mat2str(p,3)));
% Remove position callback. Title no longer updates.
removeNewPositionCallback(h,id);

Here is equivalent code, creating a new ROI
object and replacing the
addNewPositionCallback object function with
the addlistener object function. This example
listens for the 'MovingROI' event. To remove
the listener, use delete(el).

imshow('cameraman.tif')
h = drawrectangle(gca,'Position',[10 10 100 100]);
% Set up a listener for ROI moving events.
el = addlistener(h,'MovingROI',@mymovecb)
% Callback to update title with current position
function mymovecb(src,evt)
 currpos = evt.CurrentPosition;
 title(mat2str(currpos,3))
end

See Also
imroi | addNewPositionCallback | makeConstrainToRectFcn | setPositionConstraintFcn
| getPositionConstraintFcn

Topics
“ROI Migration”

Introduced in R2008a

1 Functions

1-1868

resume
(Not recommended) Resume execution of MATLAB command line

Note resume is not recommended. The new ROI objects do not support a resume object function.
For more information, see “Compatibility Considerations”.

Syntax
resume(h)

Description
resume(h) resumes execution of the MATLAB command line.

The resume function is useful when you need to exit wait from a callback function. When called
after a call to wait, resume causes wait to return the ROI position or coordinates of vertices.

Input Arguments
h — ROI object
imellipse | imline | impoint | impoly | imrect

ROI object, specified as an imellipse, imline, impoint, impoly, or imrect object.

Compatibility Considerations
resume is not recommended
Not recommended starting in R2018b

Starting in R2018b, a new set of ROI objects replaces the existing set of ROI objects. The new objects
provide more functional capabilities, such as face color transparency. The new classes also support
events that you can use to respond to changes in your ROI such as moving or being clicked. Although
there are no plans to remove the old ROI objects at this time, switch to the new ROIs to take
advantage of the additional capabilities and flexibility. For more information on creating ROIs using
the new ROI functions, see “Create ROI Shapes”.

The new ROI objects do not support the resume object function. The wait object function associated
with the new ROIs no longer returns position information, so there is no need for a resume function
to trigger this return.

Update Code

Update all instances of resume.

 resume

1-1869

Discouraged Usage Recommended Replacement
imshow('cameraman.tif');
h = imrect;
pos = wait(h);
% Call resume to return control
% to the command line
resume(h)

With the new ROIs, there is no equivalent to the
resume object function. To migrate this code,
remove the wait return value and delete calls to
resume in callback functions.

See Also
Topics
“ROI Migration”
“Create ROI Shapes”
“Use Wait Function After Drawing ROI”

Introduced in R2008a

1 Functions

1-1870

setClosed
Set closure behavior of ROI object

Note setClosed is not recommended. With the new ROIs, use the Closed property instead. For
more information, see “Compatibility Considerations”.

Syntax
setClosed(h,TF)

Description
setClosed(h,TF) sets whether the ROI object, h, is closed after the last point is selected.

Input Arguments
h — ROI object
imfreehand | impoly

ROI object, specified as an imfreehand or impoly object.

TF — ROI object is closed
true | false

ROI object is closed, specified as true or false. When set to true, a straight line connect the
endpoints of the ROI object to create a closed region. If set to false, the endpoints are not
connected and the region is open.
Data Types: logical

Compatibility Considerations
setClosed is not recommended
Not recommended starting in R2018b

Starting in R2018b, a new set of ROI objects replaces the existing set of ROI objects. The new objects
provide more functional capabilities, such as face color transparency. The new classes also support
events that you can use to respond to changes in your ROI such as moving or being clicked. Although
there are no plans to remove the old ROI objects at this time, switch to the new ROIs to take
advantage of the additional capabilities and flexibility. For more information on creating ROIs using
the new ROI functions, see “Create ROI Shapes”.

In the existing ROIs, you can control whether a hand-drawn shape or a polygonal shape are closed or
open. By default, when you double-click to draw the final vertex of one of these shapes, the ROI
draws a line between the last vertex and the first vertex to close the shape. Using the setClosed
method, you can create an open hand-drawn shape or polyline. With the new ROIs, the Freehand and
AssistedFreehand shapes support a Closed property that you can use to specify whether the
shape is closed or open. The new ROIs support both a polygon (closed) and a polyline (open) shape,
so there is no need for these ROIs to support a Closed property.

 setClosed

1-1871

Update Code

Update all instances of setClosed.

Discouraged Usage Recommended Replacement
This example creates a polygonal ROI and uses
the setClosed method to turn the closed
polygon into an open polyline.

imshow('cameraman.tif');
h = impoly(gca,[10 10; 50 10; 20 100]);
setClosed(h,false);

To create an open polyline ROI, replace the call to
the impoly with drawpolyline (or
thePolyline object). Use drawpolygon (or the
Polygon object) to create a closed polygonal
shape.

imshow('cameraman.tif');
h = drawpolyline(gca,'Position',[10 10; 50 10; 20 100]);

This example creates a hand-drawn ROI and uses
the setClosedmethod to turn the closed shape
into an open shape.

imshow('cameraman.tif');
h = imfreehand;
setClosed(h,false);

To create an open, hand-drawn ROI shape,
replace the call to imfreehand with
drawfreehand or drawassisted. You can also
create Freehand or AssistedFreehand
objects. Use the Closed property to turn the
closed shape into an open shape.

imshow('cameraman.tif');
h = drawfreehand;
h.Closed = false;

See Also

Introduced in R2007b

1 Functions

1-1872

setColor
(Not recommended) Set color used to draw ROI object

Note setColor is not recommended. With the new ROIs, set the value of the Color property
instead. For more information, see “Compatibility Considerations”.

Syntax
setColor(h,color)

Description
setColor(h,color) sets the color used to draw the ROI object h.

Examples

Set Color of Polygon ROI

Display an image. Draw a polygon on the image, specifying the location of five vertices.

imshow('gantrycrane.png')
h = impoly(gca,[188,30; 189,142; 93,141; 13,41; 14,29]);

 setColor

1-1873

Set the color of the polygon to yellow.

setColor(h,'yellow');

1 Functions

1-1874

Input Arguments
h — ROI object
imellipse | imfreehand | imline | impoint | impoly | imrect

ROI object, specified as an imellipse, imfreehand, imline, impoint, impoly, or imrect object.

color — ROI color
RGB triplet | color name | short color name

ROI color, specified as the comma-separated pair consisting of 'Color' and an RGB triplet, a color
name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

 setColor

1-1875

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'Color','r'
Example: 'Color','green'
Example: 'Color',[0 0.4470 0.7410]

Compatibility Considerations
setColor is not recommended
Not recommended starting in R2018b

Starting in R2018b, a new set of ROI objects replaces the existing set of ROI objects. The new objects
provide more functional capabilities, such as face color transparency. The new classes also support
events that you can use to respond to changes in your ROI such as moving or being clicked. Although
there are no plans to remove the old ROI objects at this time, switch to the new ROIs to take
advantage of the additional capabilities and flexibility. For more information on creating ROIs using
the new ROI functions, see “Create ROI Shapes”.

To set the color of the new ROIs, set the value of the Color property.

Update Code

Update all instances of setColor.

1 Functions

1-1876

Discouraged Usage Recommended Replacement
This example creates an ROI and uses setColor
to specify the color of the ROI.

imshow('cameraman.tif');
h = imrect(gca,[10 10 100 100]);
setColor(h,'yellow');

Replace the ROI with the equivalent new ROI
object. Then, delete the call to setColor and set
the value of the Color property of the ROI.

imshow('cameraman.tif');
h = drawrectangle(gca,'Position',[10 10 100 100]);
h.Color = 'yellow'

See Also
getColor | imroi

Introduced in R2008a

 setColor

1-1877

setConstrainedPosition
Set ROI object to new position

Note setConstrainedPosition is not recommended. For information about setting position
constraints, see “Compatibility Considerations”.

Syntax
setConstrainedPosition(h,pos)

Description
setConstrainedPosition(h,pos) sets the ROI object h to a new position. The candidate position,
pos, is subject to the position constraint function specified by setPositionConstraintFcn.

Input Arguments
h — ROI object
imellipse | imline | impoint | impoly | imrect

ROI object, specified as an imellipse, imline, impoint, impoly, or imrect object.

pos — Candidate position of ROI object
numeric array

Candidate position of the ROI object, specified as a numeric array. The shape of the array depends on
the type of ROI object, and is consistent with the form returned by the setPosition function.

ROI Object Position
imellipse 4-element vector of the form [xmin ymin width height],

representing the new size and position of a bounding box around
the ellipse. The new size of the bounding box is width-by-height
pixels. The upper-left corner of the box is at the new (x,y)
coordinate (xmin,ymin).

imline 2-by-2 matrix of the form [x1 y1; x2 y2], representing the new
position of the two endpoints of the line.

impoint 1-by-2 vector of the form [x y].
impoly n-by-2 matrix. The two columns define the new x- and y-coordinates,

respectively, of each of the n vertices.
imrect 4-element vector of the form [xmin ymin width height]. The

new size of the rectangle is width-by-height pixels. The upper-left
corner of the rectangle is at the new (x,y) coordinate (xmin,ymin).

1 Functions

1-1878

Compatibility Considerations
setConstrainedPosition is not recommended
Not recommended starting in R2018b

Starting in R2018b, a new set of ROI objects replaces the existing set of ROI objects. The new objects
provide more functional capabilities, such as face color transparency. The new classes also support
events that you can use to respond to changes in your ROI such as moving or being clicked. Although
there are no plans to remove the old ROI objects at this time, switch to the new ROIs to take
advantage of the additional capabilities and flexibility. For more information on creating ROIs using
the new ROI functions, see “Create ROI Shapes”.

With the existing ROIs, you use makeConstrainToRectFcn to create a function to specify the limits
of the area in which you can draw or move an ROI. You then register this function with the ROI. When
you use the setPosition object function, the ROI moves to wherever you specify, even if it is
outside of the constrained limits. If you use setConstrainedPosition, the ROI honors the limits
set by the constrained position function.

With the new ROIs, you use the DrawingArea property of the ROI to specify the area in which you
can draw or move an ROI. When you set the location using the Position property, it does not honor
limits set by the DrawingArea property.

Update Code

Update all instances of setConstrainedPosition.

Discouraged Usage Recommended Replacement
This example uses the
makeConstrainToRectFcn function to create a
20-pixel border in which you cannot create or
move an ROI. The example then tries to specify a
location for the ROI that lies outside these limits.
Using the setConstrainedPosition object
function, the ROI does not honor locations
specified outside the limits. Using the
setPosition object function you can specify
locations outside the limits.

imshow('cell.tif')
h = impoint(gca,20,60);
% Make a function that constrains movement of the point
x = get(gca,'XLim');
y = get(gca,'YLim');
fcn = makeConstrainToRectFcn('impoint',x,y);;
% Apply the constraint function to the ROI.
setPositionConstraintFcn(h,fcn);
% Try to specify a Position value outside the limits.
setConstrainedPosition(h,[1 51]);
% Note how ROI does not honor value outside of limits.

With the new ROIs, use the DrawingArea
property to limit the area in which you can draw
or move an ROI. This example creates a 20-pixel
margin inside the image boundary. There is no
way to make the ROI honor constraints when
specifying a location in the Position property.

I = imread('cell.tif');
imshow(I)
h = drawpoint(gca,'Position',[20 60])
[height width] = size(I); %Get image dimensions
h.DrawingArea = [20,20,(width-40),(height-40)];

See Also
imroi | getPositionConstraintFcn | setPositionConstraintFcn | setPosition |
getPosition

 setConstrainedPosition

1-1879

Introduced in R2008a

1 Functions

1-1880

setFixedAspectRatioMode
Preserve aspect ratio when resizing ROI object

Note setFixedAspectRatioMode is not recommended. With the new ROIs, set the value of the
FixedAspectRatio property instead. For more information, see “Compatibility Considerations”.

Syntax
setFixedAspectRatioMode(h,TF)

Description
setFixedAspectRatioMode(h,TF) sets whether the aspect ratio of the ROI object is preserved
during interactive resizing.

Examples
Fix Aspect Ratio of Ellipse

Create an ellipse ROI object. Specify a position constraint function using
makeConstrainToRectFcn to keep the ellipse inside the boundary of the image.
imshow('coins.png')
h = imellipse(gca,[10 10 100 100]);
fcn = makeConstrainToRectFcn('imellipse',get(gca,'XLim'),get(gca,'YLim'));
setPositionConstraintFcn(h,fcn);

Try resizing and reshaping the ellipse.

Now, fix the aspect ratio of the ellipse.
setFixedAspectRatioMode(h,true);

Try resizing the ellipse. The aspect ratio of the ellipse does not change.

Input Arguments
h — ROI object
imellipse | imrect

ROI object, specified as an imellipse or imrect object.

TF — Fix aspect ratio
true | false

Fix the aspect ratio when resizing ROI object, specified as true or false.
Data Types: logical

 setFixedAspectRatioMode

1-1881

Compatibility Considerations
setFixedAspectRatioMode is not recommended
Not recommended starting in R2018b

Starting in R2018b, a new set of ROI objects replaces the existing set of ROI objects. The new objects
provide more functional capabilities, such as face color transparency. The new classes also support
events that you can use to respond to changes in your ROI such as moving or being clicked. Although
there are no plans to remove the old ROI objects at this time, switch to the new ROIs to take
advantage of the additional capabilities and flexibility. For more information on creating ROIs using
the new ROI functions, see “Create ROI Shapes”.

To control whether an Ellipse or Rectangle ROI maintains the aspect ratio when being resized,
use the FixedAspectRatio property of the ROI.

Update Code

Update all instances of setFixedAspectRatioMode method.

Discouraged Usage Recommended Replacement
This example uses the
setFixedAspectRatioMode method to
preserve the aspect ratio of a rectangle when
resizing.

imshow('cameraman.tif')
h = imrect(gca,[10 10 100 100]);
setFixedAspectRatioMode(h,true);

Create a Rectangle ROI, using the new ROI
objects, and replace use of the
setFixedAspectRatioMode method with
setting the value of the FixedAspectRatio
property. To preserve the aspect ration when
resizing, set the property to true.

imshow('camerman.tif')
h = drawrectangle(gca,'Position',[10 10 100 100]);
h.FixedAspectRatio = true;

See Also
setResizable

Introduced before R2006a

1 Functions

1-1882

setLabelTextFormatter
Set format used to display text label of Distance tool

Note setLabelTextFormatter is not recommended. Use one of the ROI classes instead, described
in “Create ROI Shapes”.

Syntax
setLabelTextFormatter(h,str)

Description
setLabelTextFormatter(h,str) sets the format used to display the label text of the Distance
tool, h.

Examples
Format Label of Distance Tool

Display an image and create a Distance tool.

imshow('pout.tif')
hline = imdistline(gca,[71 171],[108 150]);

Modify the format of the label to indicate that distance is measured in pixels.

setLabelTextFormatter(hline,'%02.0f pixels');

Input Arguments
h — Distance tool
imdistline

Distance tool, specified as an imdistline object.

str — Text format
character array

Text format of Distance tool label, specified as a character array in a format expected by sprintf.

See Also
getLabelVisible | getLabelTextFormatter | setLabelVisible

Introduced before R2006a

 setLabelTextFormatter

1-1883

setLabelVisible
Set visibility of text label of Distance tool

Note setLabelVisible is not recommended. Use one of the ROI classes instead, described in
“Create ROI Shapes”.

Syntax
setLabelVisible(h,TF)

Description
setLabelVisible(h,TF) sets the visibility of the text label of the Distance tool, h.

Input Arguments
h — Distance tool
imdistline

Distance tool, specified as an imdistline object.

TF — Text label is visible
true | false

Text label is visible, specified as true or false.
Data Types: logical

See Also
getLabelVisible | setLabelTextFormatter | getLabelTextFormatter

Introduced before R2006a

1 Functions

1-1884

setPosition
(Not recommended) Move ROI object to new position

Note setPosition is not recommended. With the new ROIs, set the value of the Position
property instead. For more information, see “Compatibility Considerations”.

Syntax
setPosition(h,pos)
setPosition(h,x,y)

Description
setPosition(h,pos) moves the position of the ROI object, h, to the location specified by pos.

setPosition(h,x,y) specifies the new x- and y-coordinates of points of a line or point ROI object.

Input Arguments
h — ROI object
imellipse | imline | impoint | impoly | imrect

ROI object, specified as an imellipse, imline, impoint, impoly, or imrect object.

pos — New position of ROI object
numeric array

New position of the ROI object, specified as a numeric array. The shape of the array depends on the
type of ROI object.

ROI Object Position
imellipse 4-element vector of the form [xmin ymin width height],

representing the new size and position of a bounding box around
the ellipse. The new size of the bounding box is width-by-height
pixels. The upper-left corner of the box is at the new (x,y)
coordinate (xmin,ymin).

imline 2-by-2 matrix of the form [x1 y1; x2 y2], representing the new
position of the two endpoints of the line.

impoint 1-by-2 vector of the form [x y].
impoly n-by-2 matrix. The two columns define the new x- and y-coordinates,

respectively, of each of the n vertices.
imrect 4-element vector of the form [xmin ymin width height]. The

new size of the rectangle is width-by-height pixels. The upper-left
corner of the rectangle is at the new (x,y) coordinate (xmin,ymin).

 setPosition

1-1885

x — New x-coordinate of points
2-element vector | numeric scalar

New x-coordinate of points.

• If h is an imline object, then x is a 2-element vector that represents the x-coordinates of the two
line endpoints.

• If h is an impoint object, then x is a numeric scalar that represents the x-coordinate of the single
point.

y — New y-coordinate of points
2-element vector | numeric scalar

New y-coordinate of points.

• If h is an imline object, then y is a 2-element vector that represents the y-coordinates of the two
line endpoints.

• If h is an impoint object, then y is a numeric scalar that represents the y-coordinate of the single
point.

Compatibility Considerations
setPosition is not recommended
Not recommended starting in R2018b

Starting in R2018b, a new set of ROI objects replaces the existing set of ROI objects. The new objects
provide more functional capabilities, such as face color transparency. The new classes also support
events that you can use to respond to changes in your ROI such as moving or being clicked. Although
there are no plans to remove the old ROI objects at this time, switch to the new ROIs to take
advantage of the additional capabilities and flexibility. For more information on creating ROIs using
the new ROI functions, see “Create ROI Shapes”.

To specify the current location of the ROI, assign a value to the Position property of the ROI.
Update Code

Update all instances of setPosition method.

Discouraged Usage Recommended Replacement
This example sets the current location of the ROI
using the setPosition object function.

imshow('cameraman.tif');
h = imrect(gca,[10 10 100 100]);
setPosition(h,[20 20 200 200]);;

Create one of the new ROI objects and replace
use of the setPosition object function with
assigning a value to the Position property of
the ROI.

imshow('cameraman.tif');
h = drawrectangle(gca,'Position',[10 10 100 100]);
h.Position = [20 20 200 200];

See Also
Ellipse | Line | Point | Polygon | Polyline | Rectangle

Topics
“Create ROI Shapes”

1 Functions

1-1886

“ROI Migration”

Introduced in R2008a

 setPosition

1-1887

setPositionConstraintFcn
Set position constraint function of ROI object

Note setPositionConstraintFcn is not recommended. With the new ROIs, use the
DrawingArea property instead. For more information, see “Compatibility Considerations”.

Syntax
setPositionConstraintFcn(h,fcn)

Description
setPositionConstraintFcn(h,fcn) sets the position constraint function of the ROI object h to
be the specified function handle, fcn. Whenever the object is moved because of a mouse drag, the
constraint function is called using the syntax:

constrained_position = fcn(pos)

Examples
Update Title when Rectangle Moves

Display a rectangle ROI over an image. Display the position of the rectangle in the title. The title
updates when you move the rectangle. Try dragging one side of the rectangle outside the boundary of
the image.

imshow('cameraman.tif')
h = imrect(gca,[10 10 100 100]);
addNewPositionCallback(h,@(p) title(mat2str(p,3)));

Specify a position constraint function using makeConstrainToRectFcn to keep the rectangle inside
the original XLim and YLim ranges.

fcn = makeConstrainToRectFcn('imrect',get(gca,'XLim'),get(gca,'YLim'));
setPositionConstraintFcn(h,fcn);

Now drag the rectangle using the mouse. Observe that the rectangle can no longer extend past the
image boundary.

Input Arguments
h — ROI object
imellipse | imline | impoint | impoly | imrect

ROI object, specified as an imellipse, imline, impoint, impoly, or imrect object.

fcn — Function handle
handle

1 Functions

1-1888

Function handle, specified as a handle. You can use the makeConstrainToRectFcn to create this
function. The function must accept a numeric array as input, and it must return a numeric array as
output. Both arrays must have the same form as returned when calling getPosition on the object.
For more information, see “Create Function Handle”.

Compatibility Considerations
setPositionConstraintFcn is not recommended
Not recommended starting in R2018b

Starting in R2018b, a new set of ROI objects replaces the existing set of ROI objects. The new objects
provide more functional capabilities, such as face color transparency. The new classes also support
events that you can use to respond to changes in your ROI such as moving or being clicked. Although
there are no plans to remove the old ROI objects at this time, switch to the new ROIs to take
advantage of the additional capabilities and flexibility. For more information on creating ROIs using
the new ROI functions, see “Create ROI Shapes”.

In the existing ROIs, you can create a function that controls where you can draw or move an ROI. You
then register the position constraint function with the ROI. To specify the area when you can draw or
move an ROI, use the DrawingArea property.

Update Code

Update all instances of setPositionConstraintFcn used with the freehand or polygonal ROI.

Discouraged Usage Recommended Replacement
This example creates a point ROI and uses the
setPositionConstraintFcn method to
confine ROI creation and movement to within the
boundaries of the underlying image.

imshow('cell.tif')
h = impoint(gca,20,60);
% Make a function that constrains movement of the point
x = get(gca,'XLim');
y = get(gca,'YLim');
fcn = makeConstrainToRectFcn('impoint',x,y);;
% Apply the constraint function to the ROI.
setPositionConstraintFcn(h,fcn);

Create one of the new ROI objects and use the
DrawingArea property to specify the limits
where you can create or move an ROI. For
example, this code creates a 10 pixel margin
inside the image boundary.

imshow('cell.tif')
h = drawpoint(gca,'Position',[20 60])
[height width] = size(I); %Get image dimensions
h.DrawingArea = [10,10,(width-20),(height-20)];

See Also
imroi | addNewPositionCallback | makeConstrainToRectFcn | getPositionConstraintFcn
| setConstrainedPosition | getPosition

Topics
“Create Function Handle”
“Anonymous Functions”
“Parameterizing Functions”

Introduced in R2008a

 setPositionConstraintFcn

1-1889

setResizable
Set resize behavior of ROI object

Note setResizable is not recommended. With the new ROIs, use the InteractionsAllowed
property instead. For more information, see “Compatibility Considerations”.

Syntax
setResizable(h,TF)

Description
setResizable(h,TF) sets whether the ROI object may be resized interactively.

Examples
Fix Size of Ellipse

Create an ellipse ROI object. Specify a position constraint function using
makeConstrainToRectFcn to keep the ellipse inside the boundary of the image.

imshow('coins.png')
h = imellipse(gca,[10 10 100 100]);
fcn = makeConstrainToRectFcn('imellipse',get(gca,'XLim'),get(gca,'YLim'));
setPositionConstraintFcn(h,fcn);

Click and drag with the mouse to try resizing, reshaping, and moving the ellipse.

Now, disable resizing the ellipse.

setResizable(h,false);

Click and drag the ellipse again. You can move it, but not change the size or shape of it.

Input Arguments
h — ROI object
imellipse | imrect

ROI object, specified as an imellipse or imrect object.

TF — Enable resizing of ROI object
true | false

Enable resizing of ROI object, specified as true or false.
Data Types: logical

1 Functions

1-1890

Compatibility Considerations
setResizable is not recommended
Not recommended starting in R2018b

Starting in R2018b, a new set of ROI objects replaces the existing set of ROI objects. The new objects
provide more functional capabilities, such as face color transparency. The new classes also support
events that you can use to respond to changes in your ROI such as moving or being clicked. Although
there are no plans to remove the old ROI objects at this time, switch to the new ROIs to take
advantage of the additional capabilities and flexibility. For more information on creating ROIs using
the new ROI functions, see “Create ROI Shapes”.

To control whether an Ellipse or Rectangle ROI is resizable, use the InteractionsAllowed
property of the ROI.

Update Code

Update all instances of setResizable used with the Ellipse ROI and the Rectangle ROI.

Discouraged Usage Recommended Replacement
This example uses the setResizable method to
turn off the ability to resize a Rectangle ROI.

imshow('cameraman.tif')
h = imrect(gca,[10 10 100 100]);
setResizable(h,false);

Create a Rectangle ROI, using the new ROI
objects, and replace use of the setResizable
method with setting the value of the
InteractionsAllowed property. To turn off
resizing, set the value of the property to 'none'.

imshow('camerman.tif')
h = drawrectangle(gca,'Position',[10 10 100 100]);
h.InteractionsAllowed = 'none';

See Also
setFixedAspectRatioMode

Introduced before R2006a

 setResizable

1-1891

setString
Set text label for point ROI object

Note setString is not recommended. With the new pointPoint ROI, set the value of the Label
property instead. For more information, see “Compatibility Considerations”.

Syntax
setString(h,text)

Description
setString(h,text) places a text label, text, to the lower right of the point ROI object, h.

Examples
Set Label of Point ROI
imshow('rice.png')
h = impoint(gca,100,200);
setString(h,'My point label');

Input Arguments
h — Point ROI object
impoint

Point ROI object, specified as an impoint object.

text — Text label
character vector

Text label, specified as a character vector.
Data Types: char

Compatibility Considerations
setString is not recommended
Not recommended starting in R2018b

Starting in R2018b, a new set of ROI objects replaces the existing set of ROI objects. The new objects
provide more functional capabilities, such as face color transparency. The new classes also support
events that you can use to respond to changes in your ROI such as moving or being clicked. Although
there are no plans to remove the old ROI objects at this time, switch to the new ROIs to take
advantage of the additional capabilities and flexibility. For more information on creating ROIs using
the new ROI functions, see “Create ROI Shapes”.

1 Functions

1-1892

To specify a label for a point ROI, assign a value to the Label property of the ROI. Use the
LabelVisible property to control the visibility of the label.

Update Code

Update all instances of setString method.

Discouraged Usage Recommended Replacement
This example specifies a label for the point ROI
using the setString method.

imshow('cameraman.tif');
h = impoint(gca,[100 100]);
setString(h,'My Label');

Create a point ROI using the new ROI objects and
replace use of the getString method with
setting the value of the Label property of the
ROI. You can control the visibility of the label
using the LabelVisible property. All the new
ROI objects support a Label property.

imshow('cameraman.tif');
h = drawpoint(gca,'Position',[100 100]);
h.Label = 'My Label';

See Also

Introduced before R2006a

 setString

1-1893

setVerticesDraggable
Set vertex behavior of ROI object

Note setVerticesDraggable is not recommended. With the new Polygon ROI, set the value of
the InteractionsAllowed property instead. For more information, see “Compatibility
Considerations”.

Syntax
setVerticesDraggable(h,TF)

Description
setVerticesDraggable(h,TF) sets whether the vertices of the ROI object, h, can be dragged
after placement.

Input Arguments
h — ROI object
impoly

ROI object, specified as an impoly object.

TF — Polygon ROI vertices are draggable
true | false

Polygon ROI vertices are draggable, specified as true or false.
Data Types: logical

Compatibility Considerations
setVerticesDraggable is not recommended
Not recommended starting in R2018b

Starting in R2018b, a new set of ROI objects replaces the existing set of ROI objects. The new objects
provide more functional capabilities, such as face color transparency. The new classes also support
events that you can use to respond to changes in your ROI such as moving or being clicked. Although
there are no plans to remove the old ROI objects at this time, switch to the new ROIs to take
advantage of the additional capabilities and flexibility. For more information on creating ROIs using
the new ROI functions, see “Create ROI Shapes”.

To specify whether the vertices of a polygon are draggable, assign a value to the
InteractionsAllowed property of the Polygon ROI.

Update Code

Update all instances of setVerticesDraggable method.

1 Functions

1-1894

Discouraged Usage Recommended Replacement
This example uses setVerticesDraggable to
turn off the capability of moving the vertices of a
polygon to reshape it.

imshow('cameraman.tif');
h = impoly(gca,[188,30; 189,142; 93,141]);
setVerticesDraggable(h,false);

Here is the equivalent code, creating a Polygon
ROI and replacing use of
setVerticesDraggable with setting the value
of the InteractionsAllowed property to a
value that doesn't provide reshaping abilities
('none').

imshow('cameraman.tif');
h = drawpolygon(gca,'Position',[188,30; 189,142; 93,141]);
h.InteractionsAllowed = 'none';

See Also
getVertices

Topics
“ROI Migration”

Introduced in R2007b

 setVerticesDraggable

1-1895

wait
(Not recommended) Block MATLAB command line until ROI creation is finished

Note wait is not recommended. Use the wait method associated with the new ROIs instead. For
more information, see “Compatibility Considerations”.

Syntax
pos = wait(h)
v = wait(he)

Description
pos = wait(h) blocks execution of the MATLAB command line until you finish positioning the ROI
object h. Indicate completion by double-clicking on the ROI object. The function returns the position,
pos, of the ROI object.

v = wait(he) blocks execution of the MATLAB command line until you finish positioning the ellipse
ROI object he. Indicate completion by double-clicking on the ROI object. The function returns the
coordinates of vertices, v, along the perimeter of the ellipse.

Examples
Click and Drag to Place Rectangle

Interactively place a rectangle by clicking and dragging. Use wait to block the MATLAB command
line. Double-click on the rectangle to resume execution of the MATLAB command line.

imshow('pout.tif')
h = imrect;
position = wait(h)

Click and Drag to Place Ellipse

Interactively place an ellipse by clicking and dragging. Use wait to block the MATLAB command line.
Double-click on the ellipse to resume execution of the MATLAB command line.
imshow('coins.png')
h = imellipse;
position = wait(h)

Input Arguments
h — ROI object
imfreehand | imline | impoint | impoly | imrect

ROI object, specified as an imfreehand, imline, impoint, impoly, or imrect object.

he — Ellipse ROI object
imellipse

1 Functions

1-1896

Ellipse ROI object, specified as an imellipse object.

Output Arguments
pos — Position of ROI object
numeric array

Position of the ROI object, returned as a numeric array. The shape of the array depends on the type of
ROI object, and is consistent with the output of getPosition.

ROI Object Returned position
imfreehand n-by-2 matrix. The two columns define the x- and y-coordinates,

respectively, of the n points along the boundary of the freehand
region.

imline 2-by-2 matrix of the form [x1 y1; x2 y2], representing the
position of the two endpoints of the line.

impoint 1-by-2 vector of the form [x y].
impoly n-by-2 matrix. The two columns define the x- and y-coordinates,

respectively, of each of the n vertices.
imrect 4-element vector of the form [xmin ymin width height]. The

initial size of the rectangle is width-by-height pixels. The upper-
left corner of the rectangle is at the (x,y) coordinate (xmin,ymin).

v — Vertices of ellipse ROI object
n-by-2 matrix

Vertices of ellipse ROI object, returned as an n-by-2 matrix. The two columns define the x- and y-
coordinates, respectively, of each of the n vertices. The form of the matrix is consistent with the
output of getVertices.

Compatibility Considerations
wait is not recommended
Not recommended starting in R2018b

Starting in R2018b, a new set of ROI objects replaces the existing set of ROI objects. The new objects
provide more functional capabilities, such as face color transparency. The new classes also support
events that you can use to respond to changes in your ROI such as moving or being clicked. Although
there are no plans to remove the old ROI objects at this time, switch to the new ROIs to take
advantage of the additional capabilities and flexibility. For more information on creating ROIs using
the new ROI functions, see “Create ROI Shapes”.

In 19b, all the new ROI objects support a wait object function, as the old ROI objects did. Use the
wait function to block the MATLAB command line after creating an ROI. For example, you can use
wait to block the command line until you have finished positioning the ROI.

By default, the new wait function returns control to the command line after you double-click the ROI.
However, using events, you can implement a custom wait function that resumes execution of the
command line after several types of actions, such as clicking the ROI while pressing the Shift key or
clicking a specific part of the ROI such as the label. For an example, see “Use Wait Function After
Drawing ROI”.

 wait

1-1897

Update Code

Update all instances of wait.

Discouraged Usage Recommended Replacement
This example creates a Rectangle ROI and then
pauses the MATLAB command line. You can move
the ROI during this pause. When you are done,
double-click the mouse. Control returns to the
command line and the wait function returns
position information to the workspace in the
variable pos.

imshow('cameraman.tif')
h = imrect(gca,[10 10 100 100]);
pos = wait(h);
% When you double-click, wait returns.
% View the value of the pos variable.
pos

To migrate use of the wait function, create the
ROI using the new ROI objects. Remove the wait
return value—the new wait object function does
not return a value. Instead, the ROI updates the
values properties changed during the pause, such
as the Position property.

imshow('cameraman.tif');
h = drawrectangle(gca,'Position',[10 10 100 100]);
wait(h);
% When you double-click, control returns to the command line.
% View the value of the Position property.
h.Position

he = drawellipse;
pos = wait(he);

The new wait object function does not support a
separate syntax for obtaining the position of an
Ellipse ROI. Use the wait(h) syntax instead.

See Also
Topics
“Create ROI Shapes”
“Use Wait Function After Drawing ROI”

Introduced in R2008a

1 Functions

1-1898

imrotate
Rotate image

Syntax
J = imrotate(I,angle)
J = imrotate(I,angle,method)
J = imrotate(I,angle,method,bbox)

Description
J = imrotate(I,angle) rotates image I by angle degrees in a counterclockwise direction
around its center point. To rotate the image clockwise, specify a negative value for angle. imrotate
makes the output image J large enough to contain the entire rotated image. By default, imrotate
uses nearest neighbor interpolation, setting the values of pixels in J that are outside the rotated
image to 0.

J = imrotate(I,angle,method) rotates image I using the interpolation method specified by
method.

J = imrotate(I,angle,method,bbox) also uses the bbox argument to define the size of the
output image. You can crop the output to the same size as the input image or return the entire
rotated image.

Examples

Rotate Image Clockwise for Better Horizontal Alignment

Read an image into the workspace, and convert it to a grayscale image.

I = fitsread('solarspectra.fts');
I = rescale(I);

Display the original image.

figure
imshow(I)
title('Original Image')

 imrotate

1-1899

Rotate the image 1 degree clockwise to bring it into better horizontal alignment. The example
specified bilinear interpolation and requests that the result be cropped to be the same size as the
original image.

J = imrotate(I,-1,'bilinear','crop');

Display the rotated image.

figure
imshow(J)
title('Rotated Image')

Input Arguments
I — Image to be rotated
numeric array | logical array | categorical array

Image to be rotated, specified as a numeric array, logical array, or categorical array.

1 Functions

1-1900

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | categorical

angle — Amount of rotation in degrees
numeric scalar

Amount of rotation in degrees, specified as a numeric scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

method — Interpolation method
'nearest' (default) | 'bilinear' | 'bicubic'

Interpolation method, specified as one of the following values:

Value Description
'nearest' Nearest-neighbor interpolation. The output pixel is assigned the value of

the pixel that the point falls within. No other pixels are considered.

Nearest-neighbor interpolation is the only method supported for
categorical images.

'bilinear' Bilinear interpolation. The output pixel value is a weighted average of
pixels in the nearest 2-by-2 neighborhood.

'bicubic' Bicubic interpolation. The output pixel value is a weighted average of
pixels in the nearest 4-by-4 neighborhood.

Note Bicubic interpolation can produce pixel values outside the original
range.

Data Types: char | string

bbox — Bounding box defining size of output image
'loose' (default) | 'crop'

Bounding box that defines the size of output image, specified as either of the following values:

Value Description
'crop' Make output image J the same size as the input image I, cropping the rotated

image to fit.
'loose' Make output image J large enough to contain the entire rotated image. J is

larger than I.

Data Types: char | string

Output Arguments
J — Rotated image
numeric array | logical array | categorical array

Rotated image, returned as a numeric, logical, or categorical array of the same data type as the input
image, I.

 imrotate

1-1901

Tips
• This function changed in version 9.3 (R2015b). Previous versions of the Image Processing Toolbox

use different spatial conventions. If you need the same results produced by the previous
implementation, use the function imrotate_old.

• In some instances, this function takes advantage of hardware optimization for data types uint8,
uint16, single, and double to run faster.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imrotate supports the generation of C code (requires MATLAB Coder). Note that if you choose
the generic MATLAB Host Computer target platform, imrotate generates code that uses a
precompiled, platform-specific shared library. Use of a shared library preserves performance
optimizations but limits the target platforms for which code can be generated. For more
information, see “Types of Code Generation Support in Image Processing Toolbox”.

• Input images of data type categorical are not supported.
• The method and bbox arguments must be compile-time constants.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• Input images of data type categorical are not supported.
• The method and bbox arguments must be compile-time constants.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• gpuArray input must be of type uint8, uint16, single, or logical.
• The 'bicubic' interpolation mode used in the GPU implementation of this function differs from

the default (CPU) bicubic mode. The GPU and CPU versions of this function are expected to give
slightly different results.

For more information, see “Image Processing on a GPU”.

See Also
imcrop | imrotate3 | imresize | imtransform | tformarray

1 Functions

1-1902

Topics
“Rotate an Image”
“Find Image Rotation and Scale”

Introduced before R2006a

 imrotate

1-1903

imrotate3
Rotate 3-D volumetric grayscale image

Syntax
B = imrotate3(V,angle,W)
B = imrotate3(V,angle,W,method)
B = imrotate3(V,angle,W,method,bbox)
B = imrotate3(___ ,'FillValues',fillValues)

Description
B = imrotate3(V,angle,W) rotates the 3-D volume V by angle degrees counterclockwise around
an axis passing through the origin [0 0 0]. W is a 1-by-3 vector which specifies the direction of the
axis of rotation in 3-D space. By default, imrotate3 sets the values of voxels in B that are outside the
boundaries of the rotated volume to 0.

B = imrotate3(V,angle,W,method) also specifies the interpolation method.

B = imrotate3(V,angle,W,method,bbox) also specifies the size of the output volume, bbox. If
you specify 'crop', then imrotate3 makes the output volume the same size as the input volume. If
you specify 'loose', then imrotate3 makes the output volume large enough to include the entirety
of the rotated volume.

B = imrotate3(___ ,'FillValues',fillValues) sets the fill values used for output pixels
without a corresponding pixel in the input image.

Examples

Rotate 3-D Volume

Load a 3-D volumetric grayscale image into the workspace, and display it.

s = load('mri');
mriVolume = squeeze(s.D);
volshow(mriVolume);

1 Functions

1-1904

Rotate the volume 90 degrees around the Z axis.

B = imrotate3(mriVolume,90,[0 0 1],'nearest','loose','FillValues',0);

Display the rotated output volume. You can also explore the volume in the Volume Viewer app.

volshow(B);

 imrotate3

1-1905

Input Arguments
V — Volume to be rotated
3-D numeric array | 3-D logical array | 3-D categorical array

Volume to be rotated, specified as a 3-D numeric array, 3-D logical array, or 3-D categorical array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | categorical

angle — Rotation angle in degrees
numeric scalar

Rotation angle in degrees, specified as numeric scalar. To rotate the volume clockwise, specify a
negative value for angle. imrotate3 makes the output volume B large enough to contain the entire
rotated 3-D volume.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

W — Direction of the axis of rotation
1-by-3 numeric vector

Direction of the axis of rotation in 3-D space in Cartesian coordinates, specified as a 1-by-3 numeric
vector.

If you want to specify the direction of the axis of rotation in spherical coordinates, use sph2cart to
convert values to Cartesian coordinates before passing it to imrotate3.

1 Functions

1-1906

Example: [0 0 1] rotates the volume around the Z axis
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

method — Interpolation method
'nearest' | 'linear' | 'cubic'

Interpolation method, specified as one of the following values.

Method Description
'nearest' Nearest neighbor interpolation. The output voxel is assigned the

value of the voxel that the point falls within. No other voxels are
considered.

Nearest-neighbor interpolation is the only method supported for
categorical images and it is the default method for images of this
type.

'linear' Trilinear interpolation.

Trilinear interpolation is the default method for numeric and
logical images.

'cubic' Tricubic interpolation

Note Tricubic interpolation can produce pixel values outside the
original range.

Data Types: char | string

bbox — Size of the output volume
'loose' (default) | 'crop'

Size of the output volume, specified as either of the following values.

Method Description
'crop' Make the output volume the same size as the input volume, cropping the

rotated volume to fit.
'loose' Make the output volume large enough to contain the entire rotated

volume. Usually, the rotated volume is larger than the input volume.

Data Types: char | string

fillValues — Fill values
numeric scalar | string scalar | character vector | missing

Fill values used for output pixels outside the input image, specified as one of the following values.
imrotate3 uses fill values for output pixels when the corresponding inverse transformed location in
the input image is completely outside the input image boundaries.

 imrotate3

1-1907

Image Type Format of Fill Values
Numeric image or
logical image

• Numeric scalar. The default fill value of numeric and logical images is 0.

Categorical image • Valid category in the image, specified as a string scalar or character
vector.

• missing, which corresponds to the <undefined> category. This is the
default fill value for categorical images. For more information, see
missing.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string

Output Arguments
B — Rotated volume
numeric array | logical array | categorical array

Rotated volume, returned as a numeric, logical, or categorical array of the same class as the input
volume, V.

Tips
• imrotate3 assumes that the input volume V is centered on the origin [0 0 0]. If your volume is

not centered on the origin, then use imtranslate to translate the volume to [0 0 0] before
using imrotate3. You can translate the output volume B back to the original position with the
opposite translation vector.

Extended Capabilities
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
imrotate | imresize3 | imtranslate | imwarp | Volume Viewer

Introduced in R2017a

1 Functions

1-1908

imsave
Save Image Tool

Syntax
imsave
imsave(h)
[filename,user_canceled] = imsave(___)

Description
Use the imsave function to create a Save Image tool that displays an interactive file chooser dialog
box. Use this dialog box to navigate your file system to determine where to save the image file and
specify the name of the file. Choose the graphics file format you want to use from among the image
file formats listed in the Files of Type menu. For more information about using the tool, see “Tips” on
page 1-1913.

imsave creates a Save Image tool in a separate figure that is associated with the image in the
current figure, called the target image.

 imsave

1-1909

imsave(h) creates a Save Image tool associated with the image specified by the handle h.

[filename,user_canceled] = imsave(___) returns the full path to the file selected in
filename and indicates whether you canceled the save operation.

Examples

Save Displayed Image

Read a grayscale image into the workspace. Display the image.

I = imread('coins.png');
imshow(I)

Process the image. This example creates a binary mask in which the background is black and the
coins are white.

bw = imbinarize(I);
bw = imfill(bw,'holes');
imshow(bw,[])

1 Functions

1-1910

Save the binary image to file by using the Save Image tool. You can navigate to the desired directory
and specify the file name and file format. This example saves the image to the Desktop with the file
name myMaskImage in the JPEG file format.

imsave

 imsave

1-1911

Input Arguments
h — Handle to graphics object
handle

Handle to a figure, axes, uipanel, or image graphics object, specified as a handle. If h is an axes or
figure handle, then imsave uses the first image returned by findobj(H,'Type','image').

Output Arguments
filename — Full path to file
character vector | ''

Full path to file, returned as a character vector. If you cancel the save operation, then filename is an
empty character array, ''.

user_canceled — User canceled operation
false (default) | true

User canceled operation, returned as false or true. If you press the Cancel button or close the
save window, then imsave sets user_canceled to true; otherwise, false.

1 Functions

1-1912

Tips
• In contrast to the Save as option in the figure File menu, the Save Image tool saves only the

image displayed in the figure. The Save as option in the figure window File menu saves the entire
figure window, not just the image.

• imsave uses imwrite to save the image, using default options.
• If you specify a file name that already exists, then imsave displays a warning message. Select Yes

to use the file name or No to return to the dialog to select another file name. If you select Yes,
then the Save Image tool attempts to overwrite the target file.

• The Save Image tool is modal; it blocks the MATLAB command line until you respond.

See Also
imformats | imgetfile | imputfile | imwrite

Introduced in R2007b

 imsave

1-1913

imscrollpanel
Scroll panel for interactive image navigation

Syntax
hpanel = imscrollpanel(hparent,himage)

Description
Use the imscrollpanel function to add a scroll panel to an image. If the size or magnification
makes an image too large to display in a figure on the screen, then the scroll panel displays a portion
of the image at 100% magnification (one screen pixel represents one image pixel). The scroll panel
adds horizontal and vertical scroll bars to enable navigation around the image.

hpanel = imscrollpanel(hparent,himage) creates a scroll panel containing the target image
(the image to be navigated). himage is a handle to the target image. hparent is a handle to the
figure or uipanel that will contain the scroll panel. The function returns hpanel, a handle to the
scroll panel.

Examples

Create Scroll Panel with Magnification Box and Overview Tool

Display an image in a figure. The example suppresses the standard toolbar and menubar in the figure
window because these do not work with the scroll panel.

hFig = figure('Toolbar','none',...
 'Menubar','none');
hIm = imshow('saturn.png');

Create a scroll panel to contain the image.

hSP = imscrollpanel(hFig,hIm);
set(hSP,'Units','normalized','Position',[0 .1 1 .9])

1 Functions

1-1914

Add a Magnification Box and an Overview tool to the figure.

 imscrollpanel

1-1915

hMagBox = immagbox(hFig,hIm);
pos = get(hMagBox,'Position');
set(hMagBox,'Position',[0 0 pos(3) pos(4)])
imoverview(hIm)

Get the scroll panel API so that you can control the view programmatically.

1 Functions

1-1916

api = iptgetapi(hSP);

Get the current magnification and position.

mag = api.getMagnification()
r = api.getVisibleImageRect()

mag =

 1

r =

 125.0072 201.5646 716.0000 709.0000

Use the scroll panel object API function setVisibleLocation to view the top left corner of the
image.

api.setVisibleLocation(0.5,0.5)

 imscrollpanel

1-1917

Change the magnification of the image so that the image fits entirely in the scroll panel. In the
following figure, note that the scroll bars are no longer visible.

api.setMagnification(api.findFitMag())

1 Functions

1-1918

Zoom in to 1600% on the dark spot.

api.setMagnificationAndCenter(16,306,800)

 imscrollpanel

1-1919

Input Arguments
hparent — Handle to figure or uipanel object
handle

Handle to a figure or uipanel object that contains the scroll panel, specified as a handle.

1 Functions

1-1920

himage — Handle to target image
handle

Handle to target image, specified as a handle.

Output Arguments
hpanel — Handle to scroll panel
handle

Handle to scroll panel, returned as a handle. A scroll panel is a type of uipanel object.

More About
Scroll Panel API Structure

A scroll panel contains a structure of function handles, called an API. You can use the functions in this
API to manipulate the scroll panel. To retrieve this structure, use the iptgetapi function, as in the
following example.

api = iptgetapi(hpanel)

This table lists the scroll panel API functions, in the order they appear in the structure.

Function Description
setMagnification Set the magnification of the target image in units of screen

pixels per image pixel.

mag = api.setMagnification(new_mag)

new_mag is a scalar magnification factor.
getMagnification Return the current magnification factor of the target image in

units of screen pixels per image pixel.

mag = api.getMagnification()

Multiply mag by 100 to convert to percentage. For example if
mag is 2, then the magnification is 200%.

setMagnificationAndCenter Change the magnification and make the point with (x,y)
coordinate (cx,cy) in the target image appear in the center of
the scroll panel. This operation is equivalent to a
simultaneous zoom and recenter.

api.setMagnificationAndCenter(mag,cx,cy)

findFitMag Return the magnification factor that would make the target
image just fit in the scroll panel.

mag = api.findFitMag()

 imscrollpanel

1-1921

Function Description
setVisibleLocation Move the target image so that the specified location is visible,

and update the scroll bars.

api.setVisibleLocation(xmin, ymin)
api.setVisibleLocation([xmin ymin])

getVisibleLocation Return the location of the currently visible portion of the
target image.

loc = api.getVisibleLocation()

loc is a vector [xmin ymin].
getVisibleImageRect Return the current visible portion of the image.

r = api.getVisibleImageRect()

r is a rectangle [xmin ymin width height].
addNewMagnificationCallback Add the function handle fcn to the list of new-magnification

callback functions.

id = api.addNewMagnificationCallback(fcn)

Whenever the scroll panel magnification changes, each
function in the list is called with the syntax:

fcn(mag)

mag is a scalar magnification factor.

The return value, id, is used only with
removeNewMagnificationCallback.

removeNewMagnificationCallback Remove the corresponding function from the new-
magnification callback list.

api.removeNewMagnificationCallback(id)

id is the identifier returned by
addNewMagnificationCallback.

addNewLocationCallback Add the function handle fcn to the list of new-location
callback functions.

id = api.addNewLocationCallback(fcn)

Whenever the scroll panel location changes, each function in
the list is called with the syntax:

fcn(loc)

loc is [xmin ymin].

The return value, id, is used only with
removeNewLocationCallback.

1 Functions

1-1922

Function Description
removeNewLocationCallback Remove the corresponding function from the new-location

callback list.

api.removeNewLocationCallback(id)

id is the identifier returned by addNewLocationCallback.
replaceImage api.replaceImage(...,PARAM1,VAL1,PARAM2,VAL2,..

.) replaces the image displayed in the scroll panel.

api.replaceImage(I)
api.replaceImage(BW)
api.replaceImage(RGB)
api.replaceImage(I,MAP)
api.replaceImage(filename)

By default, the new image data is displayed centered, at
100% magnification. The image handle is unchanged.

The parameters you can specify include many of the
parameters supported by imshow, including 'Colormap',
'DisplayRange', and 'InitialMagnification'. In
addition, you can use the 'PreserveView' parameter to
preserve the current magnification and centering of the
image during replacement. Specify the logical scalar True to
preserve current centering and magnification.

Tips
• imscrollpanel changes the object hierarchy of the target image. Instead of the familiar
figure→axes→image object hierarchy, imscrollpanel inserts several uipanel and uicontrol
objects between the figure and the axes object.

• Scrollbar navigation as provided by imscrollpanel is incompatible with the default MATLAB
figure navigation buttons (pan, zoom in, zoom out). The corresponding menu items and toolbar
buttons should be removed in a custom GUI that includes a scrollable uipanel created by
imscrollpanel.

• When you run imscrollpanel, it appears to take over the entire figure because, by default, an
uipanel object has 'Units' set to 'normalized' and 'Position' set to [0 0 1 1]. If you
want to see other children of hparent while using your new scroll panel, you must manually set
the 'Position' property of hpanel.

See Also
Image Viewer | immagbox | imoverview | imoverviewpanel | iptgetapi

Topics
“Add Navigation Aids”

Introduced before R2006a

 imscrollpanel

1-1923

imsegfmm
Binary image segmentation using fast marching method

Syntax
BW = imsegfmm(W,mask,thresh)
BW = imsegfmm(W,C,R,thresh)
BW = imsegfmm(W,C,R,P,thresh)
[BW,D] = imsegfmm(___)

Description
BW = imsegfmm(W,mask,thresh) returns a segmented image BW, which is computed using the
fast marching method. The array W specifies weights for each pixel. mask is a logical array that
specifies seed locations. thresh specifies the threshold level.

BW = imsegfmm(W,C,R,thresh) returns a segmented image, with seed locations specified by the
vectors C and R, which contain column and row indices. C and R must contain values which are valid
pixel indices in W.

BW = imsegfmm(W,C,R,P,thresh) returns a segmented image, with seed locations specified by
the vectors C, R, and P, which contain column, row, and plane indices. C, R, and P must contain values
which are valid pixel indices in W.

[BW,D] = imsegfmm(___) returns the normalized geodesic distance map D computed using the
fast marching method. BW is a thresholded version of D, where all the pixels that have normalized
geodesic distance values less than thresh are considered foreground pixels and set to true. D can
be thresholded at different levels to obtain different segmentation results.

Examples

Segment Image Using Fast Marching Method Algorithm

This example shows how to segment an object in an image using Fast Marching Method based on
differences in grayscale intensity as compared to the seed locations.

Read image.

I = imread('cameraman.tif');
imshow(I)
title('Original Image')

1 Functions

1-1924

Create mask and specify seed location. You can also use roipoly to create the mask interactively.

mask = false(size(I));
mask(170,70) = true;

Compute the weight array based on grayscale intensity differences.

W = graydiffweight(I, mask, 'GrayDifferenceCutoff', 25);

Segment the image using the weights.

thresh = 0.01;
[BW, D] = imsegfmm(W, mask, thresh);
figure
imshow(BW)
title('Segmented Image')

 imsegfmm

1-1925

You can threshold the geodesic distance matrix D using different thresholds to get different
segmentation results.

figure
imshow(D)
title('Geodesic Distances')

1 Functions

1-1926

Segment Object in Volume Based on Intensity Differences

This example segments the brain from MRI data of the human head.

Load the MRI data.

load("mri")
V = squeeze(D);

Visualize the data.

sizeO = size(V);
figure
slice(double(V),sizeO(2)/2,sizeO(1)/2,sizeO(3)/2);
shading interp
colormap("gray")
title("Original")

Set the seed locations.

seedR = 75;
seedC = 60;
seedP = 10;

Compute weights based on grayscale intensity differences.

 imsegfmm

1-1927

W = graydiffweight(V,seedC,seedR,seedP,"GrayDifferenceCutoff",25);

Segment the image using the weights.

thresh = 0.002;
BW = imsegfmm(W,seedC,seedR,seedP,thresh);

Visualize the segmented image using an isosurface.

figure
p = patch(isosurface(double(BW)));
p.FaceColor = "red";
p.EdgeColor = "none";
daspect([1 1 27/64]);
camlight
lighting phong

Input Arguments
W — Weight array
non-negative numeric array

Weight array, specified as a non-negative numeric array. You can compute the weight array by using
the graydiffweight or gradientweight functions. Large values in W identify the foreground
(object) and small values identify the background.

1 Functions

1-1928

Data Types: single | double | uint8 | int8 | int16 | uint16 | int32 | uint32

mask — Seed locations mask
logical array

Seed locations mask, specified as a logical array of the same size as W. Locations where mask is true
are seed locations. If you use graydiffweight to create the weight matrix W, it is recommended
that you use the same value of mask with imsegfmm that you used with graydiffweight.
Data Types: logical

thresh — Threshold
number in the range [0, 1]

Threshold level used to obtain the binary image, specified as a number in the range [0, 1]. Low values
typically result in large foreground regions (logical true) in BW, and high values produce small
foreground regions.
Example: 0.5
Data Types: double

C — Column index of reference pixels
numeric vector

Column index of reference pixels, specified as a numeric vector.
Example: [50 75 93]
Data Types: double

R — Row index of reference pixels
numeric vector

Row index of reference pixels, specified as a numeric vector.
Example: [48 71 89]
Data Types: double

P — Plane index of reference pixels
numeric vector

Plane index of reference pixels, specified as a numeric vector.
Example: [2 4 7]
Data Types: double

Output Arguments
BW — Segmented image
logical array

Segmented image, returned as a logical array of the same size as W.
Data Types: logical

 imsegfmm

1-1929

D — Normalized geodesic distance map
numeric array

Normalized geodesic distance map, returned as a numeric array of the same size as W. If W is of class
single, then D is of class single. Otherwise, D is of class double.
Data Types: double | single

Tips
• imsegfmm uses double-precision floating point operations for internal computations for all classes

except class single. If W is of class single, imsegfmm uses single-precision floating point
operations internally.

• imsegfmm sets pixels with 0 or NaN weight values to Inf in the geodesic distance image D. These
pixels are part of the background (logical false) in the segmented image BW.

References
[1] Sethian, J. A. Level Set Methods and Fast Marching Methods: Evolving Interfaces in

Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science,
Cambridge University Press, 2nd Edition, 1999.

See Also
activecontour | graydist | graydiffweight | gradientweight | Image Segmenter

Introduced in R2014b

1 Functions

1-1930

imseggeodesic
Segment image into two or three regions using geodesic distance-based color segmentation

Syntax
L = imseggeodesic(RGB,BW1,BW2)
L = imseggeodesic(RGB,BW1,BW2,BW3)
[L,P] = imseggeodesic(___)
[L,P] = imseggeodesic(___ ,Name,Value)

Description
L = imseggeodesic(RGB,BW1,BW2) segments the color image RGB, returning a segmented binary
image with labels L. BW1 and BW2 are binary images that specify the location of the initial seed
regions, called scribbles, for the two regions (foreground and background).

imseggeodesic uses the scribbles specified in BW1 and BW2 as representative samples for
computing the statistics for their respective regions, which it then uses in segmentation. The
scribbles specified by BW1 and BW2 (regions that are logical true) should not overlap. The underlying
algorithm uses the statistics estimated over the regions marked by the scribbles for segmentation.
The greater the number of pixels marked by scribbles, the more accurate the estimation of the region
statistics, which typically leads to more accurate segmentation. Therefore, it is a good practice to
provide as many scribbles as possible. Typically, provide at least a few hundred pixels as scribbles for
each region.

L = imseggeodesic(RGB,BW1,BW2,BW3) segments the color image RGB, returning a segmented
image with three segments (trinary segmentation) with the region labels specified by label matrix L.
BW1, BW2, and BW3 are binary images that specify the location of the initial seed regions or scribbles
for the three regions. The scribbles specified by BW1, BW2, and BW3 (regions that are logical true)
should not overlap.

[L,P] = imseggeodesic(___) also returns the probability for each pixel belonging to each of the
labels in matrix P.

[L,P] = imseggeodesic(___ ,Name,Value) uses name-value pairs to control aspects of
segmentation.

Examples

Segment Image into Two Regions Using Color Information

Read and display an image.

RGB = imread('yellowlily.jpg');
imshow(RGB)

 imseggeodesic

1-1931

1 Functions

1-1932

The goal is to segment the petals of the flower. Specify the initial seed region as a rectangular ROI by
using the drawrectangle function. Display the ROI in red. The 'Position' name-value pair argument
specifies the upper left coordinate, width, and height of the ROI as the 4-element vector [xmin,
ymin, width, height]. If you want to draw the rectangle interactively, then omit the 'Position'
name-value pair argument.

roiObject = drawrectangle(gca,'Position',[350 700 375 120],'Color','r');

 imseggeodesic

1-1933

Specify the initial seed regions for the background as a rectangular ROI. Display the ROI in blue.

1 Functions

1-1934

roiBackground = drawrectangle(gca,'Position',[90 1230 910 190],'Color','b');

 imseggeodesic

1-1935

Create a mask for each ROI in which the ROI is true and other pixels are false.

maskObject = createMask(roiObject);
maskBackground = createMask(roiBackground);

Segment the image.

[L,P] = imseggeodesic(RGB,maskObject,maskBackground);

Display the segmented labels.

imshow(label2rgb(L))
title('Segmented Labels')

1 Functions

1-1936

Display the segmented labels over the original image.

 imseggeodesic

1-1937

imshow(labeloverlay(RGB,L))
title('Labels Overlaid on Original Image')

1 Functions

1-1938

Segment Image into Three Regions Using Color Information

Read and display an image.

RGB = imread('yellowlily.jpg');
imshow(RGB)

 imseggeodesic

1-1939

1 Functions

1-1940

The first region consists of the yellow flower petals. Specify the initial seed region as a rectangular
ROI by using the drawrectangle function. Draw the ROI in yellow. The 'Position' name-value pair
argument specifies the upper left coordinate, width, and height of the ROI as the 4-element vector
[xmin, ymin, width, height]. If you want to draw the rectangle interactively, then omit the
'Position' name-value pair argument.

r1 = drawrectangle(gca,'Position',[350 700 425 120],'Color','y');

 imseggeodesic

1-1941

1 Functions

1-1942

The second region consists of the green leaves. Specify the seed region as a rectangular ROI and
draw the ROI in red.

r2 = drawrectangle(gca,'Position',[800 1124 120 230],'Color','r');

 imseggeodesic

1-1943

1 Functions

1-1944

The third region is background, which is the dirt in this image. Specify the seed region as a
rectangular ROI and draw the ROI in blue.

r3 = drawrectangle(gca,'Position',[1010 290 180 240],'Color','b');

 imseggeodesic

1-1945

Create a mask for each ROI in which the ROI is true and other pixels are false.

1 Functions

1-1946

mask1 = createMask(r1);
mask2 = createMask(r2);
mask3 = createMask(r3);

Segment the image.

[L,P] = imseggeodesic(RGB,mask1,mask2,mask3,'AdaptiveChannelWeighting',true);

Display the segmented labels over the original image.

imshow(labeloverlay(RGB,L))
title('Segmented Image with Three Regions')

 imseggeodesic

1-1947

1 Functions

1-1948

The lower right corner of the image is misclassified as region 2 (leaves). Add another background
ROI.

r4 = drawrectangle(gca,'Position',[20 1320 480 200],'Color','b');

 imseggeodesic

1-1949

mask4 = createMask(r4);
maskBackground = mask3 + mask4;

1 Functions

1-1950

Segment the image then display the segmented labels over the original image.

[L,P] = imseggeodesic(RGB,mask1,mask2,maskBackground,'AdaptiveChannelWeighting',true);
imshow(labeloverlay(RGB,L))
title('Refined Segmented Image with Three Regions')

 imseggeodesic

1-1951

Display the probability that each pixel is belongs to each label.

1 Functions

1-1952

montage(P,'Size',[1 3])
title('Probability That Each Pixel Belongs to Each Label')

Input Arguments
RGB — Image to be segmented
RGB image

Image to be segmented, specified as an RGB image. imseggeodesic converts the input RGB image
to the YCbCr color space before performing the segmentation.
Example: RGB = imread('peppers.png');
Data Types: double | uint8 | uint16

BW1 — Scribble image for first region
logical matrix

Scribble image for the first region, specified as a logical matrix. BW1 must have the same number of
rows and columns as the input image RGB. To create the scribbles interactively, first draw an ROI
using functions such as drawcircle, drawfreehand, drawpolygon, or drawrectangle. Then,
create a mask from the ROI using createMask.
Data Types: logical

BW2 — Scribble image for second region
logical matrix

Scribble image for the second region, specified as a logical matrix. BW2 must have the same number
of rows and columns as the input image RGB. To create the scribbles interactively, first draw an ROI
using functions such as drawcircle, drawfreehand, drawpolygon, or drawrectangle. Then,
create a mask from the ROI using createMask.
Data Types: logical

 imseggeodesic

1-1953

BW3 — Scribble image for third region
logical matrix

Scribble image for the third region, specified as a logical matrix. BW3 must have the same number of
rows and columns as the input image RGB. To create the scribbles interactively, first draw an ROI
using functions such as drawcircle, drawfreehand, drawpolygon, or drawrectangle. Then,
create a mask from the ROI using createMask.
Data Types: logical

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [L,P] =
imseggeodesic(RGB,BW1,BW2,BW3,'AdaptiveChannelWeighting',true);

AdaptiveChannelWeighting — Use adaptive channel weighting
false (default) | true

Use adaptive channel weighting, specified as a logical scalar. When true, imseggeodesic weights
the channels proportional to the amount of discriminatory information they have that is useful for
segmentation (based on the scribbles provided as input). When false (the default), imseggeodesic
weights all the channels equally.
Data Types: logical

Output Arguments
L — Label matrix
matrix of nonnegative integers

Label matrix, returned as a matrix of nonnegative integers. Pixels labeled 0 are the background and
pixels labeled 1 identify a segmented region. Pixels labeled 2 identify another segmented region in
trinary segmentation.
Data Types: double

P — Probability a pixel belongs to a labeled region
M-by-N-by-2 matrix (binary segmentation) | M-by-N-by-3 matrix (trinary segmentation)

Probability a pixel belongs to a labeled region, specified as an M-by-N-by-2 matrix for binary
segmentation or an M-by-N-by-3 matrix for trinary segmentation. M and N are the number of rows
and columns in the input image. P(i,j,k) specifies the probability of pixel at location (i,j)
belonging to label k.
Data Types: double

Tips
• The scribbles for the two (or three) regions should not overlap each other. Each scribble matrix

(BW1, BW2, and BW3) should be nonempty, that is, there should be at least one pixel (although the
more the better) marked as logical true in each of the scribbles.

1 Functions

1-1954

Algorithms
imseggeodesic uses a geodesic distance-based color segmentation algorithm (similar to [1] on page
1-1955).

References
[1] A. Protiere and G. Sapiro, Interactive Image Segmentation via Adaptive Weighted Distances, IEEE

Transactions on Image Processing. Volume 16, Issue 4, 2007.

See Also
activecontour | Color Thresholder | imsegfmm | rgb2ycbcr

Introduced in R2015a

 imseggeodesic

1-1955

imsegkmeans
K-means clustering based image segmentation

Syntax
L = imsegkmeans(I,k)
[L,centers] = imsegkmeans(I,k)
L = imsegkmeans(I,k,Name,Value)

Description
L = imsegkmeans(I,k) segments image I into k clusters by performing k-means clustering and
returns the segmented labeled output in L.

[L,centers] = imsegkmeans(I,k) also returns the cluster centroid locations, centers.

L = imsegkmeans(I,k,Name,Value) uses name-value arguments to control aspects of the k-
means clustering algorithm.

Examples

Segment Grayscale Image using k-Means Clustering

Read an image into the workspace.

I = imread('cameraman.tif');
imshow(I)
title('Original Image')

1 Functions

1-1956

Segment the image into three regions using k-means clustering.

[L,Centers] = imsegkmeans(I,3);
B = labeloverlay(I,L);
imshow(B)
title('Labeled Image')

 imsegkmeans

1-1957

Improve k-Means Segmentation Using Texture and Spatial Information

Read an image into the workspace. Reduce the image size to make the example run more quickly.

RGB = imread('kobi.png');
RGB = imresize(RGB,0.5);
imshow(RGB)

Segment the image into two regions using k-means clustering.

L = imsegkmeans(RGB,2);
B = labeloverlay(RGB,L);
imshow(B)
title('Labeled Image')

1 Functions

1-1958

Several pixels are mislabeled. The rest of the example shows how to improve the k-means
segmentation by supplementing the information about each pixel.

Supplement the image with information about the texture in the neighborhood of each pixel. To
obtain the texture information, filter a grayscale version of the image with a set of Gabor filters.

Create a set of 24 Gabor filters, covering 6 wavelengths and 4 orientations.

wavelength = 2.^(0:5) * 3;
orientation = 0:45:135;
g = gabor(wavelength,orientation);

Convert the image to grayscale.

I = im2gray(im2single(RGB));

Filter the grayscale image using the Gabor filters. Display the 24 filtered images in a montage.

gabormag = imgaborfilt(I,g);
montage(gabormag,'Size',[4 6])

 imsegkmeans

1-1959

Smooth each filtered image to remove local variations. Display the smoothed images in a montage.

for i = 1:length(g)
 sigma = 0.5*g(i).Wavelength;
 gabormag(:,:,i) = imgaussfilt(gabormag(:,:,i),3*sigma);
end
montage(gabormag,'Size',[4 6])

1 Functions

1-1960

Supplement the information about each pixel with spatial location information. This additional
information allows the k-means clustering algorithm to prefer groupings that are close together
spatially.

Get the x and y coordinates of all pixels in the input image.

nrows = size(RGB,1);
ncols = size(RGB,2);
[X,Y] = meshgrid(1:ncols,1:nrows);

Concatenate the intensity information, neighborhood texture information, and spatial information
about each pixel.

For this example, the feature set includes intensity image I instead of the original color image, RGB.
The color information is omitted from the feature set because the yellow color of the dog's fur is
similar to the yellow hue of the tiles. The color channels do not provide enough distinct information
about the dog and the background to make a clean segmentation.

featureSet = cat(3,I,gabormag,X,Y);

Segment the image into two regions using k-means clustering with the supplemented feature set.

L2 = imsegkmeans(featureSet,2,'NormalizeInput',true);
C = labeloverlay(RGB,L2);
imshow(C)
title('Labeled Image with Additional Pixel Information')

 imsegkmeans

1-1961

Compress Color Image Using k-Means Segmentation

Read an image into the workspace.

I = imread('peppers.png');
imshow(I)
title('Original Image')

1 Functions

1-1962

Segment the image into 50 regions by using k-means clustering. Return the label matrix L and the
cluster centroid locations C. The cluster centroid locations are the RGB values of each of the 50
colors.

[L,C] = imsegkmeans(I,50);

Convert the label matrix into an RGB image. Specify the cluster centroid locations, C, as the colormap
for the new image.

J = label2rgb(L,im2double(C));

Display the quantized image.

imshow(J)
title('Color Quantized Image')

 imsegkmeans

1-1963

Write the original and compressed images to file. The quantized image file is approximate one quarter
the size of the original image file.

imwrite(I,'peppersOriginal.png');
imwrite(J,'peppersQuantized.png');

Input Arguments
I — Image to segment
2-D grayscale image | 2-D color image | 2-D multispectral image

Image to segment, specified as a 2-D grayscale image, 2-D color image, or 2-D multispectral image.
Data Types: single | int8 | int16 | uint8 | uint16

k — Number of clusters
positive integer

Number of clusters to create, specified as a positive integer.

1 Functions

1-1964

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'NumAttempts',5

NormalizeInput — Normalize input data
true or 1 (default) | false or 0

Normalize input data to zero mean and unit variance, specified as the comma-separated pair
consisting of 'NormalizeInput' and a numeric or logical 1 (true) or 0 (false). If you specify
true, then imsegkmeans normalizes each channel of the input individually.

NumAttempts — Number of times to repeat the clustering process
3 (default) | positive integer

Number of times to repeat the clustering process using new initial cluster centroid positions,
specified as the comma-separated pair consisting of 'NumAttempts' and a positive integer.

MaxIterations — Maximum number of iterations
100 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of
'MaxIterations' and a positive integer.

Threshold — Accuracy threshold
1e-4 (default) | positive number

Accuracy threshold, specified as the comma-separated pair consisting of 'Threshold' and a positive
number. The algorithm stops when each of the cluster centers move less than the threshold value in
consecutive iterations.

Output Arguments
L — Label matrix
matrix of positive integers

Label matrix, specified as a matrix of positive integers. Pixels with label 1 belong to the first cluster,
label 2 belong to the second cluster, and so on for each of the k clusters. L has the same first two
dimensions as image I. The class of L depends on number of clusters.

Class of L Number of Clusters
'uint8' k <= 255
'uint16' 256 <= k <= 65535
'uint32' 65536 <= k <= 2^32-1
'double' 2^32 <= k

centers — Cluster centroid locations
numeric matrix

 imsegkmeans

1-1965

Cluster centroid locations, returned as a numeric matrix of size k-by-c, where k is the number of
clusters and c is the number of channels. centers is the same class as the image I.

Tips
• The function yields reproducible results. The output will not vary in multiple runs given the same

input arguments.

References
[1] Arthur, D. and S. Vassilvitskii. "k-means++: The Advantages of Careful Seeding." SODA '07:

Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms. New
Orleans, LA, January 2007, pp. 1027–1035.

See Also
Apps
Image Segmenter

Functions
imsegkmeans3 | gabor | imgaborfilt | labeloverlay | label2rgb | superpixels |
lazysnapping | watershed | labelmatrix

Topics
“Color-Based Segmentation Using K-Means Clustering”

Introduced in R2018b

1 Functions

1-1966

imsegkmeans3
K-means clustering based volume segmentation

Syntax
L = imsegkmeans3(V,k)
[L,centers] = imsegkmeans3(V,k)
L = imsegkmeans3(V,k,Name,Value)

Description
L = imsegkmeans3(V,k) segments volume V into k clusters by performing k-means clustering and
returns the segmented labeled output in L.

[L,centers] = imsegkmeans3(V,k) also returns the cluster centroid locations, centers.

L = imsegkmeans3(V,k,Name,Value) uses name-value pairs to control aspects of the k-means
clustering algorithm.

Examples

Segment Volume Using k-Means Clustering

Load a 3-D grayscale MRI volume and display it using volshow.

load mristack
volshow(mristack);

 imsegkmeans3

1-1967

Segment the volume into three clusters.

L = imsegkmeans3(mristack,3);

Display the segmented volume using volshow. To explore slices of the segmented volume, use the
Volume Viewer app.

figure
volshow(L);

1 Functions

1-1968

Input Arguments
V — Volume to segment
3-D grayscale volume | 3-D multispectral volume

Volume to segment, specified as a 3-D grayscale volume of size m-by-n-by-p or a 3-D multispectral
volume of size m-by-n-by-p-by-c, where p is the number of planes and c is number of channels.

Note imsegkmeans3 treats 2-D color images like 3-D volumes of size m-by-n-by-3. If you want 2-D
behavior, then use the imsegkmeans function.

Data Types: single | int8 | int16 | uint8 | uint16

k — Number of clusters
positive integer

Number of clusters to create, specified as a positive integer.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

 imsegkmeans3

1-1969

Example: 'NumAttempts',5

NormalizeInput — Normalize input data
true or 1 (default) | false or 0

Normalize input data to zero mean and unit variance, specified as the comma-separated pair
consisting of 'NormalizeInput' and a numeric or logical 1 (true) or 0 (false). If you specify
true, then imsegkmeans3 normalizes each channel of the input individually.

NumAttempts — Number of times to repeat the clustering process
3 (default) | positive integer

Number of times to repeat the clustering process using new initial cluster centroid positions,
specified as the comma-separated pair consisting of 'NumAttempts' and a positive integer.

MaxIterations — Maximum number of iterations
100 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of
'MaxIterations' and a positive integer.

Threshold — Accuracy threshold
1e-4 (default) | positive number

Accuracy threshold, specified as the comma-separated pair consisting of 'Threshold' and a positive
number. The algorithm stops when each of the cluster centers move less than the threshold value in
consecutive iterations.

Output Arguments
L — Label matrix
matrix of positive integers

Label matrix, specified as a matrix of positive integers. Pixels with label 1 belong to the first cluster,
label 2 belong to the second cluster, and so on for each of the k clusters. L has the same first three
dimensions as volume V. The class of L depends on number of clusters.

Class of L Number of Clusters
'uint8' k <= 255
'uint16' 256 <= k <= 65535
'uint32' 65536 <= k <= 2^32-1
'double' 2^32 <= k

centers — Cluster centroid locations
numeric matrix

Cluster centroid locations, returned as a numeric matrix of size k-by-c, where k is the number of
clusters and c is the number of channels. centers is the same class as the image I.

1 Functions

1-1970

Tips
• The function yields reproducible results. The output will not vary in multiple runs given the same

input arguments.

References
[1] Arthur, D. and S. Vassilvitskii. "k-means++: The Advantages of Careful Seeding." SODA '07:

Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms. New
Orleans, LA, January 2007, pp. 1027–1035.

See Also
Apps
Volume Viewer

Functions
imsegkmeans | superpixels3 | watershed | lazysnapping

Introduced in R2018b

 imsegkmeans3

1-1971

imsharpen
Sharpen image using unsharp masking

Syntax
B = imsharpen(A)
B = imsharpen(A,Name,Value)

Description
B = imsharpen(A) sharpens the grayscale or truecolor (RGB) input image A by using the unsharp
masking on page 1-1976 method.

B = imsharpen(A,Name,Value) uses name-value pairs to control aspects of the unsharp masking.

Examples

Sharpen Image

Read an image into the workspace and display it.

a = imread('hestain.png');
imshow(a)
title('Original Image');

Sharpen the image using the imsharpen function and display it.

1 Functions

1-1972

b = imsharpen(a);
figure, imshow(b)
title('Sharpened Image');

Control the Amount of Sharpening at the Edges

Read an image into the workspace and display it.

a = imread('rice.png');
imshow(a), title('Original Image');

 imsharpen

1-1973

Sharpen image, specifying the radius and amount parameters.

b = imsharpen(a,'Radius',2,'Amount',1);
figure, imshow(b)
title('Sharpened Image');

1 Functions

1-1974

Input Arguments
A — Image to be sharpened
grayscale image | RGB image

Image to be sharpened, specified as a grayscale or RGB image.

If A is a truecolor (RGB) image, then imsharpen converts the image to the L*a*b* color space,
applies sharpening to the L* channel only, and then converts the image back to the RGB color space
before returning it as the output image B.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Radius',1.5

Radius — Standard deviation of the Gaussian lowpass filter
1 (default) | positive number

Standard deviation of the Gaussian lowpass filter, specified as a positive number. This value controls
the size of the region around the edge pixels that is affected by sharpening. A large value sharpens
wider regions around the edges, whereas a small value sharpens narrower regions around edges.
Example: 'Radius',1.5
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Amount — Strength of the sharpening effect
0.8 (default) | numeric scalar

Strength of the sharpening effect, specified as a numeric scalar. A higher value leads to larger
increase in the contrast of the sharpened pixels. Typical values for this parameter are within the
range [0 2], although values greater than 2 are allowed. Very large values for this parameter may
create undesirable effects in the output image.
Example: 'Amount',1.2
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Threshold — Minimum contrast required for a pixel to be considered an edge pixel
0 (default) | scalar in the range [0 1]

Minimum contrast required for a pixel to be considered an edge pixel, specified as a scalar in the
range [0 1]. Higher values (closer to 1) allow sharpening only in high-contrast regions, such as strong
edges, while leaving low-contrast regions unaffected. Lower values (closer to 0) additionally allow
sharpening in relatively smoother regions of the image. This parameter is useful in avoiding
sharpening noise in the output image.
Example: 'Threshold',0.7
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

 imsharpen

1-1975

Output Arguments
B — Sharpened image
numeric array

Sharpened image, returned as a numeric array of the same size and class as the input image A.

More About
Sharpening

Sharpness is actually the contrast between different colors. A quick transition from black to white
looks sharp. A gradual transition from black to gray to white looks blurry. Sharpening images
increases the contrast along the edges where different colors meet.

Unsharp masking

The unsharp masking technique comes from a publishing industry process in which an image is
sharpened by subtracting a blurred (unsharp) version of the image from itself. Do not be confused by
the name of this filter: an unsharp filter is an operator used to sharpen an image.

See Also
fspecial | imadjust | imcontrast

Introduced in R2013a

1 Functions

1-1976

imshow
Display image

Syntax
imshow(I)
imshow(I,[low high])
imshow(I,[])
imshow(RGB)
imshow(BW)
imshow(X,map)
imshow(filename)
imshow(___,Name,Value)

himage = imshow(___)

imshow(I,RI)
imshow(X,RX,map)

Description
imshow(I) displays the grayscale image I in a figure. imshow uses the default display range for the
image data type and optimizes figure, axes, and image object properties for image display.

imshow(I,[low high]) displays the grayscale image I, specifying the display range as a two-
element vector, [low high]. For more information, see the DisplayRange argument.

imshow(I,[]) displays the grayscale image I, scaling the display based on the range of pixel values
in I. imshow uses [min(I(:)) max(I(:))] as the display range. imshow displays the minimum
value in I as black and the maximum value as white. For more information, see the DisplayRange
argument.

imshow(RGB) displays the truecolor image RGB in a figure.

imshow(BW) displays the binary image BW in a figure. For binary images, imshow displays pixels with
the value 0 (zero) as black and 1 as white.

imshow(X,map) displays the indexed image X with the colormap map.

imshow(filename) displays the image stored in the graphics file specified by filename.

imshow(___,Name,Value) displays an image, using name-value pairs to control aspects of the
operation.

himage = imshow(___) returns the image object created by imshow.

imshow(I,RI) displays the image I with associated 2-D spatial referencing object RI.

imshow(X,RX,map) displays the indexed image X with associated 2-D spatial referencing object RX
and colormap map.

 imshow

1-1977

Examples

Display Grayscale, RGB, Indexed, or Binary Image

Display a grayscale, RGB (truecolor), indexed or binary image using imshow. MATLAB® includes a
TIF file, named corn.tif, that contains three images: a grayscale image, an indexed image, and a
truecolor (RGB) image. This example creates a binary image from the grayscale image.

Display a Grayscale Image

Read the grayscale image from the corn.tif file into the MATLAB workspace. The grayscale version
of the image is the third image in the file.

corn_gray = imread('corn.tif',3);

Display the grayscale image using imshow.

imshow(corn_gray)

1 Functions

1-1978

Display an Indexed Image

Read the indexed image from the corn.tif file into the MATLAB workspace. The indexed version of
the image is the first image in the file.

[corn_indexed,map] = imread('corn.tif',1);

Display the indexed image using imshow.

imshow(corn_indexed,map)

Display an RGB Image

Read the RGB image from the corn.tif file into the MATLAB workspace. The RGB version of the
image is the second image in the file.

[corn_rgb] = imread('corn.tif',2);

Display the RGB image using imshow.

imshow(corn_rgb)

 imshow

1-1979

Display a Binary Image

Read the grayscale image from the corn.tif file into the MATLAB workspace and use thresholding
to convert it into a binary image. The grayscale version of the image is the third image in the file.

[corn_gray] = imread('corn.tif',3);

Determine the mean value of pixels in the grayscale image.

meanIntensity = mean(corn_gray(:));

Create a binary image by thresholding, using the mean intensity value as the threshold.

corn_binary = corn_gray > meanIntensity;

Display the binary image using imshow.

imshow(corn_binary)

1 Functions

1-1980

Display Image from File

Display an image stored in a file.

imshow('peppers.png');

 imshow

1-1981

Change Colormap of Displayed Image

Read a sample indexed image, corn.tif, into the workspace, and then display it.

[X,map] = imread('corn.tif');
imshow(X,map)

1 Functions

1-1982

Change the colormap for the image using the colormap function. Use the original colormap without
the red component.

newmap = map;
newmap(:,1) = 0;
colormap(newmap)

 imshow

1-1983

Scale Display Range of Image

Read a truecolor (RGB) image into the workspace. The data type of the image is uint8.

RGB = imread('peppers.png');

Extract the green channel of the image. The green channel is the second color plane.

G = RGB(:,:,2);
imshow(G)

1 Functions

1-1984

Create a filter that detects horizontal edges in the image.

filt = [-1 -1 -1;0 0 0;1 1 1];

Filter the green channel of the image using the filter2 function. The result is an image of data type
double, with a minimum value of -422 and a maximum value of 656. Pixels with a large magnitude in
the filtered image indicate strong edges.

edgeG = filter2(filt,G);

Display the filtered image using imshow with the default display range. For images of data type
double, the default display range is [0, 1]. The image appears black and white because the filtered
pixel values exceed the range [0, 1].

imshow(edgeG)

 imshow

1-1985

Display the filtered image and scale the display range to the pixel values in the image. The image
displays with the full range of grayscale values.

imshow(edgeG,[])

1 Functions

1-1986

Magnify Image using Nearest Neighbor and Bilinear Interpolation

Read the grayscale image from the corn.tif file into the workspace. The grayscale version of the
image is the second image in the file.

corn_gray = imread('corn.tif',2);

Select a small portion of the image. Display the detail image at 100% magnification using imshow.

corn_detail = corn_gray(1:100,1:100);
imshow(corn_detail)

 imshow

1-1987

Display the image at 1000% magnification by using the 'InitialMagnification' name-value pair
argument. By default, inshow performs nearest neighbor interpolation of pixel values. The image has
blocking artifacts.

imshow(corn_detail,'InitialMagnification',1000)

1 Functions

1-1988

Display the image at 1000% magnification, specifying the bilinear interpolation technique. The image
appears smoother.

imshow(corn_detail,'InitialMagnification',1000,'Interpolation',"bilinear")

 imshow

1-1989

Display Image Using Associated Spatial Referencing Object

Read image into the workspace.

I = imread('pout.tif');

Display the image. Note the axes limits reflect the size of the image.

figure
imshow(I)

1 Functions

1-1990

Create a spatial referencing object associated with the image. Use the referencing object to set the x-
and y-axes limits in the world coordinate system.

RI = imref2d(size(I));
RI.XWorldLimits = [0 3];
RI.YWorldLimits = [2 5];

Display the image, specifying the spatial referencing object. Note the change to the x- and y-axes
limits.

figure
imshow(I,RI)

 imshow

1-1991

Input Arguments
I — Input grayscale image
matrix

Input grayscale image, specified as a matrix. A grayscale image can be any numeric data type.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

RGB — Input truecolor image
m-by-n-by-3 array

Input truecolor image, specified as an m-by-n-by-3 array.

If you specify a truecolor image of data type single or double, then values should be in the range
[0, 1]. If pixel values are outside this range, then you can use the rescale function to scale pixel
values to the range [0, 1]. The 'DisplayRange' argument has no effect when the input image is
truecolor.
Data Types: single | double | uint8 | uint16

BW — Input binary image
matrix

Input binary image, specified as a matrix.
Data Types: logical

X — Indexed image
2-D matrix of positive integers

Indexed image, specified as a 2-D matrix of positive integers. The values in X are indices into the
colormap specified by map.

1 Functions

1-1992

Data Types: single | double | uint8 | logical

map — Colormap
c-by-3 matrix

Colormap associated with indexed image X, specified as a c-by-3 matrix. Each row of map is a three-
element RGB triplet that specifies the red, green, and blue components of a single color of the
colormap. When map is of data type single or double, the values of the matrix are in the range [0,
1].
Data Types: single | double | uint8

filename — File name
character vector

File name, specified as a character vector. The image must be readable by the imread function. The
imshow function displays the image, but does not store the image data in the MATLAB workspace. If
the file contains multiple images, then imshow displays the first image in the file.
Example: 'peppers.png'
Data Types: char

[low high] — Grayscale image display range
two-element vector

Grayscale image display range, specified as a two-element vector. For more information, see the
'DisplayRange' name-value pair argument.
Example: [50 250]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

RI — 2-D spatial referencing object associated with input image
imref2d object

2-D spatial referencing object associated with input image, specified as an imref2d object.

RX — 2-D spatial referencing object associated with indexed image
imref2d object

2-D spatial referencing object associated with an indexed image, specified as a imref2d object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: imshow('board.tif','Border','tight')

Border — Figure window border space
'loose' (default) | 'tight'

Figure window border space, specified as the comma-separated pair consisting of 'Border' and
either 'tight' or 'loose'. When set to 'loose', the figure window includes space around the
image in the figure. When set to 'tight', the figure window does not include any space around the
image in the figure.

 imshow

1-1993

If the image is very small or if the figure contains other objects besides an image and its axes,
imshow might use a border regardless of how this parameter is set.
Data Types: char

Colormap — Colormap
c-by-3 matrix

Colormap of the axes, specified as the comma-separated pair consisting of 'Colormap' and a c-by-3
matrix with values in the range [0, 1]. Each row of the matrix is a three-element RGB triplet that
specifies the red, green, and blue components of a single color of the colormap. Use this argument to
view grayscale images in false color. If you specify an empty colormap ([]), then the imshow function
ignores this argument.
Example: cmap = copper; imshow('board.tif','Colormap',cmap)
Data Types: double

DisplayRange — Grayscale image display range
two-element vector | []

Display range of a grayscale image, specified as a two-element vector of the form [low high]. The
imshow function displays the value low (and any value less than low) as black, and it displays the
value high (and any value greater than high) as white. Values between low and high are displayed
as intermediate shades of gray, using the default number of gray levels.

If you specify an empty matrix ([]), then imshow uses a display range of [min(I(:)) max(I(:))].
In other words, the minimum value in I is black, and the maximum value is white.

If you do not specify a display range, then imshow selects a default display range based on the image
data type.

• If I is an integer type, then DisplayRange defaults to the minimum and maximum representable
values for that integer class. For example, the default display range for uint16 arrays is [0,
65535].

• If I is data type single or double, then the default display range is [0, 1].

Note Including the parameter name is optional, except when the image is specified by a file name.
The syntax imshow(I,[low high]) is equivalent to imshow(I,'DisplayRange',[low high]).
If you call imshow with a file name, then you must specify the 'DisplayRange' parameter.

Example: 'DisplayRange',[10 250]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

InitialMagnification — Initial magnification of image display
100 (default) | numeric scalar | 'fit'

Initial magnification of the image display, specified as the comma-separated pair consisting of
'InitialMagnification' and a numeric scalar or 'fit'. If set to 100, then imshow displays the
image at 100% magnification (one screen pixel for each image pixel). If set to 'fit', then imshow
scales the entire image to fit in the window.

1 Functions

1-1994

Initially, imshow attempts to display the entire image at the specified magnification. If the
magnification value is so large that the image is too big to display on the screen, imshow displays the
image at the largest magnification that fits on the screen.

If the image is displayed in a figure with its 'WindowStyle' property set to 'docked', then imshow
displays the image at the largest magnification that fits in the figure.

Note: If you specify the axes position, imshow ignores any initial magnification you might have
specified and defaults to the 'fit' behavior.

When you use imshow with the 'Reduce' parameter, the initial magnification must be 'fit'.

In MATLAB Online™, 'InitialMagnification' is set to 'fit' and cannot be changed.
Example: 'InitialMagnification',80
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char

Interpolation — Interpolation technique
'nearest' (default) | 'bilinear'

Interpolation method, specified as 'nearest' or 'bilinear'. MATLAB uses interpolation to display
a scaled version of the image on your screen. The value you choose does not affect the image data.
Choose an interpolation method based on your image content and the effect you want to achieve:

• 'nearest' — Nearest neighbor interpolation. The value of a pixel located at (x, y) is the value of
the pixel that is closest to (x, y) in the original image. This method is best when there are a small
number of pixel values that represent distinct categories, or when you want to see individual
pixels in a highly zoomed-in view.

• 'bilinear' — Bilinear interpolation. The value of a pixel located at (x, y) is a weighted average
of the surrounding pixels in the original image. To minimize display artifacts, the imshow function
performs antialiasing when you shrink the image. This method is best in almost all other
situations.

Parent — Parent axes of image object
Axes object | UIAxes object

Parent axes of image object, specified as the comma-separated pair consisting of 'Parent' and an
Axes object or a UIAxes object. Use the 'Parent' name-value argument to build a UI that gives you
control of the Figure and Axes properties.

Reduce — Indicator for subsampling
true | false | 1 | 0

Indicator for subsampling image, specified as the comma-separated pair consisting of 'Reduce' and
either true, false, 1, or 0. This argument is valid only when you use it with the name of a TIFF file.
Use the Reduce argument to display overviews of very large images.
Data Types: logical

XData — X-axis limits of nondefault coordinate system
two-element vector

X-axis limits of nondefault coordinate system, specified as the comma-separated pair consisting of
'XData' and a two-element vector. This argument establishes a nondefault spatial coordinate system

 imshow

1-1995

by specifying the image XData. The value can have more than two elements, but imshow uses only
the first and last elements.
Example: 'XData',[100 200]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

YData — Y-axis limits of nondefault coordinate system
two-element vector

Y-axis limits of nondefault coordinate system, specified as the comma-separated pair consisting of
'YData' and a two-element vector. The value can have more than two elements, but imshow uses
only the first and last elements.
Example: 'YData',[100 200]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
himage — Image created by imshow
image object

Image created by the imshow function, specified as an image object.

Tips
• To change the colormap after you create the image, use the colormap command.
• You can display multiple images with different colormaps in the same figure using imshow with

the tiledlayout and nexttile functions.
• You can create an axes on top of the axes created by imshow by using the hold on command

after calling imshow.
• You can use the Image Viewer app as an integrated environment for displaying images and

performing common image processing tasks.
• You can set Image Processing Toolbox preferences that modify the behavior of imshow by using

the iptsetpref function.
• The imshow function is not supported when you start MATLAB with the -nojvm option.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• This function accepts GPU arrays, but does not run on a GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel Computing
Toolbox™.

1 Functions

1-1996

Usage notes and limitations:

• This function operates on distributed arrays, but executes in the client MATLAB.

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel Computing
Toolbox).

See Also
imread | image | imagesc | imwrite | imfinfo | iptsetpref | colormap

Topics
“Image Types in the Toolbox”

Introduced before R2006a

 imshow

1-1997

imshowpair
Compare differences between images

Syntax
obj = imshowpair(A,B)
obj = imshowpair(A,RA,B,RB)
obj = imshowpair(___ ,method)
obj = imshowpair(___ ,Name,Value)

Description
obj = imshowpair(A,B) creates a composite RGB image showing A and B overlaid in different
color bands. To choose another type of visualization of the two images, use the method argument. If A
and B are different sizes, imshowpair pads the smaller dimensions with zeros on the bottom and
right edges so that the two images are the same size. By default, imshowpair scales the intensity
values of A and B independently from each other. imshowpair returns obj, an image object.

obj = imshowpair(A,RA,B,RB) displays the differences between images A and B, using the
spatial referencing information provided in RA and RB. RA and RB are spatial referencing objects.

obj = imshowpair(___ ,method) uses the visualization method specified by method.

obj = imshowpair(___ ,Name,Value) specifies additional options with one or more
Name,Value pair arguments, using any of the previous syntaxes.

Examples

Display Two Images That Differ by Rotation Offset

Display a pair of grayscale images with two different visualization methods, 'diff' and 'blend'.

Load an image into the workspace. Create a copy with a rotation offset applied.

A = imread('cameraman.tif');
B = imrotate(A,5,'bicubic','crop');

Display the difference of A and B.

imshowpair(A,B,'diff')

1 Functions

1-1998

Display a blended overlay of A and B.

figure
imshowpair(A,B,'blend','Scaling','joint')

 imshowpair

1-1999

Display Two Spatially Referenced Images with Different Brightness Ranges

Read an image. Create a copy and apply rotation and a brightness adjustment.

A = dicomread('CT-MONO2-16-ankle.dcm');
B = imrotate(A,10,'bicubic','crop');
B = B * 0.2;

In this example, we know that the resolution of images A and B is 0.2mm. Provide this information
using two spatial referencing objects.

RA = imref2d(size(A),0.2,0.2);
RB = imref2d(size(B),0.2,0.2);

Display the images with the default method ('falsecolor') and apply brightness scaling
independently to each image. Specify the axes that will be the parent of the image object created by
imshowpair.

figure;
hAx = axes;
imshowpair(A,RA,B,RB,'Scaling','independent','Parent',hAx);

1 Functions

1-2000

Input Arguments
A — Image to be displayed
grayscale image | truecolor image | binary image

Image to be displayed, specified as a grayscale, truecolor, or binary image.

B — Image to be displayed
grayscale image | truecolor image | binary image

Image to be displayed, specified as a grayscale, truecolor, or binary image.

 imshowpair

1-2001

RA — Spatial referencing information about an input image
spatial referencing object

Spatial referencing information about an input image, specified as spatial referencing object, of class
imref2d.

RB — Spatial referencing information about an input image
spatial referencing object

Spatial referencing information about an input image, specified as spatial referencing object, of class
imref2d.

method — Visualization method to display combined images
'falsecolor' (default) | 'blend' | 'diff' | 'montage'

Visualization method to display combined images, specified as one of the following values.

Value Description
'falsecolor' Creates a composite RGB image showing A and B overlaid in

different color bands. Gray regions in the composite image
show where the two images have the same intensities.
Magenta and green regions show where the intensities are
different. This is the default method.

'blend' Overlays A and B using alpha blending.
'checkerboard' Creates an image with alternating rectangular regions from A

and B.
'diff' Creates a difference image from A and B.
'montage' Places A and B next to each other in the same image.

Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Scaling','joint' scales the intensity values of A and B together as a single data set.

ColorChannels — Output color channel for each input image
'green-magenta' (default) | [R G B] | 'red-cyan'

Output color channel for each input image, specified as one of the following values:

[R G B] A three element vector that specifies which image to assign to
the red, green, and blue channels. The R, G, and B values must
be 1 (for the first input image), 2 (for the second input image),
and 0 (for neither image).

'red-cyan' A shortcut for the vector [1 2 2], which is suitable for red/
cyan stereo anaglyphs.

1 Functions

1-2002

'green-magenta' A shortcut for the vector [2 1 2], which is a high contrast
option, ideal for people with many kinds of color blindness.

Interpolation — Interpolation technique
'nearest' (default) | 'bilinear'

Interpolation technique used when scaling an image, specified as the comma-separated pair
consisting of 'Interpolation' and one of the following values.

Value Description
'nearest' Nearest neighbor interpolation (default)
'bilinear' Bilinear interpolation

Parent — Parent of image object
axes object

Parent of image object created by imshowpair, specified as an axes object.

Scaling — Intensity scaling option
'independent' (default) | 'joint' | 'none'

Intensity scaling option, specified as one of the following values.

'independent' Scales the intensity values of A and B independently from each
other.

'joint' Scales the intensity values in the images jointly as if they were
together in the same image. This option is useful when you
want to visualize registrations of monomodal images, where
one image contains fill values that are outside the dynamic
range of the other image.

'none' No additional scaling.

Data Types: char | string

Output Arguments
obj — Visualization of two images
image object

Visualization of two images, returned as an image object.

Tips
• Use imfuse to create composite visualizations that you can save to a file. Use imshowpair to

display composite visualizations to the screen.

See Also
imfuse | imregister | imshow | imtransform | montage

 imshowpair

1-2003

Introduced in R2012a

1 Functions

1-2004

imsplit
Split multichannel image into its individual channels

Syntax
[c1,c2,c3,...,ck] = imsplit(I)

Description
[c1,c2,c3,...,ck] = imsplit(I) returns a set of k images representing the individual channels
in the k-channel image I.

Examples

Split RGB Image into Its Component Channels

Read an RGB image into the workspace and display the image.

I = imread('peppers.png');
imshow(I)

 imsplit

1-2005

Split the image into its component red, green, and blue channels.

[r,g,b] = imsplit(I);

Display the three color channels as a montage. Red peppers have a signal predominantly in the red
channel. Yellow and green peppers have a signal in both the red and green channels. White objects,
such as the garlic in the foreground, have a strong signal in all three channels.

montage({r,g,b},'Size',[1 3])

1 Functions

1-2006

Split Image in HSV Colorspace into Its Component Channels

Read an RGB image into the workspace and display the image.

rgbImage = imread('peppers.png');
imshow(rgbImage)

Convert the RGB image to the HSV colorspace by using the rgb2hsv function.

hsvImage = rgb2hsv(rgbImage);

Split the HSV image into its component hue, saturation, and value channels.

[h,s,v] = imsplit(hsvImage);

Display the three channels as a montage.

montage({h,s,v},'Size',[1 3])

 imsplit

1-2007

Input Arguments
I — Input image
m-by-n-by-k array

Input image, specified as an m-by-n-by-k numeric array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Output Arguments
c1,c2,c3,...,ck — Output images
numeric matrix for each channel

Output images, returned as k individual numeric matrices, where k is the number of channels in the
input image. The output images are the same class as the input image.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

imsplit supports the generation of C code (requires MATLAB Coder). For more information, see
“Code Generation for Image Processing”.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
cat | im2gray

1 Functions

1-2008

Topics
“Display Separated Color Channels of RGB Image”
“Convert Between RGB and HSV Color Spaces”

Introduced in R2018b

 imsplit

1-2009

imsubtract
Subtract one image from another or subtract constant from image

Syntax
Z = imsubtract(X,Y)

Description
Z = imsubtract(X,Y) subtracts each element in array Y from the corresponding element in array
X and returns the difference in the corresponding element of the output array Z.

Examples

Subtract Two uint8 Arrays

This example shows how to subtract two uint8 arrays. Note that negative results are rounded to 0.

X = uint8([255 0 75; 44 225 100]);
Y = uint8([50 50 50; 50 50 50]);
Z = imsubtract(X,Y)

Z = 2x3 uint8 matrix

 205 0 25
 0 175 50

Subtract Image Background

Read a grayscale image into the workspace.

I = imread('rice.png');

Estimate the background.

background = imopen(I,strel('disk',15));

Subtract the background from the image.

J = imsubtract(I,background);

Display the original image and the processed image.

imshow(I)

1 Functions

1-2010

figure
imshow(J)

 imsubtract

1-2011

Subtract a Constant from an Image

Read an image into the workspace.

I = imread('rice.png');

Subtract a constant value from the image.

J = imsubtract(I,50);

Display the original image and the result.

imshow(I)

figure
imshow(J)

1 Functions

1-2012

Input Arguments
X — First array
numeric array | logical array

First array (minuend), specified as a numeric array or logical array of any dimension.

Y — Second array
numeric scalar | numeric array | logical array

Second array (subtrahend) to be subtracted from X, specified as a numeric array or logical array of
the same size and class as X, or a numeric scalar of type double.

Output Arguments
Z — Difference
numeric array

Difference, returned as a numeric array of the same size as X. Z is the same class as X unless X is
logical, in which case Z is data type double. If X is an integer array, then elements of the output that
exceed the range of the integer type are truncated, and fractional values are rounded.

See Also
imabsdiff | imadd | imcomplement | imdivide | imlincomb | immultiply

Introduced before R2006a

 imsubtract

1-2013

imtophat
Top-hat filtering

Syntax
J = imtophat(I,SE)
J = imtophat(I,nhood)

Description
J = imtophat(I,SE) performs morphological top-hat filtering on the grayscale or binary image I
using the structuring element SE. Top-hat filtering computes the morphological opening of the image
(using imopen) and then subtracts the result from the original image.

J = imtophat(I,nhood) top-hat filters the image I, where nhood is a matrix of 0s and 1s that
specifies the structuring element neighborhood.

This syntax is equivalent to imtophat(I,strel(nhood)).

Examples

Use Top-hat Filtering to Correct Uneven Illumination

This example shows how to use top-hat filtering with a disk-shaped structuring element to remove
uneven background illumination from an image with a dark background.

Read an image and display it.

original = imread('rice.png');
imshow(original)

1 Functions

1-2014

Create the structuring element.

se = strel('disk',12);

Perform the top-hat filtering and display the image.

tophatFiltered = imtophat(original,se);
figure
imshow(tophatFiltered)

 imtophat

1-2015

Use imadjust to improve the visibility of the result.

contrastAdjusted = imadjust(tophatFiltered);
figure
imshow(contrastAdjusted)

1 Functions

1-2016

Input Arguments
I — Input image
grayscale image | binary image

Input image, specified as a grayscale image or binary image of any dimension.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

SE — Structuring element
strel object | offsetstrel object

Structuring element, specified as a single strel object or offsetstrel object. If the image I is
data type logical, the structuring element must be flat.

nhood — Structuring element neighborhood
matrix of 0s and 1s

Structuring element neighborhood, specified as a matrix of 0s and 1s.
Example: [0 1 0; 1 1 1; 0 1 0]

Output Arguments
J — Top-hat filtered image
grayscale image | binary image

Top-hat filtered image, returned as a grayscale image or binary image. J has the same data type as
input image I.

Tips
• If the dimensionality of the image I is greater than the dimensionality of the structuring element,

then the imtophat function applies the same morphological opening to all planes along the
higher dimensions.

You can use this behavior to perform top-hat filtering on RGB images. Specify a 2-D structuring
element for RGB images to operate on each color channel separately.

• When you specify a structuring element neighborhood, imtophat determines the center element
of nhood by floor((size(nhood)+1)/2).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imtophat supports the generation of C code (requires MATLAB Coder). Note that if you choose
the generic MATLAB Host Computer target platform, imtophat generates code that uses a
precompiled, platform-specific shared library. Use of a shared library preserves performance
optimizations but limits the target platforms for which code can be generated. For more
information, see “Types of Code Generation Support in Image Processing Toolbox”.

 imtophat

1-2017

• The input image I must be 2-D or 3-D.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The image input I must be 2-D or 3-D.
• The structuring element SE must be a compile-time constant.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• gpuArray input must be of type uint8 or logical.
• The structuring element SE must be flat and 2-D.

For more information, see “Image Processing on a GPU”.

See Also
Functions
imclose | imdilate | imerode | imopen | imbothat

Objects
strel | offsetstrel

Introduced before R2006a

1 Functions

1-2018

imtransform
(Not recommended) Apply 2-D spatial transformation to image

Note imtransform is not recommended. Use imwarp instead for 2-D and 3-D transformations. Use
tformarray for higher dimensional transformations.

Syntax
B = imtransform(A,tform)
B = imtransform(A,tform,interp)
B = imtransform(___ ,Name,Value)
[B,xdata,ydata] = imtransform(___)

Description
B = imtransform(A,tform) transforms image A according to the 2-D spatial transformation
defined by tform, and returns the transformed image, B.

If A is a color image, then imtransform applies the same 2-D transformation to each color channel.
Likewise, if A is a volume or image sequence with three or more dimensions, then imtransform
applies the same 2-D transformation to all 2-D planes along the higher dimensions.

B = imtransform(A,tform,interp) specifies the form of interpolation to use.

B = imtransform(___ ,Name,Value) uses name-value pairs to control various aspects of the
spatial transformation.

[B,xdata,ydata] = imtransform(___) also returns the extent of the output image B in the
output X-Y space. By default, imtransform calculates xdata and ydata automatically so that B
contains the entire transformed image A. However, you can override this automatic calculation by
specifying values for the XData and YData name-value pair input arguments.

Examples
Simple Transformation

Apply a horizontal shear to a grayscale image.

I = imread('cameraman.tif');
tform = maketform('affine',[1 0 0; .5 1 0; 0 0 1]);
J = imtransform(I,tform);
imshow(J)

 imtransform

1-2019

Projective Transformation

Map a square to a quadrilateral with a projective transformation. Set up an input coordinate system
so that the input image fills the unit square with vertices (0 0), (1 0), (1 1), (0 1).

I = imread('cameraman.tif');
udata = [0 1]; vdata = [0 1];

Transform to a quadrilateral with vertices (-4 2), (-8 3), (-3 -5), (6 3).

tform = maketform('projective',[0 0; 1 0; 1 1; 0 1],...
 [-4 2; -8 -3; -3 -5; 6 3]);

Fill with gray and use bicubic interpolation. Make the output size the same as the input size.

[B,xdata,ydata] = imtransform(I,tform,'bicubic', ...
 'udata',udata,...
 'vdata',vdata,...
 'size',size(I),...
 'fill',128);
subplot(1,2,1); imshow(I,'XData',udata,'YData',vdata)
subplot(1,2,2); imshow(B,'XData',xdata,'YData',ydata)

Image Registration

Read an aerial photo into the MATLAB workspace and view it.

unregistered = imread('westconcordaerial.png');
figure
imshow(unregistered)

1 Functions

1-2020

Read an orthophoto into the MATLAB workspace and view it.

figure
imshow('westconcordorthophoto.png')

Load control points that were previously picked.

load westconcordpoints

Create a transformation structure for a projective transformation using the points.

t_concord = cp2tform(movingPoints,fixedPoints,'projective');

Get the width and height of the orthophoto, perform the transformation, and view the result.

info = imfinfo('westconcordorthophoto.png');

registered = imtransform(unregistered,t_concord,...
 'XData',[1 info.Width],'YData',[1 info.Height]);
figure
imshow(registered)

 imtransform

1-2021

Input Arguments
A — Image to be transformed
numeric array | logical array

Image to be transformed, specified as a numeric or logical array of any dimension.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

tform — Transformation structure
TFORM structure

Transformation structure, specified as a TFORM structure, such as returned by maketform. The first
dimension of the transformation is the horizontal or x-coordinate, and the second dimension is the
vertical or y-coordinate. This convention is the reverse of the array subscripting convention in
MATLAB.

interp — Interpolation method
'bilinear' (default) | 'nearest' | 'bicubic' | resampler structure

Interpolation method, specified as one of these values.

Interpolation Method Description
'bilinear' Linear interpolation
'nearest' Nearest-neighbor interpolation—the output pixel is assigned the

value of the pixel that the point falls within. No other pixels are
considered.

'bicubic' Cubic interpolation
resampler structure resampler structure returned by makeresampler. This option

allows more control over how imtransform performs resampling.

Data Types: char

1 Functions

1-2022

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'FillValues',128

UData, VData — Spatial extent in U-V input space
2-element numeric vector

Spatial extent of input image A in the U-V input space, specified as 2-element numeric vectors. The
values of UData and VData represent coordinates in the world coordinate system. The two elements
of UData give the u-coordinates (horizontal) of the first and last columns of A, respectively. The two
elements of VData give the v-coordinates (vertical) of the first and last rows of A.

By default, the spatial extent of A in the U-V space is the same as the image extent in intrinsic
coordinates. In other words, the default value of UData is [1 size(A,2)] and the default value of
VData is [1 size(A,1)].

XData, YData — Spatial extent in X-Y output space
2-element numeric vector

Spatial extent of transformed image B in the X-Y input space, specified as 2-element numeric vectors.
The values of XData and YData represent coordinates in the world coordinate system. The two
elements of XData give the x-coordinates (horizontal) of the first and last columns of B, respectively.
The two elements of YData give the y-coordinates (vertical) of the first and last rows of B.

If you do not specify XData and YData, then imtransform estimates values that contain the entire
transformed output image. To determine these values, imtransform uses the findbounds function.

XYScale — Size of pixels in X-Y output space
numeric scalar | 2-element numeric vector

Size of pixels in X-Y output space, specified as a numeric scalar or 2-element numeric vector. If
XYScale is a scalar, then output pixels are square and XYScale specifies the side length. Otherwise,
the two elements of XYScale specify the width and height of each output pixel in X-Y space,
respectively.

The default value of XYScale depends on whether you specify Size:

• If you specify Size, then imtransform calculates XYScale from Size, XData, and YData.
• If you do not specify Size, then imtransform uses the scale of the input pixels for XYScale,

except in cases where an excessively large output image would result.

Note In cases where preserving the scale of the input image would result in an excessively large
output image, the imtransform function automatically increases the value of XYScale. To ensure
that the output pixel scale matches the input pixel scale, specify the XYScale parameter. For
example, call imtransform as shown in the following syntax:

B = imtransform(A,T,'XYScale',1)

 imtransform

1-2023

Size — Size of transformed image
2-element vector of positive integers

Size of transformed image B, specified as a 2-element vector of positive integers. The two elements of
Size specify the number of rows and columns of the output image B, respectively. For higher
dimensions, imtransform takes the size of B directly from the size of input image A. Thus,
size(B,k) equals size(A,k) for k > 2.

If you do not specify Size, then imtransform derives this value from XData, YData, and XYScale.

FillValues — Fill value
numeric scalar | numeric array

Fill value used for output pixels outside the input image boundaries, specified as the comma-
separated pair consisting of 'FillValues' and a numeric scalar or numeric array. Fill values are
used for output pixels when the corresponding inverse transformed location in the input image is
completely outside the input image boundaries.

• If the input image A is 2-D, then FillValues must be a scalar.
• If A is 3-D or N-D, then FillValues can be an array whose size satisfies the following constraint:

size(FillValues,k) must equal either size(A,k+2) or 1.

For example, if A is a uint8 RGB image that is 200-by-200-by-3, then possibilities for
'FillValues' include the following values.

Value Fill
0 Fill with black
[0;0;0] Fill with black
255 Fill with white
[255;255;255] Fill with white
[0;0;255] Fill with blue
[255;255;0] Fill with yellow

For a second example, if A is 4-D with size 200-by-200-by-3-by-10, then you can specify
'FillValues' as a scalar, 1-by-10 vector, 3-by-1 vector, or 3-by-10 matrix.

Output Arguments
B — Transformed image
numeric array | logical array

Transformed image, returned as a numeric or logical array of the same dimensionality as the input
image A.

xdata — Horizontal extent in X-Y output space
2-element numeric vector

Horizontal extent of the transformed image B in X-Y output space, returned as a 2-element numeric
vector. The two elements of xdata give the x-coordinates (horizontal) of the first and last columns of
B in the world coordinate system, respectively.

1 Functions

1-2024

Note The first element of xdata always equals the first element of the XData argument, if specified.
However, sometimes the second element of xdata does not exactly equal the second element of
XData. The values differ either because of the need for an integer number of rows and columns, or
because you specified values for XData, YData, XYScale, and Size that are not entirely consistent.

ydata — Vertical extent in X-Y output space
2-element numeric vector

Vertical extent of the transformed image B in X-Y output space, returned as a 2-element numeric
vector. The two elements of ydata give the y-coordinates (vertical) of the first and last rows of B in
the world coordinate system, respectively.

Note The first element of ydata always equals the first element of the YData argument, if specified.
However, sometimes the second element of ydata does not exactly equal the second element of
YData. The values differ either because of the need for an integer number of rows and columns, or
because you specified values for XData, YData, XYScale, and Size that are not entirely consistent.

Tips
• Image Registration. The imtransform function automatically shifts the origin of your output

image to make as much of the transformed image visible as possible. If you use imtransform to
do image registration, the syntax B = imtransform(A,tform) can produce unexpected results.
To control the spatial location of the output image, set XData and YData explicitly.

• Pure Translation. Calling the imtransform function with a purely translational transformation
results in an output image that is exactly like the input image unless you specify XData and YData
values in your call to imtransform. For example, if you want the output to be the same size as
the input revealing the translation relative to the input image, call imtransform as shown in the
following syntax:

B = imtransform(A,T,'XData',[1 size(A,2)],...
 'YData',[1 size(A,1)])

For more information about this topic, see “Perform Simple 2-D Translation Transformation”.
• Transformation Speed. If you do not specify the output-space location for B using XData and

YData, then imtransform estimates the location automatically using the function findbounds.
You can use findbounds as a quick forward-mapping option for some commonly used
transformations, such as affine or projective. For transformations that do not have a forward
mapping, such as polynomial transformations computed by fitgeotrans, findbounds can take
much longer. If you can specify XData and YData directly for such transformations, then
imtransform may run noticeably faster.

• Clipping. The automatic estimate of XData and YData using findbounds sometimes clips the
output image. To avoid clipping, set XData and YData directly.

See Also
checkerboard | imresize | imrotate | maketform | makeresampler | tformarray

Topics
“Perform Simple 2-D Translation Transformation”
“Padding and Shearing an Image Simultaneously”

 imtransform

1-2025

“Exploring Slices from a 3-Dimensional MRI Data Set”

Introduced before R2006a

1 Functions

1-2026

imtranslate
Translate image

Syntax
B = imtranslate(A,translation)
[B,RB] = imtranslate(A,RA,translation)
___ = imtranslate(___ ,method)
___ = imtranslate(___ ,Name,Value)

Description
B = imtranslate(A,translation) translates image A by the 2-D or 3-D translation vector
specified in translation.

If A has more than two dimensions and translation is a 2-element vector, then imtranslate
applies the 2-D translation to each plane of A.

[B,RB] = imtranslate(A,RA,translation) translates the spatially referenced image A with its
associated spatial referencing object RA. The translation vector, translation, is in the world
coordinate system. The function returns the translated spatially referenced image B, with its
associated spatial referencing object, RB.

___ = imtranslate(___ ,method) translates image A, using the interpolation method specified
by method.

___ = imtranslate(___ ,Name,Value) translates the input image using name-value pairs to
control various aspects of the translation.

Examples

Translate 2-D Image

Read image into the workspace.

I = imread('pout.tif');

Translate the image.

J = imtranslate(I,[25.3, -10.1],'FillValues',255);

Display the original image and the translated image.

figure
imshow(I);
title('Original Image');
set(gca,'Visible','on');

 imtranslate

1-2027

figure
imshow(J);
title('Translated Image');
set(gca,'Visible','on');

1 Functions

1-2028

Translate 2-D Image and View Entire Translated Image

Read image into the workspace.

I = imread('pout.tif');

Translate the image. Use the OutputView parameter to specify that you want the entire translated
image to be visible.

J = imtranslate(I,[25.3, -10.1],'FillValues',255,'OutputView','full');

Display the original image and the translated image.

figure
imshow(I);
title('Original Image');
set(gca,'Visible','on');

 imtranslate

1-2029

figure
imshow(J);
title('Full Translated Image');
set(gca,'Visible','on');

1 Functions

1-2030

Translate 3-D MRI Dataset

Load MRI data into the workspace and display it.

s = load('mri');
mriVolume = squeeze(s.D);
sizeIn = size(mriVolume);
hFigOriginal = figure;
hAxOriginal = axes;
slice(double(mriVolume),sizeIn(2)/2,sizeIn(1)/2,sizeIn(3)/2);
grid on, shading interp, colormap gray

 imtranslate

1-2031

Apply a translation in the X,Y direction.

mriVolumeTranslated = imtranslate(mriVolume,[40,30,0],'OutputView','full');

Visualize the translation by viewing an axial slice plane taken through center of the volume. Note the
shift in the X and Y directions.

sliceIndex = round(sizeIn(3)/2);
axialSliceOriginal = mriVolume(:,:,sliceIndex);
axialSliceTranslated = mriVolumeTranslated(:,:,sliceIndex);

imshow(axialSliceOriginal);

1 Functions

1-2032

imshow(axialSliceTranslated);

Input Arguments
A — Image to be translated
numeric array | logical array | categorical array

Image to be translated, specified as a numeric array, logical array, or categorical array.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical |
categorical

RA — Spatial referencing information associated with the input image A
imref2d or imref3d spatial referencing object

Spatial referencing information associated with the input image A, specified as an imref2d or
imref3d spatial referencing object.

translation — Translation vector
2-element numeric vector | 3-element numeric vector

 imtranslate

1-2033

Translation vector, specified as a 2-element numeric vector [Tx Ty] or a 3-element numeric vector
[Tx Ty Tz]. Values can be fractional.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

method — Interpolation method
'linear' (default) | 'nearest' | 'cubic'

Interpolation method, specified by one of the following values.

Value Description
'nearest' Nearest-neighbor interpolation. The output pixel is assigned the value of

the pixel that the point falls within. No other pixels are considered.

Nearest-neighbor interpolation is the only method supported for
categorical images and it is the default method for images of this type.

'bilinear' Linear interpolation.

Linear interpolation is the default method for numeric and logical images.
'bicubic' Cubic interpolation.

Note Cubic interpolation can produce pixel values outside the original
range.

Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: mriVolumeTranslated = imtranslate(mriVolume,
[40,30,0],'OutputView','full');

OutputView — Output world limits
'same' (default) | 'full'

Output world limits, specified as the comma-separated pair consisting of 'OutputView' and one of
the following values.

Value Description
'same' Output world limits are the same as the input image.
'full' Output world limits are the bounding rectangle that includes both the

input image and the translated output image.

Data Types: char | string

FillValues — Fill values
numeric scalar | numeric array | string scalar | character vector | missing

Fill values used for output pixels outside the input image, specified as the comma-separated pair
consisting of 'FillValues' and one of the following values. imtranslate uses fill values for

1 Functions

1-2034

output pixels when the corresponding inverse transformed location in the input image is completely
outside the input image boundaries.

The default fill value of numeric and logical images is 0. The default fill value of categorical images is
missing, which corresponds to the <undefined> category.

Image Type Translation Dimension Format of Fill Values
2-D grayscale
or logical image

2-D • Numeric scalar

2-D color image
or 2-D
multispectral
image

2-D • Numeric scalar
• c-element numeric vector specifying a fill

value for each of the c channels. The number
of channels, c, is 3 for color images.

Series of p 2-D
images

2-D • Numeric scalar
• c-by-p numeric matrix. The number of

channels, c, is 1 for grayscale images and 3
for color images.

N-D image 2-D • Numeric scalar
• Numeric array whose size matches

dimensions 3-to-N of the input image A. For
example, if A is 200-by-200-by-10-by-3, then
FillValues can be a 10-by-3 array.

3-D grayscale
or logical image

3-D • Numeric scalar

Categorical
image

2-D or 3-D • Valid category in the image, specified as a
string scalar or character vector.

• missing, which corresponds to the
<undefined> category. For more information,
see missing.

Example: 255 fills a uint8 image with white pixels
Example: 1 fills a double image with white pixels
Example: [0 1 0] fills a double color image with green pixels
Example: [0 1 0; 0 1 1]', for a series of two double color images, fills the first image with green
pixels and the second image with cyan pixels
Example: "vehicle" fills a categorical image with the "vehicle" category
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
string | char

Output Arguments
B — Translated image
numeric array | logical array | categorical array

Translated image, returned as a numeric, logical, or categorical array of the same data type as the
input image, A.

 imtranslate

1-2035

RB — Spatial referencing information associated with the output image
imref2d object | imref3d object

Spatial referencing information associated with the output image, returned as an imref2d or
imref3d spatial referencing object.

Tips
• imtranslate is optimized for integrally valued translation vectors.
• When 'OutputView' is 'full' and translation is a fractional number of pixels, then

imtranslate expands the world limits of the output spatial referencing object to the nearest full
pixel increment. imtranslate does this so that it contains both the original and translated
images at the same resolution as the input image. The additional image extent in each is added on
one side of the image, in the direction that the translation vector points. For example, when
translation is fractional and positive in both X and Y, then imtranslate expands the
maximum of XWorldLimits and YWorldLimits to enclose the 'full' bounding rectangle at
the resolution of the input image.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imtranslate supports the generation of C code (requires MATLAB Coder). Note that if you
choose the generic MATLAB Host Computer target platform, imtranslate generates code that
uses a precompiled, platform-specific shared library. Use of a shared library preserves
performance optimizations but limits the target platforms for which code can be generated. For
more information, see “Types of Code Generation Support in Image Processing Toolbox”.

• Input images of data type categorical are not supported.
• The function supports only 2-D translation vectors, translation. 3-D translations are not

supported.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
imref2d | imref3d | imresize | imrotate | imwarp

Topics
“Translate an Image using imtranslate Function”

Introduced in R2014a

1 Functions

1-2036

imwarp
Apply geometric transformation to image

Syntax
B = imwarp(A,tform)
B = imwarp(A,D)
[B,RB] = imwarp(A,RA,tform)
[___] = imwarp(___ ,interp)
[___] = imwarp(___ ,Name,Value)

Description
B = imwarp(A,tform) transforms the numeric, logical, or categorical image A according to the
geometric transformation tform. The function returns the transformed image in B.

B = imwarp(A,D) transforms image A according to the displacement field D.

[B,RB] = imwarp(A,RA,tform) transforms a spatially referenced image specified by the image
data A and its associated spatial referencing object RA. The outputs are a spatially referenced image
specified by the image data B and its associated spatial referencing object RB.

[___] = imwarp(___ ,interp) specifies the type of interpolation to use.

[___] = imwarp(___ ,Name,Value) specifies name-value pair arguments to control various
aspects of the geometric transformation.

Tip If the input transformation tform does not define a forward transform, then use the
OutputView name-value pair argument to accelerate the transformation.

Examples

Apply Horizontal Shear to Image

Read grayscale image into workspace and display it.

I = imread('cameraman.tif');
imshow(I)

 imwarp

1-2037

Create a 2-D geometric transformation object.

tform = affine2d([1 0 0; .5 1 0; 0 0 1])

tform =
 affine2d with properties:

 T: [3x3 double]
 Dimensionality: 2

Apply the transformation to the image.

J = imwarp(I,tform);
figure
imshow(J)

1 Functions

1-2038

Apply Rotation Transformation to 3-D MRI Dataset

Read 3-D MRI data into the workspace and visualize it.

s = load('mri');
mriVolume = squeeze(s.D);
sizeIn = size(mriVolume);
hFigOriginal = figure;
hAxOriginal = axes;
slice(double(mriVolume),sizeIn(2)/2,sizeIn(1)/2,sizeIn(3)/2);
grid on, shading interp, colormap gray

 imwarp

1-2039

Create a 3-D geometric transformation object. First create a transformation matrix that rotates the
image around the y-axis. Then create an affine3d object from the transformation matrix.

theta = pi/8;
t = [cos(theta) 0 -sin(theta) 0
 0 1 0 0
 sin(theta) 0 cos(theta) 0
 0 0 0 1];
tform = affine3d(t)

tform =
 affine3d with properties:

 T: [4x4 double]
 Dimensionality: 3

Apply the transformation to the image.

mriVolumeRotated = imwarp(mriVolume,tform);

Visualize three slice planes through the center of the transformed volumes.

sizeOut = size(mriVolumeRotated);
hFigRotated = figure;
hAxRotated = axes;
slice(double(mriVolumeRotated),sizeOut(2)/2,sizeOut(1)/2,sizeOut(3)/2)
grid on, shading interp, colormap gray

1 Functions

1-2040

Link the views of both axes together.

linkprop([hAxOriginal,hAxRotated],'View');

Set the view to see the effect of rotation.

set(hAxRotated,'View',[-3.5 20.0])

 imwarp

1-2041

1 Functions

1-2042

Warp Image Using Different Output View Styles

Read and display an image. To see the spatial extents of the image, make the axes visible.

A = imread('kobi.png');
iptsetpref('ImshowAxesVisible','on')
imshow(A)

 imwarp

1-2043

Create a 2-D affine transformation. This example creates a randomized transformation that consists
of scale by a factor in the range [1.2, 2.4], rotation by an angle in the range [-45, 45] degrees, and
horizontal translation by a distance in the range [100, 200] pixels.

tform = randomAffine2d('Scale',[1.2,2.4],'XTranslation',[100 200],'Rotation',[-45,45]);

Create three different output views for the image and transformation.

centerOutput = affineOutputView(size(A),tform,'BoundsStyle','CenterOutput');
followOutput = affineOutputView(size(A),tform,'BoundsStyle','FollowOutput');
sameAsInput = affineOutputView(size(A),tform,'BoundsStyle','SameAsInput');

Apply the transformation to the input image using each of the different output view styles.

BCenterOutput = imwarp(A,tform,'OutputView',centerOutput);
BFollowOutput = imwarp(A,tform,'OutputView',followOutput);
BSameAsInput = imwarp(A,tform,'OutputView',sameAsInput);

Display the resulting images.

imshow(BCenterOutput)
title('CenterOutput Bounds Style');

1 Functions

1-2044

imshow(BFollowOutput)
title('FollowOutput Bounds Style');

 imwarp

1-2045

imshow(BSameAsInput)
title('SameAsInput Bounds Style');

1 Functions

1-2046

iptsetpref('ImshowAxesVisible','off')

Input Arguments
A — Image to be transformed
numeric array | logical array | categorical array

Image to be transformed, specified as a numeric, logical, or categorical array of any dimension.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | categorical

tform — Geometric transformation
rigid2d object | affine2d object | projective2d object | rigid3d object | affine3d object

Geometric transformation to apply, specified as a rigid2d, affine2d, projective2d, rigid3d, or
affine3d object.

• If tform is 2-D and A has more than two dimensions, such as for an RGB image, then imwarp
applies the same 2-D transformation to all 2-D planes along the higher dimensions.

 imwarp

1-2047

• If tform is 3-D, then A must be a 3-D image volume.

D — Displacement field
numeric array

Displacement field, specified as numeric array. The displacement field defines the grid size and
location of the output image. Displacement values are in units of pixels. imwarp assumes that D is
referenced to the default intrinsic coordinate system. To estimate the displacement field, use
imregdemons.

• If A is a 2-D grayscale image of size m-by-n, then specify the displacement field as an m-by-n-by-2
array. D(:,:,1) contains displacements along the x-axis. imwarp adds these values to column
and row locations in D to produce remapped locations in A. Similarly, D(:,:,2) contains
displacements along the y-axis.

• If A is a 2-D RGB or multispectral image of size m-by-n-by-c and you specify D as an m-by-n-by-2
array, then imwarp operates on each 2-D color channel independently. D(:,:,1) contains
displacements along the x-axis for all of the color channels. Similarly, D(:,:,2) contains
displacements along the y-axis.

• If A is a 3-D grayscale image of size m-by-n-by-p, then specify the displacement field array as an m-
by-n-by-p-by-3 array. D(:,:,:,1) contains displacements along the x-axis. imwarp adds these
values to column, row, and depth locations in D to produce remapped locations in A. Similarly,
D(:,:,:,2) and D(:,:,:,3) contain displacements along the y- and z-axis.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

RA — Spatial referencing information of image to be transformed
imref2d object | imref3d object

Spatial referencing information of the image to be transformed, specified as an imref2d object for a
2-D transformation or an imref3d object for a 3-D transformation.

interp — Type of interpolation used
'nearest' | 'linear' | 'cubic'

Type of interpolation used, specified as one of these values.

Interpolation Method Description
'nearest' Nearest neighbor interpolation. The output pixel is assigned the

value of the pixel that the point falls within. No other pixels are
considered.

Nearest-neighbor interpolation is the only method supported for
categorical images and it is the default method for images of this
type.

'linear' Linear interpolation. This is the default interpolation method for
numeric and logical images.

'cubic' Cubic interpolation

Data Types: char | string

1 Functions

1-2048

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'FillValues',255 uses a fill value of 255

OutputView — Size and location of output image
imref2d object | imref3d object

Size and location of output image in the world coordinate system, specified as the comma-separated
pair consisting of 'OutputView' and an imref2d or imref3d spatial referencing object. The object
has properties that define the size of the output image and the location of the output image in the
world coordinate system.

You can create an output view by using the affineOutputView function. To replicate the default
output view calculated by imwarp, use the default bounds style ('CenterOutput') of
affineOutputView.

You cannot specify OutputView when you specify an input displacement field D.

FillValues — Fill value
numeric scalar | numeric array | string scalar | character vector | missing

Fill values used for output pixels outside the input image, specified as the comma-separated pair
consisting of 'FillValues' and one of the following values. imwarp uses fill values for output pixels
when the corresponding inverse transformed location in the input image is completely outside the
input image boundaries.

The default fill value of numeric and logical images is 0. The default fill value of categorical images is
missing, which corresponds to the <undefined> category.

Image Type Transformation
Dimensionality

Format of Fill Values

2-D grayscale
or logical image

2-D • Numeric scalar

2-D color image
or 2-D
multispectral
image

2-D • Numeric scalar
• c-element numeric vector specifying a fill

value for each of the c channels. The number
of channels, c, is 3 for color images.

Series of p 2-D
images

2-D • Numeric scalar
• c-by-p numeric matrix. The number of

channels, c, is 1 for grayscale images and 3
for color images.

N-D image 2-D • Numeric scalar
• Numeric array whose size matches

dimensions 3-to-N of the input image A. For
example, if A is 200-by-200-by-10-by-3, then
FillValues can be a 10-by-3 array.

 imwarp

1-2049

Image Type Transformation
Dimensionality

Format of Fill Values

3-D grayscale
or logical image

3-D • Numeric scalar

Categorical
image

2-D or 3-D • Valid category in the image, specified as a
string scalar or character vector.

• missing, which corresponds to the
<undefined> category. For more information,
see missing.

Example: 255 fills a uint8 image with white pixels
Example: 1 fills a double image with white pixels
Example: [0 1 0] fills a double color image with green pixels
Example: [0 1 0; 0 1 1]', for a series of two double color images, fills the first image with green
pixels and the second image with cyan pixels
Example: "vehicle" fills a categorical image with the "vehicle" category

SmoothEdges — Pad image to create smooth edges
false (default) | true

Pad image to create smooth edges, specified as true or false. When set to true, imwarp create a
smoother edge in the output image by padding the input image with values specified by FillValues.
When set to false, imwarp does not pad the image. Choosing false (not padding) the input image
can result in a sharper edge in the output image. This sharper edge can be useful to minimize seam
distortions when registering two images side by side.

Output Arguments
B — Transformed image
numeric array | logical array | categorical array

Transformed image, returned as a numeric, logical, or categorical array of the same data type as the
input image A.

RB — Spatial referencing information of transformed image
imref2d object | imref3d object

Spatial referencing information of the transformed image, returned as an imref2d or imref3d
spatial referencing object.

Algorithms
imwarp determines the value of pixels in the output image by mapping locations in the output image
to the corresponding locations in the input image (inverse mapping). imwarp interpolates within the
input image to compute the output pixel value.

The following figure illustrates a translation transformation. By convention, the axes in input space
are labeled u and v and the axes in output space are labeled x and y. In the figure, note how imwarp
modifies the spatial coordinates that define the locations of pixels in the input image. The pixel at

1 Functions

1-2050

(1,1) is now positioned at (41,41). In the checkerboard image, each black, white, and gray square is
10 pixels high and 10 pixels wide. For more information about the distinction between spatial
coordinates and pixel coordinates, see “Image Coordinate Systems”.

Input Image Translated

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• imwarp supports the generation of C code (requires MATLAB Coder). Note that if you choose the
generic MATLAB Host Computer target platform, imwarp generates code that uses a
precompiled, platform-specific shared library. Use of a shared library preserves performance
optimizations but limits the target platforms for which code can be generated. For more
information, see “Types of Code Generation Support in Image Processing Toolbox”.

• Input images of data type categorical are not supported.
• The geometric transformation object input, tform, must be a rigid2d, affine2d, or

projective2d object.
• The interpolation method and optional parameter names must be constants.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• Input images of data type categorical are not supported.
• The geometric transformation object input, tform, must be a rigid2d, affine2d, or

projective2d object.
• The interpolation method and optional parameter names must be constants.
• The spatial referencing information output, RB, is not supported.

 imwarp

1-2051

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• Only 'nearest' and 'linear' interpolation types are supported.
• Only false is supported for the value of the 'SmoothEdges' parameter.

For more information, see “Image Processing on a GPU”.

See Also
Apps
Registration Estimator

Functions
affineOutputView | imregister | imregtform | imregdemons | imtranslate |
randomWindow2d | centerCropWindow2d | missing

Objects
affine2d | affine3d | rigid2d | rigid3d | projective2d | geometricTransform2d |
geometricTransform3d

Topics
“2-D and 3-D Geometric Transformation Process Overview”

Introduced in R2013a

1 Functions

1-2052

ind2gray
Convert indexed image to grayscale image

Syntax
I = ind2gray(X,cmap)

Description
I = ind2gray(X,cmap) converts the indexed image X with colormap cmap to a grayscale image, I.
The ind2gray function removes the hue and saturation information from the input image while
retaining the luminance.

Examples

Convert Indexed Image to Grayscale

Load an indexed image into the workspace.

[X, map] = imread('trees.tif');

Convert the image to grayscale using ind2gray.

I = ind2gray(X,map);

Display the indexed image and the converted grayscale image.

imshow(X,map)
title('Indexed Image')

 ind2gray

1-2053

figure
imshow(I)
title('Converted Grayscale Image')

1 Functions

1-2054

Input Arguments
X — Indexed image
numeric array

Indexed image, specified as a numeric array of any size and dimensionality.
Data Types: single | double | uint8 | uint16

cmap — Colormap
c-by-3 numeric matrix

Colormap associated with indexed image X, specified as a c-by-3 numeric matrix with values in the
range [0, 1]. Each row is a three-element RGB triplet that specifies the red, green, and blue
components of a single color of the colormap.
Data Types: double

Output Arguments
I — Grayscale image
numeric array

Grayscale image, specified as a numeric array. I has the same size, dimensionality and class as X.

Algorithms
ind2gray converts the colormap to NTSC coordinates using rgb2ntsc, and sets the hue and
saturation components (I and Q) to zero, creating a gray colormap. ind2gray then replaces the
indices in the image X with the corresponding grayscale intensity values in the gray colormap.

Extended Capabilities
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
Image Viewer | gray2ind | imshow | mat2gray | im2gray | rgb2ntsc

Introduced before R2006a

 ind2gray

1-2055

inpaintCoherent
Restore specific image regions using coherence transport based image inpainting

Syntax
J = inpaintCoherent(I,mask)
J = inpaintCoherent(I,mask,Name,Value)

Description
J = inpaintCoherent(I,mask) restores specific regions in the input image using the coherence
transport based inpainting method. mask is a logical image that denotes the target regions in the
image to be filled through inpainting.

J = inpaintCoherent(I,mask,Name,Value) specifies additional inpainting options using one or
more name-value arguments.

Examples

Remove Overlayed Text From Image Through Inpainting

Read an image to be inpainted into the workspace. This image contains text overlays to be removed.

I = imread('overlayimage.png');

Read the mask image into the workspace. This mask image contains the overlayed text regions
present in the image to be inpainted.

mask = imread('text.png');

Display the image to be inpainted and its corresponding mask image.

montage({I,mask});
title(['Image to Be Inpainted',' | ','Mask for Inpainting'])

1 Functions

1-2056

Inpaint the original image by removing the text overlays.

J = inpaintCoherent(I,mask);

Display the original image and the inpainted image.

montage({I,J});
title(['Image to Be Inpainted',' | ','Inpainted Image'])

 inpaintCoherent

1-2057

Remove Objects in Image Regions Through Inpainting

Read an image to be inpainted into the workspace.

I = imread('coloredChips.png');

Display the image.

figure
imshow(I,[])

Use the drawcircle function to select a circular region of interest (ROI) for inpainting. Use the
Center and Radius name-value pairs to specify the location of an ROI.

h = drawcircle('Center',[130,42],'Radius',40);

Select Multiple ROIs for Inpainting

You can also select multiple ROIs iteratively.

Set the number of regions to be inpainted to 6.

1 Functions

1-2058

numRegion = 6;

Specify the center and radii for each region.

roiCenter = [130 42;433 78;208 108;334 124;434 167;273 58];
roiRadius = [40 50 40 40 40 30];

Select multiple circular ROIs iteratively by specifying the drawcircle Center and Radius name-
value pairs.

roi = cell([numRegion,1]);
for i = 1:numRegion
 c = roiCenter(i,:);
 r = roiRadius(i);
 h = drawcircle('Center',c,'Radius',r);
 roi{i} = h;
end

Use the createMask function to generate a mask from the selected ROIs.

mask = zeros(size(I,1),size(I,2));
for i = 1:numRegion
 newmask = createMask(roi{i});

 inpaintCoherent

1-2059

 mask = xor(mask,newmask);
end

Display the image to be inpainted and its corresponding mask image.

montage({I,mask});
title(['Image to Be Inpainted',' | ','Mask for Inpainting'])

Remove objects in the ROIs through inpainting. Specify a standard deviation of 0.5 and an inpainting
radius of 1.

J = inpaintCoherent(I,mask,'SmoothingFactor',0.5,'Radius',1);

Display the original image and the inpainted image.

montage({I,J});
title(['Image to Be Inpainted',' | ','Inpainted Image']);

1 Functions

1-2060

Input Arguments
I — Image to inpaint
grayscale image | RGB color image

Image to inpaint, specified as a grayscale image of size m-by-n or an RGB color image of size m-by-n-
by-3.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

mask — Spatial mask of target regions
2-D binary image

Spatial mask of target regions, specified as a 2-D binary image of size m-by-n, where m and n are the
dimensions of input image I. The nonzero pixels in mask constitute the target regions to be filled
through inpainting.

Note

• You can generate the mask using any of these functions: drawcircle, drawpolygon,
drawrectangle, drawassisted, or drawfreehand. Alternatively, you can use the segmentation
tools in Image Segmenter app.

Data Types: logical

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: J = inpaintCoherent(I,mask,'Radius',7)

 inpaintCoherent

1-2061

SmoothingFactor — Standard deviation of Gaussian filter
2 (default) | positive number

Standard deviation of Gaussian filter, specified as the comma-separated pair consisting of
'SmoothingFactor' and a positive number. This value is used to compute the scales of the
Gaussian filters while estimating the coherence direction.

Radius — Inpainting radius
5 (default) | positive integer

Inpainting radius, specified as the comma-separated pair consisting of 'Radius' and a positive
integer. The inpainting radius denotes the radius of the circular neighborhood region centered on the
pixel to be inpainted.

Output Arguments
J — Inpainted image
grayscale image | RGB color image

Inpainted image, returned as a grayscale image or RGB color image of the same size and data type as
input image I.

Tips
• The inpainting results depend on the name-value pair specification. You can modify the values of

'Radius' and 'SmoothingFactor' for varied results.
• Each ROI in the binary mask image must be sufficiently large to enclose the corresponding region

in the image to be inpainted.

Algorithms
The coherence transport based inpainting method is a pixel-based approach for removing objects and
filling regions in images [1]. Inpainting is performed inwards starting from the boundary pixels of the
target region. The inpainting value for a pixel is estimated from its coherent neighboring pixels with
known values. The steps involved are summarized as follows:

1 Identify target regions from the input image to be filled or inpainted. Generate a binary mask of
the size same as the input image. The nonzero pixels in the mask image must contain the target
regions to be inpainted.

The order in which the pixels in the target region are inpainted is calculated from their Euclidean
distance to the boundary of the target region.

2 The inpainting value for a pixel in the target region is the weighted average of known pixel
values within its inpainting radius. The known pixels along the coherence direction are assigned
higher weight value than the incoherent neighboring pixels. The coherence direction is estimated
by using a structure tensor.

References
[1] F. Bornemann and T. März. "Fast Image Inpainting Based on Coherence Transport." Journal of

Mathematical Imaging and Vision. Vol. 28, 2007, pp. 259–278.

1 Functions

1-2062

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

inpaintCoherent supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

See Also
imfill | regionfill | inpaintExemplar | roifilt2

Introduced in R2019a

 inpaintCoherent

1-2063

inpaintExemplar
Restore specific image regions using exemplar-based image inpainting

Syntax
J = inpaintExemplar(I,mask)
J = inpaintExemplar(I,mask,Name,Value)

Description
J = inpaintExemplar(I,mask) fills specific regions in the input image using the exemplar-based
inpainting method. mask is a logical image that denotes the target regions in the image to be filled
using inpainting.

J = inpaintExemplar(I,mask,Name,Value) specifies additional inpainting options using one or
more name-value arguments.

Examples

Remove Objects in Image Using Inpainting

Read an image into the workspace.

I = imread('liftingbody.png');

Display the image.

figure
imshow(I,[])

Use the drawellipse function to select an elliptical region of interest (ROI) for inpainting. Use the
'Center' and 'SemiAxes' name-value pairs to specify the location of an ROI.

h = drawellipse('Center',[410 155],'SemiAxes',[95 20]);

1 Functions

1-2064

Use the createMask function to generate a mask from the selected ROIs.

mask = createMask(h);

Display the image to be inpainted and its corresponding mask image.

montage({I,mask});
title(['Image to Be Inpainted',' | ','Mask for Inpainting'])

 inpaintExemplar

1-2065

Remove objects in the ROI by using inpainting.

J = inpaintExemplar(I,mask);

Display the original image and the inpainted image.

montage({I,J});
title(['Image to Be Inpainted',' | ','Inpainted Image']);

1 Functions

1-2066

Restore Distorted Image Regions Using Inpainting

Read an image into the workspace.

I = imread('forestdistorted.png');

Display the image. The image comprises distorted regions to be restored using inpainting.

figure
imshow(I,[])

Read a binary mask image containing the distorted image regions into the workspace.

mask = imread('imagemask.png');

Display the image to be inpainted and its corresponding mask image.

montage({I,mask});
title(['Image to Be Inpainted',' | ','Mask for Inpainting'])

 inpaintExemplar

1-2067

Inpaint the original image to restore the distorted image region. Specify the fill order and the patch
size for inpainting as tensor and 7, respectively.

J = inpaintExemplar(I,mask,'FillOrder','tensor','PatchSize',7);

Display the original image and the inpainted image.

montage({I,J});
title(['Image to Be Inpainted',' | ','Inpainted Image'])

Input Arguments
I — Image to be inpainted
2-D grayscale image | RGB image

Image to be inpainted, specified as a 2-D grayscale image or an RGB image of size m-by-n.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

1 Functions

1-2068

mask — Spatial mask of target regions
2-D binary image

Spatial mask of target regions, specified as a 2-D binary image of the same size as the input image I.
The nonzero pixels in mask specify the target regions to be filled using inpainting.
Data Types: logical

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: J = inpaintExemplar(I,mask,'FillOrder','gradient')

FillOrder — Filling order
'gradient' (default) | 'tensor'

Filling order, specified as the comma-separated pair consisting of 'FillOrder' and 'gradient' or
'tensor'. The filling order denotes the priority function to be used for calculating the patch priority.
The patch priority value specifies the order of filling for the image patches in target regions.
Data Types: char | string

PatchSize — Size of image patch
[9 9] (default) | scalar | vector

Size of the image patch, specified as the comma-separated pair consisting of 'PatchSize' and one
of these options.

• A scalar, s — The image patch is a square region of size s-by-s.
• A vector of form [p s] — The image patch is a square or rectangular region of size p-by-s.

The default image patch size is 9-by-9. An image patch refers to the image region considered for
patch matching and inpainting.

Note

• The size of the image patch must be at least 3-by-3 and always less than the size of the input
image.

Data Types: double

Output Arguments
J — Inpainted image
2-D grayscale image | RGB image

Inpainted image, returned as a 2-D grayscale image or an RGB image of the same size and data type
as input image I.

 inpaintExemplar

1-2069

Algorithms
The exemplar-based image inpainting algorithm is a patch-based approach that restores target
regions in the input image by using these steps.

1 Identify target regions from the input image.
2 Generate a binary mask of the same size as the input image. The nonzero pixels in the mask

image must correspond to the target regions to be inpainted.
3 Identify the source region. All regions, excluding the target regions, in the input image comprise

the source region. That is, source region = input image − target regions.
4 For every patch of size p-by-s centered on a boundary pixel in the target region, compute the

patch priority by using the gradient or tensor method.
5 Find the patch with the maximum priority. This patch constitutes the target patch to be

inpainted.
6 Given the target patch, search for the best-matching patch in the source region by using the sum

of square difference (SSD).
7 Copy image data from the best-matching patch to the target patch.
8 Update the input image, mask, and patch priority value.
9 Repeat steps 4–8 until the target regions are inpainted.

References
[1] Criminisi, A., P. Perez, and K. Toyama. "Region Filling and Object Removal by Exemplar-Based

Image Inpainting." IEEE Transactions on Image Processing. Vol. 13, No. 9, 2004, pp. 1200–
1212.

[2] Le Meur, O., M. Ebdelli, and C. Guillemot. "Hierarchical Super-Resolution-Based-Inpainting." IEEE
Transactions on Image Processing. Vol. 22, No. 10, 2013, pp. 3779–3790.

See Also
imfill | regionfill | inpaintCoherent | roifilt2

Topics
“Interactive Image Inpainting Using Exemplar Matching”

Introduced in R2019b

1 Functions

1-2070

integralBoxFilter
2-D box filtering of integral images

Syntax
B = integralBoxFilter(A)
B = integralBoxFilter(A,filterSize)
B = integralBoxFilter(___ ,Name,Value)

Description
B = integralBoxFilter(A) filters the integral image A with a 3-by-3 box filter. Returns the
filtered image, B.

B = integralBoxFilter(A,filterSize) filters the integral image A with a 2-D box filter with
size specified by filterSize.

B = integralBoxFilter(___ ,Name,Value) uses name-value pairs to control various aspects of
the filtering.

Examples

Filter Integral Image

Read image into the workspace.

A = imread('cameraman.tif');

Pad the image by the radius of the filter neighborhood. This example uses an 11-by-11 filter.

filterSize = [11 11];
padSize = (filterSize-1)/2;
Apad = padarray(A, padSize, 'replicate','both');

Compute the integral image of the padded input image.

intA = integralImage(Apad);

Filter the integral image.

B = integralBoxFilter(intA, filterSize);

Display original image and filtered image.

figure
imshow(A)
title('Original Image')

 integralBoxFilter

1-2071

figure
imshow(B,[])
title('Filtered Image')

1 Functions

1-2072

Filter Image with Horizontal and Vertical Motion Blur

Read image into the workspace.

 A = imread('cameraman.tif');

Pad the image by radius of the filter neighborhood, calculated (11-1)/2.

padSize = [5 5];
Apad = padarray(A, padSize, 'replicate', 'both');

Calculate the integral image of the padded input.

intA = integralImage(Apad);

Filter the integral image with a vertical [11 1] filter.

Bvert = integralBoxFilter(intA, [11 1]);

Crop the output to retain input image size and display it.

Bvert = Bvert(:,6:end-5);

Filter the integral image with a horizontal [1 11] filter.

Bhorz = integralBoxFilter(intA, [1 11]);

Crop the output to retain input image size.

Bhorz = Bhorz(6:end-5,:);

Display the original image and the filtered images.

figure,
imshow(A)
title('Original Image')

 integralBoxFilter

1-2073

figure,
imshow(Bvert,[])
title('Filtered with Vertical Filter')

figure,
imshow(Bhorz,[])
title('Filtered with Horizontal Filter')

1 Functions

1-2074

Input Arguments
A — Integral image to be filtered
numeric array

Integral image to be filtered, specified as a numeric array of any dimension.

The integral image must be upright — integralBoxFilter does not support rotated integral
images. The first row and column of the integral image is assumed to be zero-padded, as returned by
integralImage.
Data Types: double

filterSize — Size of box filter
3 (default) | positive, odd integer | 2-element vector of positive, odd integers

Size of box filter, specified as a positive, odd integer or 2-element vector of positive, odd integers. If
filterSize is scalar, then integralBoxFilter uses a square box filter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: B = integralBoxFilter(A,5,'NormalizationFactor',1);

NormalizationFactor — Normalization factor applied to box filter
1/filterSize.^2, if scalar, and 1/prod(filterSize), if vector (default) | numeric scalar

Normalization factor applied to box filter, specified as a numeric scalar.

The default 'NormalizationFactor' has the effect of a mean filter — the pixels in the output
image are the local means of the image. To get local area sums, set 'NormalizationFactor' to 1.
To avoid overflow in such circumstances, consider using double precision images by converting the
input image to class double.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
B — Filtered image
numeric array

Filtered image, returned as a numeric array. integralBoxFilter returns only the parts of the
filtering that are computed without padding.
Data Types: double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 integralBoxFilter

1-2075

Usage notes and limitations:

• integralBoxFilter supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

• The 'NormalizationFactor' parameter must be a compile-time constant.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The 'NormalizationFactor' parameter must be a compile-time constant.

See Also
imboxfilt | integralImage

Topics
“Integral Image”

Introduced in R2015b

1 Functions

1-2076

integralBoxFilter3
3-D box filtering of 3-D integral images

Syntax
B = integralBoxFilter3(A)
B = integralBoxFilter3(A,filterSize)
B = integralBoxFilter3(___ ,Name,Value)

Description
B = integralBoxFilter3(A) filters integral image A with a 3-by-3-by-3 box filter.

B = integralBoxFilter3(A,filterSize) filters integral image A with a 3-D box filter with size
specified by filterSize.

B = integralBoxFilter3(___ ,Name,Value) uses name-value pairs to control various aspects
of the filtering.

Examples

Filter 3-D MRI Volume with Box Filter

Load 3-D MRI data.

volData = load('mri');
vol = squeeze(volData.D);

Pad the image volume by the radius of the filter neighborhood.

filterSize = [5 5 3];
padSize = (filterSize-1)/2;
volPad = padarray(vol, padSize, 'replicate', 'both');

Calculate the 3-D integral image of the padded input.

intVol = integralImage3(volPad);

Filter the 3-D integral image with a [5 5 3] filter.

volFilt = integralBoxFilter3(intVol, filterSize);

Input Arguments
A — Integral image to be filtered
3-D numeric array

Integral image to be filtered, specified as a 3-D numeric array.

 integralBoxFilter3

1-2077

integralBoxFilter3 expects the input integral image, A, to be an upright integral image
computed using integralImage3. integralBoxFilter3 does not support rotated integral images.
The first row, column and plane of the integral image is assumed to be padded, as returned by
integralImage3.
Data Types: double

filterSize — Size of box filter
3 (default) | positive, odd integer | 3-element vector of positive, odd integers

Size of box filter, specified as a positive odd integer or 3-element vector of positive, odd integers. If
filterSize is scalar, then integralBoxFilter3 uses a cube box filter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: B = integralBoxFilter3(A,5,'NormalizationFactor',1);

NormalizationFactor — Normalization factor applied to box filter
1/filterSize.^3, if scalar, and 1/prod(filterSize), if vector (default) | numeric scalar

Normalization factor applied to box filter, specified as a numeric scalar.

The default 'NormalizationFactor' has the effect of a mean filter—the pixels in the output image
are the local means of the image. To get local area sums, set 'NormalizationFactor' to 1. To
avoid overflow in such circumstances, consider using double precision images by converting the input
image to class double.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
B — Filtered image
3-D numeric array

Filtered image, returned as a 3-D numeric array. integralBoxFilter3 returns only the parts of the
filtering that are computed without padding.
Data Types: double

See Also
imboxfilt3 | integralImage3

Topics
“Integral Image”

Introduced in R2015b

1 Functions

1-2078

integralImage
Calculate 2-D integral image

Syntax
J = integralImage(I)
J = integralImage(I,orientation)

Description
In an integral image, each pixel represents the cumulative sum of a corresponding input pixel with all
pixels above and to the left of the input pixel.

An integral image enables you to rapidly calculate summations over image subregions. Subregion
summations can be computed in constant time as a linear combination of only four pixels in the
integral image, regardless of the size of the subregion. Use of integral images was popularized by the
Viola-Jones algorithm [1].

J = integralImage(I) calculates the integral image from image I. The function zero-pads the top
and left side of the output integral image, J.

J = integralImage(I,orientation) calculates the integral image with the orientation specified
by orientation.

Examples

Create Integral Image

Create a simple sample matrix.

I = magic(5)

I = 5×5

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

Calculate the integral image of the sample matrix. These steps show how the first few values in the
original matrix map to values in the integral image. Note that the pixel with (row, column) coordinate
(r, c) in the original image corresponds to the pixel with coordinate (r+1, c+1) in the integral image.

• The first row and column in the integral image are all 0s.
• The pixel in the original matrix at coordinate (1, 1) with value 17 is unchanged in the integral

image because there are no other pixels in the summation. Therefore, the pixel in the integral
image at coordinate (2, 2) has the value 17.

 integralImage

1-2079

• The pixel in the original matrix at coordinate (1, 2) maps to the pixel (2, 3) in the integral image.
The value is the summation of the original pixel value (24), the pixels above it (0), and the pixels to
its left (17): 24 + 17 + 0 = 41.

• The pixel in the original matrix at coordinate (1, 3) maps to the pixel (2, 4) in the integral image.
The value is the summation of the original pixel value (1), the pixel above it (0), and the pixels to
its left (which have already been summed to 41). Thus the value at pixel (2,4) in the integral image
is 1 + 41 + 0 = 42.

J = integralImage(I)

J = 6×6

 0 0 0 0 0 0
 0 17 41 42 50 65
 0 40 69 77 99 130
 0 44 79 100 142 195
 0 54 101 141 204 260
 0 65 130 195 260 325

Calculate Subregion Sum Using Integral Image

Read a grayscale image into the workspace. Display the image.

I = imread('pout.tif');
imshow(I)

1 Functions

1-2080

Compute the integral image.

J = integralImage(I);

Use the drawrectangle tool to select a rectangular subregion. The tool returns a Rectangle
object.

d = drawrectangle;

The Vertices property of the Rectangle object stores the coordinates of vertices as a 4-by-2
matrix. Vertices are ordered starting with the top-left and continuing in a clockwise direction. Split
the matrix into two vectors containing the row and column coordinates. Because the integral image is
zero-padded on the top and left side, increment the row and column coordinates by 1 to retrieve the
corresponding elements of the integral array.

r = floor(d.Vertices(:,2)) + 1;
c = floor(d.Vertices(:,1)) + 1;

Calculate the sum of all pixels in the rectangular subregion by combining four pixels of the integral
image.

regionSum = J(r(1),c(1)) - J(r(2),c(2)) + J(r(3),c(3)) - J(r(4),c(4))

regionSum = 613092

Compute Subregion Integral with Rotated Orientation

Create a simple sample matrix.

 integralImage

1-2081

I = magic(5)

I = 5×5

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

Create an integral image with a rotated orientation.

J = integralImage(I,'rotated')

J = 6×7

 0 0 0 0 0 0 0
 0 17 24 1 8 15 0
 17 64 47 40 38 39 15
 64 74 91 104 105 76 39
 74 105 149 188 183 130 76
 105 170 232 272 236 195 130

Define a rotated rectangular subregion. This example specifies a subregion with top corner at
coordinate (1,3) in the original image. The subregion has a rotated height of 1 and width of 2.

r = 1;
c = 3;
h = 1;
w = 2;

Get the value of the four corner pixels of the subregion in the integral image.

regionBottom = J(r+w+h,c-h+w+1);
regionTop = J(r,c+1);
regionLeft = J(r+h,c-h+1);
regionRight = J(r+w,c+w+1);
regionCorners = [regionBottom regionTop regionLeft regionRight]

regionCorners = 1×4

 105 0 24 39

Calculate the sum of pixels in the subregion by summing the four corner pixel values.

regionSum = regionBottom + regionTop - regionLeft - regionRight

regionSum = 42

Input Arguments
I — Image
numeric array

1 Functions

1-2082

Image, specified as a numeric array of any dimension. If the input image has more than two
dimensions (ndims(I)>2), such as for an RGB image, then integralImage computes the integral
image for all 2-D planes along the higher dimensions.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

orientation — Image orientation
'upright' (default) | 'rotated'

Image orientation, specified as 'upright' or 'rotated'. If you set the orientation to 'rotated',
then integralImage returns the integral image for computing sums over rectangles rotated by 45
degrees.
Data Types: char | string

Output Arguments
J — Integral image
numeric matrix

Integral image, returned as a numeric matrix. The function zero-pads the integral image according to
the orientation of the image. Such sizing facilitates the computation of pixel sums along image
boundaries. The integral image, J, is essentially a padded version of the value
cumsum(cumsum(I,2)).

Image Orientation Size of Integral Image
Upright integral image Zero-padded on top and left. size(J) = size(I)+1
Rotated integral image Zero-padded at the top, left, and right. size(J) = size(I)+[1 2]

Data Types: double

Algorithms
Integral Image Summation

Every pixel in an integral image represents the summation of the corresponding input pixel value
with all input pixels above and to the left of the input pixel. Because integralImage zero-pads the
resulting integral image, a pixel with (row, column) coordinate (m, n) in the original image maps to
the pixel with coordinate (m+1, n+1) in the integral image.

In the figure, the current pixel in the input image is the dark green pixel at coordinate (4, 5). All
pixels in the input image above and to the left of the input pixel are colored in light green. The
summation of the green pixel values is returned in the integral image pixel with coordinate (5, 6),
colored in gray.

 integralImage

1-2083

integralImage performs a faster computation of the integral image by summing pixel values in
both the input image and the integral image. Pixel (m, n) in integral image J is a linear combination of
only four pixels: one from the input image and three previously-calculated pixels from the integral
image.

J(m,n) = J(m,n-1) + J(m-1,n) + I(m-1,n-1) - J(m-1,n-1)

This figure shows which pixels are included in the sum when calculating the integral image at the
gray pixel. Green pixels add to the sum and red pixels subtract from the sum.

Rotated Integral Image Summation

If you specify the image orientation as 'rotated', then pixels in an integral image represent the
summation of a corresponding input pixel value with all input pixels that are diagonally above the
input pixel. integralImage performs the summation along diagonal lines. This approach is less
computationally intensive than rotating the image and calculating the integral image in rectilinear
directions.

1 Functions

1-2084

In the figure, the current pixel in the input image is the dark green pixel at coordinate (4, 5). All
pixels in the input image diagonally above the input pixel are colored in light green. The summation
of the green pixel values is returned in the integral image pixel with coordinate (5, 6), colored in gray.

integralImage performs a faster computation of the rotated integral image by summing pixel
values in both the input image and the integral image. Pixel (m, n) in integral image J is a linear
combination of only five pixels: two from the input image and three previously-calculated pixels from
the integral image:

J(m,n) = J(m-1,n-1) + J(m-1,n+1) - J(m-2,n) + I(m-1,n-1) + I(m-2,n-1)

This figure shows which pixels are included in the sum when calculating the integral image at the
gray pixel. Green pixels add to the sum and red pixels subtract from the sum.

Image Subregion Summation

A subregion in an upright orientation with top-left coordinate (m,n), height h, and width w in the
original image has the summation:

regionSum = J(m–1,n–1) + J(m+h–1,n+w–1) – J(m+h–1,n–1) – J(m-1,n+w-1)

 integralImage

1-2085

For example, in the input image below, the summation of the blue shaded region is: 46 – 22 – 20 + 10
= 14. The calculation subtracts the regions above and to the left of the shaded region. The area of
overlap is added back to compensate for the double subtraction.

A subregion in an rotated orientation uses a different definition of height and width [2]. The
summation of the region is:

regionSum = J(m+h+w,n-h+w+1) + J(m,n+1) - J(m+h,n-h+1) - J(m+w,n+w+1)

References
[1] Viola, P., and M. J. Jones. "Rapid Object Detection using a Boosted Cascade of Simple Features".

Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. 2001. Vol. 1, pp. 511–518.

[2] Lienhart, R., and J. Maydt. "An Extended Set of Haar-like Features for Rapid Object Detection".
Proceedings of the 2002 IEEE International Conference on Image Processing. Sept. 2002. Vol.
1, pp. 900–903.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

integralImage supports the generation of C code (requires MATLAB Coder). For more information,
see “Code Generation for Image Processing”.

See Also
cumsum | integralBoxFilter

Topics
“Apply Multiple Filters to Integral Image”
“Integral Image”

Introduced in R2015b

1 Functions

1-2086

integralImage3
Calculate 3-D integral image

Syntax
J = integralImage3(I)

Description
J = integralImage3(I) calculates the integral image, J, from grayscale volumetric image I.

Examples

Compute Integral Image of 3-D Input Image

Create a 3-D input image.

I = reshape(1:125,5,5,5);

Define a 3-by-3-by-3 sub-volume as [startRow, startCol, startPlane, endRow, endCol,
endPlane].

[sR, sC, sP, eR, eC, eP] = deal(2, 2, 2, 4, 4, 4);

Create an integral image from the input image and compute the sum over a 3-by-3-by-3 sub-volume of
I.

J = integralImage3(I);
regionSum = J(eR+1,eC+1,eP+1) - J(eR+1,eC+1,sP) - J(eR+1,sC,eP+1) ...
 - J(sR,eC+1,eP+1) + J(sR,sC,eP+1) + J(sR,eC+1,sP) ...
 + J(eR+1,sC,sP) -J(sR,sC,sP)

regionSum = 1701

Verify that the sum of pixels is accurate.

sum(sum(sum(I(sR:eR, sC:eC, sP:eP))))

ans = 1701

Input Arguments
I — Grayscale volume
3-D numeric array

Grayscale volume, specified as a 3-D numeric array.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

 integralImage3

1-2087

Output Arguments
J — Integral image
numeric array

Integral image, returned as a numeric array. The function zero-pads the top, left and along the first
plane, resulting in size(J) = size(I) + 1. side of the integral image. The class of the output is
double. The resulting size of the output integral image equals: size(J) = size(I) + 1. Such
sizing facilitates easy computation of pixel sums along all image boundaries. The integral image, J, is
essentially a padded version of the value cumsum(cumsum(cumsum(I),2),3).
Data Types: double

More About
Integral Image

In an integral image, every pixel is the summation of the pixels above and to the left of it. Using an
integral image, you can rapidly calculate summations over image subregions. Use of integral images
was popularized by the Viola-Jones algorithm. Integral images facilitate summation of pixels and can
be performed in constant time, regardless of the neighborhood size.

See Also
integralBoxFilter3 | integralImage

Topics
“Integral Image”

Introduced in R2015b

1 Functions

1-2088

interfileinfo
Read metadata from Interfile file

Syntax
info = interfileinfo(filename)

Description
info = interfileinfo(filename) returns a structure whose fields contain information about an
image in the Interfile header file specified by filename.

The Interfile file format was developed for the exchange of nuclear medicine data. In Interfile 3.3,
metadata is stored in a header file, separate from the image data. The two files have the same name
with different file extensions. The header file has the file extension .hdr and the image file has the
file extension .img.

Input Arguments
filename — Name of Interfile header file
character vector | string scalar

Name of Interfile header file, specified as a character vector or string scalar. The file must be in the
current directory or in a directory on the MATLAB path.
Data Types: char | string

Output Arguments
info — Metadata of Interfile file
struct

Metadata of Interfile file, returned as a structure.

References
[1] Todd-Pokropek, A, Cradduck, T.D., and Deconinck, F. A File Format for the Exchange of Nuclear

Medicine Image Data: a specification of Interfile Version 3.3. Nucl Med Commun 13(9):
673-99, 1992.

See Also
interfileread

Topics
“Interfile Files”

Introduced before R2006a

 interfileinfo

1-2089

interfileread
Read images in Interfile format

Syntax
I = interfileread(filename)
I = interfileread(filename,window)

Description
I = interfileread(filename) reads the images in the first energy window of the Interfile image
file specified by filename.

The Interfile file format was developed for the exchange of nuclear medicine data. In Interfile 3.3,
metadata is stored in a header file, separate from the image data. The two files have the same name
with different file extensions. The header file has the file extension .hdr and the image file has the
file extension .img.

I = interfileread(filename,window) reads the Interfile image data in the energy window
specified by window.

Input Arguments
filename — Name of Interfile image file
character vector | string scalar

Name of Interfile image file, specified as a character vector or string scalar. The file must be in the
current directory or in a directory on the MATLAB path.
Data Types: char | string

window — Energy window
numeric scalar

Energy window, specified as a numeric scalar. The images in the energy window must have the same
size.

Output Arguments
I — Interfile image
numeric matrix | numeric array

Interfile image, returned as a 2-D numeric matrix for a single image or a 3-D numeric array for
multiple images.

1 Functions

1-2090

References
[1] Todd-Pokropek, A, Cradduck, T.D., and Deconinck, F., A File Format for the Exchange of Nuclear

Medicine Image Data: a specification of Interfile Version 3.3. Nucl Med Commun 13(9):
673-99, 1992.

See Also
interfileinfo

Topics
“Interfile Files”

Introduced before R2006a

 interfileread

1-2091

intlut
Convert integer values using lookup table

Syntax
B = intlut(A,lut)

Description
B = intlut(A,lut) converts values in array A based on lookup table lut and returns these new
values in array B.

Examples

Convert Integer Values using Lookup Table

Create an array of integers.

A = uint8([1 2 3 4; 5 6 7 8; 9 10 0 1])

A = 3x4 uint8 matrix

 1 2 3 4
 5 6 7 8
 9 10 0 1

Create a lookup table. In this example, the lookup table is created by following the vector [2 4 8 16]
with repeated copies of the vector [0 150 200 250].

LUT = [2 4 8 16 repmat(uint8([0 150 200 255]),1,63)];

Convert the values of A by referring to the lookup table. Note that the first index of the lookup table
is 0.

B = intlut(A, LUT)

B = 3x4 uint8 matrix

 4 8 16 0
 150 200 255 0
 150 200 2 4

Input Arguments
A — Input matrix
array of integers

Input matrix, specified as an array of integers.

1 Functions

1-2092

Data Types: int16 | uint8 | uint16

lut — Lookup table
vector of integers

Lookup table, specified as a vector of integers.

• If A has data type uint8, then lut must be a uint8 vector with 256 elements.
• If A has data type uint16 or int16, then lut must be a vector with 65536 elements of the same

class as A.

Data Types: int16 | uint8 | uint16

Output Arguments
B — Converted matrix
array of integers

Converted matrix, returned as an array of integers. B has the same size and data type as A.
Data Types: int16 | uint8 | uint16

Algorithms
• When A has data type uint8 or uint16, an offset of 1 is applied when indexing into the lookup

table. For example, if an element of A has the value alpha, then the corresponding element in B
has the value lut(alpha+1).

• When A has data type int16, an additional offset of 32768 is applied to the lookup table index.
For example, if an element of A has the value alpha, then the corresponding element in B has the
value lut(alpha+32768+1).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• intlut supports the generation of C code (requires MATLAB Coder). Note that if you choose the
generic MATLAB Host Computer target platform, intlut generates code that uses a
precompiled, platform-specific shared library. Use of a shared library preserves performance
optimizations but limits the target platforms for which code can be generated. For more
information, see “Types of Code Generation Support in Image Processing Toolbox”.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
ind2gray | rgb2ind

Introduced before R2006a

 intlut

1-2093

intrinsicToWorld
Convert from intrinsic to world coordinates

Syntax
[xWorld, yWorld] = intrinsicToWorld(R,xIntrinsic,yIntrinsic)
[xWorld, yWorld, zWorld] = intrinsicToWorld(R,xIntrinsic,yIntrinsic,
zIntrinsic)

Description
[xWorld, yWorld] = intrinsicToWorld(R,xIntrinsic,yIntrinsic) maps points from the
2-D intrinsic system (xIntrinsic,yIntrinsic) to the 2-D world system (xWorld,yWorld) based on
the relationship defined by 2-D spatial referencing object R.

If the kth input coordinates (xIntrinsic(k),yIntrinsic(k)) fall outside the image bounds in the
intrinsic coordinate system, intrinsicToWorld extrapolates xWorld(k) and yWorld(k) outside the
image bounds in the world coordinate system.

[xWorld, yWorld, zWorld] = intrinsicToWorld(R,xIntrinsic,yIntrinsic,
zIntrinsic) maps points from the intrinsic coordinate system to the world coordinate system using
3-D spatial referencing object R.

Examples

Convert 2-D Intrinsic Coordinates to World Coordinates

Read a 2-D grayscale image into the workspace.

m = dicominfo('knee1.dcm');
A = dicomread(m);

Create an imref2d object, specifying the size and the resolution of the pixels. The DICOM file
contains a metadata field PixelSpacing that specifies the image resolution in each dimension in
millimeters per pixel.

RA = imref2d(size(A),m.PixelSpacing(2),m.PixelSpacing(1))

RA =
 imref2d with properties:

 XWorldLimits: [0.1562 160.1562]
 YWorldLimits: [0.1562 160.1562]
 ImageSize: [512 512]
 PixelExtentInWorldX: 0.3125
 PixelExtentInWorldY: 0.3125
 ImageExtentInWorldX: 160
 ImageExtentInWorldY: 160
 XIntrinsicLimits: [0.5000 512.5000]
 YIntrinsicLimits: [0.5000 512.5000]

1 Functions

1-2094

Display the image, omitting the spatial referencing object. The axes coordinates reflect the intrinsic
coordinates. Notice that the coordinate (0,0) is in the upper left corner.

figure
imshow(A,'DisplayRange',[0 512])
axis on

Suppose you want to calculate the approximate position and width of the knee in millimeters. Select
the endpoints of a line segment that runs horizontally across the knee at the level of the kneecap. For
example, use the (x,y) points (34,172) and (442,172).

xIntrinsic = [34 442];
yIntrinsic = [172 172];

Convert these points from intrinsic coordinates to world coordinates.

 intrinsicToWorld

1-2095

[xWorld,yWorld] = intrinsicToWorld(RA,xIntrinsic,yIntrinsic)

xWorld = 1×2

 10.6250 138.1250

yWorld = 1×2

 53.7500 53.7500

The world coordinates of the two points are (10.625,53.75) and (138.125,53.75), in units of
millimeters. The approximate width of the knee in millimeters is:

width = xWorld(2) - xWorld(1)

width = 127.5000

Convert 3-D Intrinsic Coordinates to World Coordinates

Read a 3-D volume into the workspace. This image consists of 27 frames of 128-by-128 pixel images.

load mri;
D = squeeze(D);
D = ind2gray(D,map);

Create an imref3d spatial referencing object associated with the volume. For illustrative purposes,
provide a pixel resolution in each dimension. The resolution is in millimeters per pixel.

R = imref3d(size(D),2,2,4)

R =
 imref3d with properties:

 XWorldLimits: [1 257]
 YWorldLimits: [1 257]
 ZWorldLimits: [2 110]
 ImageSize: [128 128 27]
 PixelExtentInWorldX: 2
 PixelExtentInWorldY: 2
 PixelExtentInWorldZ: 4
 ImageExtentInWorldX: 256
 ImageExtentInWorldY: 256
 ImageExtentInWorldZ: 108
 XIntrinsicLimits: [0.5000 128.5000]
 YIntrinsicLimits: [0.5000 128.5000]
 ZIntrinsicLimits: [0.5000 27.5000]

Display the middle slice of the volume, omitting the spatial referencing object. The axes coordinates
reflect the intrinsic coordinates. Notice that the coordinate (0,0) is in the upper left corner of this
plane. z=0 is right below the first slice, and the z-axis is positive in the upward direction, towards the
crown of the head.

1 Functions

1-2096

figure
imshow(D(:,:,13))
axis on

Suppose you want to determine the position, in millimeters, of features within this slice. Select four
sample points, and store their intrinsic coordinates in vectors. For example, the first point has
intrinsic coordinates (54,46,13). The intrinsic z-coordinate is the same for all points within this slice.

xI = [54 71 57 70];
yI = [46 48 79 80];
zI = [13 13 13 13];

Convert the intrinsic coordinates to world coordinates using intrinsicToWorld.

[xW,yW,zW] = intrinsicToWorld(R,xI,yI,zI)

xW = 1×4

 108 142 114 140

yW = 1×4

 92 96 158 160

zW = 1×4

 52 52 52 52

The resulting vectors are the world x-, y-, and z-coordinates, in millimeters, of the selected points.
The first point, for example, is offset from the origin by 108mm in the x-direction, 92 mm in the y-
direction, and 52 mm in the z-direction.

Input Arguments
R — Spatial referencing object
imref2d or imref3d object

 intrinsicToWorld

1-2097

Spatial referencing object, specified as an imref2d or imref3d object.

xIntrinsic — Coordinates along the x-dimension in the intrinsic coordinate system
numeric scalar or vector

Coordinates along the x-dimension in the intrinsic coordinate system, specified as a numeric scalar or
vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

yIntrinsic — Coordinates along the y-dimension in the intrinsic coordinate system
numeric scalar or vector

Coordinates along the y-dimension in the intrinsic coordinate system, specified as a numeric scalar or
vector. yIntrinsic is the same length as xIntrinsic.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

zIntrinsic — Coordinates along the z-dimension in the intrinsic coordinate system
numeric scalar or vector

Coordinates along the z-dimension in the intrinsic coordinate system, specified as a numeric scalar or
vector. zIntrinsic is the same length as xIntrinsic.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
xWorld — Coordinates along the x-dimension in the world coordinate system
numeric scalar or vector

Coordinates along the x-dimension in the world coordinate system, returned as a numeric scalar or
vector. xWorld is the same length as xIntrinsic.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

yWorld — Coordinates along the y-dimension in the world coordinate system
numeric scalar or vector

Coordinates along the y-dimension in the world coordinate system, returned as a numeric scalar or
vector. yWorld is the same length as xIntrinsic.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

zWorld — Coordinates along the z-dimension in the world coordinate system
numeric scalar or vector

Coordinates along the z-dimension in the world coordinate system, returned as a numeric scalar or
vector. zWorld is the same length as xIntrinsic.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

See Also
imref2d | imref3d | worldToIntrinsic

1 Functions

1-2098

Introduced in R2013a

 intrinsicToWorld

1-2099

invert
Invert geometric transformation

Syntax
invtform = invert(tform)

Description
invtform = invert(tform) returns the inverse of the geometric transformation tform.

Examples

Invert 2-D Rotation

Read and display an image.

I = imread('pout.tif');
imshow(I)

Create an affine2d object that defines a 30 degree clockwise rotation around the origin. View the
transformation matrix stored in the T property.

1 Functions

1-2100

theta = 30;
tform = affine2d([cosd(theta) sind(theta) 0; -sind(theta) cosd(theta) 0; 0 0 1]);
tform.T

ans = 3×3

 0.8660 0.5000 0
 -0.5000 0.8660 0
 0 0 1.0000

Apply the forward geometric transformation, tform, to the image. Display the rotated image.

J = imwarp(I,tform);
imshow(J)

Invert the geometric transformation. The result is a new affine2d object that represents a 30
degree rotation in the counterclockwise direction.

invtform = invert(tform);
invtform.T

ans = 3×3

 0.8660 -0.5000 0

 invert

1-2101

 0.5000 0.8660 0
 0 0 1.0000

Apply the inverse geometric transformation, invtform, to the rotated image J. The final image, K,
has the same size, shape, and orientation as the original image. Black padding around the image
results from the two transformations.

K = imwarp(J,invtform);
imshow(K)

1 Functions

1-2102

Input Arguments
tform — Geometric transformation
affine2d object | affine3d object | rigid2d object | rigid3d object | projective2d object

Geometric transformation, specified as an affine2d, affine3d, rigid2d, rigid3d, or
projective2d geometric transformation object.

Output Arguments
invtform — Inverse geometric transformation
geometric transformation object

Inverse geometric transformation, returned as a geometric transformation object. invtform is the
same type of object as tform.

See Also
transformPointsForward | transformPointsInverse

Introduced in R2013a

 invert

1-2103

iptaddcallback
Add function handle to callback list

Syntax
iptaddcallback(obj,callback,@fun)
ID = iptaddcallback(obj,callback,@fun)

Description
iptaddcallback(obj,callback,@fun) adds the function fun to the list of functions to be called
when the callback of graphics object obj executes.

iptaddcallback can be useful when you need to notify more than one tool about the same callback
event for a single object.

ID = iptaddcallback(obj,callback,@fun) also returns an identifier, ID, for the callback
function fun.

Examples
Add Two Callback Functions to Figure

Create a figure and register two callback functions. Whenever MATLAB detects mouse motion over
the figure, function handles f1 and f2 are called in the order in which they were added to the list.

figobj = figure;
f1 = @(varargin) disp('Callback 1');
f2 = @(varargin) disp('Callback 2');
iptaddcallback(figobj,'WindowButtonMotionFcn',f1);
iptaddcallback(figobj,'WindowButtonMotionFcn',f2);

Input Arguments
obj — Graphics object
figure | axes | uipanel | image

Graphics object, specified as a handle to a figure, axes, uipanel, or image graphics objects.

callback — Callback property
character vector

Callback property of the graphics object obj, specified as a character vector. For a list of callbacks
for graphics objects, see Figure Properties, Axes Properties, Panel Properties, and Image Properties.
Data Types: char

fun — Callback function
function handle

1 Functions

1-2104

Callback function, specified as a function handle. For more information, see “Create Function
Handle”.
Data Types: function_handle

Output Arguments
ID — Callback identifier
positive integer

Callback identifier for function fun, returned as a positive integer.

Tips
• Callback functions that have already been added to an object using the set command continue to

work after you call iptaddcallback. The first time you call iptaddcallback for a given object
and callback, the function checks to see if a different callback function is already installed. If a
callback is already installed, then iptaddcallback replaces that callback function with the
iptaddcallback callback processor, and then adds the preexisting callback function to the
iptaddcallback list.

See Also
iptremovecallback

Topics
“Callbacks — Programmed Response to User Action”
“Overview Events and Listeners”

Introduced before R2006a

 iptaddcallback

1-2105

iptcheckconn
Check validity of connectivity argument

Syntax
iptcheckconn(conn,func_name,var_name,arg_pos)

Description
iptcheckconn(conn,func_name,var_name,arg_pos) checks if conn is a valid pixel connectivity
and issues a formatted error message if the connectivity is invalid.

• If the connectivity is valid, then iptcheckconn returns nothing. Valid connectivities are one of
these scalar values: 1, 4, 6, 8, 18, or 26. A connectivity can also be a 3-by-3-by- ... -by-3 array of 0s
and 1s. The central element of a connectivity array must be nonzero and the array must be
symmetric about its center.

• If the connectivity is invalid, then iptcheckconn issues a formatted error message that includes
information about the function name (func_name), the variable name (var_name), and the
argument position (arg_pos). These values are used only to create the error message, not to
check whether the pixel connectivity is valid.

Examples
Check Validity of 4-by-4 Matrix

Create a 4-by-4 array and pass it as the connectivity argument.

iptcheckconn(eye(4),'myfun','myvar',2)

eye(4) is not a valid pixel connectivity so iptcheckconn returns an error message:

Function MYFUN expected input number 2, myvar, to be a valid connectivity specifier. A nonscalar
connectivity specifier must be 3-by-3-by- ... -by-3.

Input Arguments
conn — Pixel connectivity
numeric scalar | numeric array

Pixel connectivity to check, specified as a numeric scalar or array.
Data Types: double | logical

func_name — Function name
character vector | string scalar

Function name to include in an error message when conn is an invalid pixel connectivity, specified as
a character vector or string scalar.
Data Types: char | string

1 Functions

1-2106

var_name — Variable name
character vector | string scalar

Variable name to include in an error message when conn is an invalid pixel connectivity, specified as
a character vector or string scalar.
Data Types: char | string

arg_pos — Argument position
positive integer

Argument position to include in an error message when conn is an invalid pixel connectivity, specified
as a numeric scalar.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• iptcheckconn supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

• When generating code, all input arguments must be compile-time constants.

See Also
conndef

Topics
“Pixel Connectivity”

Introduced before R2006a

 iptcheckconn

1-2107

iptcheckhandle
Check validity of handle

Syntax
iptcheckhandle(obj,valid_types,func_name,var_name,arg_pos)

Description
iptcheckhandle(obj,valid_types,func_name,var_name,arg_pos) checks if object obj is a
valid graphics object and issues a formatted error message if the handle is invalid.

• If the object is a valid graphics object as specified by valid_types, then iptcheckhandle
returns nothing.

• If the connectivity argument is invalid, then iptcheckhandle issues a formatted error message
that includes information about the function name (func_name), the variable name (var_name),
and the argument position (arg_pos). These values are used only to create the error message, not
to check whether the graphics object handle is valid.

The figure shows the format of the error message and indicates which parts you can customize using
iptcheckhandle arguments.

Examples
Trigger Error When Graphics Object Is Not Axes

To trigger the error message, create a figure that does not contain an axes object and then check for
a valid axes handle.

fig = figure; % create figure without an axes
iptcheckhandle(fig,{'axes'},'my_function','my_variable',2)

fig is not an axes handle so iptcheckhandle returns an error message:

Function MY_FUNCTION expected its second input argument, my_variable,
to be one of these types:

 axes

Instead, its type was: figure.

1 Functions

1-2108

Input Arguments
obj — Object
handle

Object, specified as a handle.

valid_types — Valid types of graphics objects
cell array of character vectors

Valid types of graphics objects, specified as a cell array containing one or more of these character
vectors.

• 'axes'
• 'figure'
• 'hggroup'
• 'image'
• 'uipanel'

Example: {'uipanel','figure'} specifies that a valid graphics object must be either a panel
container or a figure.

func_name — Function name
character vector | string scalar

Function name to include in an error message when obj is an invalid graphics object, specified as a
character vector or string scalar.
Data Types: char | string

var_name — Variable name
character vector | string scalar

Variable name to include in an error message when obj is an invalid graphics object, specified as a
character vector or string scalar.
Data Types: char | string

arg_pos — Argument position
positive integer

Argument position to include in an error message when obj is an invalid graphics object, specified as
a positive integer.

See Also
validateattributes | iptcheckmap | narginchk | validatestring | iptnum2ordinal

Introduced before R2006a

 iptcheckhandle

1-2109

iptcheckinput
Check validity of array

Note iptcheckinput will be removed in a future release. Use validateattributes instead.

Syntax
iptcheckinput(A,valid_classes,valid_attributes, func_name,var_name,arg_pos)

Description
iptcheckinput(A,valid_classes,valid_attributes, func_name,var_name,arg_pos)
checks the validity of the input array A and issues a formatted error message if the array is invalid.

• If the array has valid class and attributes as specified by valid_classes and
valid_attributes, then iptcheckinput returns nothing.

• If the class or attributes are invalid, then iptcheckinput issues a formatted error message that
includes information about the function name (func_name), the variable name (var_name), and
the argument position (arg_pos). These values are used only to create the error message, not to
check whether the array is valid.

The figure shows the format of the error message and indicates which parts you can customize using
iptcheckinput arguments.

Examples
Trigger Error When Array Is Not 2-D

To trigger this error message, create a 3-D array and then check for the attribute '2d'.

A = [1 2 3; 4 5 6];
B = [7 8 9; 10 11 12];
C = cat(3,A,B);
iptcheckinput(C,{'numeric'},{'2d'},'func_name','var_name',2)

C is not 2-D so iptcheckinput returns an error message:

Function FUNC_NAME expected its second input, var_name, to be two-dimensional.

1 Functions

1-2110

Input Arguments
A — Input array
array | ...

Input array, specified as an array.

valid_classes — Valid classes
cell array of character vectors

Valid classes of array A, specified as a cell array of character vectors. The tables list common classes
for image processing applications.

Numeric Classes

int8 uint8 single
int16 uint16 double
int32 uint32
int64 uint64

Other Common Classes

categorical char cell
function_handle logical string
struct table

You can use 'numeric' as an abbreviation for the set of classes uint8, uint16, uint32, int8,
int16, int32, single, and double.
Example: {'logical' 'cell'} specifies that a valid array must be a logical array or a cell array.

valid_attributes — Valid attributes
{} | cell array of character vectors

Valid attributes of array A, specified as a cell array of character vectors. The table lists the supported
attributes in alphabetical order.

2d column even finite
integer nonempty nonnan nonnegative
nonsparse nonzero odd positive
real row scalar twod
vector

If you specify valid_attributes as the empty cell array {}, then iptcheckinput does not check
the attributes of A.
Example: {'real' 'nonempty' 'finite'} specifies that a valid array must be real and nonempty
and contain only finite values.

func_name — Function name
character vector | string scalar

 iptcheckinput

1-2111

Function name to include in an error message when A is an invalid array, specified as a character
vector or string scalar.
Data Types: char | string

var_name — Variable name
character vector | string scalar

Variable name to include in an error message when A is an invalid array, specified as a character
vector or string scalar.
Data Types: char | string

arg_pos — Argument position
positive integer

Argument position to include in an error message when A is an invalid array, specified as a positive
integer.

See Also
validateattributes | iptcheckhandle | iptcheckmap | narginchk | validatestring |
iptnum2ordinal

Introduced before R2006a

1 Functions

1-2112

iptcheckmap
Check validity of colormap

Syntax
iptcheckmap(map,func_name,var_name,arg_pos)

Description
iptcheckmap(map,func_name,var_name,arg_pos) checks the validity of the MATLAB colormap
map and issues a formatted error message if the colormap is invalid.

• If the colormap is valid, then iptcheckmap returns nothing.
• If the colormap is invalid, then iptcheckmap issues a formatted error message that includes

information about the function name (func_name), the variable name (var_name), and the
argument position (arg_pos). These values are used only to create the error message, not to
check whether the array is valid.

The figure shows the format of the error message and indicates which parts you can customize using
iptcheckmap arguments.

Examples
Trigger Error For Invalid Colormap

bad_map = ones(10);
iptcheckmap(bad_map,'func_name','var_name',2)

Function FUNC_NAME expected input number 2, var_name, to be a valid colormap. Valid
colormaps must be nonempty, double, 2-D matrices with 3 columns.

Input Arguments
map — Colormap
numeric array

Colormap, specified as a numeric array.

func_name — Function name
character vector | string scalar

 iptcheckmap

1-2113

Function name to include in an error message when map is an invalid colormap, specified as a
character vector or string scalar.
Data Types: char | string

var_name — Variable name
character vector | string scalar

Variable name to include in an error message when map is an invalid colormap, specified as a
character vector or string scalar.
Data Types: char | string

arg_pos — Argument position
positive integer

Argument position to include in an error message when map is an invalid colormap, specified as a
positive integer.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

iptcheckmap supports the generation of C code (requires MATLAB Coder). For more information,
see “Code Generation for Image Processing”.

See Also
iptcheckhandle | validateattributes | narginchk | validatestring | iptnum2ordinal

Introduced before R2006a

1 Functions

1-2114

iptchecknargin
Check number of input arguments

Note iptchecknargin will be removed in a future release. Use narginchk instead.

Syntax
iptchecknargin(low,high,num_inputs,func_name)

Description
iptchecknargin(low,high,num_inputs,func_name) checks whether num_inputs is a valid
number of input arguments and issues a formatted error message if the number of input arguments is
invalid.

• If the number of input arguments is in the range [low high], then iptchecknargin returns
nothing.

• If the number of input argument is less than low or greater than high, then iptchecknargin
issues a formatted error message that includes information about the function name
(func_name). This value is used only to create the error message, not to check whether the
number of input arguments is valid.

Examples
Trigger Error For Invalid Number of Input Arguments

Create a function called test_function that accepts any number of input arguments. Within the
function, call iptchecknargin to check that the number of arguments passed to the function is
within the range [1, 3]. Save the function with the file name test_function.m.

function test_function(varargin)
 iptchecknargin(1,3,nargin,mfilename);
end

Trigger the error message by executing the function at the MATLAB command line, specifying more
than the expected number of arguments.

test_function(eye(3),5,pi,7)

Input Arguments
low — Smallest valid number of input arguments
nonnegative integer

Smallest valid number of input arguments, specified as a nonnegative integer.

high — Largest valid number of input arguments
nonnegative integer | Inf

 iptchecknargin

1-2115

Largest valid number of input arguments, specified as a nonnegative integer or Inf.

num_inputs — Number of actual input arguments
nonnegative integer | nargin

Number of actual input arguments, specified as a nonnegative integer. You can also specify nargin to
use the number of function input arguments to the currently executing function.

func_name — Function name
character vector | string scalar | mfilename

Function name to include in an error message when num_inputs is an invalid number of input
arguments, specified as a character vector or string scalar. You can also specify mfilename to use
the name of the currently executing function.
Data Types: char | string

See Also
narginchk | iptcheckhandle | validateattributes | iptcheckmap | validatestring |
iptnum2ordinal

Introduced before R2006a

1 Functions

1-2116

iptcheckstrs
Check validity of option

Note iptcheckstrs will be removed in a future release. Use validatestring instead.

Syntax
param = iptcheckstrs(str,valid_strs,func_name,var_name,arg_pos)

Description
param = iptcheckstrs(str,valid_strs,func_name,var_name,arg_pos) checks whether
str is a valid parameter name and issues a formatted error message if the parameter name is invalid.

• If there is a case-insensitive, nonambiguous match between str and a valid parameter name in
valid_strs, then iptcheckstrs returns the valid parameter name in param.

• If there is no match or the match is ambiguous, then iptcheckstrs issues a formatted error
message that includes information about the function name (func_name), the variable name
(var_name), and the argument position (arg_pos). These values are used only to create the error
message, not to check whether the parameter is valid.

The figure shows the format of the error message and indicates which parts you can customize using
iptcheckstrs arguments.

Examples
Trigger Error For Invalid Parameter Name

Define a cell array of character vectors that contains valid parameter names. To trigger an error
message, pass in a character vector that is not in the cell array.

valid_params = {'option1','option2'};
iptcheckstrs('option3',valid_params,'func_name','var_name',2)

Function FUNC_NAME expected its second input argument, var_name,
to match one of these: option1, option2

The input, 'option3', did not match any of the valid strings.

 iptcheckstrs

1-2117

Return Valid Parameter Name

Define a cell array of character vectors that contains valid parameter names. Check the validity of a
parameter name that differs only by case from a character vector in the cell array.

valid_params = {'option1','option2'};
iptcheckstrs('OPTION2',valid_params,'func_name','var_name',2)

param =

 'option2'

Input Arguments
str — Parameter name
character vector

Parameter name to check, specified as a character vector.

valid_strs — Valid parameter names
cell array of character vectors

Valid parameter names, specified as a cell array of character vectors.

func_name — Function name
character vector | string scalar

Function name to include in an error message when h is an invalid graphics object handle, specified
as a character vector or string scalar.
Data Types: char | string

var_name — Variable name
character vector | string scalar

Variable name to include in an error message when h is an invalid graphics object handle, specified
as a character vector or string scalar.
Data Types: char | string

arg_pos — Argument position
positive integer

Argument position to include in an error message when h is an invalid graphics object handle,
specified as a positive integer.

Output Arguments
param — Validated parameter name
character vector

Validated parameter name, returned as a character vector.

1 Functions

1-2118

See Also
validatestring | iptcheckhandle | validateattributes | iptcheckmap | narginchk |
iptnum2ordinal

Introduced before R2006a

 iptcheckstrs

1-2119

iptdemos
Index of Image Processing Toolbox examples

Syntax
iptdemos

Description
iptdemos displays the HTML page that lists all the Image Processing Toolbox examples. iptdemos
displays the page in the MATLAB Help browser.

See Also
ipticondir

Introduced before R2006a

1 Functions

1-2120

iptgetapi
Get Application Programmer Interface (API) for handle

Syntax
API = iptgetapi(h)

Description
API = iptgetapi(h) returns the API structure of an interactive modular tool with handle h.

Examples

Use imscrollpanel API to Adjust Image Magnification

Display an image in a figure window.

hFig = figure('Toolbar','none','Menubar','none');
hIm = imshow('tape.png');

Add a Scroll Panel tool to the figure.

hSP = imscrollpanel(hFig,hIm);

 iptgetapi

1-2121

Get the API associated with the Scroll Panel tool.

api = iptgetapi(hSP);

Use the API to magnify the image by 200%.

api.setMagnification(2)

1 Functions

1-2122

Input Arguments
h — Handle to interactive modular tool
handle

Handle to an interactive modular tool such as an imdistline, imline, immagbox, or
imscrollpanel.

Output Arguments
API — Handle API
struct | []

Handle API, returned as a struct whose fields are the function handles that belong to the interactive
modular tool h. If h is not a handle to an interactive modular tool, then API is returned as an empty
array, [].

See Also
imline | immagbox | imdistline | imscrollpanel

 iptgetapi

1-2123

Introduced before R2006a

1 Functions

1-2124

iptGetPointerBehavior
Retrieve pointer behavior from graphics object

Syntax
pointerBehavior = iptGetPointerBehavior(obj)

Description
pointerBehavior = iptGetPointerBehavior(obj) returns the pointer behavior structure
associated with the graphics object obj. A pointer behavior structure contains function handles that
interact with a figure's pointer manager (see iptPointerManager) to control what happens when
the figure's mouse pointer moves over and then exits the object.

Input Arguments
obj — Graphics object
figure | axes | uipanel | image

Graphics object, specified as a handle to a figure, axes, uipanel, or image graphics objects.

Output Arguments
pointerBehavior — Pointer behavior
struct | []

Pointer behavior, returned as a structure with three fields.

Field When Called
enterFcn Called when the mouse pointer moves over the object.
traverseFcn Called once when the mouse pointer moves over the object, and

called again each time the mouse moves within the object.
exitFcn Called when the mouse pointer leaves the object.

If obj does not contain a pointer behavior structure, then iptGetPointerBehavior returns [].

See Also
iptPointerManager | iptSetPointerBehavior

Introduced in R2006a

 iptGetPointerBehavior

1-2125

iptgetpref
Get values of Image Processing Toolbox preferences

Syntax
prefs = iptgetpref
value = iptgetpref(prefname)

Description
prefs = iptgetpref returns a structure containing all of the Image Processing Toolbox
preferences with their current values.

You can also use the Image Processing Toolbox Preferences dialog box to get the preferences. To
access the dialog box, click Preferences on the Home tab in the MATLAB desktop, or call the
iptprefs function.

value = iptgetpref(prefname) returns the value of the Image Processing Toolbox preference
specified by prefname.

Examples
Get Value of Single Image Processing Toolbox Preference

Get the value of the 'ImshowAxesVisible' preference.

value = iptgetpref('ImshowAxesVisible')

value =

off

Input Arguments
prefname — Name of an Image Processing Toolbox preference
character vector | string scalar

Name of an Image Processing Toolbox preference, specified as one of the following.

• 'ImshowBorder'
• 'ImshowAxesVisible'
• 'ImshowInitialMagnification'
• 'ImtoolStartWithOverview'
• 'ImtoolInitialMagnification'
• 'UseIPPL'
• 'VolumeViewerUseHardware'

Data Types: char | string

1 Functions

1-2126

Output Arguments
prefs — Value of all Image Processing Toolbox preferences
structure

Value of all Image Processing Toolbox preferences, returned as a structure. Each field in the structure
has the name of an Image Processing Toolbox preference.
Data Types: struct

value — Value of single Image Processing Toolbox preference
character vector | numeric scalar | logical scalar

Value of the Image Processing Toolbox preference prefname, returned as a character vector, numeric
scalar, or logical scalar.
Data Types: char | double | logical

Tips
• You can also use the Image Processing Toolbox Preferences dialog box to get the preferences. To

access the dialog box, click Preferences on the Home tab in the MATLAB desktop, or call the
iptprefs function.

See Also
imshow | iptprefs | iptsetpref

Introduced before R2006a

 iptgetpref

1-2127

ipticondir
Directories containing Image Processing Toolbox and MATLAB icons

Syntax
[DirI,DirM] = ipticondir

Description
[DirI,DirM] = ipticondir returns the names of the directories containing Image Processing
Toolbox icons and MATLAB icons.

Examples
List Icons in Image Processing Toolbox

Get the directories containing the Image Processing Toolbox and MATLAB icons.

[iptdir,MATLABdir] = ipticondir

List the contents of the directory containing Image Processing Toolbox icons.

dir(iptdir)

Output Arguments
DirI — Directory containing Image Processing Toolbox icons
character vector

Directory containing Image Processing Toolbox icons, returned as a character vector.
Data Types: char

DirM — Directory containing MATLAB icons
character vector

Directory containing MATLAB icons, returned as a character vector.
Data Types: char

See Also
Image Viewer

Introduced before R2006a

1 Functions

1-2128

iptnum2ordinal
Convert positive integer to ordinal character vector

Syntax
ordstr = iptnum2ordinal(number)

Description
ordstr = iptnum2ordinal(number) converts the positive integer number to the ordinal
character vector ordstr.

Examples
Convert Integers to Ordinal Numbers

Convert the number 4 to an ordinal number. The ordinal number is spelled out in entirety.

str = iptnum2ordinal(4)

str =

 'fourth'

Convert the number 23 to an ordinal number. The ordinal number consists of a numeral and the
ordinal suffix 'rd'.

str = iptnum2ordinal(23)

str =

 '23rd'

Input Arguments
number — Positive integer
numeric scalar

Positive integer, specified as a numeric scalar.

Output Arguments
number — Ordinal number
character vector

Ordinal number, returned as a character vector.

• Numbers less than or equal to twenty are spelled out.
• Numbers greater than twenty consist of a numeral and an ordinal suffix: 'st' (for "first"), 'nd'

(for "second"), 'rd' (for "third"), or 'th'.

 iptnum2ordinal

1-2129

Data Types: char

Introduced before R2006a

1 Functions

1-2130

iptPointerManager
Create pointer manager in figure

Syntax
iptPointerManager(hFigure)
iptPointerManager(hFigure,'disable')
iptPointerManager(hFigure,'enable')

Description
iptPointerManager(hFigure) creates a pointer manager in the specified figure, hFigure. If the
figure contains a pointer behavior structure on page 1-2131, then the pointer manager controls the
pointer behavior for graphics objects in the figure.

Use iptSetPointerBehavior to associate a pointer behavior structure with a particular object and
to define specific actions that occur when the mouse pointer moves over and then leaves the object.

iptPointerManager(hFigure,'disable') disables the figure's pointer manager.

iptPointerManager(hFigure,'enable') enables and updates the figure's pointer manager.

Examples
Create Pointer Manager in Figure with Line Object

Plot a line. Create a pointer manager in the figure. Then, associate a pointer behavior structure with
the line object in the figure that changes the mouse pointer into a fleur whenever the pointer is over
it.

 h = plot(1:10);
 iptPointerManager(gcf);
 enterFcn = @(hFigure,currentPoint)set(hFigure,'Pointer','fleur');
 iptSetPointerBehavior(h,enterFcn);

Input Arguments
hFigure — Figure
figure

Figure, specified as a figure object.

More About
Pointer Behavior Structure

A pointer behavior structure has three fields that specify the behavior of the pointer when the mouse
moves over and then exits an object in the figure.

 iptPointerManager

1-2131

To define the specific actions of the pointer, set the value of these fields to function handles. If you set
a field to [], then no action is taken. When the pointer manager calls the function handles, it passes
two arguments: the figure object and the current position of the pointer.

Field When Called
enterFcn Called when the mouse pointer moves over the object.
traverseFcn Called once when the mouse pointer moves over the object, and

called again each time the mouse moves within the object.
exitFcn Called when the mouse pointer leaves the object.

Tips
• If a figure already contains a pointer manager, then iptPointerManager(hFigure) does not

create a new pointer manager. The syntax has the same behavior as
iptPointerManager(hFigure,'enable').

• iptPointerManager considers not just the object the pointer is over, but all objects in the figure.
iptPointerManager searches the graphics objects hierarchy to find the first object that contains
a pointer behavior structure. The iptPointerManager then executes that object's pointer
behavior function. For more information, see “Graphics Object Hierarchy”.

For example, you could set the pointer to be a fleur and associate that pointer with the axes. Then,
when you slide the pointer into the figure window, it will initially be the default pointer, then
change to a fleur when you cross into the axes, and remain a fleur when you slide over the objects
parented to the axes.

• If you specify a pointer behavior using iptSetPointerBehavior and then change the figure
pointer without using iptSetPointerBehavior, then the iptPointerManager may not update
to reflect the new behavior. Some ways to change the figure pointer without using
iptSetPointerBehavior include using ROI objects such as Polygon, another graphics object,
another custom UI, or code that modifies the pointer from within a callback.

See Also
iptGetPointerBehavior | iptSetPointerBehavior

Topics
“Graphics Object Hierarchy”

Introduced in R2006a

1 Functions

1-2132

iptprefs
Display Image Processing Toolbox Preferences dialog box

Syntax
iptprefs

Description
iptprefs opens the Image Processing Toolbox Preferences dialog box, part of the MATLAB
Preferences dialog box. You can also open this dialog box by clicking Preferences on the Home tab,
in the Environment section.

The Image Processing Toolbox Preferences dialog box contains display preferences for the imshow function,
Image Viewer app, and Volume Viewer app, and provides an option for enabling hardware optimizations. For
a list of all supported preferences with information about how to set them at the command line, see
iptsetpref. The figure shows how the preferences relate to options in the Preferences dialog box.

Image Processing Toolbox Preferences Dialog Box

 iptprefs

1-2133

See Also
Image Viewer | Volume Viewer | imshow | iptgetpref | iptsetpref

Introduced in R2009a

1 Functions

1-2134

iptremovecallback
Delete function handle from callback list

Syntax
iptremovecallback(obj,callback,ID)

Description
iptremovecallback(obj,callback,ID) deletes the callback with identifier ID from the list of
callbacks for graphics object obj.

Examples
Add and Remove Callbacks from Figure

Add three callbacks to a figure and try them interactively. Whenever MATLAB detects mouse motion
over the figure, functions f1, f2, and f3 are called in that order.

h = figure;
f1 = @(varargin) disp('Callback 1');
f2 = @(varargin) disp('Callback 2');
f3 = @(varargin) disp('Callback 3');
id1 = iptaddcallback(h, 'WindowButtonMotionFcn', f1);
id2 = iptaddcallback(h, 'WindowButtonMotionFcn', f2);
id3 = iptaddcallback(h, 'WindowButtonMotionFcn', f3);

Remove the callback f2. Move the mouse over the figure again. Whenever MATLAB detects mouse
motion over the figure, only functions f1 and f3 are called.

iptremovecallback(h,'WindowButtonMotionFcn',id2);

Input Arguments
obj — Graphics object
figure | axes | uipanel | image

Graphics object, specified as a handle to a figure, axes, uipanel, or image graphics objects.

callback — Callback property
character vector

Callback property of the graphics object obj, specified as a character vector. For a list of callbacks
for graphics objects, see Figure Properties, Axes Properties, Panel Properties, and Image Properties.
Data Types: char

ID — Callback identifier
positive integer

 iptremovecallback

1-2135

Callback identifier for function fun, specified as a positive integer. This identifier is returned by
iptaddcallback when you add a function to the callback list.

See Also
iptaddcallback

Introduced before R2006a

1 Functions

1-2136

iptSetPointerBehavior
Store pointer behavior structure in graphics object

Syntax
iptSetPointerBehavior(obj,pointerBehavior)
iptSetPointerBehavior(obj,[])
iptSetPointerBehavior(obj,fun)

Description
iptSetPointerBehavior(obj,pointerBehavior) stores the specified pointer behavior
structure in the specified graphics object, obj. If obj is an array of objects, then
iptSetPointerBehavior stores the same structure in each object.

If the figure has a pointer manager installed, then the pointer manager calls these functions when the
mouse moves over and then exits an object in the figure. See iptPointerManager.

iptSetPointerBehavior(obj,[]) clears the pointer behavior from the graphics object or objects.

iptSetPointerBehavior(obj,fun) creates a pointer behavior structure, setting the enterFcn
field to the specified function fun, and setting the traverseFcn and exitFcn fields to []. This
syntax is provided as a convenience because, for many common uses, only the enterFcn field is
necessary.

Examples

Change Figure Properties When Pointer Is Over Graphics Objects

Show a figure with two rectangular patch graphics objects.

patchobj1 = patch([.25 .75 .75 .25 .25],...
 [.25 .25 .75 .75 .25], 'r');
patchobj2 = patch([.05 .15 .15 .05 .05],...
 [.05 .05 .95 .95 .05], 'b');
xlim([0 1])
ylim([0 1])

 iptSetPointerBehavior

1-2137

Specify the pointer behavior by creating a structure with three fields, enterFcn, exitFcn, and
traverseFcn.

Whenever the pointer crosses over a specified object, change the mouse pointer to a fleur and change
the title of the figure. Specify this behavior using the enterFcn field.

pb.enterFcn = @(fig,currentPoint) set(fig, ...
 'Name','Over Patch', ...
 'Pointer','fleur');

When the pointer moves off the object, restore the original pointer and the figure title. Specify this
behavior using the exitFcn field.

pb.exitFcn = @(fig,currentPoint) set(fig, ...
 'Name','', ...
 'Pointer','arrow');

Do not change the figure as the pointer traverses the object. Set the traverseFcn field as [].

pb.traverseFcn = [];

Create a pointer manager in the current figure. Then, associate the pointer behavior structure pb
with both patch objects. Move the mouse around the figure to see the pointer behavior change.

iptSetPointerBehavior([patchobj1,patchobj2],pb);
iptPointerManager(gcf)

1 Functions

1-2138

Change Appearance of Pointer While Traversing Figure

Show a figure with a rectangular patch graphics object. Increase the x- and y-limits of the image to
add some white space around the patch.

patchobj = patch([.25 .75 .75 .25 .25],...
 [.25 .25 .75 .75 .25], 'r');
xlim([0 1])
ylim([0 1])

Specify the pointer behavior by creating a structure named pb with three fields.

• The enterFcn and exitFcn fields are set to [] so the pointer takes no action when it moves
across the boundary of a graphics object.

• The traverseFcn field is set as a handle to the function overMe, which is defined as a helper
function at the end of this example. As the pointer moves over the graphics object, the helper
function changes the pointer symbol depending on the location of the pointer.

pb.enterFcn = [];
pb.exitFcn = [];
pb.traverseFcn = @overMe;

Create a pointer manager in the current figure. Then, associate the pointer behavior structure pb
with the Patch graphics object patchobj. Move the mouse around the figure to see changes in the
pointer behavior.

 iptSetPointerBehavior

1-2139

iptPointerManager(gcf);
iptSetPointerBehavior(patchobj,pb);

Helper Function

function overMe(hFigure,currentPoint)
%overMe Set figure pointer depending on pointer location.
% overMe(hFigure,currentPoint) sets the hFigure mouse pointer to be
% either 'topr', 'topl', 'botr', 'botl', depending on whether
% currentPoint is in the top right, top left, bottom right, or bottom
% left of the hFigure's current axes.

hAxes = get(hFigure,'CurrentAxes');

% Get the axes position in pixel units.
oldUnits = get(hAxes,'Units');
set(hAxes,'Units','pixels');
axesPosition = get(hAxes,'Position');
set(hAxes,'Units',oldUnits);

x_middle = axesPosition(1) + 0.5*axesPosition(3);
y_middle = axesPosition(2) + 0.5*axesPosition(4);

x = currentPoint(1,1);
y = currentPoint(1,2);

if (x > x_middle)
 if (y > y_middle)
 pointer = 'topr';
 else
 pointer = 'botr';
 end
else
 if (y > y_middle)
 pointer = 'topl';
 else
 pointer = 'botl';
 end
end

set(hFigure,'Pointer',pointer);
end

Input Arguments
obj — Graphics object
figure | axes | uipanel | image

Graphics object, specified as a handle to a figure, axes, uipanel, or image graphics objects. obj can
also be an array of graphics objects.

pointerBehavior — Pointer behavior
structure

Pointer behavior, specified as a structure with three fields.

1 Functions

1-2140

To define the specific actions of the pointer, set the value of these fields to function handles. If you set
a field to [], then no action is taken. When the pointer manager calls the function handles, it passes
two arguments: the figure object and the current position of the pointer.

Field When Called
enterFcn Called when the mouse pointer moves over the object.
traverseFcn Called once when the mouse pointer moves over the object, and

called again each time the mouse moves within the object.
exitFcn Called when the mouse pointer leaves the object.

fun — Pointer behavior when pointer moves over object
function handle

Pointer behavior when pointer moves over object, specified as a function handle.
Data Types: function_handle

Tips
• If you specify a pointer behavior using iptSetPointerBehavior and then change the figure

pointer without using iptSetPointerBehavior, then the iptPointerManager may not update
to reflect the new behavior. Some ways to change the figure pointer without using
iptSetPointerBehavior include using ROI objects such as Polygon, another graphics object,
another custom UI, or code that modifies the pointer from within a callback.

See Also
iptGetPointerBehavior | iptPointerManager

Introduced in R2006a

 iptSetPointerBehavior

1-2141

iptsetpref
Set Image Processing Toolbox preferences or display valid values

Syntax
iptsetpref(prefname)
iptsetpref(prefname,prefvalue)

Description
iptsetpref(prefname) displays the valid values for the Image Processing Toolbox preference
specified by prefname.

iptsetpref(prefname,prefvalue) sets the Image Processing Toolbox preference specified by
the prefname to the value specified by prefvalue. The setting persists until you change it.

You can also use the Image Processing Toolbox Preferences dialog box to set the preferences. To
access the dialog box, click Preferences on the Home tab in the MATLAB desktop, or call the
iptprefs function.

Examples

Set Image Processing Toolbox Preference

iptsetpref('ImshowBorder','tight')

Input Arguments
prefname — Name of Image Processing Toolbox preference
character vector

Name of an Image Processing Toolbox preference, specified as one of the following character vectors.

The following table details the available preferences and their syntaxes. Note that preference names
are case insensitive and you can abbreviate them. The default value appears enclosed in braces ({}).

1 Functions

1-2142

Image Processing Toolbox Preferences

Preference Name Description
'ImshowAxesVisible' Controls whether imshow displays images with the

axes box and tick labels. Possible values:

'on' — Include axes box and tick labels.

{'off'} — Do not include axes box and tick labels.
'ImshowBorder' Controls whether imshow includes a border around

the image in the figure window. Possible values:

{'loose'} — Include a border between the image
and the edges of the figure window, thus leaving room
for axes labels, titles, etc.

'tight' — Adjust the figure size so that the image
entirely fills the figure.

Note There still can be a border if the image is very
small, or if there are other objects besides the image
and its axes in the figure.

You can override this preference by specifying the
'Border' parameter when you call imshow.

'ImshowInitialMagnification' Controls the initial magnification of the image
displayed by imshow. Possible values:

Any numeric value — imshow interprets numeric
values as a percentage. The default value is 100. A
magnification of 100% means that there should be one
screen pixel for every image pixel.

'fit' — Scale the image so that it fits into the
window in its entirety.

You can override this preference by specifying the
'InitialMagnification' parameter when you call
imshow, or by calling the truesize function manually
after displaying the image.

 iptsetpref

1-2143

Preference Name Description
'ImtoolInitialMagnification' Controls the initial magnification of the image

displayed by the Image Viewer app. Possible values:

{'adaptive'} — Display the entire image. If the
image is too large to display on the screen at 100%
magnification, display the image at the largest
magnification that fits on the screen. This is the
default.

Any numeric value — Specify the magnification as a
percentage. A magnification of 100% means that there
should be one screen pixel for every image pixel.

'fit' — Scale the image so that it fits into the
window in its entirety.

You can override this preference by specifying the
'InitialMagnification' parameter when you
open the Image Viewer app using the imtool
function.

'ImtoolStartWithOverview' Controls whether the Overview tool opens
automatically when you open an image using the
Image Viewer app. Possible values:

true — Overview tool opens when you open an image.

{false} — Overview tool does not open when you
open an image. This is the default behavior.

'VolumeViewerUseHardware' Controls whether the Volume Viewer app uses
OpenGL shaders on the local graphics hardware to
optimize volume rendering. Possible values:

{true} — Enable hardware optimization.

false — Disable hardware optimization.

Note Setting this preference to false has the side
effect of removing certain functionality from the app
and will drastically slow down rendering performance.
This preference should only be set to false in technical
support scenarios to resolve problems with graphics
drivers.

1 Functions

1-2144

Preference Name Description
'UseIPPL' Controls whether some toolbox functions use hardware

optimization or not. Possible values:

{true} — Enable hardware optimization

false — Disable hardware optimization

Note Setting this preference value clears all loaded
MEX-files.

Data Types: char

prefvalue — Value you want to assign to an Image Processing Toolbox preference
character vector | numeric scalar | logical scalar

Value you want to assign to an Image Processing Toolbox preference, specified as one of the values
listed in the table in prefname.
Example: iptsetpref('ImshowBorder','tight')

See Also
Image Viewer | Volume Viewer | imshow | iptgetpref | iptprefs

Introduced before R2006a

 iptsetpref

1-2145

iptwindowalign
Align figure windows

Syntax
iptwindowalign(fixed_fig,fixed_edge, moving_fig,moving_edge)

Description
iptwindowalign(fixed_fig,fixed_edge, moving_fig,moving_edge) aligns the edge
moving_edge of figure moving_fig with the edge fixed_edge of figure fixed_fig.

You can align two figure windows along the top, bottom, left, or right edges. You can also center the
figures horizontally or vertically. The figure shows the possible alignments.

Examples
Align Two Figure Windows

To illustrate some possible figure window alignments, first create two figures: fig1 and fig2.
Initially, fig2 overlays fig1 on the screen.

fig1 = figure;
fig2 = figure;

Use iptwindowalign to move fig2 so its left edge is aligned with the right edge of fig1.

iptwindowalign(fig1,'right',fig2,'left');

1 Functions

1-2146

Now move fig2 so its top edge is aligned with the bottom edge of fig1.

iptwindowalign(fig1,'bottom',fig2,'top');

Now move fig2 so the two figures are centered horizontally.

iptwindowalign(fig1,'hcenter',fig2,'hcenter');

 iptwindowalign

1-2147

Input Arguments
fixed_fig — Fixed figure window
handle

Fixed figure window, specified as a handle to a figure.

fixed_edge — Alignment of fixed figure window
'left' | 'right' | 'hcenter' | 'top' | 'bottom' | 'vcenter'

Alignment of the fixed figure window, specified as 'left', 'right', 'hcenter', 'top', 'bottom',
or 'vcenter'. To center the figures horizontally, use 'hcenter'. To center the figures vertically,
use 'vcenter'.

moving_fig — fixed
numeric array

Moving figure window, specified as a handle to a figure.

moving_edge — Alignment of moving figure window
'left' | 'right' | 'hcenter' | 'top' | 'bottom' | 'vcenter'

Alignment of the moving figure window, specified as 'left', 'right', 'hcenter', 'top',
'bottom', or 'vcenter'. To center the figures vertically, use 'vcenter'.

Tips
• The two specified edges must be consistent in terms of their direction. For example, you cannot

specify 'left' for fixed_edge and 'bottom' for moving_edge.
• iptwindowalign constrains the position adjustment of moving_fig to keep the figure entirely

visible on the screen.

1 Functions

1-2148

• iptwindowalign has no effect if either figure window is docked.

See Also
Image Viewer

Introduced before R2006a

 iptwindowalign

1-2149

iradon
Inverse Radon transform

Syntax
I = iradon(R,theta)
I = iradon(R,theta,interp,filter,frequency_scaling,output_size)
[I,H] = iradon(___)

Description
I = iradon(R,theta) reconstructs the image I from projection data in R captured at projection
angles theta.

I = iradon(R,theta,interp,filter,frequency_scaling,output_size) specifies
parameters to use in the inverse Radon transform. You can specify any combination of the last four
arguments. iradon uses default values for arguments that you omit.

[I,H] = iradon(___) also returns the frequency response of the filter, H.

Examples

Compare Filtered and Unfiltered Backprojection

Create an image of the phantom. Display the image.

P = phantom(128);
imshow(P)
title('Original image')

Perform a Radon transform of the image.

R = radon(P,0:179);

Perform filtered backprojection.

1 Functions

1-2150

I1 = iradon(R,0:179);

Perform unfiltered backprojection.

I2 = iradon(R,0:179,'linear','none');

Display the reconstructed images.

figure
subplot(1,2,1)
imshow(I1,[])
title('Filtered Backprojection')
subplot(1,2,2)
imshow(I2,[])
title('Unfiltered Backprojection')

Examine Backprojection at a Single Angle

Create an image of the phantom.

P = phantom(128);

Perform a Radon transform of the image, then get the projection vector corresponding to a projection
at a 45 degree angle.

 iradon

1-2151

R = radon(P,0:179);
r45 = R(:,46);

Perform the inverse Radon transform of this single projection vector. The iradon syntax does not
allow you to do this directly, because if theta is a scalar it is treated as an increment. You can
accomplish the task by passing in two copies of the projection vector and then dividing the result by
2.

I = iradon([r45 r45], [45 45])/2;

Display the result.

imshow(I, [])
title('Backprojection from 45 degrees')

Input Arguments
R — Parallel beam projection data
numeric column vector | numeric matrix

Parallel beam projection data, specified as one of the following.

• If theta is a scalar, then specify R as a numeric column vector containing the Radon transform for
theta degrees.

• If theta is a vector, then specify R as a 2-D matrix in which each column is the Radon transform
for one of the angles in theta.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

theta — Projection angles
numeric vector | numeric scalar | []

Projection angles (in degrees), specified as one of the following.

Value Description
numeric vector Projection angles. There must be equal spacing between the angles.

1 Functions

1-2152

Value Description
numeric scalar Incremental angle between projections. Projections are taken at angles

m*theta, where m = 0,1,2,...,size(R,2)-1.
[] Automatically set the incremental angle between projections to 180/

size(R,2)

Data Types: double

interp — Type of interpolation
'linear' (default) | 'nearest' | 'spline' | 'pchip' | 'v5cubic'

Type of interpolation to use in the back projection, specified as one of these values, listed in order of
increasing accuracy and computational complexity.

Value Description
'nearest' Nearest-neighbor interpolation
'linear' Linear interpolation
'spline' Spline interpolation
'pchip' Shape-preserving piecewise cubic interpolation
'v5cubic' Cubic convolution used in MATLAB 5

Data Types: char | string

filter — Filter
'Ram-Lak' (default) | 'Shepp-Logan' | 'Cosine' | 'Hamming' | 'Hann' | 'None'

Filter to use for frequency domain filtering, specified as one of these values.

Value Description
'Ram-Lak' Cropped Ram-Lak or ramp filter. The frequency response of this filter is | f

|. Because this filter is sensitive to noise in the projections, one of the filters
listed below might be preferable. These filters multiply the Ram-Lak filter
by a window that de-emphasizes high frequencies.

'Shepp-Logan' Multiplies the Ram-Lak filter by a sinc function
'Cosine' Multiplies the Ram-Lak filter by a cosine function
'Hamming' Multiplies the Ram-Lak filter by a Hamming window
'Hann' Multiplies the Ram-Lak filter by a Hann window
'None' No filtering. iradon returns unfiltered backprojection data.

Data Types: char | string

frequency_scaling — Scale factor
1 (default) | positive number in the range (0, 1]

Scale factor for rescaling the frequency axis, specified as a positive number in the range (0, 1]. If
frequency_scaling is less than 1, then the filter is compressed to fit into the frequency range
[0,frequency_scaling], in normalized frequencies; all frequencies above frequency_scaling
are set to 0.

 iradon

1-2153

output_size — Number of rows and columns in the reconstructed image
positive integer

Number of rows and columns in the reconstructed image, specified as a positive integer. If
output_size is not specified, the size is determined from the length of the projections according to:

output_size = 2*floor(size(R,1)/(2*sqrt(2)))

If you specify output_size, then iradon reconstructs a smaller or larger portion of the image but
does not change the scaling of the data. If the projections were calculated with the radon function,
then the reconstructed image might not be the same size as the original image.

Output Arguments
I — Grayscale image
numeric matrix

Grayscale image, returned as a numeric matrix. If input projection data R is data type single, then I
is single; otherwise I is double.
Data Types: single | double

H — Frequency response
numeric vector

Frequency response of the filter, returned as a numeric vector.
Data Types: double

Algorithms
iradon assumes that the center of rotation is the center point of the projections, which is defined as
ceil(size(R,1)/2).

iradon uses the filtered back projection algorithm to perform the inverse Radon transform. The filter
is designed directly in the frequency domain and then multiplied by the FFT of the projections. The
projections are zero-padded to a power of 2 before filtering to prevent spatial domain aliasing and to
speed up the FFT.

References
[1] Kak, A. C., and M. Slaney, Principles of Computerized Tomographic Imaging, New York, NY, IEEE

Press, 1988.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The GPU implementation of this function supports only nearest-neighbor and linear interpolation
methods.

1 Functions

1-2154

For more information, see “Image Processing on a GPU”.

See Also
fan2para | fanbeam | ifanbeam | para2fan | phantom | radon

Introduced before R2006a

 iradon

1-2155

isflat
True for flat structuring element

Note isflat will be removed in a future release. See strel for the current list of methods.

Syntax
TF = isflat(SE)

Description
TF = isflat(SE) returns true (1) if the structuring element SE is flat; otherwise the function
returns false (0).

Input Arguments
SE — Structuring element
strel object | offsetstrel object | array of strel objects | array of offsetstrel objects

Structuring element, specified as a strel object, an array of strel objects, an offsetstrel object,
or an array of offsetstrel objects.

Output Arguments
TF — Structuring element is flat
logical scalar | logical array

Structuring element SE is flat, returned as a logical scalar or logical array of the same size as SE. If
the structuring element consists of offsetstrel objects, then TF is false regardless of the
neighborhood.
Data Types: logical

See Also
Topics
“Structuring Elements”

Introduced before R2006a

1 Functions

1-2156

isicc
Check for valid ICC profile data

Syntax
tf = isicc(profile)

Description
tf = isicc(profile) checks if the input profile is a valid International Color Consortium (ICC)
profile data. The function returns a logical value that indicates if the input is a valid ICC profile.

Examples

Check if ICC Profile Data is Valid

Read in an ICC profile data into the workspace.

profile = iccread('sRGB.icm');

Check if profile is a valid ICC profile data. The function returns logical 1 (true).

tf = isicc(profile)

tf = logical
 1

Create a new ICC profile data without the header and copyright fields. Use rmfield to remove the
'Header' and 'Copyright' fields from the ICC profile data structure.

newProfile = rmfield(profile,{'Header','Copyright'});

Inspect the new profile data to verify that the 'Header' and 'Copyright' fields are removed.

newProfile

newProfile = struct with fields:
 TagTable: {17x3 cell}
 Description: [1x1 struct]
 MediaWhitePoint: [0.9505 1 1.0891]
 MediaBlackPoint: [0 0 0]
 DeviceMfgDesc: [1x1 struct]
 DeviceModelDesc: [1x1 struct]
 ViewingCondDesc: [1x1 struct]
 ViewingConditions: [1x1 struct]
 Luminance: [76.0365 80 87.1246]
 Measurement: [1x1 struct]
 Technology: 'Cathode Ray Tube Display'
 MatTRC: [1x1 struct]
 PrivateTags: {}

 isicc

1-2157

 Filename: 'sRGB.icm'

Check if newProfile is a valid ICC profile data. The function returns logical 0 (false).

tf = isicc(newProfile)

tf = logical
 0

Input Arguments
profile — ICC profile data
structure array

ICC profile data, specified as a structure array, represents an ICC profile in the data format returned
by iccread. The ICC profile data must contain all the tags and fields required by the ICC profile
specification.
Data Types: struct

Output Arguments
tf — Valid ICC profile
1 (true) | 0 (false)

Valid ICC profile, returned as logical 1 (true) when the input is a valid ICC profile data, and logical 0
(false) otherwise.

Algorithms
isicc checks if profile has a complete set of the tags required for an ICC profile. profile must
contain a Header field, which in turn must contain a Version field and a DeviceClass field. These
fields along with others, are used to determine the set of required tags according to the ICC profile
specification. The required tags for ICC profile specifications related to Version 2 (ICC.1:2001-04) and
Version 4 (ICC.1:2001-12) are available at https://www.color.org.

See Also
applycform | iccread | iccwrite | makecform

Introduced before R2006a

1 Functions

1-2158

https://www.color.org/index.xalter

isnitf
Check if file is National Imagery Transmission Format (NITF) file

Syntax
[tf,NITFversion] = isnitf(filename)

Description
[tf,NITFversion] = isnitf(filename) returns true if the file specified by filename is a
National Imagery Transmission Format (NITF) file. isnitf also returns the NITF version of valid
NITF files in NITFversion.

Input Arguments
filename — Name of file
character vector | string scalar

Name of file, specified as a character vector or string scalar.
Data Types: char | string

Output Arguments
tf — File is NITF file
true | false

File is an NITF file, returned as true or false.

NITFversion — NITF version
character vector | 'UNK'

NITF version of the file, returned as a character vector such as '2.1'. If the file is not an NITF file,
then NITFversion is returned as 'UNK'.

See Also
nitfinfo | nitfread

Introduced in R2007b

 isnitf

1-2159

isRigid
Determine if transformation is rigid transformation

Syntax
TF = isRigid(tform)

Description
TF = isRigid(tform) determines whether or not the affine transformation specified by tform is a
rigid transformation.

Examples

Check If 2-D Transformation Is Rigid

Create an affine2d object that defines a pure translation.

A = [1 0 0
 0 1 0
 40 40 1];

tform = affine2d(A)

tform =

 affine2d with properties:

 T: [3x3 double]
 Dimensionality: 2

Test if it is a rigid transformation.

tf = isRigid(tform)

tf =

 1

Check If 3-D Transformation Is Rigid

Create an affine3d object that defines a different scale factor in each dimension.

Sx = 1.2;
Sy = 1.6;
Sz = 2.4;
tform = affine3d([Sx 0 0 0; 0 Sy 0 0; 0 0 Sz 0; 0 0 0 1])

tform =

 affine3d with properties:

1 Functions

1-2160

 T: [4x4 double]
 Dimensionality: 3

Check if the transformation is rigid.

TF = isRigid(tform)

TF =

 0

Input Arguments
tform — Geometric transformation
affine2d or affine3d geometric transformation object

Geometric transformation, specified as an affine2d or affine3d geometric transformation object.

Output Arguments
TF — Flag indicating rigid transformation
scalar

Flag indicating rigid transformation, returned as a logical scalar. TF is True when tform is a rigid
transformation.
Data Types: logical

More About
Rigid Transformation

A rigid transformation includes only rotation and translation. It does not include reflection, and it
does not modify the size or shape of an input object.

See Also
isSimilarity | isTranslation

Introduced in R2013a

 isRigid

1-2161

isrset
Check if file is valid R-Set file

Syntax
[tf,supported] = isrset(filename)

Description
[tf,supported] = isrset(filename) checks if the specified file is a valid reduced resolution
dataset (R-Set) file.

Logical scalar tf indicates if the file is an R-Set file. Logical scalar supported confirms if input is an
R-Set file compatible with the current version of the Image Processing Toolbox. If the function returns
true for both tf and supported, the specified file is a valid R-Set file.

Examples

Check If File Is Valid R-Set File

Load a file into the workspace.

filename = 'MandiRset';

Check if the file is a valid R-Set file. Confirm if both outputs are true.

[tf,supported] = isrset(filename)

tf = logical
 1

supported = logical
 1

Input Arguments
filename — Name of the file
character vector | string scalar

Name of the file, specified as a character vector or string scalar.
Data Types: char | string

Output Arguments
tf — R-Set file type validation
logical scalar

1 Functions

1-2162

R-Set file type validation, returned as a logical scalar.

• 1(true) — The input file is an R-Set file.
• 0(false) — The input file is not an R-Set file.

Data Types: logical

supported — Version support validation
logical scalar

Version support validation, returned as a logical scalar.

• 1(true) — The specified file is an R-Set file created using a version of the rsetwrite function
that is compatible with the version of the Image Processing Toolbox used to read the R-Set file.

• 0(false) — The specified file is either:

• Not an R-Set file
• An R-Set file created using a version of the rsetwrite function that is not compatible with the

version of the Image Processing Toolbox used to read the R-Set file.

Data Types: logical

See Also
rsetwrite | openrset

Introduced in R2009a

 isrset

1-2163

isSimilarity
Determine if transformation is similarity transformation

Syntax
TF = isSimilarity(tform)

Description
TF = isSimilarity(tform) determines whether or not the affine transformation specified by
tform is a similarity transformation.

Examples

Check if 2-D transformation is a similarity transformation

Create an affine2d object that defines a pure translation.

A = [1 0 0
 0 1 0
 40 40 1];

tform = affine2d(A)

tform =

 affine2d with properties:

 T: [3x3 double]
 Dimensionality: 2

Check if transformation is a similarity transformation.

tf = isSimilarity(tform)

tf =

 1

Check if 3-D transformation is a similarity transformation

Create an affine3d object that defines a different scale factor in each dimension.

Sx = 1.2;
Sy = 1.6;
Sz = 2.4;
tform = affine3d([Sx 0 0 0; 0 Sy 0 0; 0 0 Sz 0; 0 0 0 1])

tform =

 affine3d with properties:

1 Functions

1-2164

 T: [4x4 double]
 Dimensionality: 3

Check if the transformation is a similarity transformation.

TF = isSimilarity(tform)

TF =

 0

Input Arguments
tform — Geometric transformation
affine2d or affine3d geometric transformation object

Geometric transformation, specified as an affine2d or affine3d geometric transformation object.

Output Arguments
TF — Flag indicating similarity transformation
scalar

Flag indicating similarity transformation, returned as a logical scalar. TF is True when tform is a
similarity transformation.
Data Types: logical

More About
Similarity Transformation

A similarity transformation includes only rotation, translation, isotropic scaling, and reflection. A
similarity transformation does not modify the shape of an input object. Straight lines remain straight,
and parallel lines remain parallel.

Note isSimilarity returns True if the transformation includes reflection. Some toolbox functions,
such as imregister, support only non-reflective similarity. Other functions, such as fitgeotrans,
support reflection.

See Also
isRigid | isTranslation

Introduced in R2013a

 isSimilarity

1-2165

isTranslation
Determine if transformation is pure translation

Syntax
TF = isTranslation(tform)

Description
TF = isTranslation(tform) determines whether or not the rigid or affine transformation
specified by tform is a pure translation.

Examples

Check If 2-D Transformation Is a Pure Translation

Create an affine2d object that defines a pure translation.

A = [1 0 0
 0 1 0
 40 40 1];

tform = affine2d(A)

tform =

 affine2d with properties:

 T: [3x3 double]
 Dimensionality: 2

Check if the transformation is a pure translation.

tf = isTranslation(tform)

tf =

 1

Check If 3-D Transformation Is a Pure Translation

Create an affine3d object that defines a different scale factor in each dimension.

Sx = 1.2;
Sy = 1.6;
Sz = 2.4;
tform = affine3d([Sx 0 0 0; 0 Sy 0 0; 0 0 Sz 0; 0 0 0 1]);

tf =

 affine3d with properties:

1 Functions

1-2166

 T: [4x4 double]
 Dimensionality: 3

Check if the transformation is a pure translation. Since tform scales the object,

tf = isTranslation(tform)

tf =

 0

As expected, the transformation is not a pure translation since scaling changes the size and shape of
an input volume.

Input Arguments
tform — Geometric transformation
affine2d object | affine3d object | rigid2d object

Geometric transformation, specified as an affine2d, affine3d, or rigid2d geometric
transformation object.

Output Arguments
TF — Flag indicating pure translation transformation
scalar

Flag indicating pure translation transformation, returned as a logical scalar. TF is True when tform
represents a pure translation.
Data Types: logical

More About
Translation Transformation

A translation transformation shifts an image without modifying the image size, shape, or orientation.
A 2-D translation is represented by a matrix T of the form:

 [1 0 0;
 0 1 0;
 e f 1];

A 3-D translation is represented by a matrix of the form:

 [1 0 0 0;
 0 1 0 0;
 0 0 1 0;
 j k l 1];

See Also
isRigid | isSimilarity

 isTranslation

1-2167

Introduced in R2013a

1 Functions

1-2168

jaccard
Jaccard similarity coefficient for image segmentation

Syntax
similarity = jaccard(BW1,BW2)
similarity = jaccard(L1,L2)
similarity = jaccard(C1,C2)

Description
similarity = jaccard(BW1,BW2) computes the intersection of binary images BW1 and BW2
divided by the union of BW1 and BW2, also known as the Jaccard index. The images can be binary
images, label images, or categorical images.

similarity = jaccard(L1,L2) computes the Jaccard index for each label in label images L1 and
L2.

similarity = jaccard(C1,C2) computes the Jaccard index for each category in categorical
images C1 and C2.

Examples

Compute Jaccard Similarity Coefficient for Binary Segmentation

Read an image containing an object to segment. Convert the image to grayscale, and display the
result.

A = imread('hands1.jpg');
I = im2gray(A);
figure
imshow(I)
title('Original Image')

 jaccard

1-2169

Use the active contours (snakes) method to segment the hand.

mask = false(size(I));
mask(25:end-25,25:end-25) = true;
BW = activecontour(I, mask, 300);

Read in the ground truth against which to compare the segmentation.

BW_groundTruth = imread('hands1-mask.png');

Compute the Jaccard index of this segmentation.

similarity = jaccard(BW, BW_groundTruth);

Display the masks on top of each other. Colors indicate differences in the masks.

figure
imshowpair(BW, BW_groundTruth)
title(['Jaccard Index = ' num2str(similarity)])

1 Functions

1-2170

Compute Jaccard Similarity Coefficient for Multi-Region Segmentation

This example shows how to segment an image into multiple regions. The example then computes the
Jaccard similarity coefficient for each region.

Read in an image with several regions to segment.

RGB = imread('yellowlily.jpg');

Create scribbles for three regions that distinguish their typical color characteristics. The first region
classifies the yellow flower. The second region classifies the green stem and leaves. The last region
classifies the brown dirt in two separate patches of the image. Regions are specified by a 4-element
vector, whose elements indicate the x- and y-coordinate of the upper left corner of the ROI, the width
of the ROI, and the height of the ROI.

region1 = [350 700 425 120]; % [x y w h] format
BW1 = false(size(RGB,1),size(RGB,2));
BW1(region1(2):region1(2)+region1(4),region1(1):region1(1)+region1(3)) = true;

region2 = [800 1124 120 230];
BW2 = false(size(RGB,1),size(RGB,2));
BW2(region2(2):region2(2)+region2(4),region2(1):region2(1)+region2(3)) = true;

region3 = [20 1320 480 200; 1010 290 180 240];
BW3 = false(size(RGB,1),size(RGB,2));
BW3(region3(1,2):region3(1,2)+region3(1,4),region3(1,1):region3(1,1)+region3(1,3)) = true;
BW3(region3(2,2):region3(2,2)+region3(2,4),region3(2,1):region3(2,1)+region3(2,3)) = true;

Display the seed regions on top of the image.

 jaccard

1-2171

figure
imshow(RGB)
hold on
visboundaries(BW1,'Color','r');
visboundaries(BW2,'Color','g');
visboundaries(BW3,'Color','b');
title('Seed Regions')

1 Functions

1-2172

Segment the image into three regions using geodesic distance-based color segmentation.

 jaccard

1-2173

L = imseggeodesic(RGB,BW1,BW2,BW3,'AdaptiveChannelWeighting',true);

Load a ground truth segmentation of the image.

L_groundTruth = double(imread('yellowlily-segmented.png'));

Visually compare the segmentation results with the ground truth.

figure
imshowpair(label2rgb(L),label2rgb(L_groundTruth),'montage')
title('Comparison of Segmentation Results (Left) and Ground Truth (Right)')

Compute the Jaccard similarity index (IoU) for each segmented region.

similarity = jaccard(L, L_groundTruth)

similarity = 3×1

 0.8861
 0.5683
 0.8414

The Jaccard similarity index is noticeably smaller for the second region. This result is consistent with
the visual comparison of the segmentation results, which erroneously classifies the dirt in the lower
right corner of the image as leaves.

1 Functions

1-2174

Input Arguments
BW1 — First binary image
logical array

First binary image, specified as a logical array of any dimension.
Data Types: logical

BW2 — Second binary image
logical array

Second binary image, specified as a logical array of the same size as BW1.
Data Types: logical

L1 — First label image
array of nonnegative integers

First label image, specified as an array of nonnegative integers, of any dimension.
Data Types: double

L2 — Second label image
array of nonnegative integers

Second label image, specified as an array of nonnegative integers, of the same size as L1.
Data Types: double

C1 — First categorical image
categorical array

First categorical image, specified as a categorical array of any dimension.
Data Types: category

C2 — Second categorical image
categorical array

Second categorical image, specified as a categorical array of the same size as C1.
Data Types: category

Output Arguments
similarity — Jaccard similarity coefficient
numeric scalar | numeric vector

Jaccard similarity coefficient, returned as a numeric scalar or numeric vector with values in the range
[0, 1]. A similarity of 1 means that the segmentations in the two images are a perfect match. If the
input arrays are:

• binary images, similarity is a scalar.
• label images, similarity is a vector, where the first coefficient is the Jaccard index for label 1,

the second coefficient is the Jaccard index for label 2, and so on.

 jaccard

1-2175

• categorical images, similarity is a vector, where the first coefficient is the Jaccard index for the
first category, the second coefficient is the Jaccard index for the second category, and so on.

Data Types: double

More About
Jaccard Similarity Coefficient

The Jaccard similarity coefficient of two sets A and B (also known as intersection over union or IoU) is
expressed as:

jaccard(A,B) = | intersection(A,B) | / | union(A,B) |
where |A| represents the cardinal of set A. The Jaccard index can also be expressed in terms of true
positives (TP), false positives (FP) and false negatives (FN) as:

jaccard(A,B) = TP / (TP + FP + FN)

The Jaccard index is related to the Dice index according to:
jaccard(A,B) = dice(A,B) / (2 - dice(A,B))

See Also
dice | bfscore

Introduced in R2017b

1 Functions

1-2176

jitterColorHSV
Randomly alter color of pixels

Syntax
J = jitterColorHSV(I,Name,Value)

Description
J = jitterColorHSV(I,Name,Value) adjusts the color of RGB image I with a randomly selected
value of hue, saturation, brightness, and contrast from the HSV color space on page 1-2181. Specify
the range of each type of adjustment using name-value pair arguments.

Examples

Randomly Adjust Image Color

Read and display an image.

I = imread('kobi.png');
imshow(I)

 jitterColorHSV

1-2177

Randomly adjust the hue, saturation, brightness, and contrast of the image. To demonstrate the
randomness of the adjustment, repeat the operation on the original image three times.

J1 = jitterColorHSV(I,'Contrast',0.4,'Hue',0.1,'Saturation',0.2,'Brightness',0.3);
J2 = jitterColorHSV(I,'Contrast',0.4,'Hue',0.1,'Saturation',0.2,'Brightness',0.3);
J3 = jitterColorHSV(I,'Contrast',0.4,'Hue',0.1,'Saturation',0.2,'Brightness',0.3);

Display the adjusted images in a montage.

montage({J1,J2,J3},'Size',[1 3])

1 Functions

1-2178

Input Arguments
I — RGB image
m-by-n-by-3 numeric array

RGB image with original pixel values, specified as an m-by-n-by-3 numeric array.
Data Types: single | double | uint8 | uint16

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: J = jitterColorHSV(I,'Hue',0.1)

Hue — Hue offset
0 (default) | numeric scalar | 2-element numeric vector

Hue offset, specified as the comma-separated pair consisting of 'Hue' and one of the following
values. jitterColorHSV converts input RGB image I to the HSV color space before adding a
random value to the hue channel of the image. jitterColorHSV circularly wraps the modified hue
to the range [0, 1] before converting the jittered HSV image back to the RGB color space.

Value Meaning
Numeric scalar in the range [0, 1] Add random amount of hue from the uniform

distribution [-Hue Hue]
2-element numeric vector with elements in the
range [-1, 1]

Add a random amount of hue from a continuous
uniform distribution within the specified interval.
The second element must be larger than or equal
to the first element.

Data Types: single | double

Saturation — Saturation offset
0 (default) | numeric scalar | 2-element numeric vector

 jitterColorHSV

1-2179

Saturation offset, specified as the comma-separated pair consisting of 'Saturation' and one of the
following values. jitterColorHSV converts input RGB image I to the HSV color space before
adding a random value to the saturation channel of the image. jitterColorHSV clips the modified
saturation to the range [0, 1] before converting the jittered HSV image back to the RGB color space.

Value Meaning
Numeric scalar in the range [0, 1] Add random amount of saturation from the

uniform distribution [-Saturation
Saturation]

2-element numeric vector with elements in the
range [-1, 1]

Add a random amount of saturation from a
continuous uniform distribution within the
specified interval. The second element must be
larger than or equal to the first element.

Data Types: single | double

Brightness — Brightness offset
0 (default) | numeric scalar | 2-element numeric vector

Brightness offset, specified as the comma-separated pair consisting of 'Brightness' and one of the
following values. jitterColorHSV converts input RGB image I to the HSV color space before
adding a random value to the brightness (value) channel of the image. jitterColorHSV clips the
modified brightness to the range [0, 1] before converting the jittered HSV image back to the RGB
color space.

Value Meaning
Numeric scalar in the range [0, 1] Add random amount of brightness from the

uniform distribution [-Brightness
Brightness]

2-element numeric vector with elements in the
range [-1, 1]

Add a random amount of brightness from a
continuous uniform distribution within the
specified interval. The second element must be
larger than or equal to the first element.

Data Types: single | double

Contrast — Contrast scale factor
0 (default) | positive number | 2-element numeric vector

Contrast scale factor, specified as the comma-separated pair consisting of 'Contrast' and one of
the following values. jitterColorHSV converts input RGB image I to the HSV color space before
scaling the brightness (value) channel of the image by a random factor. jitterColorHSV clips the
modified brightness to the range [0, 1] before converting the jittered HSV image back to the RGB
color space.

Value Meaning
Positive number Scale the brightness by a random factor from the

uniform distribution [1-Contrast
1+Contrast]

1 Functions

1-2180

Value Meaning
2-element numeric vector of positive numbers Scale the brightness by a random factor from the

uniform distribution within the specified interval.
The second element must be larger than or equal
to the first element.

Data Types: single | double

Output Arguments
J — Jittered RGB image
numeric array

Jittered RGB image, returned as a numeric array of the same size and data type as the input image, I.
Data Types: single | double | uint8 | uint16

More About
HSV Color Space

The HSV color space defines the hue, saturation, and value (brightness) for each pixel, respectively,
as described in the table.

Attribute Description
Hue Value from 0 to 1 that corresponds to the color’s position on a color wheel.

As hue increases from 0 to 1, the color transitions from red to orange,
yellow, green, cyan, blue, magenta, and finally back to red.

Saturation Amount of hue or departure from neutral. 0 indicates a grayscale image
and 1 indicates maximum saturation.

Value Maximum value among the red, green, and blue components of a specific
color.

See Also
rgb2hsv | hsv2rgb | randomAffine2d | randomWindow2d | centerCropWindow2d

Topics
“Convert Between RGB and HSV Color Spaces”

Introduced in R2019b

 jitterColorHSV

1-2181

lab2double
Convert L*a*b* color values to double

Syntax
labD = lab2double(lab)

Description
labD = lab2double(lab) converts L*a*b* color values to type double.

Examples

Convert L*a*b* Color Values to double

This example shows how to convert uint8 L*a*b* values to double.

Create a uint8 vector specifying the color white in L*a*b* colorspace.

w = uint8([255 128 128]);

Convert the L*a*b* color value to double.

lab2double(w)

ans = 1×3

 100 0 0

Input Arguments
lab — Color values to convert
m-by-3 numeric matrix | m-by-n-by-3 numeric array

Color values to convert, specified as a m-by-3 numeric matrix of color values (one color per row), or
an m-by-n-by-3 numeric array.
Data Types: uint8 | uint16

Output Arguments
labD — Converted color values
numeric array

Converted color values, returned as a numeric array of same size as the input.
Data Types: double

1 Functions

1-2182

Algorithms
The function converts the L*a*b* color values to type double. The Image Processing Toolbox
software follows the convention that double-precision L*a*b* arrays contain 1976 CIE L*a*b* values.
The L*a*b* arrays that are uint8 or uint16 follow the convention in the ICC profile specification
(ICC.1:2001-4, www.color.org) for representing L*a*b* values as unsigned 8-bit or 16-bit integers.
The ICC encoding convention is illustrated by these tables.

Value (L*) uint8 Value uint16 Value
0.0 0 0
100.0 255 65280
100.0 + (25500/65280) None 65535

Value (a* or b*) uint8 Value uint16 Value
-128.0 0 0
0.0 128 32768
127.0 255 65280
127.0 + (255/256) None 65535

See Also
applycform | lab2uint8 | lab2uint16 | makecform | whitepoint | xyz2double | xyz2uint16

Introduced in R2006a

 lab2double

1-2183

lab2rgb
Convert CIE 1976 L*a*b* to RGB

Syntax
rgb = lab2rgb(lab)
rgb = lab2rgb(lab,Name,Value)

Description
rgb = lab2rgb(lab) converts CIE 1976 L*a*b* values to sRGB values.

rgb = lab2rgb(lab,Name,Value) specifies additional conversion options, such as the color space
of the RGB image, using one or more name-value pair arguments.

Examples

Convert L*a*b* Color to RGB

Convert a color value in the L*a*b* color space to standard RGB color space.

lab2rgb([70 5 10])

ans = 1×3

 0.7359 0.6566 0.6010

Convert L*a*b* Color to Adobe RGB

Convert a color value in L*a*b* color space to the Adobe RGB (1998) color space.

lab2rgb([70 5 10],'ColorSpace','adobe-rgb-1998')

ans = 1×3

 0.7086 0.6507 0.5978

Convert L*a*b* Color to RGB Specifying Whitepoint

Convert an L*a*b* color value to standard RGB specifying the D50 whitepoint.

lab2rgb([70 5 10],'WhitePoint','d50')

ans = 1×3

1 Functions

1-2184

 0.7282 0.6573 0.6007

Convert L*a*b* Color to 8-bit-encoded RGB Color

Convert an L*a*b* color value to an 8-bit encoded RGB color value.

lab2rgb([70 5 10],'OutputType','uint8')

ans = 1x3 uint8 row vector

 188 167 153

Input Arguments
lab — L*a*b* color values
numeric array

L*a*b* color values to convert, specified as a numeric array in one of these formats.

• c-by-3 colormap. Each row specifies one L*a*b* color value.
• m-by-n-by-3 image
• m-by-n-by-3-by-p stack of images

Attribute Description
L* Luminance or brightness of the image. Values are in the range [0, 100],

where 0 specifies black and 100 specifies white. As L* increases, colors
become brighter.

a* Amount of red or green tones in the image. A large positive a* value
corresponds to red/magenta. A large negative a* value corresponds to
green. Although there is no single range for a*, values commonly fall in the
range [-100, 100] or [-128, 127).

b* Amount of yellow or blue tones in the image. A large positive b* value
corresponds to yellow. A large negative b* value corresponds to blue.
Although there is no single range for b*, values commonly fall in the range
[-100, 100] or [-128, 127).

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: lab2rgb([70 5 10],'WhitePoint','d50')

ColorSpace — Color space of the output RGB values
'srgb' (default) | 'adobe-rgb-1998' | 'linear-rgb'

 lab2rgb

1-2185

Color space of the output RGB values, specified as the comma-separated pair consisting of
'ColorSpace' and 'srgb', 'adobe-rgb-1998', or 'linear-rgb'. If you specify 'linear-
rgb', then lab2rgb returns linearized sRGB values.
Data Types: char

WhitePoint — Reference white point
'd65' (default) | 'a' | 'c' | 'e' | 'd50' | 'd55' | 'icc' | 1-by-3 vector

Reference white point, specified as the comma-separated pair consisting of 'WhitePoint' and a 1-
by-3 vector or one of the CIE standard illuminants listed in the table.

Value White Point
'a' CIE standard illuminant A, [1.0985, 1.0000, 0.3558]. Simulates typical,

domestic, tungsten-filament lighting with correlated color temperature of 2856 K.
'c' CIE standard illuminant C, [0.9807, 1.0000, 1.1822]. Simulates average or

north sky daylight with correlated color temperature of 6774 K. Deprecated by
CIE.

'e' Equal-energy radiator, [1.000, 1.000, 1.000]. Useful as a theoretical
reference.

'd50' CIE standard illuminant D50, [0.9642, 1.0000, 0.8251]. Simulates warm
daylight at sunrise or sunset with correlated color temperature of 5003 K. Also
known as horizon light.

'd55' CIE standard illuminant D55, [0.9568, 1.0000, 0.9214]. Simulates mid-
morning or mid-afternoon daylight with correlated color temperature of 5500 K.

'd65' CIE standard illuminant D65, [0.9504, 1.0000, 1.0888]. Simulates noon
daylight with correlated color temperature of 6504 K.

'icc' Profile Connection Space (PCS) illuminant used in ICC profiles. Approximation of
[0.9642, 1.000, 0.8249] using fixed-point, signed, 32-bit numbers with 16
fractional bits. Actual value: [31595,32768, 27030]/32768.

Data Types: single | double | char

OutputType — Data type of returned RGB values
'double' | 'single' | 'uint8' | 'uint16'

Data type of returned RGB values, specified as one of the following values: 'double', 'single',
'uint8', or 'uint16'. If you do not specify OutputType, the output type is the same type as the
input.
Data Types: char

Output Arguments
rgb — Converted RGB color values
numeric array

Converted RGB color values, returned as a numeric array of the same shape as the input. The output
data type is the same as the input data type unless you specify the OutputType parameter.

1 Functions

1-2186

Tips
• If you specify the output RGB color space as 'linear-rgb', then the output values are linearized

sRGB values. If instead you want the output color space to be linearized Adobe RGB (1998), then
you can use the rgb2lin function.

For example, to convert CIE 1976 L*a*b* image LAB to linearized Adobe RGB (1998) color space,
perform the conversion in two steps:

RGBadobe = lab2rgb(LAB,'ColorSpace','adobe-rgb-1998');
RGBlinadobe = rgb2lin(RGBadobe,'ColorSpace','adobe-rgb-1998');

• lab2rgb can return color values that are out of the RGB gamut. A converted RGB color is out of
gamut when any of its component values is less than 0 or greater than 1. For more information,
see “Determine If L*a*b* Value Is in RGB Gamut”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• lab2rgb supports the generation of C code (requires MATLAB Coder). For more information, see
“Code Generation for Image Processing”.

• When generating code, all character vector input arguments must be compile-time constants.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• When generating code, all character vector input arguments must be compile-time constants.

See Also
rgb2lab | xyz2rgb | lab2xyz

Topics
“Understanding Color Spaces and Color Space Conversion”
“Device-Independent Color Spaces”
“Determine If L*a*b* Value Is in RGB Gamut”

Introduced in R2014b

 lab2rgb

1-2187

lab2uint16
Convert L*a*b color values to uint16

Syntax
lab16 = lab2uint16(lab)

Description
lab16 = lab2uint16(lab) converts L*a*b* color values to type uint16.

Examples

Convert L*a*b* Color Values to uint16

This example shows how to convert L*a*b* color values from double to uint16.

Create a double vector specifying the color white in L*a*b* colorspace.

w = [100 0 0];

Convert the L*a*b* color value to uint16.

lab2uint16(w)

ans = 1x3 uint16 row vector

 65280 32768 32768

Input Arguments
lab — Color values to convert
m-by-3 numeric matrix | m-by-n-by-3 numeric array

Color values to convert, specified as a m-by-3 numeric matrix of color values (one color per row), or
an m-by-n-by-3 numeric array.
Data Types: double | uint8

Output Arguments
lab16 — Converted color values
numeric array

Converted color values, returned as a numeric array of same size as the input.
Data Types: uint16

1 Functions

1-2188

Algorithms
The function converts the L*a*b* color values to type uint16. The Image Processing Toolbox
software follows the convention that double-precision L*a*b* arrays contain 1976 CIE L*a*b* values.
The L*a*b* arrays that are uint8 or uint16 follow the convention in the ICC profile specification
(ICC.1:2001-4, www.color.org) for representing L*a*b* values as unsigned 8-bit or 16-bit integers.
The ICC encoding convention is illustrated by these tables.

Value (L*) uint8 Value uint16 Value
0.0 0 0
100.0 255 65280
100.0 + (25500/65280) None 65535

Value (a* or b*) uint8 Value uint16 Value
-128.0 0 0
0.0 128 32768
127.0 255 65280
127.0 + (255/256) None 65535

See Also
applycform | lab2double | lab2uint8 | makecform | whitepoint | xyz2double | xyz2uint16

Introduced before R2006a

 lab2uint16

1-2189

lab2uint8
Convert L*a*b color values to uint8

Syntax
lab8 = lab2uint8(lab)

Description
lab8 = lab2uint8(lab) converts L*a*b* color values to type uint8.

Examples

Convert L*a*b* Color Values to uint8

This example shows how to convert L*a*b* color values from double to uint8.

Create a double vector specifying the color white in L*a*b* colorspace.

w = [100 0 0];

Convert the L*a*b* color value to uint8.

lab2uint8(w)

ans = 1x3 uint8 row vector

 255 128 128

Input Arguments
lab — Color values to convert
m-by-3 numeric matrix | m-by-n-by-3 numeric array

Color values to convert, specified as a m-by-3 numeric matrix of color values (one color per row), or
an m-by-n-by-3 numeric array.
Data Types: double | uint16

Output Arguments
lab8 — Converted color values
numeric array

Converted color values, returned as a numeric array of same size as the input.
Data Types: uint8

1 Functions

1-2190

Algorithms
The function converts the L*a*b* color values to type uint8. The Image Processing Toolbox software
follows the convention that double-precision L*a*b* arrays contain 1976 CIE L*a*b* values. The
L*a*b* arrays that are uint8 or uint16 follow the convention in the ICC profile specification
(ICC.1:2001-4, www.color.org) for representing L*a*b* values as unsigned 8-bit or 16-bit integers.
The ICC encoding convention is illustrated by these tables.

Value (L*) uint8 Value uint16 Value
0.0 0 0
100.0 255 65280
100.0 + (25500/65280) None 65535

Value (a* or b*) uint8 Value uint16 Value
-128.0 0 0
0.0 128 32768
127.0 255 65280
127.0 + (255/256) None 65535

See Also
applycform | lab2double | lab2uint16 | makecform | whitepoint | xyz2double | xyz2uint16

Introduced before R2006a

 lab2uint8

1-2191

lab2xyz
Convert CIE 1976 L*a*b* to CIE 1931 XYZ

Syntax
xyz = lab2xyz(lab)
xyz = lab2xyz(lab,'WhitePoint',whitePoint)

Description
xyz = lab2xyz(lab) converts CIE 1976 L*a*b* values to CIE 1931 XYZ values (2° observer).

xyz = lab2xyz(lab,'WhitePoint',whitePoint) specifies the reference white point of the
illuminant.

Examples

Convert L*a*b* Color to XYZ

Convert an L*a*b* color value to XYZ using the default reference white point, D65.

lab2xyz([50 10 -5])

ans = 1×3

 0.1942 0.1842 0.2282

Convert L*a*b* Color to XYZ Specifying Whitepoint

Convert an L*a*b* color value to XYZ specifying the D50 whitepoint.

lab2xyz([50 10 -5],'WhitePoint','d50')

ans = 1×3

 0.1970 0.1842 0.1729

Input Arguments
lab — L*a*b* color values
numeric array

Color values to convert, specified as a numeric array in one of these formats.

1 Functions

1-2192

• c-by-3 colormap. Each row specifies one L*a*b* color value.
• m-by-n-by-3 image
• m-by-n-by-3-by-p stack of images

Attribute Description
L* Luminance or brightness of the image. Values are in the range [0, 100],

where 0 specifies black and 100 specifies white. As L* increases, colors
become brighter.

a* Amount of red or green tones in the image. A large positive a* value
corresponds to red/magenta. A large negative a* value corresponds to
green. Although there is no single range for a*, values commonly fall in the
range [-100, 100] or [-128, 127).

b* Amount of yellow or blue tones in the image. A large positive b* value
corresponds to yellow. A large negative b* value corresponds to blue.
Although there is no single range for b*, values commonly fall in the range
[-100, 100] or [-128, 127).

Data Types: single | double

whitePoint — Reference white point
'd65' (default) | 'a' | 'c' | 'e' | 'd50' | 'd55' | 'icc' | 1-by-3 vector

Reference white point, specified as a 1-by-3 vector or one of the CIE standard illuminants listed in the
table.

Value White Point
'a' CIE standard illuminant A, [1.0985, 1.0000, 0.3558]. Simulates typical,

domestic, tungsten-filament lighting with correlated color temperature of 2856 K.
'c' CIE standard illuminant C, [0.9807, 1.0000, 1.1822]. Simulates average or

north sky daylight with correlated color temperature of 6774 K. Deprecated by
CIE.

'e' Equal-energy radiator, [1.000, 1.000, 1.000]. Useful as a theoretical
reference.

'd50' CIE standard illuminant D50, [0.9642, 1.0000, 0.8251]. Simulates warm
daylight at sunrise or sunset with correlated color temperature of 5003 K. Also
known as horizon light.

'd55' CIE standard illuminant D55, [0.9568, 1.0000, 0.9214]. Simulates mid-
morning or mid-afternoon daylight with correlated color temperature of 5500 K.

'd65' CIE standard illuminant D65, [0.9504, 1.0000, 1.0888]. Simulates noon
daylight with correlated color temperature of 6504 K.

'icc' Profile Connection Space (PCS) illuminant used in ICC profiles. Approximation of
[0.9642, 1.000, 0.8249] using fixed-point, signed, 32-bit numbers with 16
fractional bits. Actual value: [31595,32768, 27030]/32768.

Data Types: single | double | char

 lab2xyz

1-2193

Output Arguments
xyz — Converted XYZ color values
numeric array

Converted XYZ color values, returned as a numeric array of the same shape and type as the input.

See Also
rgb2xyz | xyz2lab | lab2rgb

Introduced in R2014b

1 Functions

1-2194

label2idx
Convert label matrix to cell array of linear indices

Syntax
pixelIndexList = label2idx(L)

Description
pixelIndexList = label2idx(L) converts the regions described by the label matrix L into linear
indices pixelIndexList.

Examples

Calculate Pixel Index List for Small Label Matrix

Create a small sample matrix containing three regions.

BW = logical([1 1 1 0 0 0 0 0
 1 1 1 0 1 1 0 0
 1 1 1 0 1 1 0 0
 1 1 1 0 0 0 0 0
 1 1 1 0 0 0 1 0
 1 1 1 0 0 0 1 0
 1 1 1 0 0 1 1 0
 1 1 1 0 0 0 0 0]);

Create a label matrix from this sample image.

L = bwlabel(BW)

L = 8×8

 1 1 1 0 0 0 0 0
 1 1 1 0 2 2 0 0
 1 1 1 0 2 2 0 0
 1 1 1 0 0 0 0 0
 1 1 1 0 0 0 3 0
 1 1 1 0 0 0 3 0
 1 1 1 0 0 3 3 0
 1 1 1 0 0 0 0 0

Get a linear index list of all the pixels in each region. The function returns a cell array with an
element for each region it finds in the label matrix.

pixelIndexList = label2idx(L)

pixelIndexList=1×3 cell array
 {24x1 double} {4x1 double} {4x1 double}

 label2idx

1-2195

Examine one of the pixel index lists returned. For example, look at the second cell in the returned cell
array. It contains the linear indices for all the pixels in the region labeled "2". The upper left corner of
the region is pixel BW(2,5), which is the 34th pixel in linear indexing.

pixelIndexList{2}

ans = 4×1

 34
 35
 42
 43

Input Arguments
L — Label matrix
numeric array

Label matrix, specified as a numeric array of any dimension.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Output Arguments
pixelIndexList — Linear indices of pixels in regions
1-by-n cell array

Linear indices of pixels in regions, returned as a 1-by-n cell array. Each element of the output,
pixelIndexList{n}, is a vector that contains all the linear indices in L where L is equal to n.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

label2idx supports the generation of C code (requires MATLAB Coder). For more information, see
“Code Generation for Image Processing”.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
labelmatrix | superpixels | label2rgb

Introduced in R2016a

1 Functions

1-2196

label2rgb
Convert label matrix into RGB image

Syntax
RGB = label2rgb(L)
RGB = label2rgb(L,cmap)
RGB = label2rgb(L,cmap,zerocolor)
RGB = label2rgb(L,cmap,zerocolor,order)
RGB = label2rgb(___ ,'OutputFormat',outputFormat)

Description
RGB = label2rgb(L) converts a label image, L into an RGB color image for the purpose of
visualizing the labeled regions. The label2rgb function determines the color to assign to each
object based on the number of objects in the label matrix. The label2rgb function picks colors from
the entire range of the colormap.

RGB = label2rgb(L,cmap) specifies the colormap cmap to be used in the RGB image.

RGB = label2rgb(L,cmap,zerocolor) specifies the RGB color of the background elements
(pixels labeled 0).

RGB = label2rgb(L,cmap,zerocolor,order) controls how label2rgb assigns colors to
regions in the label matrix.

RGB = label2rgb(___ ,'OutputFormat',outputFormat) enables you to specify that the
function return a list of unique colors instead of an RGB image.

Examples

Use Color to Highlight Elements in Label Matrix

Read an image and display it.

I = imread('rice.png');
imshow(I)

 label2rgb

1-2197

Create a label matrix from the image.

BW = imbinarize(I);
CC = bwconncomp(BW);
L = labelmatrix(CC);

Convert the label matrix into RGB image, using default settings.

RGB = label2rgb(L);
figure
imshow(RGB)

1 Functions

1-2198

Convert the label matrix into an RGB image, specifying optional parameters. This example uses the
'spring' colormap, sets background pixels to the color cyan, and randomizes how colors are
assigned to the labels.

RGB2 = label2rgb(L,'spring','c','shuffle');
figure
imshow(RGB2)

 label2rgb

1-2199

Input Arguments
L — Label image
matrix of nonnegative integers | categorical matrix

Label image of contiguous regions, specified as one of the following.

• A matrix of nonnegative integers. Pixels labeled 0 are the background. Pixels labeled 1 make up
one object; pixels labeled 2 make up a second object; and so on. You can get a numeric label
image from labeling functions such as watershed or labelmatrix.

• A categorical matrix.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | categorical

cmap — Colormap
'jet' (default) | c-by-3 matrix | colormap function | handle

Colormap to be used in the generated color image RGB, specified as one of the following.

Value Description
c-by-3 matrix of data type double Colormap matrix specifying c colors, each as an RGB

triple. c must be greater than or equal to the number
of labels, numlabels, in label matrix L. You can
compute the number of labels as numlabels =
max(L(:)).

If c is greater than numlabels, then label2rgb
creates the RGB image using only the first numlabels
rows in the matrix.

colormap function Name of a MATLAB colormap function, such as 'jet'
or 'gray'. See colormap for a list of supported
colormaps.

colormap handle Handle of a colormap function, such as @jet or
@gray.

zerocolor — Fill color
[1 1 1] (white) (default) | 3-element vector | 'b' | 'c' | 'g'

Fill color, specified as a 3-element vector representing an RGB triple or one of the following color
abbreviations for numeric label images. label2rgb applies the fill color to the label 0 for numeric
label images or the label <undefined> for categorical label images.

Value Color
'b' Blue
'c' Cyan
'g' Green
'k' Black

1 Functions

1-2200

Value Color
'm' Magenta
'r' Red
'w' White
'y' Yellow

order — Color order
'noshuffle' (default) | 'shuffle'

Color order, specified as 'noshuffle' or 'shuffle'. The 'noshuffle' order arranges colormap
colors to label matrix regions in numerical order. The 'shuffle' order assigns colormap colors
pseudorandomly.

outputFormat — Output format
'image' (default) | 'triplets'

Output format of the RGB data returned in RGB, specified as one of the following.

• 'image' — Return an RGB image. If the size of the input label matrix L is M-by-N, then the size of
the output RGB image is M-by-N-by-3.

• 'triplets' — Return a list of RGB colors. The size of the output is a C-by-3 matrix containing an
RGB triplet for each of the C labels in the input label matrix.

Output Arguments
RGB — RGB data
numeric matrix

RGB data, returned as an numeric matrix.
Data Types: uint8

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• label2rgb supports the generation of C code (requires MATLAB Coder). For more information,
see “Code Generation for Image Processing”.

• Input label images of data type categorical are not supported.
• When generating code, for best results when using the standard syntax RGB =

label2rgb(L,cmap,zerocolor,order):

• Submit at least two input arguments: the label matrix, L, and the colormap matrix, cmap.
• cmap must be a c-by-3 matrix of data type double. You cannot specify the name of a MATLAB

colormap function or a function handle of a colormap function.
• If you set the background color zerocolor to the same color as one of the regions, then

label2rgb will not issue a warning.

 label2rgb

1-2201

• If you supply a value for order, then it must be 'noshuffle'.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
bwconncomp | bwlabel | bwlabeln | colormap | ismember | labelmatrix | watershed

Introduced before R2006a

1 Functions

1-2202

labelmatrix
Create label matrix from bwconncomp structure

Syntax
L = labelmatrix(CC)

Description
A label matrix labels objects or connected components in a binary image with unique integer values.
Use a label matrix to visualize distinct objects or connected components.

L = labelmatrix(CC) creates a label matrix, L, from the connected components structure CC
returned by bwconncomp.

Examples

Find and Display Connected Components

Read a binary image into the workspace. Display the image.

BW = imread('text.png');
imshow(BW)

Calculate the connected components using bwconncomp.

 labelmatrix

1-2203

CC = bwconncomp(BW);

Create a label matrix using labelmatrix. Each label has a unique numeric index.

L = labelmatrix(CC);

Find the maximum value of the label matrix. This value indicates the number of detected objects, in
this case, 88.

numObjects = max(L(:))

numObjects = uint8
 88

Display the label matrix as an image. Because the maximum label value is much smaller than the
maximum value of the uint8 data type, increase the display range of the image to make the labels
more distinct.

imshow(L,[])

It is challenging to see the objects labeled with small label values. Further, it is challenging to
differentiate objects with comparable label values. To make it easier to differentiate the different
connected components, display the label matrix as an RGB image using label2rgb and shuffle the
color order of the labels.

imshow(label2rgb(L,'jet','k','shuffle'));

1 Functions

1-2204

Input Arguments
CC — Connected components
struct

Connected components, specified as a structure with four fields.

Field Description
Connectivity Connectivity of the connected components (objects)
ImageSize Size of the binary image
NumObjects Number of connected components (objects) in the binary image.
PixelIdxList 1-by-NumObjects cell array where the k-th element in the cell array is a

vector containing the linear indices of the pixels in the k-th object.

Output Arguments
L — Label matrix
matrix of nonnegative integers

Label matrix of contiguous regions, returned as matrix of nonnegative integers. The pixels labeled 0
are the background. The pixels labeled 1 make up one object; the pixels labeled 2 make up a second
object; and so on.

The size of L is determined by the value of the CC.ImageSize field. The class of L depends upon the
number of contiguous regions. labelmatrix uses the smallest class that can represent the number
of objects, CC.NumObjects, as shown in the table.

 labelmatrix

1-2205

Class Range
'uint8' CC.NumObjects ≤ 255
'uint16' 256 ≤ CC.NumObjects ≤ 65535
'uint32' 65536 ≤ CC.NumObjects ≤ 232− 1
'double' CC.NumObjects ≥ 232

Data Types: double | uint8 | uint16 | uint32

See Also
bwconncomp | label2rgb | regionprops

Topics
“Correct Nonuniform Illumination and Analyze Foreground Objects”
“Label and Measure Connected Components in a Binary Image”

Introduced in R2009a

1 Functions

1-2206

labeloverlay
Overlay label matrix regions on 2-D image

Syntax
B = labeloverlay(A,L)
B = labeloverlay(A,BW)
B = labeloverlay(A,C)
B = labeloverlay(___ ,Name,Value)

Description
B = labeloverlay(A,L) fuses the input image, A, with a different color for each nonzero label in
label matrix L. The labeloverlay function does not fuse background pixels with a color.

B = labeloverlay(A,BW) fuses the input image with a color where mask BW is true. The
labeloverlay function does not fuse background pixels (labeled false) with a color.

B = labeloverlay(A,C) fuses the input image with a different color for each label in categorical
matrix C. The labeloverlay function does not fuse pixels of the <undefined> category with a
color.

B = labeloverlay(___ ,Name,Value) computes the fused overlay image, B, using Name,Value
pairs to control aspects of the computation.

Examples

Visualize Segmentation over Color Image

Read an image, then segment it using the superpixels function.

A = imread('kobi.png');
[L,N] = superpixels(A,20);

Fuse the segmentation results with the original image. Display the fused image.

B = labeloverlay(A,L);
imshow(B)

 labeloverlay

1-2207

Visualize Binary Mask over Grayscale Image

Read a grayscale image and display it.

A = imread('coins.png');
imshow(A)

1 Functions

1-2208

Create a mask using binary thresholding.

t = graythresh(A);
BW = imbinarize(A,t);
imshow(BW)

Fuse the mask with the original image. Display the fused image.

 labeloverlay

1-2209

B = labeloverlay(A,BW);
imshow(B)

Visualize Categorical Labels over Image

Read a grayscale image.

A = imread('coins.png');

Create a mask using binary thresholding.

BW = imbinarize(A);

Create categorical labels based on the image contents.

stringArray = repmat("table",size(BW));
stringArray(BW) = "coin";
categoricalSegmentation = categorical(stringArray);

Fuse the categorical labels with the original image. Display the fused image.

B = labeloverlay(A,categoricalSegmentation);
imshow(B)

1 Functions

1-2210

Fuse the original image with only one label from the categorical segmentation. Change the colormap,
increase the opacity of the label, and display the result.

figure
C = labeloverlay(A,categoricalSegmentation,'IncludedLabels',"coin", ...
 'Colormap','autumn','Transparency',0.25);
imshow(C)

 labeloverlay

1-2211

Input Arguments
A — Input image
2-D grayscale image | 2-D color image

Input image, specified as a 2-D grayscale or color image.
Data Types: single | double | int8 | int16 | uint8 | uint16

L — Labels
matrix of nonnegative integers

Labels, specified as a matrix of nonnegative integers.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

BW — Mask
logical matrix

Mask, specified as a logical matrix.
Data Types: logical

C — Category labels
categorical matrix

Category labels, specified as a categorical matrix.
Data Types: categorical

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Colormap','hot' displays labels in colors from the 'hot' colormap.

Colormap — Colormap
'jet' (default) | l-by-3 colormap | string | character vector

Colormap, specified as the comma-separated pair consisting of 'Colormap' and one of these values:

• An l-by-3 colormap. RGB triplets in each row of the colormap must be normalized to the range [0,
1]. l is the number of labels in label matrix L, binary mask BW, or categorical matrix C.

• A string or character vector corresponding to one of the valid inputs to the colormap function.
labeloverlay permutes the specified colormap so that adjacent labels are more distinct.

Example: [0.2, 0.1, 0.5; 0.1, 0.5, 0.8]
Example: 'hot'
Data Types: single | double | char | string

IncludedLabels — Labels to display
integer | vector of integers | string | vector of strings

1 Functions

1-2212

Labels to display in the fused image, specified as the comma-separated pair consisting of
'IncludedLabels' and one of the following:

• An integer, or vector of integers, in the range [0, max(L(:))]. By default, labeloverlay
displays all nonzero labels.

• A string, or vector of strings, corresponding to labels in categorical matrix C. By default,
labeloverlay displays all defined categorical labels.

Any label not included in the vector is considered the background. For example, in the vector
[1,3,4], the value 2 would be considered the background, if it existed as a label.
Example: [1,3,4]
Example: ["flower","stem"]
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | string

Transparency — Transparency
0.5 (default) | number in the range [0, 1]

Transparency of displayed labels, specified as the comma-separated pair consisting of
'Transparency' and a number in the range [0, 1].

• A value of 0 makes the colored labels completely opaque.
• A value of 1 makes the colored labels completely transparent.

Data Types: single | double

Output Arguments
B — Fused image
numeric matrix

Fused image, returned as a numeric matrix of the same size as A.
Data Types: uint8

See Also
superpixels | imoverlay | imshowpair

Topics
“Getting Started with Semantic Segmentation Using Deep Learning” (Computer Vision Toolbox)

Introduced in R2017b

 labeloverlay

1-2213

labelvolshow
Display labeled volume

Description
A labelvolshow object displays labeled volumetric data and enables you to modify the appearance
of the display. You can embed the intensity volume with the labeled volume and display both volumes
at once.

Creation

Syntax
labelvolshow(L)
labelvolshow(L,V)
labelvolshow(___ ,Name,Value)
h = labelvolshow(___)

Description

labelvolshow(L) displays 3-D labeled volume L in a figure.

labelvolshow(L,V) displays 3-D labeled volume L and 3-D intensity volume V in a figure. L and V
must be the same size.

labelvolshow(___ ,Name,Value) uses one or more name-value pairs to set “Properties” on page
1-2215 that control visualization of the volumes. Enclose each property name in quotes.
Example: labelvolshow(L,V,'BackgroundColor','w','VolumeThreshold',0.2) displays 3-
D labeled volume L and grayscale volume V in a figure with a white background color. All pixels of V
that have a value less than 0.2 are fully transparent.

h = labelvolshow(___) returns a labelvolshow object, h, with properties that can be used to
control visualization of the volumes. Use input arguments from any of the previous syntaxes.

Input Arguments

L — Labeled volume
3-D numeric array

Labeled volume, specified as a 3-D numeric array.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | categorical

V — Intensity volume
3-D numeric array

Intensity volume, specified as a 3-D numeric array of the same size as the labeled volume, L.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

1 Functions

1-2214

Properties
BackgroundColor — Background color
[0.3 0.75 0.93] (default) | RGB triplet | color name | short color name

Background color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'BackgroundColor','r'
Example: 'BackgroundColor','green'
Example: 'BackgroundColor',[0 0.4470 0.7410]

CameraPosition — Location of camera
[4 4 2.5] (default) | 3-element vector

Location of the camera, or the viewpoint, specified as a 3-element vector of the form [x y z]. This
vector defines the axes coordinates of the camera location, which is the point from which you view
the axes. The camera is oriented along the view axis, which is a straight line that connects the
camera position and the camera target. Changing the CameraPosition property changes the point

 labelvolshow

1-2215

from which you view the volume. For an illustration, see “Camera Graphics Terminology”.
Interactively rotating the volume modifies the value of this property.

CameraUpVector — Vector defining upwards direction
[0 0 1] (default) | 3-element vector

Vector defining upwards direction, specified as a 3-element vector of the form [x y z]. By default,
labelvolshow defines the z-axis as the up direction ([0 0 1]). For an illustration, see “Camera
Graphics Terminology”. Interactively rotating the volume modifies the value of this property.

CameraTarget — Point used as camera target
[0 0 0] (default) | 3-element vector

Point used as the camera target, specified as a 3-element vector of the form [x y z]. The camera is
oriented along the view axis, which is a straight line that connects the camera position and the
camera target. For an illustration, see “Camera Graphics Terminology”.

CameraViewAngle — Field of view
15 (default) | numeric scalar

Field of view, specified as a scalar angle in the range [0, 180). The greater the angle, the larger the
field of view. Also, with bigger angles, objects appear smaller in the scene. For an illustration, see
“Camera Graphics Terminology”.

InteractionsEnabled — Volume is interactive
true (default) | false

Volume is interactive, specified as true (1) or false (0). When true (default), you can zoom in and
out on the labeled volume using the mouse scroll wheel, and rotate the volume by clicking and
dragging. Rotation and zoom are performed about the value specified by CameraTarget. When this
value is false, you cannot interact with the volume.

LabelColor — Label colors
numLabels-by-3 numeric matrix

Label colors, specified as a numLabels-by-3 numeric matrix with values in the range [0, 1]. numLabels
is the number of labels in the labeled volume. By default, labelvolshow specifies the label colors
using a random colormap.

LabelOpacity — Label opacity
numLabels-by-1 numeric vector

Label opacity, specified as a numLabels-by-1 numeric vector with values in the range [0, 1].
numLabels is the number of labels in the labeled volume. By default, labels are opaque (1) for all
labels except label 0. LabelOpacity is not supported when embedding volumes together.

LabelsPresent — Label values
numLabels-by-1 numeric vector

This property is read-only.

Label values, specified as a numLabels-by-1 numeric vector. numLabels is the number of labels in the
labeled volume.

1 Functions

1-2216

LabelVisibility — Label visibility
numLabels-by-1 logical vector

Label visibility, specified as a numLabels-by-1 logical vector. numLabels is the number of labels in the
labeled volume. By default, all labels are visible (true) for all labels except label 0.

Parent — Parent of labelvolshow object
gcf (default) | uipanel | figure

Parent of the labelvolshow object, specified as a handle to a uipanel or figure. If you do not
specify a parent, the parent of the labelvolshow object is gcf.

ScaleFactors — Scale factors used to rescale volume
[1 1 1] (default) | 1-by-3 vector of positive numbers

Scale factors used to rescale volumes, specified as a 1-by-3 vector of positive numbers. The values in
the array correspond to the scale factor applied in the x-, y-, and z-direction.

ShowIntensityVolume — Display intensity volume
true | false

Display intensity volume, specified as true (1) or false (0). When the value is true, the function
displays both the labeled volume and the intensity volume. When the value is false, the function
only displays the labeled volume. The default is true when the labelvolshow object contains both a
labeled volume and an intensity volume. The default is false when the object contains only a labeled
volume.

VolumeOpacity — Volume opacity
0.5 (default) | number in the range [0, 1]

Volume opacity, specified as a number in the range [0, 1]. This value defines the opacity of volume
data when both labeled and intensity volumes are embedded together. All of the embedded volume
intensities above the VolumeThreshold value have the opacity of VolumeOpacity.

VolumeThreshold — Threshold of volume intensities
0.4 (default) | number in the range [0, 1]

Threshold of volume intensities, specified as a normalized number in the range [0, 1]. All of the
volume intensities below this threshold value have an opacity of 0.

Object Functions
setVolume Set new labelvolshow object

Examples

View Labeled Volume With and Without Intensity Volume

Read a grayscale image of a brain MRI. The image is stored in the workspace variable vol.

load(fullfile(toolboxdir('images'),'imdata','BrainMRILabeled', ...
 'images','vol_001.mat'));

Read the corresponding labeled image into the workspace variable label.

 labelvolshow

1-2217

load(fullfile(toolboxdir('images'),'imdata','BrainMRILabeled', ...
 'labels','label_001.mat'));

Customize the display panel.

ViewPnl = uipanel(figure,'Title','Labeled Volume');

View the labeled volume and the intensity volume.

h = labelvolshow(label,vol,'Parent',ViewPnl);

Hide the intensity volume. Only the labels appear.

h.ShowIntensityVolume = false;

1 Functions

1-2218

View Labeled Volume and Change Color and Opacity

Read a grayscale volume of a brain MRI. The image is stored in the workspace variable vol.

load(fullfile(toolboxdir('images'),'imdata','BrainMRILabeled', ...
 'images','vol_001.mat'));

Read the corresponding labeled volume into the workspace variable label. The volume has three
labels, excluding the background label 0.

load(fullfile(toolboxdir('images'),'imdata','BrainMRILabeled', ...
 'labels','label_001.mat'));

Customize the display panel.

ViewPnl = uipanel(figure,'Title','Labeled Volume');

Display the labeled volume.

h = labelvolshow(label,vol,'Parent',ViewPnl);

 labelvolshow

1-2219

Make the first non-background label (the second label) fully transparent. Change the color of the
second non-background label to red and the third non-background label to yellow.

h.LabelOpacity(2) = 0;
h.LabelColor(3,:) = [1 0 0];
h.LabelColor(4,:) = [1 1 0];

1 Functions

1-2220

See Also
volshow | Volume Viewer | slice | modefilt

Introduced in R2019a

 labelvolshow

1-2221

setVolume
Set new labelvolshow object

Syntax
setVolume(hLabelVol,L)
setVolume(hLabelVol,L,V)

Description
setVolume(hLabelVol,L) updates the labelvolshow object hLabelVol with a new labeled
volume L. setVolume preserves the current viewpoint and other visualization settings remain
unchanged, but the label properties are set to their respective defaults.

setVolume(hLabelVol,L,V) updates the labelvolshow object hLabelVol with a new labeled
volume L and a new intensity volume V.

Examples

Change Labeled Volume in labelvolshow Object

Load an intensity volume and an associated labeled volume into the workspace.

load(fullfile(toolboxdir('images'),'imdata','BrainMRILabeled','images','vol_001.mat'));
load(fullfile(toolboxdir('images'),'imdata','BrainMRILabeled','labels','label_001.mat'));

Customize the display panel.

ViewPnl = uipanel(figure,'Title','Labeled Volume');

Display the labeled volume along with an intensity volume.

hVol = labelvolshow(label,vol,'Parent',ViewPnl);

1 Functions

1-2222

Change the background color to magenta and decrease the opacity of the intensity volume.

hVol.VolumeOpacity = 0.2;
hVol.BackgroundColor = 'magenta';

 setVolume

1-2223

Load another intensity volume and an associated labeled volume into the workspace.

im = load(fullfile(toolboxdir('images'),'imdata','BrainMRILabeled','images','vol_002.mat'));
data = load(fullfile(toolboxdir('images'),'imdata','BrainMRILabeled','labels','label_002.mat'));

newIntensityVol = im.vol;
newLabelVol = data.label;

Change the volume in the labelvolshow object hVol. Note how labelvolshow preserves the
rendering settings of the background color and intensity volume transparency.

setVolume(hVol,newLabelVol,newIntensityVol)

1 Functions

1-2224

Input Arguments
hLabelVol — Labeled volume object
labelvolshow object

Labeled volume object, specified as a labelvolshow object.

L — Labeled volumetric data
3-D labeled volume

Labeled volumetric data, specified as a 3-D labeled volume.

V — Volumetric data
3-D grayscale volume

Volumetric data, specified as a 3-D grayscale volume.

See Also
labelvolshow

Introduced in R2019a

 setVolume

1-2225

depthToSpace2dLayer
Depth to space layer

Description
A 2-D depth to space layer permutes data from the depth dimension into blocks of 2-D spatial data.

Given an input feature map of size [H W C*height*width] and blocks of size [height width], the
output feature map size is [H*height W*width C].

This object requires Deep Learning Toolbox.

Creation

Syntax
layer = depthToSpace2dLayer(blockSize)
layer = depthToSpace2dLayer(blockSize,Name,Value)

Description

layer = depthToSpace2dLayer(blockSize) creates a 2-D depth to space layer, specifying the
block size to rearrange the input activation. The blockSize input sets the BlockSize property.

layer = depthToSpace2dLayer(blockSize,Name,Value) uses name-value pairs to set the
Mode and Name properties. You can specify multiple name-value pairs. Enclose each property name in
quotes.
Example: depthToSpace2dLayer(blockSize,"Mode","CRD") creates a 2-D depth to space layer
that orders data by column, row, and then depth.

Properties
BlockSize — Block size to reorder input activation
vector of two positive integers

Block size to reorder the input activation, specified as a vector of two positive integers [h w], where
h is the height and w is the width. When creating the layer, you can specify BlockSize as a scalar to
use the same value for both dimensions.
Example: [2 1] specifies blocks of height 2 and width 1.

Mode — Order of rearranged dimensions
"drc" (default) | "crd"

Order of rearranged dimensions from the input data, specified as "dcr" or "crd". When you specify
"dcr", the layer orders data by depth, column, and then row. When you specify "crd", the layer
orders data by column, row, and then depth.

1 Functions

1-2226

Data Types: char | string

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with Name set to ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create 2-D Depth to Space Layer

Specify the block size for reordering input activations.

blockSize = [2 2];

Create a 2-D depth to space layer that orders data by column, row, and then depth.

 depthToSpace2dLayer

1-2227

layer = depthToSpace2dLayer(blockSize,"Mode","crd","Name","depthToSpaceLayer")

layer =
 DepthToSpace2DLayer with properties:

 Name: 'depthToSpaceLayer'
 BlockSize: [2 2]
 Mode: "crd"

 Learnable Parameters
 No properties.

 State Parameters
 No properties.

 Show all properties

Extended Capabilities
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

To generate CUDA or C++ code by using GPU Coder™, you must first construct and train a deep
neural network. Once the network is trained and evaluated, you can configure the code generator to
generate code and deploy the convolutional neural network on platforms that use NVIDIA or ARM®

GPU processors. For more information, see “Deep Learning with GPU Coder” (GPU Coder).

For this layer, you can generate code that takes advantage of the NVIDIA CUDA deep neural network
library (cuDNN), NVIDIA TensorRT high performance inference library, or the ARM Compute
Library for Mali GPU.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

See Also
SpaceToDepthLayer | depthToSpace | spaceToDepth

Topics
“List of Deep Learning Layers” (Deep Learning Toolbox)
“Deep Learning in MATLAB” (Deep Learning Toolbox)

Introduced in R2021a

1 Functions

1-2228

resize2dLayer
2-D resize layer

Description
A 2-D resize layer resizes 2-D input by a scale factor, to a specified height and width, or to the size of
a reference input feature map. Use of this layer requires Deep Learning Toolbox.

Creation

Syntax
layer = resize2dLayer('Scale',scale)
layer = resize2dLayer('OutputSize',outputSize)
layer = resize2dLayer('EnableReferenceInput',tf)
layer = resize2dLayer(___ ,Name,Value)

Description

layer = resize2dLayer('Scale',scale) creates a 2-D resize layer and sets the Scale property
as the scale factor specified by scale.

layer = resize2dLayer('OutputSize',outputSize) creates a 2-D resize layer and sets the
OutputSize property with the height and width specified by outputSize.

layer = resize2dLayer('EnableReferenceInput',tf) creates a 2-D resize layer and sets the
EnableReferenceInput property with the boolean specified by tf. When you specify the value as
true, the layer adds an additional input that accepts a reference feature map and resizes the input to
the size of the reference feature map.

layer = resize2dLayer(___ ,Name,Value) sets the optional Method,
GeometricTransformMode, NearestRoundingMode, and Name properties using name-value pair
arguments. You can specify multiple name-value pair arguments. Enclose each property name in
single quotes.
Example: layer = resize2dLayer('OutputSize',[128 128],'Method','bilinear')
creates a 2-D resize layer that resizes input to 128-by-128 pixels using bilinear interpolation

Properties
Resize

Scale — Scale factor to resize input
2-element row vector of positive numbers

Scale factor to resize input, specified as 2-element row vector of positive numbers. The scale factors
are for the row and column dimensions, respectively. When creating the layer, you can specify Scale
as a scalar to use the same value for both dimensions.

 resize2dLayer

1-2229

OutputSize — Output size of resized input
2-element row vector of positive integers

Output size of resized input, specified as a 2-element row vector of positive integers of the form
[nrows ncols]. You can specify one element as NaN, in which case the layer computes the value
automatically to preserve the aspect ratio of the input.

EnableReferenceInput — Add reference feature map as input
false or 0 | true or 1

Add reference feature map as input to the layer, specified as a numeric or logical 0 (false) or 1
(true). When you specify the value as true, the layer resizes the height and width of the input to
match the height and width of the reference feature map. The resizing operation does not change the
number of channels of the input.

When you enable a reference feature map, the inputs to the layer have the names 'in1' and 'ref',
where 'ref' is the name of the reference feature map. Use the input names when connecting or
disconnecting the layer by using connectLayers or disconnectLayers.

Method — Interpolation method
'nearest' (default) | 'bilinear'

Interpolation method, specified as 'nearest' for nearest neighbor interpolation or 'bilinear' for
bilinear interpolation.

GeometricTransformMode — Geometric transformation mode
'half-pixel' (default) | 'asymmetric'

Geometric transformation mode to map points from input space to output space, specified as'half-
pixel' or 'asymmetric'.

NearestRoundingMode — Rounding mode for nearest neighbor interpolation
'round' (default) | 'floor' | 'onnx-10'

Rounding mode for nearest neighbor interpolation, specified as one of the following.

• 'round' — use the same rounding behavior as the MATLAB round function.
• 'floor' — use the same rounding behavior as the MATLAB floor function.
• 'onnx-10' — reproduce the resizing behavior of the ONNX (Open Neural Network Exchange)

opset 10 Resize operator.

This property is valid when the Method property is 'nearest'.

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with Name set to ''.
Data Types: char | string

1 Functions

1-2230

NumInputs — Number of inputs
1 (default) | 2

Number of inputs of the layer, specified as 1 when the EnableReferenceInput property is false or 2
when the EnableReferenceInput property is true.
Data Types: double

InputNames — Input names
{'in'} (default) | {'in','ref'}

Input names of the layer, specified as {'in'} when the EnableReferenceInput property is false or
{'in','ref'} when the EnableReferenceInput property is true.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create 2-D Resize Layer Specifying Scale Factor

Create a 2-D resize layer with a horizontal scale factor of 2 and a vertical scale factor of 4.

layer = resize2dLayer('Scale',[2 4])

layer =
 Resize2DLayer with properties:

 Name: ''
 Scale: [2 4]
 OutputSize: []
 EnableReferenceInput: 0
 Method: 'nearest'
 GeometricTransformMode: 'half-pixel'
 NearestRoundingMode: 'round'

 Learnable Parameters
 No properties.

 resize2dLayer

1-2231

 State Parameters
 No properties.

 Show all properties

Create 2-D Resize Layer Specifying Output Size

Create a 2-D resize layer named 'resize224' with an output size of [224 224].

layer = resize2dLayer('OutputSize',[224 224],'Name','resize224')

layer =
 Resize2DLayer with properties:

 Name: 'resize224'
 Scale: []
 OutputSize: [224 224]
 EnableReferenceInput: 0
 Method: 'nearest'
 GeometricTransformMode: 'half-pixel'
 NearestRoundingMode: 'round'

 Learnable Parameters
 No properties.

 State Parameters
 No properties.

 Show all properties

Create 2-D Resize Layer with Reference Port

Create an array of layers that includes a 2-D resize layer that accepts a reference input feature map.

layers = [
 imageInputLayer([32 32 3],'Name','image')
 resize2dLayer('EnableReferenceInput',true,'Name','resize')]

layers =
 2x1 Layer array with layers:

 1 'image' Image Input 32x32x3 images with 'zerocenter' normalization
 2 'resize' Resize nnet.cnn.layer.Resize2DLayer

Create a layerGraph. The first input of the 2-D resize layer is automatically connected to the output
of the image input layer.

lgraph = layerGraph(layers);

1 Functions

1-2232

Connect the 'ref' input of the 2-D resize layer to the output of a layer that provides a reference
feature map by using the connectLayers function. This example shows a trivial connection in which
the 'ref' input is also connected to the output of the image input layer.

lgraph = connectLayers(lgraph,'image','resize/ref');

Create 2-D Resize Layer with Bilinear Interpolation

Create a 2-D resize layer named 'rescale0.5' with a uniform scale factor of 0.5. Specify the
interpolation method as bilinear interpolation.

layer = resize2dLayer('Scale',0.5,'Method','bilinear','Name','rescale0.5')

layer =
 Resize2DLayer with properties:

 Name: 'rescale0.5'
 Scale: [0.5000 0.5000]
 OutputSize: []
 EnableReferenceInput: 0
 Method: 'bilinear'
 GeometricTransformMode: 'half-pixel'
 NearestRoundingMode: 'round'

 Learnable Parameters
 No properties.

 State Parameters
 No properties.

 Show all properties

References
[1] Open Neural Network Exchange. https://github.com/onnx/.

[2] ONNX. https://onnx.ai/.

Extended Capabilities
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
resize3dLayer | dlresize | averagePooling2dLayer | transposedConv2dLayer |
importONNXLayers

Topics
“Deep Learning in MATLAB” (Deep Learning Toolbox)
“Specify Layers of Convolutional Neural Network” (Deep Learning Toolbox)

 resize2dLayer

1-2233

https://github.com/onnx/
https://onnx.ai/

“List of Deep Learning Layers” (Deep Learning Toolbox)

Introduced in R2020b

1 Functions

1-2234

resize3dLayer
3-D resize layer

Description
A 3-D resize layer resizes 3-D input by a scale factor, to a specified height, width, and depth, or to the
size of a reference input feature map. Use of this layer requires Deep Learning Toolbox.

Creation

Syntax
layer = resize3dLayer('Scale',scale)
layer = resize3dLayer('OutputSize',outputSize)
layer = resize3dLayer('EnableReferenceInput',tf)
layer = resize3dLayer(___ ,Name,Value)

Description

layer = resize3dLayer('Scale',scale) creates a 3-D resize layer and sets the Scale property
as the scale factor specified by scale.

layer = resize3dLayer('OutputSize',outputSize) creates a 3-D resize layer and sets the
OutputSize property with the height, width, and depth specified by outputSize.

layer = resize3dLayer('EnableReferenceInput',tf) creates a 3-D resize layer and sets the
EnableReferenceInput property with the boolean specified by tf. When you specify the value as
true, the layer adds an additional input that accepts a reference feature map and resizes the input to
the size of the reference feature map.

layer = resize3dLayer(___ ,Name,Value) also sets the optional Method,
GeometricTransformMode, NearestRoundingMode, and Name properties using name-value pair
arguments. You can specify multiple name-value pair arguments. Enclose each property name in
single quotes.
Example: layer = resize3dLayer('OutputSize',[128 128 36],'Method','trilinear')
creates a 3-D resize layer that resizes input to 128-by-128-by-36 pixels using trilinear interpolation

Properties
Resize

Scale — Scale factor to resize input
3-element row vector of positive numbers

Scale factor to resize input, specified as 3-element row vector of positive numbers. The scale factors
are for the row, column, and plane dimensions, respectively. When creating the layer, you can specify
Scale as a scalar to use the same value for all dimensions.

 resize3dLayer

1-2235

OutputSize — Output size of resized input
3-element row vector of positive integers

Output size of resized input, specified as a 3-element row vector of positive integers of the form
[nrows ncols nplanes]. You can specify two elements as NaN, in which case the layer computes the
values automatically to preserve the aspect ratio of the input.

EnableReferenceInput — Add reference feature map as input
false or 0 | true or 1

Add reference feature map as input to the layer, specified as a numeric or logical 0 (false) or 1
(true). When you specify the value as true, the layer resizes the height, width, and depth of the
input to match the height, width, and depth of the reference feature map. The resizing operation does
not change the number of channels of the input.

When you enable a reference feature map, the inputs to the layer have the names 'in1' and 'ref',
where 'ref' is the name of the reference feature map. Use the input names when connecting or
disconnecting the layer by using connectLayers or disconnectLayers.

Method — Interpolation method
'nearest' (default) | 'trilinear'

Interpolation method, specified as 'nearest' for nearest neighbor interpolation or 'trilinear'
for trilinear interpolation.

GeometricTransformMode — Geometric transformation mode
'half-pixel' (default) | 'asymmetric'

Geometric transformation mode to map points from input space to output space, specified as'half-
pixel' or 'asymmetric'.

NearestRoundingMode — Rounding mode for nearest neighbor interpolation
'round' (default) | 'floor' | 'onnx-10'

Rounding mode for nearest neighbor interpolation, specified as one of the following.

• 'round' — use the same rounding behavior as the MATLAB round function.
• 'floor' — use the same rounding behavior as the MATLAB floor function.
• 'onnx-10' — reproduce the resizing behavior of the ONNX (Open Neural Network Exchange)

opset 10 Resize operator.

This property is valid when the Method property is 'nearest'.

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with Name set to ''.
Data Types: char | string

1 Functions

1-2236

NumInputs — Number of inputs
1 (default) | 2

Number of inputs of the layer, specified as 1 when the EnableReferenceInput property is false or 2
when the EnableReferenceInput property is true.
Data Types: double

InputNames — Input names
{'in'} (default) | {'in','ref'}

Input names of the layer, specified as {'in'} when the EnableReferenceInput property is false or
{'in','ref'} when the EnableReferenceInput property is true.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create 3-D Resize Layer Specifying Scale Factor

Create a 3-D resize layer. Specify a horizontal and vertical scale factor of 2 and a depthwise scale
factor of 4.

layer = resize3dLayer('Scale',[2 2 4])

layer =
 Resize3DLayer with properties:

 Name: ''
 Scale: [2 2 4]
 OutputSize: []
 EnableReferenceInput: 0
 Method: 'nearest'
 GeometricTransformMode: 'half-pixel'
 NearestRoundingMode: 'round'

 Learnable Parameters
 No properties.

 resize3dLayer

1-2237

 State Parameters
 No properties.

 Show all properties

Create 3-D Resize Layer Specifying Output Size

Create a 3-D resize layer named 'resize224' with an output size of [224 224 224].

layer = resize3dLayer('OutputSize',[224 224 224],'Name','resize224')

layer =
 Resize3DLayer with properties:

 Name: 'resize224'
 Scale: []
 OutputSize: [224 224 224]
 EnableReferenceInput: 0
 Method: 'nearest'
 GeometricTransformMode: 'half-pixel'
 NearestRoundingMode: 'round'

 Learnable Parameters
 No properties.

 State Parameters
 No properties.

 Show all properties

Create 3-D Resize Layer with Reference Port

Create an array of layers that includes a 3-D resize layer that accepts a reference input feature map.

layers = [
 image3dInputLayer([32 32 32 3],'Name','image')
 resize3dLayer('EnableReferenceInput',true,'Name','resize')]

layers =
 2x1 Layer array with layers:

 1 'image' 3-D Image Input 32x32x32x3 images with 'zerocenter' normalization
 2 'resize' Resize nnet.cnn.layer.Resize3DLayer

Create a layerGraph. The first input of the 3-D resize layer is automatically connected to the output
of the 3-D image input layer.

lgraph = layerGraph(layers);

1 Functions

1-2238

Connect the 'ref' input of the 3-D resize layer to the output of a layer that provides a reference
feature map by using the connectLayers function. This example shows a trivial connection in which
the 'ref' input is also connected to the output of the 3-D image input layer.

lgraph = connectLayers(lgraph,'image','resize/ref');

Create 3-D Resize Layer with Trilinear Interpolation

Create a 3-D resize layer named 'rescale0.5' with a uniform scale factor of 0.5. Specify the
interpolation method as trilinear interpolation.

layer = resize3dLayer('Scale',0.5,'Method','trilinear','Name','rescale0.5')

layer =
 Resize3DLayer with properties:

 Name: 'rescale0.5'
 Scale: [0.5000 0.5000 0.5000]
 OutputSize: []
 EnableReferenceInput: 0
 Method: 'trilinear'
 GeometricTransformMode: 'half-pixel'
 NearestRoundingMode: 'round'

 Learnable Parameters
 No properties.

 State Parameters
 No properties.

 Show all properties

References
[1] Open Neural Network Exchange. https://github.com/onnx/.

[2] ONNX. https://onnx.ai/.

See Also
resize2dLayer | averagePooling3dLayer | transposedConv3dLayer | dlresize |
importONNXLayers

Topics
“Deep Learning in MATLAB” (Deep Learning Toolbox)
“Specify Layers of Convolutional Neural Network” (Deep Learning Toolbox)
“List of Deep Learning Layers” (Deep Learning Toolbox)

Introduced in R2020b

 resize3dLayer

1-2239

https://github.com/onnx/
https://onnx.ai/

spaceToDepthLayer
Space to depth layer

Description
A space to depth layer permutes the spatial blocks of the input into the depth dimension. Use this
layer when you need to combine feature maps of different size without discarding any feature data.

Given an input feature map of size [H W C] and blocks of size [height width], the output feature map
size is [floor(H/height) floor(W/width) C*height*width].

This object requires Deep Learning Toolbox.

Creation

Syntax
layer = spaceToDepthLayer(blockSize)
layer = spaceToDepthLayer(blockSize,'Name',Name)

Description

layer = spaceToDepthLayer(blockSize) creates a space to depth layer, specifying the block
size to reorder the input activation. The blockSize input sets the BlockSize property.

layer = spaceToDepthLayer(blockSize,'Name',Name) creates a space to depth layer and
sets the optional Name property.

Properties
BlockSize — Block size to reorder input activation
vector of two positive integers

Block size to reorder the input activation, specified as a vector of two positive integers [h w], where
h is the height and w is the width. When creating the layer, you can specify BlockSize as a scalar to
use the same value for both dimensions.
Example: [2 1] specifies blocks of height 2 and width 1.

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with Name set to ''.
Data Types: char | string

1 Functions

1-2240

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Space to Depth Layer

Specify the block size to reorder input activations.

blockSize = [2 2];

Create a space to depth layer named 'spacetodepth'.

layer = spaceToDepthLayer(blockSize,'Name','spacetodepth')

layer =
 SpaceToDepthLayer with properties:

 Name: 'spacetodepth'
 BlockSize: [2 2]

 Learnable Parameters
 No properties.

 spaceToDepthLayer

1-2241

 State Parameters
 No properties.

 Show all properties

Extended Capabilities
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

To generate CUDA or C++ code by using GPU Coder, you must first construct and train a deep neural
network. Once the network is trained and evaluated, you can configure the code generator to
generate code and deploy the convolutional neural network on platforms that use NVIDIA or ARM
GPU processors. For more information, see “Deep Learning with GPU Coder” (GPU Coder).

For this layer, you can generate code that takes advantage of the NVIDIA CUDA deep neural network
library (cuDNN), NVIDIA TensorRT high performance inference library, or the ARM Compute
Library for Mali GPU.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

See Also
roiMaxPooling2dLayer | yolov2Layers | DepthToSpace2DLayer | depthToSpace |
spaceToDepth

Topics
“Getting Started with Object Detection Using Deep Learning” (Computer Vision Toolbox)
“Getting Started with YOLO v2” (Computer Vision Toolbox)
“List of Deep Learning Layers” (Deep Learning Toolbox)
“Deep Learning in MATLAB” (Deep Learning Toolbox)

Introduced in R2020b

1 Functions

1-2242

lazysnapping
Segment image into foreground and background using graph-based segmentation

Syntax
BW = lazysnapping(A,L,foremask,backmask)
BW = lazysnapping(A,L,foreind,backind)
BW = lazysnapping(___ ,Name,Value)

Description
BW = lazysnapping(A,L,foremask,backmask) segments the image A into foreground and
background regions using lazy snapping. The label matrix L specifies the subregions of the image.
foremask and backmask are masks designating pixels in the image as foreground and background,
respectively.

BW = lazysnapping(A,L,foreind,backind) segments the image A into foreground and
background regions. foreind and backind specify the linear indices of the pixels in the image
marked as foreground and background, respectively.

BW = lazysnapping(___ ,Name,Value) segments the image or volume using name-value pairs to
control aspects of the segmentation.

Examples

Perform Lazy Snapping Using Foreground and Background Masks

Read and display an image.

RGB = imread('peppers.png');
imshow(RGB)

 lazysnapping

1-2243

Create a label matrix.

L = superpixels(RGB,500);

Specify a rectangular ROI within the foreground by using the drawrectangle function. The
'Position' name-value pair argument specifies the upper left coordinates, width, and height of the ROI
as the 4-element vector [xmin,ymin,width,height]. If you want to draw the rectangle
interactively, then omit the 'Position' name-value pair argument.

f = drawrectangle(gca,'Position',[100 128 350 150],'Color','g');

1 Functions

1-2244

Create a mask that contains the foreground pixels.

foreground = createMask(f,RGB);

Specify background ROIs. To improve the segmentation accuracy, this example specifies two
rectangular ROIs in different areas of the background.

b1 = drawrectangle(gca,'Position',[130 30 40 30],'Color','r');
b2 = drawrectangle(gca,'Position',[6 368 500 10],'Color','r');

 lazysnapping

1-2245

Create a mask that contains the background pixels. This mask is the union of the two background
ROIs.

background = createMask(b1,RGB) + createMask(b2,RGB);

Perform lazy snapping.

BW = lazysnapping(RGB,L,foreground,background);

Visualize the result of the segmentation by highlighting the foreground in green.

imshow(labeloverlay(RGB,BW,'Colormap',[0 1 0]))

1 Functions

1-2246

Create a masked image in which the background is black.

maskedImage = RGB;
maskedImage(repmat(~BW,[1 1 3])) = 0;
imshow(maskedImage)

 lazysnapping

1-2247

Perform Lazy Snapping Using Pixel Indices

Read and display an image.

RGB = imread('peppers.png');
imshow(RGB)

1 Functions

1-2248

Create a label matrix.

L = superpixels(RGB,500);

Specify the x- and y-coordinates of pixels in the foreground.

foregroundX = [34 114 195 259 392 467 483];
foregroundY = [298 140 135 200 205 283 104];

Convert the coordinates to linear indices. sub2ind takes (row, column) coordinates so specify the
input arguments with the y-coordinates before the x-coordinates.

foregroundInd = sub2ind(size(RGB),foregroundY,foregroundX);

Specify the x- and y-coordinates of pixels in the background.

backgroundX = [130 170];
backgroundY = [52 32];

Convert the coordinates to linear indices.

backgroundInd = sub2ind(size(RGB),backgroundY,backgroundX);

Perform lazy snapping.

 lazysnapping

1-2249

BW = lazysnapping(RGB,L,foregroundInd,backgroundInd);

Display the segmented mask. Foreground pixels are true and background pixels are false.

imshow(BW)

Display the mask over the original image, highlighting foreground pixels in green.

imshow(labeloverlay(RGB,BW,'Colormap',[0 1 0]))

1 Functions

1-2250

Segment Volume in Foreground and Background

Load 3-D volumetric image into the workspace.

D = load('mri.mat');
V = squeeze(D.D);

Create a 2-D mask identifying initial foreground and background seed points.

 seedLevel = 10;
 fseed = V(:,:,seedLevel) > 75;
 bseed = V(:,:,seedLevel) == 0;
 figure;
 imshow(fseed)

 lazysnapping

1-2251

 figure;
 imshow(bseed)

Place seed points into empty 3-D mask.

fmask = zeros(size(V));
bmask = fmask;
fmask(:,:,seedLevel) = fseed;
bmask(:,:,seedLevel) = bseed;

Generate a 3-D label matrix.

 L = superpixels3(V,500);

Segment the image into foreground and background using Lazy Snapping.

bw = lazysnapping(V,L,fmask,bmask);

Display the 3-D segmented image.

figure;
p = patch(isosurface(double(bw)));
p.FaceColor = 'red';
p.EdgeColor = 'none';
daspect([1 1 27/128]);
camlight; lighting phong

1 Functions

1-2252

Input Arguments
A — Image to segment
2-D grayscale image | 2-D truecolor image | 2-D multispectral image | 3-D grayscale volume

Image to segment, specified as a 2-D grayscale, truecolor, or multispectral image or a 3-D grayscale
volume. For double and single images, lazysnapping assumes the range of the image to be [0,
1]. For uint16, int16, and uint8 images, lazysnapping assumes the range to be the full range
for the given data type. If the values do not match the expected range based on the data type, then
scale the image to the expected range or adjust EdgeWeightScaleFactor to improve results.
Data Types: single | double | int16 | uint8 | uint16

L — Label matrix
numeric array

Label matrix of the input image or volume, specified as numeric array. For 2-D grayscale images and
3-D grayscale volumes, the size of L must match the size of the input image A. For color images and
multichannel images, L must be a 2-D array where the first two dimensions match the first two
dimensions of the input image A.

Do not mark a given subregion of the label matrix as belonging to both the foreground mask and the
background mask. If a region of the label matrix contains pixels belonging to both the foreground
mask and background mask, lazysnapping segments the region as background.

 lazysnapping

1-2253

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

foremask — Mask image that defines foreground
logical array

Mask image that defines the foreground, specified as a logical array. For 2-D grayscale images and 3-
D grayscale volumes, the size of foremask must match the size of the input image A. For color
images and multichannel images, foremask must be a 2-D array where the first two dimensions
match the first two dimensions of the input image A.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

backmask — Mask image that defines background
logical array

Mask image that defines the background, specified as a logical array. For 2-D grayscale images and 3-
D grayscale volumes, the size of backmask must match the size of the input image A. For color
images and multichannel images, backmask must be a 2-D array where the first two dimensions
match the first two dimensions of the input image A.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

foreind — Linear index of foreground pixels
numeric vector

Linear index of pixels in the label matrix, specified as a numeric vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

backind — Linear index of background pixels
numeric vector

Linear index of pixels that define the background, specified as a numeric vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Connectivity',6

Connectivity — Connectivity of connected components
8 for 2-D images and 26 for 3-D images (default) | 4 | 6 | 18

Connectivity of connected components, specified as the comma-separated pair consisting of
'Connectivity' and one of the following: 4 or 8, for 2-D images, and 6, 18, or 26 for 3-D images
(volumes).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

1 Functions

1-2254

EdgeWeightScaleFactor — Scale factor for edge weights
500 (default) | positive number

Scale factor for edge weights between the subregions of the label matrix, specified as the comma-
separated pair consisting of 'EdgeWeightScaleFactor' and a positive number. Typical values
range from [10, 1000]. Increasing this value increases the likelihood that lazysnapping labels
neighboring subregions together as either foreground or background.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
BW — Segmented image
logical array

Segmented image, returned as a logical array of the same size as the label matrix, L.
Data Types: logical

Tips
• The lazy snapping algorithm developed by Li et al. clusters foreground and background values

using the K-means method. This implementation of the lazy snapping algorithm does not cluster
similar foreground or background pixels. To improve performance, reduce the number of pixels
with similar values that are identified as foreground or background.

• To obtain masks foremask or backmask interactively, you can draw an ROI on the image then
create a mask from the ROI by using the createMask function. For more information, see “Create
ROI Shapes”.

• To obtain pixel indices foreind or backind interactively, you can draw a Polyline ROI object
by using the drawpolyline function. Get the x- and y-coordinates of the vertices from the
Position property of the Polyline. Finally, convert the coordinates to linear indices by using
the sub2ind function. Note that the sub2ind function uses (row, column) coordinates instead of
(x, y) coordinates.

References
[1] Y. Li, S. Jian, C. Tang, H. Shum, Lazy Snapping In Proceedings from the 31st International

Conference on Computer Graphics and Interactive Techniques, 2004.

See Also
Image Segmenter

Topics
“Segment Image Using Graph Cut in Image Segmenter”

Introduced in R2017a

 lazysnapping

1-2255

lin2rgb
Apply gamma correction to linear RGB values

Syntax
B = lin2rgb(A)
B = lin2rgb(A,Name,Value)

Description
B = lin2rgb(A) applies a gamma correction to the linear RGB values in image A so that B is in the
sRGB color space, which is suitable for display.

B = lin2rgb(A,Name,Value) applies gamma correction using name-value pairs to control
additional options.

Examples

Plot Gamma Curve of sRGB and Adobe RGB

Define a range of linear values. This vector defines 257 equally spaced points between 0 and 1.

lin = linspace(0,1,257);

Apply gamma correction to the linear values based on the sRGB standard. Then apply gamma
correction to the linear values based on the Adobe RGB (1998) standard.

sRGB = lin2rgb(lin);
adobeRGB = lin2rgb(lin,'ColorSpace','adobe-rgb-1998');

Plot the gamma-corrected curves.

figure
plot(lin,sRGB,'b',lin,adobeRGB,'r')
title('Gamma-Corrected vs. Linear Values')
legend('sRGB','Adobe RGB (1998)','Location','southeast')

1 Functions

1-2256

For an alternative visualization, plot color bars representing each color space.

cb_lin = ones(30,257) .* lin;
cb_sRGB = ones(30,257) .* sRGB;
cb_adobeRGB = ones(30,257) .* adobeRGB;

figure
subplot(3,1,1); imshow(cb_lin); title('Linear RGB')
subplot(3,1,2); imshow(cb_sRGB); title('sRGB');
subplot(3,1,3); imshow(cb_adobeRGB); title('Adobe RGB (1998)');

 lin2rgb

1-2257

The gamma-corrected color spaces get brighter more quickly than the linear color space, as
expected.

Apply sRGB Gamma Correction to Linear RGB Image

Open an image file containing minimally processed linear RGB intensities.

A = imread('foosballraw.tiff');

The image data is the raw sensor data after correcting the black level and scaling to 16 bits per pixel.
Interpolate the intensities to reconstruct color by using the demosaic function. The color filter array
pattern is RGGB.

A_demosaiced = demosaic(A,'rggb');

Display the image. To shrink the image so that it appears fully on the screen, set the optional initial
magnification to a value less than 100.

figure
imshow(A_demosaiced,'InitialMagnification',25)
title('Sensor Data Without sRGB Gamma Correction')

1 Functions

1-2258

The image appears dark because it is in the linear RGB color space. Apply gamma correction to the
image according to the sRGB standard, storing the values in double precision.

A_sRGB = lin2rgb(A_demosaiced,'OutputType','double');

Display the gamma-corrected image, setting the optional magnification.

figure
imshow(A_sRGB,'InitialMagnification',25)
title('Sensor Data With sRGB Gamma Correction');

 lin2rgb

1-2259

The gamma-corrected image looks brighter than the linear image, as expected.

Input Arguments
A — Linear RGB color values
numeric array

Linear RGB color values, specified as a numeric array in one of the following formats.

• c-by-3 colormap. Each row specifies one RGB color value.
• m-by-n-by-3 image
• m-by-n-by-3-by-p stack of images

Data Types: single | double | uint8 | uint16

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: B = lin2rgb(I,'ColorSpace','adobe-rgb-1998') applies gamma correction to an
image, I, according to the Adobe RGB (1998) standard.

1 Functions

1-2260

ColorSpace — Color space of the output image
'srgb' (default) | 'adobe-rgb-1998'

Color space of the output image, specified as the comma-separated pair consisting of 'ColorSpace'
and 'srgb' or 'adobe-rgb-1998'.
Data Types: char | string

OutputType — Data type of output RGB values
'double' | 'single' | 'uint8' | 'uint16'

Data type of the output RGB values, specified as the comma-separated pair consisting of
'OutputType' and 'double', 'single', 'uint8', or 'uint16'. By default, the output data type
is the same as the data type of A.
Data Types: char | string

Output Arguments
B — Gamma-corrected RGB image
numeric array

Gamma-corrected RGB image, returned as a numeric array of the same size as the input A.

Algorithms
Gamma Correction Using the sRGB Standard

The gamma correction to transform linear RGB tristimulus values into sRGB tristimulus values is
defined by the following parametric curve:

 f(u) = -f(-u), u < 0

 f(u) = c ⋅ u, 0 ≤ u < d

 f(u) = a ⋅ uɣ + b, u ≥ d,

where u represents a color value with these parameters:

 a = 1.055

 b = –0.055

 c = 12.92

 d = 0.0031308

 ɣ = 1/2.4

Gamma Correction Using the Adobe RGB (1998) Standard

The gamma correction to transform linear RGB tristimulus values into Adobe RGB (1998) tristimulus
values uses a simple power function:

 v = uɣ, u ≥ 0

 lin2rgb

1-2261

 v = -(-u)ɣ, u < 0,

with

 ɣ = 1/2.19921875

References
[1] Ebner, Marc. "Gamma Correction." Color Constancy. Chichester, West Sussex: John Wiley & Sons,

2007.

[2] Adobe Systems Incorporated. "Inverting the color component transfer function." Adobe RGB
(1998) Color Image Encoding. Section 4.3.5.2, May 2005, p.12.

See Also
rgb2lin

Introduced in R2017b

1 Functions

1-2262

localcontrast
Edge-aware local contrast manipulation of images

Syntax
B = localcontrast(A)
B = localcontrast(A,edgeThreshold,amount)

Description
B = localcontrast(A) enhances the local contrast of the grayscale or RGB image A.

B = localcontrast(A,edgeThreshold,amount) enhances or flattens the local contrast of A by
increasing or smoothing details while leaving strong edges unchanged. edgeThreshold defines the
minimum intensity amplitude of strong edges to leave intact. amount is the amount of enhancement
or smoothing desired.

Examples

Increase or Reduce Local Contrast of Image

Import an RGB image.

A = imread('peppers.png');

Increase the local contrast of the input image.

edgeThreshold = 0.4;
amount = 0.5;
B = localcontrast(A, edgeThreshold, amount);

Display the results compared to the original image

imshowpair(A, B, 'montage')

 localcontrast

1-2263

Reduce the local contrast of the input image.

amount = -0.5;
B2 = localcontrast(A, edgeThreshold, amount);

Display the new results again, compared to the original image.

imshowpair(A, B2, 'montage')

Input Arguments
A — Grayscale or RGB image to be filtered
real, non-sparse, m-by-n or m-by-n-by-3 matrix

Grayscale or RGB image to be filtered, specified as a real, non-sparse, m-by-n or m-by-n-by-3 matrix.
Data Types: single | int8 | int16 | uint8 | uint16

1 Functions

1-2264

edgeThreshold — Amplitude of strong edges to leave intact
0.3 (default) | numeric scalar in the range [0,1]

Amplitude of strong edges to leave intact, specified as a numeric scalar in the range [0,1].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

amount — Amount of enhancement or smoothing desired
0.25 (default) | numeric scalar in the range [-1,1]

Amount of enhancement or smoothing desired, specified as a numeric scalar in the range [-1,1].
Negative values specify edge-aware smoothing. Positive values specify edge-aware enhancement.

Value Description
0 Leave input image unchanged.
1 Strongly enhance the local contrast of the input image
-1 Strongly smooth the details of the input image

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
B — Filtered image
numeric array

Filtered image, returned as a numeric array the same size and class as the input image.

See Also
imadjust | imcontrast | imsharpen | locallapfilt

Introduced in R2016b

 localcontrast

1-2265

locallapfilt
Fast local Laplacian filtering of images

Syntax
B = locallapfilt(I,sigma,alpha)
B = locallapfilt(I,sigma,alpha,beta)
B = locallapfilt(___ ,Name,Value)

Description
B = locallapfilt(I,sigma,alpha) filters the grayscale or RGB image I with an edge-aware,
fast local Laplacian filter. sigma characterizes the amplitude of edges in I. alpha controls smoothing
of details.

B = locallapfilt(I,sigma,alpha,beta) filters the image using beta to control the dynamic
range of A.

B = locallapfilt(___ ,Name,Value) uses name-value pairs to control advanced aspects of the
filter.

Examples

Increase Local Contrast of RGB Image Using Local Laplacian Filtering

Import an RGB image

A = imread('peppers.png');

Set parameters of the filter to increase details smaller than 0.4.

sigma = 0.4;
alpha = 0.5;

Use fast local Laplacian filtering

B = locallapfilt(A, sigma, alpha);

Display the original and filtered images side-by-side.

imshowpair(A, B, 'montage')

1 Functions

1-2266

Increase Local Contrast, Balancing Speed and Quality

Local Laplacian filtering is a computationally intensive algorithm. To speed up processing,
locallapfilt approximates the algorithm by discretizing the intensity range into a number of
samples defined by the 'NumIntensityLevels' parameter. This parameter can be used to balance
speed and quality.

Import an RGB image and display it.

A = imread('peppers.png');
figure
imshow(A)
title('Original Image')

 locallapfilt

1-2267

Use a sigma value to process the details and an alpha value to increase the contrast, effectively
enhancing the local contrast of the image.

sigma = 0.2;
alpha = 0.3;

Using fewer samples increases the execution speed, but can produce visible artifacts, especially in
areas of flat contrast. Time the function using only 20 intensity levels.

t_speed = timeit(@() locallapfilt(A, sigma, alpha, 'NumIntensityLevels', 20))

t_speed = 0.2321

Now, process the image and display it.

B_speed = locallapfilt(A, sigma, alpha, 'NumIntensityLevels', 20);
figure
imshow(B_speed)
title(['Enhanced with 20 intensity levels in ' num2str(t_speed) ' sec'])

1 Functions

1-2268

A larger number of samples yields better looking results at the expense of more processing time.
Time the function using 100 intensity levels.

t_quality = timeit(@() locallapfilt(A, sigma, alpha, 'NumIntensityLevels', 100))

t_quality = 1.2568

Process the image with 100 intensity levels and display it:

B_quality = locallapfilt(A, sigma, alpha, 'NumIntensityLevels', 100);
figure
imshow(B_quality)
title(['Enhancement with 100 intensity levels in ' num2str(t_quality) ' sec'])

 locallapfilt

1-2269

Try varying the number of intensity levels on your own images. Try also flattening the contrast (with
alpha > 1). You will see that the optimal number of intensity levels is different for every image and
varies with alpha. By default, locallapfilt uses a heuristic to balance speed and quality, but it
cannot predict the best value for every image.

Boost Local Color Contrast Using 'ColorMode'

Import a color image, reduce its size, and display it.

A = imread('car2.jpg');
A = imresize(A, 0.25);
figure
imshow(A)
title('Original Image')

1 Functions

1-2270

Set the parameters of the filter to dramatically increase details smaller than 0.3 (out of a normalized
range of 0 to 1).

sigma = 0.3;
alpha = 0.1;

Let's compare the two different modes of color filtering. Process the image by filtering its intensity
and by filtering each color channel separately:

B_luminance = locallapfilt(A, sigma, alpha);
B_separate = locallapfilt(A, sigma, alpha, 'ColorMode', 'separate');

Display the filtered images.

figure
imshow(B_luminance)
title('Enhanced by boosting the local luminance contrast')

 locallapfilt

1-2271

figure
imshow(B_separate)
title('Enhanced by boosting the local color contrast')

1 Functions

1-2272

An equal amount of contrast enhancement has been applied to each image, but colors are more
saturated when setting 'ColorMode' to 'separate'.

Perform Edge-Aware Noise Reduction

Import an image. Convert the image to floating point so that we can add artificial noise more easily.

A = imread('pout.tif');
A = im2single(A);

Add Gaussian noise with zero mean and 0.001 variance.

A_noisy = imnoise(A, 'gaussian', 0, 0.001);
psnr_noisy = psnr(A_noisy, A);
fprintf('The peak signal-to-noise ratio of the noisy image is %0.4f\n', psnr_noisy);

The peak signal-to-noise ratio of the noisy image is 30.0234

Set the amplitude of the details to smooth, then set the amount of smoothing to apply.

sigma = 0.1;
alpha = 4.0;

Apply the edge-aware filter.

 locallapfilt

1-2273

B = locallapfilt(A_noisy, sigma, alpha);
psnr_denoised = psnr(B, A);
fprintf('The peak signal-to-noise ratio of the denoised image is %0.4f\n', psnr_denoised);

The peak signal-to-noise ratio of the denoised image is 32.2016

Note an improvement in the PSNR of the image.

Display all three images side by side. Observe that details are smoothed and sharp intensity
variations along edges are unchanged.

figure
subplot(1,3,1), imshow(A), title('Original')
subplot(1,3,2), imshow(A_noisy), title('Noisy')
subplot(1,3,3), imshow(B), title('Denoised')

Smooth Image Details Without Affecting Edge Sharpness

Import the image, resize it and display it

A = imread('car1.jpg');
A = imresize(A, 0.25);
figure
imshow(A)
title('Original Image')

1 Functions

1-2274

The car is dirty and covered in markings. Let's try to erase the dust and markings on the body. Set the
amplitude of the details to smooth, and set a large amount of smoothing to apply.

sigma = 0.2;
alpha = 5.0;

When smoothing (alpha > 1), the filter produces high quality results with a small number of intensity
levels. Set a small number of intensity levels to process the image faster.

numLevels = 16;

Apply the filter.

B = locallapfilt(A, sigma, alpha, 'NumIntensityLevels', numLevels);

Display the "clean" car.

figure
imshow(B)
title('After smoothing details')

 locallapfilt

1-2275

Input Arguments
I — Image to filter
2-D grayscale image | 2-D truecolor image

Image to filter, specified as a 2-D grayscale image or 2-D truecolor image.
Data Types: single | int8 | int16 | uint8 | uint16

sigma — Amplitude of edges
non-negative number

Amplitude of edges, specified as a non-negative number. sigma should be in the range [0, 1] for
integer images and for single images defined over the range [0, 1]. For single images defined over a
different range [a, b], sigma should also be in the range [a, b].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

alpha — Smoothing of details
positive number

Smoothing of details, specified as a positive number. Typical values of alpha are in the range [0.01,
10].

1 Functions

1-2276

Value Description
alpha less than 1 Increases the details of the input image,

effectively enhancing the local contrast of the
image without affecting edges or introducing
halos.

alpha greater than 1 Smooths details in the input image while
preserving crisp edges

alpha equal to 1 The details of the input image are left unchanged.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

beta — Dynamic range
1 (default) | non-negative number

Dynamic range, specified as a non-negative number. Typical values of beta are in the range [0, 5].
beta affects the dynamic range of A.

Value Description
beta less than 1 Reduces the amplitude of edges in the image,

effectively compressing the dynamic range
without affecting details.

beta greater than 1 Expands the dynamic range of the image.
beta equal to 1 Dynamic range of the image is left unchanged.

This is the default value.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'ColorMode','separate'

ColorMode — Method used to filter RGB images
'luminance' (default) | 'separate'

Method used to filter RGB images, specified as one of the following values. This parameter has no
effect on grayscale images.

Value Description
'luminance' locallapfilt converts the input RGB image to grayscale before

filtering and reintroduces color after filtering, which changes the
contrast of the input image without affecting colors.

'separate' locallapfilt filters each color channel independently.

Data Types: char | string

NumIntensityLevels — Number of intensity samples
'auto' (default) | positive integer

 locallapfilt

1-2277

Number of intensity samples in the dynamic range of the input image, specified as 'auto' or positive
integer. A higher number of samples gives results closer to exact local Laplacian filtering. A lower
number increases the execution speed. Typical values are in the range [10, 100]. If set to 'auto',
locallapfilt chooses the number of intensity levels automatically to balance quality and speed
based on other parameters of the filter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

Output Arguments
B — Filtered image
numeric array

Filtered image, returned as a numeric array the same size and data type as the input image, A.

References
[1] Paris, Sylvain, Samuel W. Hasinoff, and Jan Kautz. Local Laplacian filters: edge-aware image

processing with a Laplacian pyramid, ACM Trans. Graph. 30.4 (2011): 68.

[2] Aubry, Mathieu, et al. Fast local laplacian filters: Theory and applications. ACM Transactions on
Graphics (TOG) 33.5 (2014): 167.

See Also
localcontrast | localtonemap

Introduced in R2016b

1 Functions

1-2278

localtonemap
Render HDR image for viewing while enhancing local contrast

Syntax
rgb = localtonemap(hdr)
rgb = localtonemap(hdr,Name,Value)

Description
rgb = localtonemap(hdr) converts the high dynamic range (HDR) image hdr to a low dynamic
range (LDR) image, rgb, suitable for display. localtonemap uses a process called tone mapping
while preserving its local contrast.

rgb = localtonemap(hdr,Name,Value) controls various aspects of the tone mapping using
name-value pair arguments.

Examples

Compress Dynamic Range of HDR Image for Viewing

Load a high dynamic range image.

HDR = hdrread('office.hdr');

Apply local tone mapping with a small amount of dynamic range compression.

RGB = localtonemap(HDR, 'RangeCompression', 0.1);

Display the resulting tone-mapped image.

imshow(RGB)

 localtonemap

1-2279

Repeat the operation but, this time, accentuate the details in the image.

RGB = localtonemap(HDR, ...
 'RangeCompression', 0.1, ...
 'EnhanceContrast', 0.5);

Display the resulting tone-mapped image with increased details.

imshow(RGB)

1 Functions

1-2280

Input Arguments
hdr — HDR image
m-by-n numeric matrix | m-by-n-by-3 numeric array

HDR image, specified as an m-by-n numeric matrix or m-by-n-by-3 numeric array.
Data Types: single

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'RangeCompression',0.5

RangeCompression — Amount of compression
1 (default) | number in the range [0,1]

Amount of compression applied to the dynamic range of the HDR image, specified as a number in the
range [0, 1].

 localtonemap

1-2281

Value Description
0 Minimum compression, which consists in only remapping the middle 99%

intensities to a dynamic range of 100:1 followed by gamma correction
with an exponent of 1/2.2.

1 Maximum compression using local Laplacian filtering.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

EnhanceContrast — Amount of local contrast enhancement
0 (default) | number in the range [0, 1]

Amount of local contrast enhancement, specified as a number in the range [0, 1].

Value Description
0 No change to local contrast
1 Maximum local contrast enhancement

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
rgb — Tone-mapped LDR image
numeric array

Tone-mapped LDR image, returned as a numeric array of the same size as the input image hdr.

Algorithms
localtonemap uses local Laplacian filtering in logarithmic space to compress the dynamic range of
HDR while preserving or enhancing its local contrast. The 99% middle intensities of the compressed
image are then remapped to a fixed 100:1 dynamic range to give the output image a consistent look.
localtonemap then applies gamma correction to produce the final image for display.

See Also
tonemap | locallapfilt

Introduced in R2016b

1 Functions

1-2282

makecform
Create color transformation structure

Syntax
C = makecform(type)
C = makecform(type,'WhitePoint',WP)
C = makecform(type,'AdaptedWhitePoint',WP)
C = makecform('adapt','WhiteStart',WPS,'WhiteEnd',WPE,'AdaptModel',model)

C = makecform('srgb2cmyk','RenderingIntent',intent)
C = makecform('cmyk2srgb','RenderingIntent',intent)

C = makecform('icc',src_profile,dest_profile)
C = makecform('icc',src_profile,dest_profile,'SourceRenderingIntent',
src_intent,'DestRenderingIntent',dest_intent)

C = makecform('mattrc',MatTRC,'Direction',direction)
C = makecform('mattrc',profile,'Direction',direction)
C = makecform('mattrc',profile,'Direction',direction,'RenderingIntent',
trc_intent)
C = makecform('graytrc',profile,'Direction',direction)
C = makecform('graytrc',profile,'Direction',direction,'RenderingIntent',
trc_intent)

C = makecform('clut',profile,LUTtype)
C = makecform('named',profile,space)

Description
The makecform function supports conversions between members of the family of device-independent
color spaces defined by the Commission Internationale de l'Éclairage (International Commission on
Illumination, or CIE). makecform also supports conversions to and from the sRGB and CMYK color
spaces. To perform a color space transformation, pass the color transformation structure created by
makecform as an argument to the applycform function.

C = makecform(type) creates a color transformation structure C that defines the color space
conversion specified by type.

C = makecform(type,'WhitePoint',WP) specifies the value of the reference white point, WP, for
'xyz2lab' or 'lab2xyz' conversions.

C = makecform(type,'AdaptedWhitePoint',WP) specifies the adapted white point, WP, for
'srgb2lab', 'lab2srgb', 'srgb2xyz', or 'xyz2srgb' conversions.

C = makecform('adapt','WhiteStart',WPS,'WhiteEnd',WPE,'AdaptModel',model)
creates a linear chromatic-adaptation color transformation using the chromatic-adaptation model,
model, starting with whitepoint WPS and ending with whitepoint WPE.

C = makecform('srgb2cmyk','RenderingIntent',intent) and

 makecform

1-2283

C = makecform('cmyk2srgb','RenderingIntent',intent) specify the rendering intent for
color transformations between sRGB IEC61966-2.1 and "Specifications for Web Offset Publications"
(SWOP) CMYK.

C = makecform('icc',src_profile,dest_profile) creates a color transformation based on
two ICC profiles, src_profile and dest_profile.

C = makecform('icc',src_profile,dest_profile,'SourceRenderingIntent',
src_intent,'DestRenderingIntent',dest_intent) creates a color transformation based on
two ICC color profiles, src_profile and dest_profile, specifying the rendering intent for the
source and destination profiles.

C = makecform('mattrc',MatTRC,'Direction',direction) creates a color transformation
based on a Matrix/Tone Reproduction Curve (MatTRC) model, in either the forward or inverse
direction.

C = makecform('mattrc',profile,'Direction',direction) creates a color transformation
based on the 'MatTRC' field of the ICC color profile profile, in either the forward or inverse
direction.

C = makecform('mattrc',profile,'Direction',direction,'RenderingIntent',
trc_intent) adds the option of specifying the rendering intent.

C = makecform('graytrc',profile,'Direction',direction) creates a monochrome
transformation based on a single-channel Tone Reproduction Curve (GrayTRC) contained in an ICC
color profile.

C = makecform('graytrc',profile,'Direction',direction,'RenderingIntent',
trc_intent) adds the option of specifying the rendering intent.

C = makecform('clut',profile,LUTtype) creates a color transformation based on a color
lookup table of the type LUTtype, contained in an ICC color profile, profile.

C = makecform('named',profile,space) creates a color transformation from a named color
profile (with a 'NamedColor2' field) to coordinates in the color space space.

Examples
Convert sRGB Image to L*a*b*

Convert RGB image to L*a*b*, assuming input image is sRGB.

rgb = imread('peppers.png');
cform = makecform('srgb2lab');
lab = applycform(rgb,cform);

Convert RGB to XYZ

Convert from a non-standard RGB color profile to the device-independent XYZ profile connection
space. Note that the ICC input profile must include a MatTRC value.

InputProfile = iccread('myRGB.icc');
C = makecform('mattrc',InputProfile.MatTRC, ...
 'direction','forward');

1 Functions

1-2284

Input Arguments
type — Color space conversion type
'cmyk2srgb' | 'srgb2cmyk' | 'lab2xyz' | 'xyz2lab' | ...

Color space conversion type, specified as one of the following character vectors. For a list of the
abbreviations used by the Image Processing Toolbox software for each color space, see “More About”
on page 1-2288.

Type Description
'cmyk2srgb' Convert from the CMYK color space to the sRGB color space.
'lab2lch' Convert from the L*a*b* to the L*ch color space.
'lab2srgb' Use lab2rgb instead.
'lab2xyz' Use lab2xyz instead.
'lch2lab' Convert from the L*ch to the L*a*b* color space.
'srgb2cmyk' Convert from the sRGB to the CMYK color space.
'srgb2lab' Use rgb2lab instead.
'srgb2xyz' Use rgb2xyz instead.
'upvpl2xyz' Convert from the u′v′L to the XYZ color space.
'uvl2xyz' Convert from the uvL to the XYZ color space.
'xyl2xyz' Convert from the xyY to the XYZ color space.
'xyz2lab' Use xyz2lab instead.
'xyz2srgb' Use xyz2rgb instead.
'xyz2upvpl' Convert from the XYZ to the u′v′L color space.
'xyz2uvl' Convert from the XYZ to the uvL color space.
'xyz2xyl' Convert from the XYZ to the xyY color space.

Data Types: char | string

WP — White point
[0.9642 1.0000 0.8249] (default) | 1-by-3 numeric vector

Reference or adapted white point, specified as a 1-by-3 numeric vector of XYZ values, scaled so that Y
= 1. Use the whitepoint function to create the WP vector. The default white point is the vector
returned by whitepoint('ICC').

To get an adaptive whitepoint value that is consistent with some published sRGB equations, set the
value of WP to [0.9504, 1.0000, 1.0888], which is the vector returned by whitepoint('D65').

WPS, WPE — Starting or ending white point
1-by-3 numeric vector

Starting or ending white point used for a linear chromatic-adaptation transform, specified as a 1-by-3
numeric vector of XYZ values, scaled so that Y = 1. Use the whitepoint function to create the WPS
or WPE vector.

 makecform

1-2285

intent — Rendering intent
'Perceptual' (default) | 'AbsoluteColorimetric' | 'RelativeColorimetric' |
'Saturation'

Rendering intent, specified as 'Perceptual', 'AbsoluteColorimetric',
'RelativeColorimetric', or 'Saturation'.

Rendering intents specify the style of reproduction that should be used when these profiles are
combined. For most devices, the range of reproducible colors is much smaller than the range of
colors represented by the PCS. Rendering intents define gamut mapping techniques. Each rendering
intent has distinct aesthetic and color-accuracy trade-offs.

Value Description
'AbsoluteColorimet
ric'

Maps all out-of-gamut colors to the nearest gamut surface while
maintaining the relationship of all in-gamut colors. This absolute rendering
contains color data that is relative to a perfectly reflecting diffuser.

'Perceptual'
(default)

Employs vendor-specific gamut mapping techniques for optimizing the
range of producible colors of a given device. The objective is to provide the
most aesthetically pleasing result even though the relationship of the in-
gamut colors might not be maintained. This media-relative rendering
contains color data that is relative to the device's white point.

'RelativeColorimet
ric'

Maps all out-of-gamut colors to the nearest gamut surface while
maintaining the relationship of all in-gamut colors. This media-relative
rendering contains color data that is relative to the device's white point.

'Saturation' Employs vendor-specific gamut mapping techniques for maximizing the
saturation of device colors. This rendering is generally used for simple
business graphics such as bar graphs and pie charts. This media-relative
rendering contains color data that is relative to the device's white point.

src_intent, dest_intent — Source or destination rendering intent
'Perceptual' (default) | 'AbsoluteColorimetric' | 'RelativeColorimetric' |
'Saturation'

Source or destination rendering intent for a color transformation between two ICC profiles, specified
as 'Perceptual', 'AbsoluteColorimetric', 'RelativeColorimetric', or 'Saturation'.
For more information, see intent.

trc_intent — Rendering intent for tone reproduction curve
'RelativeColorimetric' (default) | 'AbsoluteColorimetric'

Rendering intent for tone reproduction curve (MatTRC or grayTRC), specified as
'RelativeColorimetric' or 'AbsoluteColorimetric'. When 'AbsoluteColorimetric' is
specified, the colorimetry is referenced to a perfect diffuser, rather than to the media white point of
the ICC color profile, profile. For more information, see intent.

model — Chromatic-adaptation model
'Bradford' (default) | 'vonKries'

Chromatic-adaptation model used to create a linear chromatic-adaptation transform, specified as
'Bradford' or 'vonKries'.

profile — ICC color profile
struct

1 Functions

1-2286

ICC color profile, specified as a structure as returned by iccread. If profile is a named color
profile, it must have a NamedColor2 field.

src_profile, dest_profile — Source or destination ICC color profile
struct

Source or destination ICC color profile, specified as a structure as returned by iccread.

MatTRC — Matrix/tone reproduction curve model
struct

Matrix/tone reproduction curve model, specified as a structure. MatTRC is typically obtained from the
'MatTRC' field of an ICC profile structure returned by iccread, based on tags contained in an ICC
color profile. The MatTRC model contains an RGB-to-XYZ matrix and RGB tone reproduction curves.

direction — Direction to apply tone reproduction curve model
'forward' | 'inverse'

Direction to apply the tone reproduction curve model, specified as 'forward' or 'inverse'.

• For a multi-channel tone reproduction curve ('mattrc'), 'forward' applies the model in the
RGB to XYZ direction, and 'inverse' applies the model in the XYZ to RGB direction. For more
information, see section 6.3.1.2 of the International Color Consortium specification ICC.1:2001-04
or ICC.1:2001-12, available at https://www.color.org.

• For a single-channel tone reproduction curve ('graytrc'), 'forward' applies the model in the
device to PCS direction, and 'inverse' applies the model in the PCS to device direction.
"Device" here refers to the grayscale signal communicating with the monochrome device. "PCS" is
the Profile Connection Space of the ICC profile and can be either XYZ or L*a*b*, depending on the
'ConnectionSpace' field in profile.Header.

LUTtype — Lookup table type
'AToB0' (default) | 'AToB1' | 'BToA0' | 'Gamut' | 'Preview0' | ...

Lookup table type, specified as one of the following values. LUTtype specifies which 'clut' in the
profile structure is to be used. Each LUTtype listed in the table below contains the components of
an 8-bit or 16-bit LUTtag that performs a transformation between device colors and PCS colors using
a particular rendering. For more information about 'clut' transformations, see Section 6.5.7 of the
International Color Consortium specification ICC.1:2001-04 (Version 2) or Section 6.5.9 of
ICC.1:2001-12 (Version 4), available at https://www.color.org.

LUT Type Description
'AToB0' (default) Device to PCS: perceptual rendering intent
'AToB1' Device to PCS: media-relative colorimetric rendering intent
'AToB2' Device to PCS: saturation rendering intent
'AToB3' Device to PCS: ICC-absolute rendering intent
'BToA0' PCS to device: perceptual rendering intent
'BToA1' PCS to device: media-relative colorimetric rendering intent
'BToA2' PCS to device: saturation rendering intent
'BToA3' PCS to device: ICC-absolute rendering intent

 makecform

1-2287

https://www.color.org/index.xalter
https://www.color.org/index.xalter

LUT Type Description
'Gamut' Determines which PCS colors are out of gamut for a given device
'Preview0' PCS colors to the PCS colors available for soft proofing using the

perceptual rendering
'Preview1' PCS colors available for soft proofing using the media-relative colorimetric

rendering.
'Preview2' PCS colors to the PCS colors available for soft proofing using the

saturation rendering.

space — Color space
'PCS' | 'Device'

Color space, specified as 'PCS' or 'Device'. The 'PCS' option is always available and will return
L*a*b* or XYZ coordinates, depending on the 'ConnectionSpace' field in profile.Header. The
'Device' option, when active, returns device coordinates, the dimension depending on the
'ColorSpace' field in profile.Header. Coordinates are always returned in 'double' format.

Output Arguments
C — Color transformation
struct

Color transformation structure, returned as a struct.

More About
Color Space Abbreviations

The Image Processing Toolbox software uses the following abbreviations to represent color spaces.

Abbreviation Description
xyz 1931 CIE XYZ tristimulus values (2° observer)
xyl 1931 CIE xyY chromaticity values (2° observer), where x and y refer to the

xy-coordinates of the associated CIE chromaticity diagram, and l refers to Y
(luminance).

uvl 1960 CIE uvY values, where u and v refer to the uv-coordinates, and l
refers to Y (luminance).

upvpl 1976 CIE u′v′Y values, where up and vp refer to the u′v′-coordinates and l
refers to Y (luminance).

lab 1976 CIE L*a*b* values. Note that l refers to L* (CIE 1976 psychometric
lightness) rather than luminance (Y).

lch Polar transformation of CIE L*a*b* values, where c = chroma and h = hue
cmyk Standard values used by printers
srgb Standard computer monitor RGB values, (IEC 61966-2-1)

1 Functions

1-2288

References
[1] International Color Consortium. https://www.color.org.

See Also
lab2rgb | lab2xyz | rgb2lab | rgb2xyz | xyz2lab | xyz2rgb | applycform | iccread |
iccwrite | isicc | whitepoint

Introduced before R2006a

 makecform

1-2289

https://www.color.org/index.xalter

makeConstrainToRectFcn
Create rectangularly bounded drag constraint function

Note makeConstrainToRectFcn is not recommended. With the new ROIs, use the DrawingArea
property instead. For more information, see “Compatibility Considerations”.

Syntax
fcn = makeConstrainToRectFcn(roi,x,y)

Description
fcn = makeConstrainToRectFcn(roi,x,y) creates a position constraint function for draggable
tools of a given ROI type. The position of the tool is constrained by rectangular boundaries described
by position vectors x and y.

Examples

Constrain Drag of impoint to Image Limits

Display an image.

imshow('cell.tif')

Create an impoint object at the (x,y) coordinate (20,60). In an image, the positive y direction is
downwards.

h = impoint(gca,20,60);

Make a function that constrains the impoint to the image limits.

1 Functions

1-2290

x = get(gca,'XLim');
y = get(gca,'YLim');
fcn = makeConstrainToRectFcn('impoint',x,y);

Apply the constraint function to the impoint. Try dragging the point past the boundary of the image.
The constraint function prevents the point from crossing the image boundary.

setPositionConstraintFcn(h,fcn);

Input Arguments
roi — ROI type
'imellipse' | 'imfreehand' | 'imline' | 'impoint' | 'impoly' | 'imrect'

ROI type, specified as 'imellipse', 'imfreehand', 'imline', 'impoint', 'impoly', or
'imrect'.
Data Types: char | string

x — Rectangular boundaries in the x direction
2-element numeric vector

Rectangular boundaries in the x direction, specified as a 2-element numeric vector of the form [xmin
xmax].

y — Rectangular boundaries in the y direction
2-element numeric vector

Rectangular boundaries in the y direction, specified as a 2-element numeric vector of the form [ymin
ymax].

Output Arguments
fcn — Function handle
handle

Function handle, returned as a handle. For more information, see “Create Function Handle”.

Compatibility Considerations
makeConstrainToRectFcn is not recommended
Not recommended starting in R2018b

Starting in R2018b, a new set of ROI objects replaces the existing set of ROI objects. The new objects
provide more functional capabilities, such as face color transparency. The new classes also support
events that you can use to respond to changes in your ROI such as moving or being clicked. Although
there are no plans to remove the old ROI objects at this time, switch to the new ROIs to take
advantage of the additional capabilities and flexibility. For more information on creating ROIs using
the new ROI functions, see “Create ROI Shapes”.

With the new ROIs, you use the DrawingArea property of the ROI to specify the area in which you
can draw or move an ROI.

 makeConstrainToRectFcn

1-2291

Update Code

Update all instances of makeConstrainToRectFcn.

Discouraged Usage Recommended Replacement
This example uses the
makeConstrainToRectFcn function to create a
function that limits the area in which you can
create or move an ROI to the size of the
underlying image. By default, you can move an
ROI off the image area.

imshow('cell.tif')
h = impoint(gca,20,60);
% Make a function that constrains movement of the point
x = get(gca,'XLim');
y = get(gca,'YLim');
fcn = makeConstrainToRectFcn('impoint',x,y);;
% Apply the constraint function to the ROI.
setPositionConstraintFcn(h,fcn);

Here is equivalent code, replacing use of
makeConstrainToRectFcn function with the
DrawingArea property of the ROI. By default,
the new ROIs limit their creation and movement
to the size of the underlying image, so there is no
need to recreate that part of the example.
Instead, this example creates a 10-pixel margin
inside the image boundary where the ROI cannot
go.

I = imread('cell.tif');
imshow(I)
h = drawpoint(gca,'Position',[20 60])
[height width] = size(I); %Get image dimensions
h.DrawingArea = [10,10,(width-20),(height-20)];

See Also
imdistline | imellipse | imfreehand | imline | impoint | impoly | imrect

Topics
“ROI Migration”

Introduced in R2006a

1 Functions

1-2292

makehdr
Create high dynamic range image

Syntax
HDR = makehdr(files)
HDR = makehdr(imds)
HDR = makehdr(___ ,Name,Value)
HDR = makehdr(images,Name,Value)

Description
HDR = makehdr(files) creates the single-precision, high dynamic range (HDR) image HDR from
the set of spatially registered, low dynamic range (LDR) images in files.

HDR = makehdr(imds) creates the single-precision, high dynamic range image HDR from the set of
spatially registered LDR images stored as ImageDatastore object, imds.

HDR = makehdr(___ ,Name,Value) uses name-value pairs to control various aspects of the image
creation in addition to the input argument from any of the previous syntaxes.

Note The input image files must contain the Exchangeable Image File Format (EXIF) exposure
metadata. makehdr uses the middle exposure between the brightest and darkest images as the base
exposure for the HDR calculations. This value does not need to appear in any particular file. For more
information about calculating this middle exposure value, see “Algorithms” on page 1-2301.

HDR = makehdr(images,Name,Value) creates the single-precision HDR image HDR from the set
of spatially registered LDR images stored in a cell array images. Specify the exposure values for
images in the input cell array by using the name-value pair 'ExposureValues' or
'RelativeExposure'.

Note When input is a cell array of LDR images, you must specify either the exposure or the relative
exposure values as the second input argument. To specify the exposure values, use the name-value
pair 'ExposureValues'. To specify the relative exposure values, use the name-value pair
'RelativeExposure'.

Examples

Create HDR Image from Set of LDR Images

Create a high dynamic range (HDR) image from a set of low dynamic range (LDR) images that share
the same f-stop but have different exposure times.

Load six low dynamic range images into the workspace. Create a vector of their respective exposure
times. Display the images as a montage.

 makehdr

1-2293

files = {'office_1.jpg','office_2.jpg','office_3.jpg',...
 'office_4.jpg','office_5.jpg','office_6.jpg'};
expTimes = [0.0333 0.1000 0.3333 0.6250 1.3000 4.0000];
montage(files)

Combine the LDR images into an HDR image.

hdr = makehdr(files,'RelativeExposure',expTimes./expTimes(1));

Display the HDR image.

rgb = tonemap(hdr);
imshow(rgb)

1 Functions

1-2294

Create HDR Image Using Camera Response Function

Create a high dynamic range (HDR) image from a set of six low dynamic range (LDR) images that
share the same f-stop but have different exposure times. The estimated camera response function
values are computed from these LDR images and used to generate an HDR image.

Read the set of six spatially registered, LDR images into the workspace. Create an imageDatastore
object containing these images. Display the images as a montage.

setDir = fullfile(toolboxdir('images'),'imdata','office_*');
imds = imageDatastore(setDir);
montage(imds)

 makehdr

1-2295

Estimate the camera response function from images in the datastore.

crf = camresponse(imds);

Combine the LDR images into an HDR image by using the estimated camera response function
values.

hdr = makehdr(imds,'CameraResponse',crf);

Display the HDR image.

rgb = tonemap(hdr);
imshow(rgb)

1 Functions

1-2296

Create HDR Image from Cell Array of LDR Images

Create a high dynamic range (HDR) image from a cell array of low dynamic range (LDR) images that
share the same f-stop but have different exposure times.

Read six low dynamic range images into the workspace.

image1 = imread('office_1.jpg');
image2 = imread('office_2.jpg');
image3 = imread('office_3.jpg');
image4 = imread('office_4.jpg');
image5 = imread('office_5.jpg');
image6 = imread('office_6.jpg');

Create a cell array of LDR images in the workspace by using the cell construction operation, { }.

images = {image1,image2,image3,image4,image5,image6};

Display the images as a montage.

montage(images)

 makehdr

1-2297

Specify the exposure value for each LDR image in the input cell array.

exposure = [0.0333 0.1000 0.3333 0.6250 1.3000 4.0000];

Compute the relative exposure values with respect to the exposure value of the first LDR image in the
input cell array.

relExposure = exposure./exposure(1);

Combine the LDR images into an HDR image. Specify the relative exposure values for each image in
the cell array.

hdr = makehdr(images,'RelativeExposure',relExposure);

Display the HDR image.

1 Functions

1-2298

rgb = tonemap(hdr);
imshow(rgb)

Input Arguments
files — Set of spatially registered LDR images
string array | cell array of character vectors

Set of spatially registered LDR images, specified as a string array or a cell array of character vectors.
These images can be color or grayscale of any bit depth. However, the preferred bit depth for LDR
images is 8 or 16.
Data Types: char | string | cell

imds — Set of spatially registered LDR images
ImageDatastore object

Set of spatially registered LDR images, specified as an ImageDatastore object. These images can
be color or grayscale of any bit depth. However, the preferred bit depth for LDR images is 8 or 16.

images — Set of spatially registered LDR images
cell array

 makehdr

1-2299

Set of spatially registered LDR images, specified as a cell array. These images can be color or
grayscale of any bit depth. However, the preferred bit depth for LDR images is 8 or 16.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: makehdr(files,'RelativeExposure',[0.1 0.3 0.4]);

BaseFile — Name of file to use as base exposure
string scalar | character vector

Name of file to use as base exposure, specified as a string scalar or character vector.
Data Types: char | string

Note

• You can use only one of the 'BaseFile', 'ExposureValues', and 'RelativeExposure'
name-value pairs at a time.

• You must not specify 'BaseFile' name-value pair, when the input is a cell array of spatially
registered LDR images.

ExposureValues — Exposure value of each file in input set
numeric vector of positive values

Exposure value of each image in input set, specified as a numeric vector of positive values. The kth
element in the vector corresponds to the kth LDR image in the input set. An increase of one exposure
value (EV) corresponds to doubling the exposure. A decrease of one EV corresponds to halving the
exposure. If you specify this parameter, the function overrides the EXIF exposure metadata.
Data Types: single | double

RelativeExposure — Relative exposure value of each file in input set
numeric vector of positive values

Relative exposure value of each image in input set, specified as a numeric vector of positive values.
The kth element in the vector corresponds to the kth LDR image in the input set.

For example, an image with a relative exposure (RE) value of 0.5 has half as much exposure as an
image with an RE value of 1. Similarly, an image with an RE value of 3 has three times the exposure
of an image with an RE value of 1. If you specify this parameter, the function overrides the EXIF
exposure metadata.
Data Types: single | double

MinimumLimit — Minimum correctly exposed value
positive integer

Minimum correctly exposed value, specified as a positive integer. For each LDR image, pixels with a
smaller value than this minimum are considered underexposed and do not contribute to the final HDR

1 Functions

1-2300

image. By default, this minimum value is set to 2% of the maximum intensity allowed by the image
data type.
Data Types: single | double

MaximumLimit — Maximum correctly exposed value
positive integer

Maximum correctly exposed value, specified as a positive integer. For each LDR image, pixels with a
larger value than this maximum are considered overexposed and do not contribute to the final HDR
image. By default, this maximum value is set to 98% of the maximum intensity allowed by the image
data type.
Data Types: single | double

CameraResponse — Camera response function
n-by-1 vector | n-by-3 matrix

Camera response function, specified as a n-by-1 vector for grayscale images and n-by-3 matrix for
color images. The camera response function maps the log-exposure value (scene radiance) to the
intensity levels in the input images. The value of n is 2bit depth. For example, if the bit depth of the
input set of images is 8, then n is 256.

Note The 'MaximumLimit' and 'MinimumLimit' name-value pairs are ignored when
'CameraResponse' is specified.

Data Types: single | double

Output Arguments
HDR — High dynamic range image
m-by-n-by-3 numeric array

High dynamic range image, returned as an m-by-n-by-3 numeric array.
Data Types: single

Algorithms
The makehdr function calculates the middle exposure value by using the exposure values (EVs) of the
input images. The exposure value for each image is computed based on the aperture and shutter
speed. The aperture and shutter speed values are stored in the EXIF metadata of that input file or is
specified using the 'ExposureValues' name-value pair. The middle EV is calculated as an average
of the highest and lowest EVs and is used as the base exposure.

References
[1] Reinhard et al. High Dynamic Range Imaging 2006. Ch. 4.

[2] Debevec, P.E., and J. Malik. "Recovering High Dynamic Range Radiance Maps from Photographs."
In ACM SIGGRAPH 2008 classes, Article No. 31. New York, NY: ACM, 2008.

 makehdr

1-2301

See Also
hdrread | hdrwrite | localtonemap | tonemap | tonemapfarbman | camresponse

Topics
“Work with High Dynamic Range Images”
“Image Types in the Toolbox”

Introduced in R2008a

1 Functions

1-2302

makelut
Create lookup table for use with bwlookup

Syntax
lut = makelut(fun,n)

Description
lut = makelut(fun,n) creates a lookup table. fun is a function that creates a numeric output
from a binary neighborhood of size n-by-n. The function creates a lookup table by passing all possible
neighborhoods to fun, one at a time, and storing the outputs in vector lut.

Use the lookup table with bwlookup to perform nonlinear neighborhood filtering.

Examples

Make Lookup Table for 2-by-2 Neighborhood

Create a lookup table for 2-by-2 neighborhoods. In this example, the function passed to makelut
returns true if the number of 1s in the neighborhood is 2 or greater, and returns false otherwise.

f = @(x) (sum(x(:)) >= 2);
lut = makelut(f,2)

lut = 16×1

 0
 0
 0
 1
 0
 1
 1
 1
 0
 1
 ⋮

Input Arguments
fun — Function handle
handle

Function handle, specified as a handle. The function must accept an n-by-n binary matrix of 1s and 0s
as input and return a scalar.

For more information about function handles, see “Create Function Handle”.

 makelut

1-2303

n — Neighborhood size
2 | 3

Neighborhood size for the lookup table, specified as 2 or 3.

Output Arguments
lut — Lookup table
16-element numeric vector | 512-element numeric vector

Lookup table, returned as a 16-element numeric vector when n is 2, or a 512-element numeric vector
when n is 3.
Data Types: double

See Also
bwlookup

Introduced before R2006a

1 Functions

1-2304

makeresampler
Create resampling structure

Syntax
R = makeresampler(interpolant,padmethod)
R = makeresampler(Name,Value)

Description
R = makeresampler(interpolant,padmethod) creates a separable resampler structure for use
with tformarray. The interpolant argument specifies the interpolating kernel that the separable
resampler uses. The padmethod argument controls how the resampler interpolates or assigns values
to output elements that map close to or outside the edge of the input array.

R = makeresampler(Name,Value) creates a user-written resampler using name-value pairs.

Examples

Use Separable Resampler to Stretch an Image in the Y Direction

Read an image into the workspace and display it.

A = imread('moon.tif');
imshow(A)

 makeresampler

1-2305

Create a separable resampler.

resamp = makeresampler({'nearest','cubic'},'fill');

Create a spatial transformation structure (TFORM) that defines an affine transformation.

stretch = maketform('affine',[1 0; 0 1.3; 0 0]);

Apply the transformation, specifying the custom resampler.

B = imtransform(A,stretch,resamp);

Display the transformed image.

1 Functions

1-2306

imshow(B)

 makeresampler

1-2307

Input Arguments
interpolant — Interpolating kernel
'cubic' | 'linear' | 'nearest' | cell array

Interpolating kernel, specified as 'nearest', 'linear', 'cubic', or a cell array. The following
table lists the named interpolants.

Interpolant Description
'cubic' Cubic interpolation
'linear' Linear interpolation
'nearest' Nearest-neighbor interpolation

If you want to use a custom interpolating kernel, specify a cell array in either of these forms:

{half_width,
positive_half}

half_width is a positive scalar designating the half width of a
symmetric interpolating kernel. positive_half is a vector of
values regularly sampling the kernel on the closed interval [0
positive_half].

{half_width, interp_fcn} interp_fcn is a function handle that returns interpolating kernel
values, given an array of input values in the interval
[0 positive_half].

To specify the interpolation method independently along each dimension, combine both types of
interpolant specifications. The number of elements in the cell array must equal the number of
transform dimensions. For example, consider the following example of an interpolant value:

{'nearest','linear',{2 KERNEL_TABLE}}

In this example, the resampler uses nearest-neighbor interpolation along the first transform
dimension, linear interpolation along the second dimension, and custom table-based interpolation
along the third.
Data Types: char | string | cell

padmethod — Method used to assign values to output elements that map outside the input
array
'bound' | 'circular' | 'replicate' | 'symmetric' | 'fill'

Method used to assign values to output elements that map outside the input array, specified as one of
the following values.

Pad Method Description
'bound' Assigns values from the fill value array to points that map outside the input

array. Repeats border elements of the array for points that map inside the
array (same as 'replicate'). When interpolant is 'nearest', this pad
method produces the same results as 'fill'. 'bound' is like 'fill', but
avoids mixing fill values and input image values.

'circular' Pads array with circular repetition of elements within the dimension. Same
as padarray.

1 Functions

1-2308

Pad Method Description
'fill' Generates an output array with smooth-looking edges (except when using

nearest-neighbor interpolation). For output points that map near the edge of
the input array (either inside or outside), it combines input image and fill
values. When interpolant is 'nearest', this pad method produces the
same results as 'bound'.

'replicate' Pads array by repeating border elements of array. Same as padarray.
'symmetric' Pads array with mirror reflections of itself. Same as padarray.

For 'fill', 'replicate', 'circular', or 'symmetric', the resampling performed by
tformarray occurs in two logical steps:

1 Pad the array A infinitely to fill the entire input transform space.
2 Evaluate the convolution of the padded A with the resampling kernel at the output points

specified by the geometric map.

Each nontransform dimension is handled separately. The padding is virtual (accomplished by
remapping array subscripts) for performance and memory efficiency. If you implement a custom
resampler, you can implement these behaviors.
Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Type','separable' creates a separable resampler

Type — Resampler type
'separable' | 'custom'

Resampler type, specified as one of the following values.

Type Description
'separable' Create a separable resampler. If you specify this value, the only other

properties that you can specify are 'Interpolant' and
'PadMethod'. The result is equivalent to using the
makeresampler(interpolant,padmethod) syntax.

'custom' Create a customer resampler. If you specify this value, you must
specify the 'NDims' and 'ResampleFcn' properties and, optionally,
the 'CustomData' property.

Data Types: char | string

PadMethod — Method used to assign values to output elements that map close to or
outside edge of input array
character vector | string scalar

See the padmethod argument for more information.
Data Types: char | string

 makeresampler

1-2309

Interpolant — Interpolating kernel
character vector | string scalar | cell array

See the interpolant argument for more information.
Data Types: char | string | cell

NDims — Dimensionality custom resampler can handle
positive integer

Dimensionality custom resampler can handle, specified as a positive integer. Use a value of Inf to
indicate that the custom resampler can handle any dimension. If 'Type' is 'custom', you must
specify NDims.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

ResampleFcn — Function that performs the resampling
function handle

Function that performs the resampling, specified as a function handle. You call this function with the
following interface:

B = resample_fcn(A,M,TDIMS_A,TDIMS_B,FSIZE_A,FSIZE_B,F,R)

For more information about the input arguments to this function, see the help for tformarray. The
argument M is an array that maps the transform subscript space of B to the transform subscript space
of A. If A has N transform dimensions (N = length(TDIMS_A)) and B has P transform dimensions
(P = length(TDIMS_B)), then ndims(M) = P + 1, if N > 1 and P if N == 1, and size(M,P +
1) = N.

The first P dimensions of M correspond to the output transform space, permuted according to the
order in which the output transform dimensions are listed in TDIMS_B. (In general TDIMS_A and
TDIMS_B need not be sorted in ascending order, although some resamplers can impose such a
limitation.) Thus, the first P elements of size(M) determine the sizes of the transform dimensions of
B. The input transform coordinates to which each point is mapped are arrayed across the final
dimension of M, following the order given in TDIMS_A. M must be double. FSIZE_A and FSIZE_B are
the full sizes of A and B, padded with 1's as necessary to be consistent with TDIMS_A, TDIMS_B, and
size(A).
Data Types: function_handle

CustomData — User-defined data
numeric array | string scalar | character vector

User-defined data, specified using a string scalar, character vector, or numeric array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string

Output Arguments
R — Resampler
structure

Resampler, returned as a structure.

1 Functions

1-2310

Extended Capabilities
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
tformarray

Introduced before R2006a

 makeresampler

1-2311

maketform
Create N-D spatial transformation structure (TFORM)

Note The maketform function is not recommended for 2-D and 3-D geometric transformations. For
more information, see “Compatibility Considerations”.

Syntax
T = maketform('affine',A)
T = maketform('projective',P)

T = maketform('custom',ndims_in,ndims_out,forward_fcn,inverse_fcn,tdata)

T = maketform('box',tsize,outCornerStart,outCornerEnd)
T = maketform('box',inCorners,outCorners)

T = maketform('composite',T1,T2,...,TL)
T = maketform('composite',[T1,T2,...,TL])

Description
Create N-D Affine and Projective Transformations from Matrices

T = maketform('affine',A) creates a spatial transformation structure T for an N-dimensional
affine transformation specified as matrix A. The transformation structure T has both forward and
inverse transformations.

A spatial transformation structure (called a TFORM structure) can be used with the tformarray,
tformfwd, and tforminv functions.

T = maketform('projective',P) creates a TFORM structure for an N-dimensional projective
transformation specified as matrix P. T has both forward and inverse transformations.

Create Transformation from Forward or Inverse Functions

T = maketform('custom',ndims_in,ndims_out,forward_fcn,inverse_fcn,tdata)
creates a custom TFORM structure T based on user-provided function handles and parameters.
ndims_in and ndims_out are the numbers of input and output dimensions. forward_fcn and
inverse_fcn are function handles to forward and inverse functions. The tdata argument can be
any MATLAB array and is typically used to store parameters of the custom transformation. It is
accessible to forward_fcn and inverse_fcn via the tdata field of T.

Create Transformation for Spatial Referencing

T = maketform('box',tsize,outCornerStart,outCornerEnd) creates an N-dimensional
affine TFORM structure T that maps an input box defined by the coordinates of a corner, ones(1,N),
and size tsize, to an output box defined by the opposite corners outCornerStart and
outCornerEnd. The 'box' TFORM structure is typically used to register the row and column
subscripts of an image or array to some world coordinate system.

1 Functions

1-2312

T = maketform('box',inCorners,outCorners) creates an N-dimensional affine TFORM
structure T. The transformation maps an input box defined by the opposite corners inCorners(1,:)
and inCorners(2,:) to an output box defined by the opposite corners outCorners(1,:) and
outCorners(2,:).

Create Composite Transformation

T = maketform('composite',T1,T2,...,TL) creates a TFORM structure T that is a composite of
transformations T1, T2, ..., TL specified as comma-separated TFORM structures. The forward
and inverse functions of T are the functional compositions of the forward and inverse functions of the
component transformations T1, T2, ..., TL.

T = maketform('composite',[T1,T2,...,TL]) builds a TFORM structure T that is a composite
of transformations T1, T2, ..., TL specified in a vector. The forward and inverse functions of T
are the functional compositions of the forward and inverse functions of the component
transformations T1, T2, ..., TL.

Examples

Make TFORM and Apply Transformation to Image

Create a TFORM structure that defines an affine transformation.

T = maketform('affine',[.5 0 0; .5 2 0; 0 0 1])

T =

 struct with fields:

 ndims_in: 2
 ndims_out: 2
 forward_fcn: @fwd_affine
 inverse_fcn: @inv_affine
 tdata: [1×1 struct]

Apply the forward transformation.

tformfwd([10 20],T)

ans =

 15 40

Read an image into the workspace and display it.

I = imread('cameraman.tif');
imshow(I)

 maketform

1-2313

Apply the transformation to the image.

I2 = imtransform(I,T);

Display the original image and the transformed image.

imshow(I2)

1 Functions

1-2314

Input Arguments
A — Affine transformation
(N+1)-by-(N+1) matrix | (N+1)-by-N matrix

Affine transformation, specified as an (N+1)-by-(N+1) matrix or an (N+1)-by-N matrix, where N is the
dimensionality of the affine transformation. The matrix must be nonsingular and real.

 maketform

1-2315

If A is (N+1)-by-(N+1), the last column of A must be [zeros(N,1);1]. Otherwise, A is augmented
automatically, such that its last column is [zeros(N,1);1]. The matrix A defines a forward
transformation such that tformfwd(U,T), where U is a 1-by-N vector, returns a 1-by-N vector X,
such that X = U * A(1:N,1:N) + A(N+1,1:N).
Data Types: double

P — Projective transformation
(N+1)-by-(N+1) matrix

Projective transformation, specified as an (N+1)-by-(N+1) matrix, where N is the dimensionality of
the projective transformation. The matrix must be nonsingular and real. P(N+1,N+1) cannot be 0.

The matrix P defines a forward transformation such that tformfwd(U,T), where U is a 1-by-N vector,
returns a 1-by-N vector X, such that X = W(1:N)/W(N+1), where W = [U 1] * P.
Data Types: double

ndims_in — Number of input dimensions
positive integer

Number of input dimensions, specified as a positive integer.
Data Types: double

ndims_out — Number of output dimensions
positive integer

Number of output dimensions, specified as a positive integer.
Data Types: double

forward_fcn — Forward function
function handle | []

Forward function, specified as a function handle that supports the syntax X = forward_fcn(U,T).
U is a numpts-by-ndims_in matrix whose rows are points in the transformation input space and X is a
numpts-by-ndims_out matrix whose rows are points in the transformation output space.

forward_fcn can be empty.
Data Types: function_handle

inverse_fcn — Inverse function
function handle

Inverse function, specified as a function handle that supports the syntax U = inverse_fcn(X,T). U
is a numpts-by-ndims_in matrix whose rows are points in the transformation input space and X is a
numpts-by-ndims_out matrix whose rows are points in the transformation output space.

inverse_fcn can be empty. However, to use the TFORM struct T with the tformarray function, you
must define inverse_fcn.
Data Types: function_handle

tdata — Parameters of custom transformation
array

1 Functions

1-2316

Parameters of custom transformation, specified as an array.
Data Types: double

tsize — Size of input box
N-element vector of positive integers

Size of input box, specified as an N-element vector of positive integers.
Data Types: double

outCornerStart — Starting corner coordinates in output space
N-element vector

Starting corner coordinates in the output space, specified as an N-element vector.
outCornerStart(k) and outCornerEnd(k) must be different unless tsize(k) is 1, in which case the
affine scale factor along the k-th dimension is assumed to be 1.0.
Data Types: double

outCornerEnd — Opposite corner coordinates in output space
N-element vector

Opposite corner coordinates in the output space, specified as an N-element vector.
outCornerStart(k) and outCornerEnd(k) must be different unless tsize(k) is 1, in which case the
affine scale factor along the k-th dimension is assumed to be 1.0.
Data Types: double

inCorners — Corner coordinates in input space
N-by-2 numeric matrix

Corner coordinates in the input space, specified as an N-by-2 numeric matrix. The first column
represents the coordinates of one corner and the second column represents the coordinates of the
opposite corner. inCorners(1,k) and inCorners(2,k) must be different unless outCorners(1,k) and
outCorners(2,k) are the same.
Data Types: double

outCorners — Corner coordinates in output space
N-by-2 numeric matrix

Corner coordinates in the output space, specified as an N-by-2 numeric matrix. The first column
represents the coordinates of one corner and the second column represents the coordinates of the
opposite corner. outCorners(1,k) and outCorners(2,k) must be different unless inCorners(1,k)
and inCorners(2,k) are the same.
Data Types: double

T1,T2,...,TL — Component transformations
TFORM structures

Component transformations, specified as TFORM structures.

The inputs T1, T2, ..., TL are ordered just as they would be when using the standard notation
for function composition: T = T1 ⚬ T2 ⚬ ... ⚬ TL. Composition is associative, but not commutative.
This means that to apply T to the input U, you must apply TL first and T1 last. Thus if L = 3, for

 maketform

1-2317

example, then tformfwd(U,T) is the same as tformfwd(tformfwd(tformfwd(U,T3),T2),T1).
The components T1 through TL must be compatible in terms of the numbers of input and output
dimensions.

T has a defined forward transformation function only if all the component transformations have
defined forward transform functions. T has a defined inverse transformation function only if all the
component transformations have defined inverse transform functions.
Data Types: function_handle

Output Arguments
T — Multidimensional spatial transformation
TFORM structure

Multidimensional spatial transformation, returned as a TFORM structure.

Compatibility Considerations
maketform is not recommended for 2-D and 3-D geometric transformations
Not recommended starting in R2018b

The maketform function is not recommended for 2-D and 3-D geometric transformations. Instead,
create a 2-D or 3-D geometric transformation in these ways:

• Define a 2-D affine or projective transformation from a 3-by-3 matrix using the affine2d or
projective2d objects.

• Define a 3-D affine transformation from a 4-by-4 matrix using the affine3d object.
• Define a 2-D affine, projective, polynomial, or other nonlinear transformation from pairs of control

points using the fitgeotrans function.
• Define a 2-D or 3-D geometric transformation from point-wise mapping functions using the

geometricTransform2d or geometricTransform3d object.

For more information about 2-D and 3-D geometric transformation objects, see “2-D and 3-D
Geometric Transformation Process Overview”.

This table shows a few syntaxes of maketform with the recommended replacement code.

Discouraged Usage Recommended Replacement
Create a 2-D affine transformation from a 3-by-3
matrix A.

A = [0.5 0 0; 0.5 2 0; 0 0 1];
T = maketform('affine',A);

Create an affine2d object.

A = [0.5 0 0; 0.5 2 0; 0 0 1];
T = affine2d(A);

Create a 2-D affine transformation that maps
each row of U to the corresponding row of X. The
U and X arguments define the corners of triangles
as a 3-by-2 matrix.

U = [21.6 64.2; 71.1 70.3; 28.7 48.3];
X = [10.7 30.6; 40.5 50.6; 20.6 10.7];
T = maketform("affine",U,X);

Create an affine2d object using the
fitgeotrans function.

U = [21.6 64.2; 71.1 70.3; 28.7 48.3];
X = [10.7 30.6; 40.5 50.6; 20.6 10.7];
T = fitgeotrans(U,X,"affine");

1 Functions

1-2318

Discouraged Usage Recommended Replacement
Create a 2-D projective transformation that maps
each row of U to the corresponding row of X. The
U and X arguments define the corners of
quadrangles as a 4-by-2 matrix.

U = [121 94; 319 79; 128 292; 352 281];
X = [165 113; 354 130; 143 285; 354 312];
T = maketform("projective",U,X);

Create a projective2d object using the
fitgeotrans function.

U = [121 94; 319 79; 128 292; 352 281];
X = [165 113; 354 130; 143 285; 354 312];
T = fitgeotrans(U,X,"projective");

Extended Capabilities
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
tformfwd | tforminv | fliptform | tformarray

Topics
“N-Dimensional Spatial Transformations”

Introduced before R2006a

 maketform

1-2319

mat2gray
Convert matrix to grayscale image

Syntax
I = mat2gray(A,[amin amax])
I = mat2gray(A)

Description
I = mat2gray(A,[amin amax]) converts the matrix A to a grayscale image I that contains values
in the range 0 (black) to 1 (white). amin and amax are the values in A that correspond to 0 and 1 in I.
Values less than amin are clipped to 0, and values greater than amax are clipped to 1.

I = mat2gray(A) sets the values of amin and amax to the minimum and maximum values in A.

Examples

Convert a Matrix into an Image

Read an image and display it.

I = imread('rice.png');
figure
imshow(I)

1 Functions

1-2320

Perform an operation that returns a numeric matrix. This operation looks for edges.

J = filter2(fspecial('sobel'),I);
min_matrix = min(J(:))

min_matrix = -779

max_matrix = max(J(:))

max_matrix = 560

Note that the matrix has data type double with values outside of the range [0,1], including negative
values.

Display the result of the operation. Because the data range of the matrix is outside the default display
range of imshow, every pixel with a positive value displays as white, and every pixel with a negative
or zero value displays as black. It is challenging to see the edges of the grains of rice.

figure
imshow(J)

Convert the matrix into an image. Display the maximum and minimum values of the image.

K = mat2gray(J);
min_image = min(K(:))

min_image = 0

max_image = max(K(:))

max_image = 1

Note that values are still data type double, but that all values are in the range [0, 1].

 mat2gray

1-2321

Display the result of the conversion. Pixels show a range of grayscale colors, which makes the
location of the edges more apparent.

figure
imshow(K)

Input Arguments
A — Input image
numeric matrix

Input image, specified as a numeric matrix.

[amin amax] — Input black and white values
2-element numeric vector

Input black and white values, specified as a 2-element numeric vector.

• Values in input image A that are less than or equal to amin are mapped to the value 0 in the
intensity image, I.

• Values in A that are greater than or equal to amax are mapped to the value 1 in I.

Output Arguments
I — Output intensity image
numeric matrix

Output intensity image, returned as a numeric matrix with values in the range [0, 1].

1 Functions

1-2322

Data Types: double

Extended Capabilities
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on a GPU”.

See Also
rescale | gray2ind | ind2gray | im2gray

Introduced before R2006a

 mat2gray

1-2323

maxhessiannorm
Maximum of Frobenius norm of Hessian of matrix

Syntax
C = maxhessiannorm(I)
C = maxhessiannorm(I,thickness)

Description
C = maxhessiannorm(I) returns the maximum of Frobenius norm of the Hessian of grayscale
image I.

C = maxhessiannorm(I,thickness) also specifies the thickness of tubular structures.

Examples

Find Threads Using Maximum of Frobenius Norm of Image Hessian

Read and display an image that contains tubular threads of varying thicknesses.

I = imread('threads.png');
imshow(I)

1 Functions

1-2324

Calculate the maximum of the Frobenius norm of the Hessian of the image, with tubular thickness set
to seven pixels.

C = maxhessiannorm(I,7);

Create an enhanced version of the image highlighting threads seven pixels thick. Use a structure
sensitivity threshold equal to half of the maximum of the Frobenius norm of the Hessian. In the
image, threads show up dark against a light background, so specify the object polarity as 'dark'.
Display the enhanced image.

J = fibermetric(I,7,'ObjectPolarity','dark','StructureSensitivity',0.5*C);
imshow(J)
title('Enhanced Tubular Structures 7 Pixels Thick')

 maxhessiannorm

1-2325

Threshold the enhanced image to create a binary mask containing only the threads with the specified
thickness.

BW = imbinarize(J);

Display the mask over the original image using the labeloverlay function. The overlay has a blue
tint where the mask is true, meaning those threads have the specified thickness.

maskl = labeloverlay(I,BW);
imshow(maskl)
title('Detected Tubular Structures 7 Pixels Thick')

1 Functions

1-2326

Input Arguments
I — Image with elongated or tubular structures
2-D grayscale image

Image with elongated or tubular structures, specified as 2-D grayscale image.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

thickness — Thickness of tubular structures
4 (default) | positive integer

Thickness of tubular structures in pixels, specified as a positive integer.

 maxhessiannorm

1-2327

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
C — Maximum Hessian norm
numeric scalar

Maximum of the Frobenius norm of the Hessian of grayscale image I, returned as a numeric scalar.
Data Types: double

Tips
• maxhessiannorm is a helper function to fibermetric, which changed default behavior in

R2018b. If you want to reproduce the prior default behavior, then specify
StructureSensitivity as 0.5*maxhessiannorm(I).

References
[1] Frangi, Alejandro F., et al. Multiscale vessel enhancement filtering. Medical Image Computing and

Computer-Assisted Intervention — MICCAI'98. Springer Berlin Heidelberg, 1998. pp. 130–
137.

See Also
edge | imgradient | fibermetric

Introduced in R2018b

1 Functions

1-2328

mean2
Average or mean of matrix elements

Syntax
B = mean2(A)

Description
B = mean2(A) computes the mean of all values in array A.

Examples

Compute Mean of an Image

Read an image into the workspace.

I = imread('liftingbody.png');

Compute the mean.

meanval = mean2(I)

meanval = 140.2991

Input Arguments
A — Input data
numeric array | logical array

Input data, specified as a numerical or logical array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Output Arguments
B — Mean
numeric scalar

Mean of input data, returned as a numeric scalar. If the data type of A is single, then the data type
of B is also single. Otherwise, the data type of B is double.
Data Types: single | double

 mean2

1-2329

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

mean2 supports the generation of C code (requires MATLAB Coder). For more information, see “Code
Generation for Image Processing”.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on a GPU”.

See Also
std2 | corr2 | mean | std

Introduced before R2006a

1 Functions

1-2330

measureChromaticAberration
Measure chromatic aberration at slanted edges using Imatest eSFR chart

Syntax
aberrationTable = measureChromaticAberration(chart)
aberrationTable = measureChromaticAberration(chart,Name,Value)

Description
aberrationTable = measureChromaticAberration(chart) measures the chromatic
aberration at all slanted edge regions of interest (ROIs) of an Imatest eSFR chart [1].

aberrationTable = measureChromaticAberration(chart,Name,Value) measures the
chromatic aberration with additional parameters to specify a subset of ROIs to measure.

Examples

Measure Chromatic Aberration of Slanted Edges on eSFR Chart

Read an image of an eSFR chart into the workspace.

I = imread('eSFRTestImage.jpg');

Create an esfrChart object, then display the chart with ROI annotations. The 60 slanted edge ROIs
are labeled with green numbers.

chart = esfrChart(I);
displayChart(chart,'displayColorROIs',false,...
 'displayGrayROIs',false,'displayRegistrationPoints',false)

 measureChromaticAberration

1-2331

Measure the chromatic aberration in all slanted edge ROIs. Examine the contents of the returned
table, chTable, for a single ROI.

chTable = measureChromaticAberration(chart);
ROIIndex = 3;
chTable(3,:)

ans=1×5 table
 ROI aberration percentAberration edgeProfile normalizedEdgeProfile
 ___ __________ _________________ _____________ _____________________

 3 1.5261 0.11843 {336x4 table} {336x4 table}

Store the normalized edge profile in a separate variable, edgeProfile, for clarity. Examine the
normalized color intensity of the first and last pixel of edgeProfile.

edgeProfile = chTable.normalizedEdgeProfile{ROIIndex};
edgeProfile([1 end],:)

ans=2×4 table
 normalizedEdgeProfile_R normalizedEdgeProfile_G normalizedEdgeProfile_B normalizedEdgeProfile_Y
 _______________________ _______________________ _______________________ _______________________

 -0.0014365 0.0072757 0.0089823 0.0052007
 0.98138 0.9884 0.98325 0.98792

Plot the normalized intensity for the ROI.

1 Functions

1-2332

npix = length(edgeProfile.normalizedEdgeProfile_R);
plot(1:npix,edgeProfile.normalizedEdgeProfile_R,'r', ...
 1:npix,edgeProfile.normalizedEdgeProfile_G,'g', ...
 1:npix,edgeProfile.normalizedEdgeProfile_B,'b')
xlabel('Pixel')
ylabel('Normalized Intensity')
title(['ROI ' num2str(ROIIndex) ' with Aberration ' num2str(chTable.aberration(ROIIndex))])

The blue channel has a higher intensity than the red and green channels immediately before the
edge, and a lower intensity than the red and green channels immediately after the edge. This
difference in intensity contributes to the measured value of chromatic aberration.

The measured values of aberration and percentAberration for this edge are relatively small.
Visual inspection of the image confirms that the sides of the edge do not have a strong color tint.

Input Arguments
chart — eSFR chart
esfrChart object

eSFR chart, specified as an esfrChart object.

 measureChromaticAberration

1-2333

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'ROIIndex',2 measures the chromatic aberration only of ROI 2.

ROIIndex — ROI indices
1:60 (default) | scalar | vector

ROI indices to include in measurements, specified as the comma-separated pair consisting of
'ROIIndex' and a scalar or vector of integers in the range [1, 60]. The indices match the ROI
numbers displayed by displayChart.

Note measureChromaticAberration uses the intersection of ROIs specified by 'ROIIndex' and
'ROIOrientation'.

Example: 29:32
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

ROIOrientation — ROI orientation
'both' (default) | 'vertical' | 'horizontal'

ROI orientation, specified as the comma-separated pair consisting of 'ROIOrientation' and
'both', 'vertical', or 'horizontal'. The measureChromaticAberration function performs
measurements only on ROIs with the specified orientation.

Note measureChromaticAberration uses the intersection of ROIs specified by 'ROIIndex' and
'ROIOrientation'.

Example: 'vertical'
Data Types: char | string

Output Arguments
aberrationTable — Chromatic aberration measurements
m-by-5 table

Chromatic aberration measurements, returned as an m-by-5 table. m is the number of sampled ROIs.

The five columns represent these variables:

Variable Description
ROI Index of the sampled ROI. The value of ROI is an integer in the range [1,

60].

1 Functions

1-2334

Variable Description
aberration Chromatic aberration, measured as the area between the maximum and

the minimum red, green, and blue edge intensity profiles. The measured
chromatic aberration indicates perceptual chromatic aberration.
aberration is a scalar of type double.

percentAberration Aberration, expressed as a percentage of the distance in pixels between
the center of the image and the center of the ROI.

edgeProfile Intensity profile of each color channel across the edge in the ROI.
edgeProfile is an s-by-4 table, where s is the number of samples across
the edge. The four columns represent the red, green, blue, and luminance
values, averaged along the edge.

Luminance (Y) is a linear combination of the red (R), green (G), and blue
(B) channels according to:

Y = 0.213R + 0.715G + 0.072B

Note The sampling rate for the chromatic aberration measurement is
about four times the sampling rate of the image.

normalizedEdgeProf
ile

Intensity profile, normalized between [0, 1] using 5% of the front end and
tail end of data. normalizedEdgeProfile is an s-by-4 table with a
similar structure to edgeProfile.

Tips
• Chromatic aberration is best measured at slanted edges that are:

• Roughly orthogonal to the line connecting the center of the image and the center of the ROI
• Farthest from the center of the image

Because chromatic aberration increases radially from the center of the image, measurements at
slanted edges near the center of the image can be ignored.

• The absolute chromatic aberration reported in the aberration field is measured in the horizontal
or vertical direction. However, chromatic aberration is a radial phenomenon, and radial
measurements are more accurate.

References
[1] Imatest. "Esfr". https://www.imatest.com/mathworks/esfr/.

See Also
measureSharpness | displayChart

Topics
“Anatomy of Imatest Extended eSFR Chart”
“Evaluate Quality Metrics on eSFR Test Chart”

Introduced in R2017b

 measureChromaticAberration

1-2335

https://www.imatest.com/mathworks/esfr/

measureColor
Measure color reproduction using test chart

Syntax
colorTable = measureColor(chart)
[colorTable,colorCorrectionMatrix] = measureColor(chart)

Description
colorTable = measureColor(chart) measures the color values at all color regions of interest
(ROIs) of an Imatest eSFR chart [1] or an X-Rite ColorChecker Classic chart [2].

[colorTable,colorCorrectionMatrix] = measureColor(chart) also returns a color
correction matrix computed using a linear least squares fit.

Examples

Measure Color Accuracy of eSFR Chart

Read an image of an eSFR chart into the workspace.

I = imread('eSFRTestImage.jpg');

Create an esfrChart object, then display the chart with ROI annotations. The 16 color patch ROIs
are labeled with white numbers.

chart = esfrChart(I);
displayChart(chart,'displayEdgeROIs',false, ...
 'displayGrayROIs',false,'displayRegistrationPoints',false)

1 Functions

1-2336

Measure the color in all color patch ROIs.

colorTable = measureColor(chart)

colorTable=16×8 table
 ROI Measured_R Measured_G Measured_B Reference_L Reference_a Reference_b Delta_E
 ___ __________ __________ __________ ___________ ___________ ___________ _______

 1 67 57 58 38.586 7.541 7.0812 15.15
 2 156 127 122 62.182 13.225 13.826 9.8745
 3 73 95 152 49.369 -0.51463 -20.062 18.455
 4 62 79 58 43.926 -6.8587 17.278 14.849
 5 104 109 171 53.415 9.457 -22.822 12.99
 6 118 175 187 69.95 -20.889 -0.21752 13.123
 7 214 192 69 78.643 1.8052 67.091 9.2399
 8 154 73 138 46.853 41.998 -17.056 5.1282
 9 62 120 182 51.05 -15.166 -22.416 22.813
 10 55 80 185 40.811 8.7346 -44.265 22.782
 11 79 135 72 55.716 -23.419 28.839 9.4826
 12 152 53 77 42.759 44.167 7.9536 5.4168
 13 169 91 52 58.211 27.58 47.578 15.988
 14 142 63 87 47.012 39.15 8.5453 11.651
 15 91 67 102 40.591 17.951 -9.525 10.897
 16 152 183 80 70.505 -16.318 49.811 10.253

Display the color accuracy measurements. Each square color patch is the measured color, and the
thick surrounding border is the reference color for that ROI. Each color accuracy measurement is

 measureColor

1-2337

displayed as Delta_E, the Euclidean distance between measured and reference colors in the CIE
1976 L*a*b* color space. More accurate colors have a smaller Delta_E.

figure
displayColorPatch(colorTable)

For an alternative representation of the color accuracy measurements, plot the measured and
reference colors in the CIE 1976 L*a*b* color space on a chromaticity diagram. Red circles indicate
the reference color. Green circles indicate the measured color of each color patch. The chromaticity
diagram does not portray the brightness of color.

figure
plotChromaticity(colorTable)

1 Functions

1-2338

ROIs with a shorter distance between the reference and measurement points have smaller differences
in chromaticity, which can contribute to a smaller value of Delta_E. However, brightness also
contributes to the value of Delta_E. For example, even though the reference and measurement
points for ROI 13 are near each other on the chromaticity diagram, they have a large Delta_E
because of their large difference in brightness.

Measure Color of ColorChecker Chart

Read an image of an X-Rite® ColorChecker® chart into the workspace.

I = imread('colorCheckerTestImage.jpg');

Create a colorChecker object, then display the chart with ROI annotations.

chart = colorChecker(I);
displayChart(chart)

 measureColor

1-2339

Measure the color in each color patch ROI.

colorTable = measureColor(chart)

colorTable=24×9 table
 ROI Color Measured_R Measured_G Measured_B Reference_L Reference_a Reference_b Delta_E
 ___ ________________ __________ __________ __________ ___________ ___________ ___________ _______

 1 {'DarkSkin' } 160 129 120 37.54 14.37 14.92 20.193
 2 {'LightSkin' } 229 200 191 64.66 19.27 17.5 22.587
 3 {'BlueSky' } 146 191 241 49.32 -3.82 -22.54 27.312
 4 {'Foliage' } 130 161 117 43.46 -12.74 22.72 20.404
 5 {'BlueFlower' } 175 187 248 54.94 9.61 -24.79 23.073
 6 {'BluishGreen' } 155 232 226 70.48 -32.26 -0.37 18.284
 7 {'Orange' } 255 161 99 62.73 35.83 56.5 16.114
 8 {'PurplishBlue'} 130 164 254 39.43 10.75 -45.17 28.889
 9 {'ModerateRed' } 252 146 160 50.57 48.64 16.67 23.601
 10 {'Purple' } 139 118 175 30.1 22.54 -20.87 24.672
 11 {'YellowGreen' } 187 226 110 71.77 -24.13 58.19 15.21
 12 {'OrangeYellow'} 241 194 76 71.51 18.24 67.37 14.148
 13 {'Blue' } 96 131 255 28.37 15.42 -49.8 33.34
 14 {'Green' } 118 209 130 54.38 -39.72 32.27 22.461
 15 {'Red' } 234 116 114 42.43 51.05 28.62 21.87
 16 {'Yellow' } 241 227 105 81.8 2.67 80.41 23.495

1 Functions

1-2340

 ⋮

Input Arguments
chart — Test chart
esfrChart object | colorChecker object

Test chart, specified as an esfrChart object or a colorChecker object.

Output Arguments
colorTable — Color values
p-by-8 table

Color values in each color patch, returned as a p-by-8 table, where p is the number of color patches
on the test chart, chart.

The eight columns represent these variables:

Variable Description
ROI Index of the sampled ROI. The value of ROI is an integer in the range [1,

16]. The indices match the ROI numbers displayed by displayChart.
Measured_R Mean value of red channel pixels in an ROI. Measured_R is a scalar of the

same data type as chart.Image, which can be of type single, double,
uint8, or uint16.

Measured_G Mean value of green channel pixels in an ROI. Measured_G is a scalar of
the same data type as chart.Image.

Measured_B Mean value of blue channel pixels in an ROI. Measured_B is a scalar of the
same data type as chart.Image.

Reference_L Reference L* value corresponding to the ROI. Reference_L is a scalar of
type double.

Reference_a Reference a* value corresponding to the ROI. Reference_a is a scalar of
type double.

Reference_b Reference b* value corresponding to the ROI. Reference_b is a scalar of
type double.

Delta_E Euclidean color distance between the measured and reference color
values, as outlined in CIE 1976.

The reference L*a*b* values of the colorChecker object are for the "After November 2014" version
of the X-Rite ColorChecker chart. The white point of the reference values is the CIE standard
illuminant D50.

colorCorrectionMatrix — Color correction coefficients
4-by-3 matrix

Color correction coefficients, returned as a 4-by-3 matrix. colorCorrectionMatrix represents an
affine transformation that you can use to color-correct images that are captured under similar
lighting conditions as the test chart image.

 measureColor

1-2341

Data Types: double

References
[1] Imatest. "Esfr". https://www.imatest.com/mathworks/esfr/.

[2] X-Rite Photo and Video. "ColorChecker Classic". https://xritephoto.com/colorchecker-classic

See Also
displayColorPatch | plotChromaticity | measureIlluminant

Topics
“Calculate CIE94 Color Difference of Colors on Test Chart”
“Correct Colors Using Color Correction Matrix”
“Evaluate Quality Metrics on eSFR Test Chart”

Introduced in R2017b

1 Functions

1-2342

https://www.imatest.com/mathworks/esfr/
https://xritephoto.com/colorchecker-classic

measureIlluminant
Measure scene illuminant using test chart

Syntax
illuminant = measureIlluminant(chart)

Description
illuminant = measureIlluminant(chart) measures the scene illuminant using the gray
regions of interest (ROIs) of an Imatest eSFR chart [1] or an X-Rite ColorChecker Classic chart [2].

Examples

Measure Illuminant of eSFR Chart

This example shows how to measure the illuminant of an eSFR chart using the gray patch ROIs. The
example then white balances the image of the eSFR chart.

Read an image of an eSFR chart into the workspace.

I = imread('eSFRTestImage.jpg');

Create an esfrChart object. Display the chart, highlighting the 20 gray patches.

chart = esfrChart(I);
displayChart(chart,'displayEdgeROIs',false, ...
 'displayColorROIs',false,'displayRegistrationPoints',false)

 measureIlluminant

1-2343

Estimate the illuminant using the gray patch ROIs. The illuminant has a stronger blue component
than the red and green. This result is consistent with the image of the test chart, which has a blue
tint.

illum = measureIlluminant(chart)

illum = 1×3

 110.9147 116.0008 123.2339

White balance the chart image and display the result. The white balanced image has less of a blue
tint, especially in the middle gray patches and over the background of the image.

J = chromadapt(I,illum);
imshow(J)
title('White Balanced Test Chart Image')

1 Functions

1-2344

You can use the estimated illuminant to white balance other images acquired under similar lighting
conditions.

Input Arguments
chart — Test chart
esfrChart object | colorChecker object

Test chart, specified as an esfrChart object or a colorChecker object.

Output Arguments
illuminant — Scene illuminant
3-element row vector

Scene illuminant, returned as a 3-element row vector.
Data Types: double

Tips
• To white-balance an image, use the chromadapt function.
• It is recommended to measure the scene illuminant using linear image data. If you need to

linearize your image data, then you can use the rgb2lin function.

 measureIlluminant

1-2345

References
[1] Imatest. "Esfr". https://www.imatest.com/mathworks/esfr/.

[2] X-Rite Photo and Video. "ColorChecker Classic". https://xritephoto.com/colorchecker-classic

See Also
measureColor | chromadapt

Topics
“Comparison of Auto White Balance Algorithms”
“Anatomy of Imatest Extended eSFR Chart”
“Evaluate Quality Metrics on eSFR Test Chart”

Introduced in R2017b

1 Functions

1-2346

https://www.imatest.com/mathworks/esfr/
https://xritephoto.com/colorchecker-classic

measureNoise
Measure noise using Imatest eSFR chart

Syntax
noiseTable = measureNoise(chart)

Description
noiseTable = measureNoise(chart) measures the noise levels using the gray regions of
interest (ROIs) of an Imatest eSFR chart [1].

Examples

Measure Noise of eSFR Chart

Read an image of an eSFR chart into the workspace.

I = imread('eSFRTestImage.jpg');

Create an esfrChart object, then display the chart with ROI annotations. The 20 gray patch ROIs
are labeled with red numbers.

chart = esfrChart(I);
displayChart(chart,'displayColorROIs',false, ...
 'displayEdgeROIs',false,'displayRegistrationPoints',false)

 measureNoise

1-2347

Measure the noise in all gray patch ROIs.

noiseTable = measureNoise(chart)

noiseTable=20×22 table
 ROI MeanIntensity_R MeanIntensity_G MeanIntensity_B RMSNoise_R RMSNoise_G RMSNoise_B PercentNoise_R PercentNoise_G PercentNoise_B SignalToNoiseRatio_R SignalToNoiseRatio_G SignalToNoiseRatio_B SNR_R SNR_G SNR_B PSNR_R PSNR_G PSNR_B RMSNoise_Y RMSNoise_Cb RMSNoise_Cr
 ___ _______________ _______________ _______________ __________ __________ __________ ______________ ______________ ______________ ____________________ ____________________ ____________________ ______ ______ ______ ______ ______ ______ __________ ___________ ___________

 1 9.4147 11.349 11.099 2.6335 1.9417 2.3106 1.0328 0.76145 0.90613 3.5749 5.8448 4.8036 11.065 15.335 13.631 39.72 42.367 40.856 1.6901 0.5813 1.0865
 2 9.2873 10.896 10.503 2.405 2.1309 2.0966 0.94312 0.83564 0.82218 3.8617 5.1132 5.0099 11.736 14.174 13.996 40.509 41.56 41.701 1.7357 0.2788 0.97788
 3 13.488 14.95 15.017 2.4966 2.1156 2.5593 0.97907 0.82964 1.0036 5.4027 7.0668 5.8676 14.652 16.984 15.369 40.184 41.622 39.968 1.8095 0.77675 1.0903
 4 20.411 21.689 22.946 2.4395 2.0206 2.5556 0.95668 0.79241 1.0022 8.3666 10.734 8.9791 18.451 20.615 19.065 40.385 42.021 39.981 1.8048 0.69788 0.84669
 5 29.189 34.144 38.442 3.0436 2.8317 4.1125 1.1936 1.1105 1.6127 9.5903 12.058 9.3476 19.637 21.625 19.414 38.463 39.09 35.849 2.3507 1.3549 1.2242
 6 35.009 40.337 47.544 3.2201 2.7705 3.6994 1.2628 1.0865 1.4508 10.872 14.56 12.852 20.726 23.263 22.179 37.973 39.28 36.768 2.3973 1.297 1.102
 7 50.768 58.206 69.539 3.3931 3.2661 3.734 1.3306 1.2808 1.4643 14.962 17.821 18.623 23.5 25.019 25.401 37.519 37.85 36.687 2.787 0.98523 0.76701
 8 61.871 69.98 80.779 3.4734 3.0966 3.1214 1.3621 1.2144 1.2241 17.813 22.599 25.879 25.015 27.082 28.259 37.316 38.313 38.244 2.6049 0.53852 1.0205
 9 77.115 83.999 96.869 3.1467 2.9973 3.5088 1.234 1.1754 1.376 24.507 28.025 27.607 27.786 28.951 28.821 38.174 38.596 37.228 2.545 0.91262 0.89469
 10 88.552 98.426 113.87 3.1846 2.8538 3.1835 1.2488 1.1191 1.2484 27.807 34.49 35.767 28.883 30.754 31.07 38.07 39.022 38.073 2.4241 0.68448 0.84718
 11 107.25 116.97 132.94 3.3128 3.0561 3.2921 1.2991 1.1985 1.291 32.374 38.275 40.381 30.204 31.658 32.123 37.727 38.427 37.781 2.6033 0.74341 0.60673
 12 124.23 131.96 146.27 3.3817 3.0611 3.3879 1.3262 1.2004 1.3286 36.737 43.109 43.175 31.302 32.691 32.705 37.548 38.413 37.532 2.5981 0.83262 0.64982
 13 143.52 149.3 164.52 2.922 2.6763 3.0484 1.1459 1.0495 1.1954 49.116 55.787 53.969 33.824 34.931 34.643 38.817 39.58 38.45 2.3615 0.63296 0.42465
 14 156.87 165.76 178.05 3.2507 2.6489 2.7331 1.2748 1.0388 1.0718 48.258 62.577 65.148 33.671 35.928 36.278 37.891 39.669 39.398 2.2917 0.47553 1.0089
 15 178.25 184.59 193.3 2.8498 2.474 2.6084 1.1176 0.9702 1.0229 62.548 74.612 74.106 35.924 37.456 37.397 39.035 40.263 39.803 2.1966 0.31965 0.87419
 16 193.81 196.97 203.42 2.2181 2.1638 2.6139 0.86985 0.84853 1.0251 87.375 91.029 77.82 38.828 39.184 37.822 41.211 41.427 39.785 1.8028 0.88982 0.4254
 ⋮

Display a graph of the mean signal and the signal to noise ratio (SNR) of the three color channels
over the 20 gray patch ROIs.

1 Functions

1-2348

figure
subplot(1,2,1)
plot(noiseTable.ROI,noiseTable.MeanIntensity_R,'r-o', ...
 noiseTable.ROI,noiseTable.MeanIntensity_G,'g-o', ...
 noiseTable.ROI,noiseTable.MeanIntensity_B,'b-o')
title('Signal')
ylabel('Intensity')
xlabel('Gray ROI Number')
grid on
subplot(1,2,2)
plot(noiseTable.ROI,noiseTable.SNR_R,'r-^', ...
 noiseTable.ROI,noiseTable.SNR_G,'g-^', ...
 noiseTable.ROI,noiseTable.SNR_B,'b-^')
title('SNR')
ylabel('dB')
xlabel('Gray ROI Number')
grid on

Input Arguments
chart — eSFR chart
esfrChart object

eSFR chart, specified as an esfrChart object.

 measureNoise

1-2349

Output Arguments
noiseTable — Noise values
20-by-22 table

Noise values of each gray patch, returned as a 20-by-22 table. The 20 rows correspond to the 20 gray
patches on the eSFR chart. The 22 columns represent the variables shown in the table. Each variable
is a scalar of type double.

Variable Description
ROI Index of the sampled ROI. The value of ROI is an integer in the range [1,

20]. The indices match the ROI numbers displayed by displayChart.
MeanIntensity_R Mean value of red channel pixels in the ROI.
MeanIntensity_G Mean value of green channel pixels in the ROI.
MeanIntensity_B Mean value of blue channel pixels in the ROI.
RMSNoise_R Root mean square (RMS) noise of red channel pixels in the ROI.
RMSNoise_G RMS noise of green channel pixels in the ROI.
RMSNoise_B RMS noise of blue channel pixels in the ROI.
PercentNoise_R RMS noise of red pixels, expressed as a percentage of the maximum of the

original chart image data type.
PercentNoise_G RMS noise of green pixels, expressed as a percentage of the maximum of

the original chart image data type.
PercentNoise_B RMS noise of blue pixels, expressed as a percentage of the maximum of the

original chart image data type.
SignalToNoiseRatio
_R

Ratio of signal (MeanIntensity_R) to noise (RMSNoise_R) in the red
channel.

SignalToNoiseRatio
_G

Ratio of signal (MeanIntensity_G) to noise (RMSNoise_G) in the green
channel.

SignalToNoiseRatio
_B

Ratio of signal (MeanIntensity_B) to noise (RMSNoise_B) in the blue
channel.

SNR_R Signal-to-noise ratio (SNR) of the red channel, in dB.

SNR_R = 20*log(MeanIntensity_R/RMSNoise_R).
SNR_G SNR of the green channel, in dB.

SNR_G = 20*log(MeanIntensity_G/RMSNoise_G).
SNR_B SNR of the blue channel, in dB.

SNR_B = 20*log(MeanIntensity_B/RMSNoise_B).
PSNR_R Peak SNR of the red channel, in dB.
PSNR_G Peak SNR of the green channel, in dB.
PSNR_B Peak SNR of the blue channel, in dB.
RMSNoise_Y RMS noise of luminance (Y) channel pixels in the ROI.
RMSNoise_Cb RMS noise of chrominance (Cb) channel pixels in the ROI.

1 Functions

1-2350

Variable Description
RMSNoise_Cr RMS noise of chrominance (Cr) channel pixels in the ROI.

Tips
• To linearize data for noise measurements, first undo the gamma correction of an sRGB test chart

image by using the rgb2lin function. Then, create an esfrChart object from the linear image,
and input the esfrChart object to the measureNoise function.

References
[1] Imatest. "Esfr". https://www.imatest.com/mathworks/esfr/.

See Also
measureIlluminant | displayChart

Topics
“Anatomy of Imatest Extended eSFR Chart”
“Evaluate Quality Metrics on eSFR Test Chart”

Introduced in R2017b

 measureNoise

1-2351

https://www.imatest.com/mathworks/esfr/

measureSharpness
Measure spatial frequency response using Imatest eSFR chart

Syntax
sharpnessTable = measureSharpness(chart)
sharpnessTable = measureSharpness(chart,Name,Value)
[sharpnessTable,aggregateSharpnessTable] = measureSharpness(___)

Description
sharpnessTable = measureSharpness(chart) measures the spatial frequency response (SFR)
at all slanted edge regions of interest (ROIs) of an Imatest eSFR chart [1]. The returned sharpness
table includes the frequency for each ROI at which the response drops to 50% of the initial and peak
values.

sharpnessTable = measureSharpness(chart,Name,Value) measures the SFR at all specified
slanted edge ROIs, specifying additional parameters.

[sharpnessTable,aggregateSharpnessTable] = measureSharpness(___) also returns the
average SFR of vertical and horizontal ROIs, using the input arguments of either of the previous
syntaxes.

Examples

Measure Sharpness of Slanted Edges on eSFR Chart

Read an image of an eSFR chart into the workspace.

I = imread('eSFRTestImage.jpg');

Create an esfrChart object, then display the chart with ROI annotations. The 60 slanted edge ROIs
are labeled with green numbers.

chart = esfrChart(I);
displayChart(chart,'displayColorROIs',false,...
 'displayGrayROIs',false,'displayRegistrationPoints',false)

1 Functions

1-2352

Measure the edge sharpness in ROIs 25-28, and return the measurements in sharpnessTable.
Include measurements of the MTF70 and MTF30 by specifying the 'percentResponse' name-value
pair argument.

sharpnessTable = measureSharpness(chart,'ROIIndex',25:28,'PercentResponse',[70 30])

sharpnessTable=4×9 table
 ROI slopeAngle confidenceFlag SFR comment MTF70 MTF70P MTF30 MTF30P
 ___ __________ ______________ ____________ ____________ __ __ __ __

 25 4.2268 true {85x5 table} {0x0 double} 0.061637 0.059828 0.053096 0.059827 0.061637 0.059828 0.053096 0.059827 0.107 0.1118 0.11037 0.11082 0.107 0.1118 0.11037 0.11082
 26 5.0814 true {85x5 table} {0x0 double} 0.18553 0.18604 0.18528 0.18562 0.18553 0.18604 0.18528 0.18562 0.26282 0.26497 0.26211 0.26385 0.26282 0.26497 0.26211 0.26385
 27 4.7787 true {85x5 table} {0x0 double} 0.069499 0.06935 0.063808 0.06899 0.069499 0.06935 0.063808 0.06899 0.21579 0.21794 0.21785 0.21775 0.21579 0.21794 0.21785 0.21775
 28 4.7966 true {85x5 table} {0x0 double} 0.19057 0.20361 0.19589 0.20006 0.19057 0.20341 0.19565 0.20006 0.26185 0.27258 0.26126 0.26972 0.26185 0.27241 0.26118 0.26972

Select the fourth row in the sharpness table, which corresponds to ROI 28. Display the SFR plot of
the ROI.

idx = 4;
plotSFR(sharpnessTable(idx,:))

 measureSharpness

1-2353

Print the MTF70 and MTF30 measurements of the ROI. Compare the measurements against the plot.

The MTF70 measurement of the red and blue color channels are slightly smaller than 0.2, while the
MTF70 measurement of the green and luminance channels are slightly larger than 0.2. These
measurements agree with a visual inspection of the SFR plot, on which an SFR value of 0.7 occurs at
spatial frequencies around 0.2 line pairs per pixel.

mtf70 = sharpnessTable.MTF70(idx,:)

mtf70 = 1×4

 0.1906 0.2036 0.1959 0.2001

The MTF30 measurement of the blue color channel is noticeably smaller than the MTF30
measurement of the other color channels. This measurement agrees with a visual inspection of the
SFR plot, on which the SFR curve of the blue channel drops off more quickly than the other channels.

mtf30 = sharpnessTable.MTF30(idx,:)

mtf30 = 1×4

 0.2619 0.2726 0.2613 0.2697

1 Functions

1-2354

Input Arguments
chart — eSFR chart
esfrChart object

eSFR chart, specified as an esfrChart object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'ROIIndex',2 measures the sharpness only of ROI 2.

ROIIndex — ROI indices
1:60 (default) | scalar | vector

ROI indices to include in measurements, specified as the comma-separated pair consisting of
'ROIIndex' and a scalar or vector of integers in the range [1, 60]. The indices match the ROI
numbers displayed by displayChart.

Note measureSharpness uses the intersection of ROIs specified by 'ROIIndex' and
'ROIOrientation'.

Example: 29:32
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

ROIOrientation — ROI orientation
'both' (default) | 'vertical' | 'horizontal'

ROI orientation, specified as the comma-separated pair consisting of 'ROIOrientation' and
'both', 'vertical', or 'horizontal'. The measureSharpness function performs
measurements only on ROIs with the specified orientation.

Note measureSharpness uses the intersection of ROIs specified by 'ROIIndex' and
'ROIOrientation'.

Example: 'vertical'
Data Types: char | string

PercentResponse — Value of frequency response
50 (default) | scalar | vector

Value of frequency response at which to report the corresponding spatial frequency, specified as the
comma-separated pair consisting of 'PercentResponse' and a scalar or vector of integers in the
range [1, 100].

Each value of PercentResponse adds two columns to the sharpnessTable and
aggregateSharpnessTable output arguments. The columns indicate the frequency at which the

 measureSharpness

1-2355

SFR drops to the specified percent of the initial and peak values. For example, when
PercentResponse has the value 50, both output tables have the columns MTF50 and MTF50P. These
columns indicate the frequency at which the SFR drops to 50% of the initial value and peak value,
respectively.
Example: 30
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string

Output Arguments
sharpnessTable — SFR measurements of edges
m-by-n table

SFR measurements of edges, returned as an m-by-n table. m is the number of sampled ROIs. n
changes values depending on PercentResponse. The first five columns are always present and
represent these variables:

Variable Description
ROI Index of the sampled ROI. The value of ROI is an integer in the range [1,

60].
slopeAngle Angle between the slanted edge and pure vertical or horizontal, depending

on the ROI orientation. The angle is measured in degrees, and it is
returned as a scalar of type double.

confidenceFlag Boolean flag that indicates whether the sharpness measurement is reliable.
confidenceFlag is true when the measurement is reliable.
confidenceFlag is false when the measurement is unreliable due to
the following conditions:

• slopeAngle is less than 3.5 degrees or more than 15 degrees.
• The contrast within the ROI is less than 20%.

The contrast of a slanted edge ROI is defined as 100 * (IHigh -
ILow)/(IHigh + ILow), where IHigh and ILow are the estimated
average intensities of the high and low intensity regions across the edge.
The contrast is computed for only the red channel.

SFR Spatial frequency response of the edge in the ROI. SFR is an f-by-5 table.
The five columns represent the frequency value and the red, green, blue,
and luminance values corresponding to that frequency. f is the number of
frequency samples of the MTF.

Luminance (Y) is a linear combination of the red (R), green (G), and blue
(B) channels according to:

Y = 0.213R + 0.715G + 0.072B
comment When confidenceFlag is false, then comment describes the reason the

measurement is unreliable. When confidenceFlag is true, then
comment is the empty vector, [].

Each value of PercentResponse adds two columns that indicate the frequency at which the SFR
drops to the specified percent of the initial and peak value. The format of each entry in the column is

1 Functions

1-2356

a 1-by-4 vector. The four elements correspond to the red, green, blue, and luminance channels,
respectively.

aggregateSharpnessTable — Average SFR measurements of vertical and horizontal edges
table with one or two rows

Average SFR measurements of vertical and horizontal edges, returned as a table with one or two
rows. aggregateSharpnessTable has one row when all sampled ROIs have the same orientation. It
has two rows when the sampled ROIs have mixed orientation. aggregateSharpnessTable has
three fewer columns than sharpnessTable.

The first two columns of aggregateSharpnessTable are always present and represent these
variables:

Variable Description
Orientation Orientation of the averaged SFRs. The value of Orientation is either

'horizontal' or 'vertical'.
SFR Averaged spatial frequency response of all edges in included ROIs with the

orientation specified by Orientation.

SFR is an s-by-5 table. The five columns represent the frequency value, and
the averaged red, green, blue, and luminance values corresponding to that
frequency. s is the number of frequency samples of the MTF.

Luminance (Y) is computed as a linear combination of the red (R), green
(G), and blue (B) channels according to:

Y = 0.213R + 0.715G + 0.072B

Each value of PercentResponse adds two columns that indicate the frequency at which the SFR
drops to the specified percent of the initial and peak value. The format of each entry in the column is
a 1-by-4 vector. The four elements correspond to the red, green, blue, and luminance channels,
averaged among all sampled ROIs with the same orientation.

Tips
• Slanted edges on a properly oriented chart are at an angle of 5 degrees from the horizontal or

vertical. Sharpness measurements are not accurate when the edge orientation deviates
significantly from 5 degrees.

• Sharpness is higher toward the center of the imaged region and decreases toward the periphery.
Horizontal sharpness is usually higher than vertical sharpness.

Algorithms
The SFR measurement algorithm is based on work by Peter Burns [2] [3]. First, measureSharpness
determines the edge position with sub-pixel resolution for each scan line, or row or column of pixels
perpendicular to the edge, in the ROI. For example, each row of pixels is a scan line for a near-
vertical edge. Next, measureSharpness aligns and averages the scan lines to create an oversampled
edge intensity profile. The function takes the derivative of the intensity profile and applies a
windowing function. The returned SFR measurement is the absolute value of the Fourier transform of
the windowed derivative.

 measureSharpness

1-2357

References
[1] Imatest. "Esfr". https://www.imatest.com/mathworks/esfr/.

[2] Burns, Peter. "Slanted-Edge MTF for Digital Camera and Scanner Analysis." Society for Imaging
Science and Technology; Proceedings of the Image Processing, Image Quality, Image Capture
Systems Conference. Portland, Oregon, March 2000, pp. 135–138.

[3] Burns, Peter. "sfrmat3: SFR evaluation for digital cameras and scanners." URL: http://
losburns.com/imaging/software/SFRedge/sfrmat3_post/index.html.

See Also
plotSFR | displayChart

Topics
“Anatomy of Imatest Extended eSFR Chart”
“Evaluate Quality Metrics on eSFR Test Chart”
“Fourier Transform”

Introduced in R2017b

1 Functions

1-2358

https://www.imatest.com/mathworks/esfr/
http://losburns.com/imaging/software/SFRedge/sfrmat3_post/index.html
http://losburns.com/imaging/software/SFRedge/sfrmat3_post/index.html

medfilt2
2-D median filtering

Syntax
J = medfilt2(I)
J = medfilt2(I,[m n])
J = medfilt2(___ ,padopt)

Description
J = medfilt2(I) performs median filtering of the image I in two dimensions. Each output pixel
contains the median value in a 3-by-3 neighborhood around the corresponding pixel in the input
image.

J = medfilt2(I,[m n]) performs median filtering, where each output pixel contains the median
value in the m-by-n neighborhood around the corresponding pixel in the input image.

J = medfilt2(___ ,padopt) controls how medfilt2 pads the image boundaries.

Examples

Remove Salt and Pepper Noise from Image

Read image into workspace and display it.

I = imread('eight.tif');
figure, imshow(I)

 medfilt2

1-2359

Add salt and pepper noise.

J = imnoise(I,'salt & pepper',0.02);

Use a median filter to filter out the noise.

K = medfilt2(J);

Display results, side-by-side.

imshowpair(J,K,'montage')

Input Arguments
I — Input image
2-D grayscale image | 2-D binary image

Input image, specified as a 2-D grayscale or binary image.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

[m n] — Neighborhood size
[3 3] (default) | 2-element vector

Neighborhood size, specified as a 2-element vector of positive integers.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

padopt — Padding option
'zeros' (default) | 'symmetric' | 'indexed'

Padding option, specified as one of the following values.

1 Functions

1-2360

Value Description
'zeros' (default) Pad the image with 0s.
'symmetric' Symmetrically extend the image at the boundaries.
'indexed' If the class of I is double, then pad the image with 1s; otherwise, pad

with 0s.

Data Types: char | string

Output Arguments
J — Output image
numeric matrix

Output image, returned as a numeric matrix of the same class as the input image I.

Tips
• Median filtering is a nonlinear operation often used in image processing to reduce "salt and

pepper" noise. A median filter is more effective than convolution when the goal is to
simultaneously reduce noise and preserve edges. For information about performance
considerations, see ordfilt2.

• If the input image I is of an integer class, then all the output values are returned as integers. If
the number of pixels in the neighborhood (m*n) is even, then some of the median values might not
be integers. In these cases, the fractional parts are discarded. Logical input is treated similarly.
For example, the true median for the following 2-by-2 neighborhood in a uint8 array is 4.5, but
medfilt2 discards the fractional part and returns 4.

1 5
4 8

• If you specify padopt as 'zeros' or 'indexed', then the padding can skew the median near the
image boundary. Pixels within one-half the width of the neighborhood ([m n]/2) of the edges can
appear distorted.

Algorithms
On the CPU, medfilt2 uses ordfilt2 to perform the filtering.

References
[1] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood Cliffs, NJ, Prentice Hall,

1990, pp. 469-476.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 medfilt2

1-2361

• medfilt2 supports the generation of C code (requires MATLAB Coder). Note that if you choose
the generic MATLAB Host Computer target platform, medfilt2 generates code that uses a
precompiled, platform-specific shared library. Use of a shared library preserves performance
optimizations but limits the target platforms for which code can be generated. For more
information, see “Types of Code Generation Support in Image Processing Toolbox”.

• When generating code, the padopt argument must be a compile-time constant.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• When generating code, the padopt argument must be a compile-time constant.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• Padding options, specified through the padopt argument, are not supported on the GPU.
• If you perform median filtering using a GPU, then the neighborhood [m n] must be square with

odd-length sides between 3 and 15.

For more information, see “Image Processing on a GPU”.

See Also
filter2 | ordfilt2 | wiener2 | medfilt3

Introduced before R2006a

1 Functions

1-2362

medfilt3
3-D median filtering

Syntax
B = medfilt3(A)
B = medfilt3(A,[m n p])
B = medfilt3(___ ,padopt)

Description
B = medfilt3(A) filters the 3-D image A with a 3-by-3-by-3 filter. By default, medfilt3 pads the
image by replicating the values in a mirrored way at the borders.

B = medfilt3(A,[m n p]) performs median filtering of the 3-D image A in three dimensions.
Each output voxel in B contains the median value in the m-by-n-by-p neighborhood around the
corresponding voxel in A.

B = medfilt3(___ ,padopt) controls how medfilt3 pads the array boundaries.

Examples

Use Median Filtering to Remove Outliers in 3-D Data

Create a noisy 3-D surface.

[x,y,z,V] = flow(50);
noisyV = V + 0.1*double(rand(size(V))>0.95) - 0.1*double(rand(size(V))<0.05);

Apply median filtering.

filteredV = medfilt3(noisyV);

Display the noisy and filtered surfaces together.

subplot(1,2,1)
hpatch1 = patch(isosurface(x,y,z,noisyV,0));
isonormals(x,y,z,noisyV,hpatch1)
set(hpatch1,'FaceColor','red','EdgeColor','none')
daspect([1,4,4])
view([-65,20])
axis tight off
camlight left
lighting phong

subplot(1,2,2)
hpatch2 = patch(isosurface(x,y,z,filteredV,0));
isonormals(x,y,z,filteredV,hpatch2)
set(hpatch2,'FaceColor','red','EdgeColor','none')
daspect([1,4,4])
view([-65,20])

 medfilt3

1-2363

axis tight off
camlight left
lighting phong

Input Argument
A — Input image
3-D numeric array | 3-D logical array

Input image, specified as a 3-D numeric or logical array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

[m n p] — Neighborhood size
[3 3 3] (default) | 3-element vector

Neighborhood size, specified as a 3-element vector of positive odd integers.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

padopt — Padding option
'symmetric' (default) | 'zeros' | 'replicate'

Padding option, specified as one of the following values:

1 Functions

1-2364

Value Description
'symmetric' Pad array with mirror reflections of itself
'replicate' Pad array by repeating border elements
'zeros' Pad array with 0s

Data Types: char | string

Output Arguments
B — Output image
3-D numeric array

Output image, returned as a 3-D numeric array of the same class and size as the input image A.

See Also
medfilt2

Introduced in R2016b

 medfilt3

1-2365

modefilt
2-D and 3-D mode filtering

Syntax
B = modefilt(A)
B = modefilt(A,filtsize)
B = modefilt(___ ,padopt)

Description
B = modefilt(A) performs mode filtering on the 2-D image or 3-D volume A. Each output pixel in B
contains the mode (most frequently occurring value) in the neighborhood around the corresponding
pixel in A. If A is 2-D, modefilt uses a 3-by-3 mode filter. If A is 3-D, modefilt uses a 3-by-3-by-3
mode filter. modefilt pads A by mirroring border elements.

Mode filtering can be useful for processing categorical data, where other types of filtering, such as
median filtering, are not available.

B = modefilt(A,filtsize) also specifies the size of the filter neighborhood. filtsize is a
vector of positive, odd integers. When A is 2-D, specify filtsize as a 1-by-2 vector. When A is 3-D,
specify filtsize as a 1-by-3 vector.

B = modefilt(___ ,padopt) also specifies how modefilt pads array boundaries.

Examples

Apply Mode Filter to Categorical Labeled Image

Load an image (img) and the corresponding categorical labeled version of the image (label) into the
workspace.

load buildingPixelLabeled;

View the original image, img.

imshow(img)

1 Functions

1-2366

View the categorical labeled image, label. The categorical image labels four separate categories:
sky, grass, building, and sidewalk. For viewing, convert these categories to colors using the
label2rgb function.

imshow(label2rgb(label))

 modefilt

1-2367

Perform mode filtering on the categorical labeled image, label, using the default filter size and
padding method.

 b = modefilt(label);

View the filtered categorical labeled image, b. In the filtered image, the edges between labeled
regions are more distinct.

 figure
 imshow(label2rgb(b));

1 Functions

1-2368

Use Mode Filter on Labeled Volume

Read a labeled volume of an MRI. The volume is stored in the workspace variable label.

load(fullfile(toolboxdir('images'),'imdata','BrainMRILabeled', ...
 'labels','label_001.mat'));

Display the labeled volume. For clarity, add a title to the display.

ViewPnl = uipanel(figure,'Title','Labeled Volume');
labelvolshow(label,'Parent',ViewPnl);

 modefilt

1-2369

Perform mode filtering on the labeled volume, specifying the size of the filter.

labelOut = modefilt(label,[5 5 5]);

Display the filtered labeled volume. For clarity, add a title to the display.

ViewPnlFiltered = uipanel(figure,'Title','Mode Filtered Labeled Volume');
labelvolshow(labelOut,'Parent',ViewPnlFiltered);

1 Functions

1-2370

Input Arguments
A — 2-D image or 3-D volume
2-D or 3-D categorical, logical, or numeric array

2-D image or 3-D volume, specified as a categorical, logical, or numeric array.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical |
categorical

filtsize — Filter size
vector of positive odd integers.

Filter size, specified as a vector of positive odd integers. For 2-D images, specify a vector of the form
[height width]. The default for 2-D images is [3 3]. For 3-D volumes, specify a vector of the form
[height width depth]. The default for 3-D volumes is [3 3 3].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

padopt — Padding method
'symmetric' (default) | 'replicate' | 'zeros'

Padding method, specified as one of the following values.

 modefilt

1-2371

Value Description
'symmetric' Pad array with a mirror reflection of itself.
'replicate' Pad array by repeating border elements.
'zeros' Pad array with 0s for numeric data or with

<undefined>s for categorical data.

Example: labelOut = modefilt(label,'replicate');
Data Types: char | string

Output Arguments
B — Filtered image or volume
numeric array

Filtered image or volume, returned as a numeric array of the same size and class as the input image
A.

Tips
• When the neighborhood has more than one pixel in a tie for the mode value, the function uses the

following tie-breaking algorithm:

• If the center pixel is one of the mode values in the tie, the function uses this value.
• If the center pixel is not one of the mode values in the tie, the function uses the mode with the

smallest numeric value.
• For categorical input, the function chooses the first category (among the categories tied for

mode) that appears in the list returned by categories(A).
• modefilt treats RGB images as 3-D volumes. To do channel-wise filtering of an RGB image,

specify filtsize as [3 3 1], as in this code: b = modefilt(a,[3 3 1]); .

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• modefilt supports the generation of C code (requires MATLAB Coder). For more information,
see “Code Generation for Image Processing”.

• Only 1-D and 2-D inputs are supported.
• Input images of data type categorical are not supported.
• The padopt argument must be a compile-time constant.

See Also
mode | ordfilt2 | medfilt2 | medfilt3

Introduced in R2020a

1 Functions

1-2372

montage
Display multiple image frames as rectangular montage

Syntax
montage(I)
montage(imagelist)
montage(filenames)
montage(imds)
montage(___ ,map)
montage(___ ,Name,Value)
img = montage(___)

Description
montage(I) displays all frames of a multiframe image array I. By default, the montage function
arranges the images so that they roughly form a square.

montage(imagelist) displays a montage of images specified in the cell array imagelist. The
images can be of different types and sizes.

montage(filenames) displays a montage of the images with file names specified in filenames.

montage(imds) displays a montage of the images specified in the image datastore imds.

montage(___ ,map) treats all grayscale and binary images (specified using any of the preceding
syntaxes) as indexed images and displays them with the specified colormap map. If you specify images
using file names or an image datastore, then map overrides any internal colormap present in the
image files. montage does not modify the colormap of RGB images.

montage(___ ,Name,Value) uses name-value pair arguments to customize the display of the image
montage.

img = montage(___) returns a handle to the single image object that contains all the frames
displayed.

Examples

Create Montage from Multiframe Image

Create an m-by-n-by-4 multiframe image from a series of grayscale images. The images must all be
the same size.

img1 = imread('AT3_1m4_01.tif');
img2 = imread('AT3_1m4_02.tif');
img3 = imread('AT3_1m4_03.tif');
img4 = imread('AT3_1m4_04.tif');
multi = cat(3,img1,img2,img3,img4);

Display a montage of the images in the multiframe image.

 montage

1-2373

montage(multi);

Create Montage Containing Images of Different Types and Sizes

Read several images of different types and sizes into the workspace.

imRGB = imread('peppers.png');
imGray = imread('coins.png');

Display a montage containing all of the images.

figure
montage({imRGB, imGray, 'cameraman.tif'})

1 Functions

1-2374

Create Montage from Images in Files

Create a montage from a series of images in files. Make the montage a 2-by-5 rectangle. Then, create
a second montage, this time using the 'DisplayRange' name-value argument to highlight
structures in the image.

Display the Images as a Rectangular Montage

Create a string array containing a series of file names.

fileFolder = fullfile(matlabroot,'toolbox','images','imdata');
dirOutput = dir(fullfile(fileFolder,'AT3_1m4_*.tif'));
fileNames = string({dirOutput.name});

Display the images as a montage. Specify the shape of the montage as a 2-by-5 rectangle.

montage(fileNames,'Size',[2 5]);

 montage

1-2375

Adjust the Contrast of the Images in the Montage

In another figure, create the same 2-by-5 montage. In addition, specify the display range to adjust the
contrast of the images in the montage.

figure
montage(fileNames,'Size',[2 5],'DisplayRange',[75 200]);

Customize Number of Images in Montage

View all the images in a MRI data set using montage with default settings. There are 27 images in the
set.

load mri
montage(D, map)

1 Functions

1-2376

Create a new montage containing only the first 9 images.

figure
montage(D, map, 'Indices', 1:9);

 montage

1-2377

Create Montage from Image Datastore

Create an ImageDatastore object containing a series of ten images from the Image Processing
Toolbox™ sample image folder.

fileFolder = fullfile(matlabroot,'toolbox','images','imdata');
imds = imageDatastore(fullfile(fileFolder,'AT3*'));

Display the contents of the datastore as a montage.

montage(imds)

1 Functions

1-2378

Input Arguments
I — Multiframe image array
numeric array

Multiframe image array, specified as one of the following:

• m-by-n-by-k numeric array representing a sequence of k binary or grayscale images
• m-by-n-by-1-by-k numeric array representing a sequence of k binary or grayscale images
• m-by-n-by-3-by-k numeric array representing a sequence of k truecolor images

 montage

1-2379

Data Types: single | double | int16 | uint8 | uint16 | logical

imagelist — Set of images
cell array of numeric matrices

Set of images, specified as a cell array of numeric matrices of size m-by-n or m-by-n-by-3.
Data Types: single | double | int16 | uint8 | uint16 | logical | cell

filenames — Names of files containing images
cell array of character vectors | vector of strings

Names of files containing image, specified as a cell array of character vectors or a vector of strings. If
the files are not in the current folder or in a folder on the MATLAB path, then specify the full path
name. For more information, see imread.
Data Types: char | string | cell

imds — Image datastore
ImageDatastore object

Image datastore, specified as an ImageDatastore object.

map — Colormap
c-by-3 numeric matrix

Colormap, specified as a c-by-3 numeric matrix with values in the range [0, 1]. Each row is a three-
element RGB triplet that specifies the red, green, and blue components of a single color of the
colormap.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Indices',1:9 creates a montage of the first nine frames

BackgroundColor — Background color
'black' (default) | RGB triplet | color name | short color name

Background color, specified as specified as an RGB triplet, a color name, or a short color name. The
montage function fills all blank spaces with the background color, including the space specified by
BorderSize. If you specify a background color, then the montage function renders the output as an
RGB image.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

1 Functions

1-2380

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'BackgroundColor','r'
Example: 'BackgroundColor','green'
Example: 'BackgroundColor',[0 0.4470 0.7410]

BorderSize — Padding around each thumbnail image
[0 0] (default) | nonnegative integer | 1-by-2 vector of nonnegative integers

Padding around each thumbnail image, in pixels, specified as a nonnegative integer or a 1-by-2 vector
of nonnegative integers. The montage function pads the image borders with the background color,
BackgroundColor.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

DisplayRange — Display range
1-by-2 vector

Display range of grayscale images in array I, specified as 1-by-2 vector of the form [low high]. All
pixel values less than or equal to low display as black. All pixel values greater than or equal to high
display as white. If you specify an empty matrix ([]), then montage uses the minimum and maximum
pixel values of the images.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Indices — Frames to display
array of positive integers

 montage

1-2381

Frames to display in the montage, specified as an array of positive integers. The montage function
interprets the values as indices into array I or into cell array filenames or imagelist.

By default, the montage function displays all frames or image files.
Example: 'Indices',1:4 create a montage of the first four frames in I
Example: 'Indices',1:2:20 displays every other frame.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Interpolation — Interpolation technique
'nearest' (default) | 'bilinear'

Interpolation technique used when scaling an image, specified as the comma-separated pair
consisting of 'Interpolation' and one of these values.

Value Description
'nearest' Nearest neighbor interpolation (default)
'bilinear' Bilinear interpolation

Parent — Parent of image object
axes object

Parent of the image object created by montage, specified as an axes object. The montage function
resizes the image to fit the extents available in the parent axes.

Size — Number of rows and columns of images
2-element vector

Number of rows and columns of images, specified as a 2-element vector of the form [nrows ncols].

If you specify NaN or Inf for a particular dimension, then the montage function calculates the value
of the dimension to display all images in the montage. For example, if 'Size' is [2 NaN], then the
montage will have two rows and the minimum number of columns to display all images. When there is
a mismatch between 'Size' and number of images (frames) specified, then the montage function
creates the tiled image based on 'Size'.
Data Types: single | double

ThumbnailSize — Size of each thumbnail
2-element vector of positive integers | []

Size of each thumbnail, in pixels, specified as a 2-element vector of positive integers. The aspect ratio
of each image is preserved, and any blank space is filled with the background color,
BackgroundColor.

If you specify an empty array ([]), then the thumbnail size is the full size of the first image. If you
specify either element as NaN or Inf, then the montage function calculates the corresponding value
automatically to preserve the aspect ratio of the first image.
Data Types: single | double

1 Functions

1-2382

Output Arguments
img — Montage image
Image object

Montage image, returned as an Image object.

Tips
• If you specify an indexed image, then montage converts it to RGB using the colormap present in

the file.
• If there is a data type mismatch between images, then the montage function converts all images

to data type double using the im2double function.
• When calculating the number of images to display horizontally and vertically, montage considers

the aspect ratio of the images, so that the displayed montage is nearly square.

See Also
Apps
Video Viewer | Volume Viewer

Functions
imshow | ImageDatastore | imtile

Introduced before R2006a

 montage

1-2383

multissim
Multiscale structural similarity (MS-SSIM) index for image quality

Syntax
score = multissim(I,Iref)
score = multissim(I,Iref,Name,Value)
[score,qualityMaps] = multissim(___)

Description
score = multissim(I,Iref) calculates the multi-scale structural similarity (MS-SSIM) index,
score, for image I, using Iref as the reference image.

MS-SSIM is only defined for grayscale images. For inputs with more than two dimensions,
multissim treats each element of higher dimensions as a separate 2-D grayscale image.

score = multissim(I,Iref,Name,Value) controls aspects of the computation using one or
more name-value arguments. For example, specify the number of scales using the 'NumScales'
argument.

[score,qualityMaps] = multissim(___) also returns the local MS-SSIM index value for each
pixel in each scaled version of I. The qualitymap output is a cell array containing maps for each of
the scaled versions of I. Each quality map is the same size as the corresponding scaled version of I.

Examples

Calculate MS-SSIM

Load an image into the workspace.

Iref = imread('pout.tif');

Create a noisy version of the image for comparison purposes.

I = imnoise(Iref,'salt & pepper',0.05);

Display the original image and noisy image.

figure;
montage({Iref,I});

1 Functions

1-2384

Calculate the MS-SSIM index that measures the quality of the input image compared to the reference
image.

score = multissim(I,Iref)

score = single
 0.6732

Calculate MS-SSIM and Get Local MS-SSIM Maps

Load an image into the workspace.

Iref = imread('pout.tif');
I = Iref;

Add noise to a localized part of the image.

I(1:100,1:100) = imnoise(Iref(1:100,1:100),'salt & pepper',0.05);

Display the original image and the noisy image.

figure;
montage({Iref,I});

 multissim

1-2385

Calculate the local MS-SSIM index maps for the noisy image, qualitymaps, using the original image
as the reference. The return value, qualitymaps, is a cell array containing a quality map for each of
the scaled versions of the image. Each map is the same size as the corresponding scaled version of
the image.

[~, qualitymaps] = multissim(I,Iref);
figure
montage(qualitymaps,'Size',[1 5])

1 Functions

1-2386

Calculate MS-SSIM Specifying Scale Weights

Load an image into the workspace.

Iref = imread('pout.tif');

Create a noisy version of the image for comparison purposes.

I = imnoise(Iref,'salt & pepper',0.05);

Display the original image and the noisy version of the image.

figure;
montage({Iref,I});

Calculate the MS-SSIM index for the noisy image, using the original image as the reference. Specify
how much to weigh the local MS-SSIM index calculations for each scaled image, using the
'ScaleWeights' argument. The example uses the weight values defined in the article by Wang,
Simoncelli, and Bovik.

score = multissim(I,Iref,'ScaleWeights',[0.0448,0.2856,0.3001,0.2363,0.1333])

score = single
 0.6773

 multissim

1-2387

Calculate MS-SSIM of Color Image

Read a color image into the workspace.

RGB = imread("kobi.png");

Create a version of the image with added salt and pepper noise.

RGBNoisy = imnoise(RGB,"salt & pepper");

Display the two images in a montage.

montage({RGB,RGBNoisy})

Calculate the MS-SSIM of each color channel of the noisy image.

score = multissim(RGBNoisy,RGB);
score = squeeze(score)

score = 3x1 single column vector

 0.7084
 0.7135
 0.7066

Calculate MS-SSIM for dlarray Input

Read a color image into the workspace.

ref = imread("strawberries.jpg");
ref = im2single(ref);

Simulate a batch of six images by replicating the image along the fourth dimension.

refBatch = repmat(ref,[1 1 1 6]);

1 Functions

1-2388

Create a copy of the batch of images, adding salt and pepper noise.

noisyBatch = imnoise(refBatch,"salt & pepper");

Create a formatted dlarray object for the original and noisy batch of images. The format is "SSCB"
for spatial-spatial-channel-batch.

dlrefBatch = dlarray(refBatch,"SSCB");
dlnoisyBatch = dlarray(noisyBatch,"SSCB");

Calculate the MS-SSIM score of the noisy data with respect to the original data.

scores = multissim(dlnoisyBatch,dlrefBatch);

Remove the singleton dimensions corresponding to the spatial dimensions and display the scores.
Each element is the MS-SSIM score for one color channel of one image of the batch.

squeeze(scores)

ans =
 3(C) x 6(B) single dlarray

 0.8334 0.8335 0.8348 0.8335 0.8340 0.8349
 0.8325 0.8316 0.8309 0.8310 0.8317 0.8326
 0.8140 0.8123 0.8166 0.8129 0.8136 0.8123

Input Arguments
I — Input image
numeric array | dlarray object

Input image, specified as a numeric array of any dimension or a dlarray object. Formatted dlarray
objects cannot include more than one channel label, more than one batch label, and more than two
spatial labels.
Data Types: single | double | int16 | uint8 | uint16

Iref — Reference image
numeric array | dlarray object

Reference image, specified as a numeric array of any dimension or a dlarray object. Formatted
dlarray objects cannot include more than one channel label, more than one batch label, and more
than two spatial labels.
Data Types: single | double | int16 | uint8 | uint16

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: score = multissim(I,Iref,'NumScales',3);

NumScales — Number of scales
5 (default) | positive integer

 multissim

1-2389

Number of scales used to calculate the MS-SSIM index, specified as the comma-separated pair
consisting of 'NumScales' and a positive integer. Setting 'NumScales' to 1 is equivalent to using
the ssim function with its 'Exponents' name-value pair argument set to [1 1 1]. The size of the
input image limits the number of scales. The multissim function scales the image (NumScales - 1)
times, downsampling the image by a factor of 2 with each scaling.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ScaleWeights — Relative values across scales
vector of positive numbers

Relative values across the scales, specified as the comma-separated pair consisting of
'ScaleWeights' and a vector of positive elements. The length of the vector is equal to the number
of scales, because each element corresponds to one of the scaled versions of the original image. The
multissim function normalizes the values to 1. By default, the scale weights equal
fspecial('gaussian',[1,numScales],1). The multissim function uses a Gaussian
distribution as the default because the human visual sensitivity peaks at middle frequencies and
decreases in both directions. For an example of setting 'ScaleWeights', see “Calculate MS-SSIM
Specifying Scale Weights” on page 1-2386.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Sigma — Standard deviation
1.5 (default) | positive number

Standard deviation of the isotropic Gaussian function, specified as the comma-separated pair
consisting of 'Sigma' and a positive number. This value specifies the weighting of the neighborhood
pixels around a pixel for estimating local statistics. The multissim function uses weighting to avoid
blocking artifacts when estimating local statistics.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

DynamicRange — Dynamic range of input image
positive number

Dynamic range of the input image, specified as a positive number. The default value of
DynamicRange depends on the data type of image I, and is calculated as
diff(getrangefromclass(I)). For example, the default dynamic range is 255 for images of data
type uint8, and the default is 1 for images of data type double or single with pixel values in the
range [0, 1].
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Output Arguments
score — MS-SSIM index
numeric scalar | numeric array | dlarray object

MS-SSIM index for image quality, returned as a numeric scalar, numeric array, or dlarray object as
indicated in the table. The value of score is typically in the range [0, 1]. The value 1 indicates the
highest quality and occurs when I and Iref are equivalent. Smaller values correspond to poorer
quality. For some combinations of inputs and name-value pair arguments, score can be negative.

1 Functions

1-2390

Input Image Type MS-SSIM Value
2-D numeric matrices Numeric scalar with a single MS-SSIM

measurement.
2-D dlarray objects 1-by-1 dlarray object with a single MS-SSIM

measurement.
N-D numeric arrays with N>2 Numeric array of the same dimensionality as the

input images. The first two dimensions of score
are singleton dimensions. There is one MS-SSIM
measurement for each element along the higher
dimensions.

Unformatted N-D dlarray objects with N>2 dlarray object of the same dimensionality as the
input images. The first two dimensions of score
are singleton dimensions. There is one MS-SSIM
measurement for each element along the higher
dimensions.

Formatted N-D dlarray objects with N>2 dlarray object of the same dimensionality as the
input images. The spatial dimensions of score
are singleton dimensions. There is one MS-SSIM
measurement for each element along any channel
or batch dimension.

qualityMaps — Local MS-SSIM index values
cell array of numeric arrays | cell array of dlarray objects

Local MS-SSIM index values for each pixel in each scaled version, returned as a cell array of numeric
arrays or a cell array of dlarray objects. The size of the cell array is 1-by-NumScales. Each element
in qualityMaps indicates the quality of the corresponding pixel at the corresponding scale factor.
The format of each element uses the formatting of the scores argument, based on the format of the
input images.

Algorithms
The structural similarity (SSIM) index measures perceived quality by quantifying the SSIM between
an image and a reference image (see ssim). The multissim function calculates the MS-SSIM index
by combining the SSIM index of several versions of the image at various scales. The MS-SSIM index
can be more robust when compared to the SSIM index with regard to variations in viewing
conditions.

The multissim function uses double-precision arithmetic for input images of class double. All other
types of input images use single-precision arithmetic.

References
[1] Wang, Z., Simoncelli, E.P., Bovik, A.C. Multiscale Structural Similarity for Image Quality

Assessment. In: The Thirty-Seventh Asilomar Conference on Signals, Systems & Computers,
2003, 1398–1402. Pacific Grove, CA, USA: IEEE, 2003. https://doi.org/10.1109/
ACSSC.2003.1292216.

 multissim

1-2391

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on a GPU”.

See Also
ssim | multissim3 | psnr

Topics
“Image Quality Metrics”

Introduced in R2020a

1 Functions

1-2392

multissim3
Multiscale structural similarity (MS-SSIM) index for volume quality

Syntax
score = multissim3(V,Vref)
score = multissim3(V,Vref,Name,Value)
[score,qualityMaps] = multissim3(___)

Description
score = multissim3(V,Vref) calculates the multiscale structural similarity (MS-SSIM) index,
score, for volume V, using Vref as the reference volume.

The 3-D MS-SSIM operation is defined for grayscale volumes. For inputs with more than three
dimensions, multissim3 treats each element of higher dimensions as separate 3-D grayscale
volumes. multissim3 treats 2-D RGB images as 3-D grayscale volumes. To calculate the MS-SSIM of
color channels in an RGB image, use the multissim function.

score = multissim3(V,Vref,Name,Value) controls aspects of the computation using one or
more name-value arguments. For example, specify the number of scales using the 'NumScales'
argument.

[score,qualityMaps] = multissim3(___) also returns the local MS-SSIM index value for
each voxel in V, and each of the scaled versions of V. The qualityMaps output is a cell array
containing maps for each of the scaled versions of V, with each quality map the same size as the
corresponding scaled version.

Examples

Calculate the MS-SSIM Index for Volume

Load a 3-D volume into the workspace.

load mri D
Vref = squeeze(D);

Create a noisy version of the original volume for quality measurement comparison purposes.

V = imnoise(Vref,'salt & pepper',0.05);

Calculate the MS-SSIM index that measures the quality of the input volume compared to the
reference volume.

score = multissim3(V,Vref)

score = single
 0.7261

 multissim3

1-2393

Calculate MS-SSIM and Retrieve Local Structural Similarity Maps

Load a volume into the workspace. This volume will be the reference volume. Create a copy of the
reference volume.

load mri D
Vref = squeeze(D);
V = Vref;

Add noise to a localized part of the volume for quality comparison purposes.

V(1:100,1:100,1:10) = imnoise(Vref(1:100,1:100,1:10),'salt & pepper',0.05);
figure
sliceViewer(V);

Calculate the MS-SSIM index for the volumes and retrieve the local structural similarity maps. The
multissim3 function returns qualitymaps, a cell array containing a local structural similarity map
for each of the scaled versions of the volume. In the quality map, the value 1 indicates the highest
quality.

[score, qualitymaps] = multissim3(V,Vref);
figure
sliceViewer(V);

1 Functions

1-2394

Calculate MS-SSIM Specifying Weights for Each Scaled Volume

Load a volume into the workspace.

load mri D
Vref = squeeze(D);

Create a noisy version of the volume for quality measurement comparison purposes.

V = imnoise(Vref,'salt & pepper',0.05);

Calculate the MS-SSIM index for the noisy volume, using the original volume as the reference.
Specify how much to weigh the local MS-SSIM index calculations for each scaled volume using the
'ScaleWeights' argument. The example uses the weights defined in the article by Wang,
Simoncelli, and Bovik.

score = multissim3(V,Vref,'ScaleWeights',[0.0448,0.2856,0.3001,0.2363,0.1333]);

Calculate MS-SSIM of 3-D Volume Stack

Read a volumetric image into the workspace.

VRef = load("mristack.mat");
VRef = im2single(VRef.mristack);

Simulate a batch of six images by replicating the image along the fourth dimension.

VRefBatch = repmat(VRef,[1 1 1 6]);

Create a version of the image stack with added salt and pepper noise.

VNoisyBatch = imnoise(VRefBatch,"salt & pepper");

Calculate the MS-SSIM of each volume in the stack.

 multissim3

1-2395

score = multissim3(VNoisyBatch,VRefBatch)

score = 1x1x1x6 single array
score(:,:,1,1) =

 0.8341

score(:,:,1,2) =

 0.8347

score(:,:,1,3) =

 0.8337

score(:,:,1,4) =

 0.8333

score(:,:,1,5) =

 0.8348

score(:,:,1,6) =

 0.8343

Calculate MS-SSIM for 3-D dlarray Input

Read a volumetric image into the workspace.

VRef = load("mristack.mat");
VRef = im2single(VRef.mristack);

Create a copy of the batch of images, adding salt and pepper noise.

Vnoisy = imnoise(VRef,"salt & pepper");

Create unformatted dlarray objects for the original and noisy batch of images.

dlref = dlarray(VRef);
dlnoisy = dlarray(Vnoisy);

Calculate the MS-SSIM score of the noisy data with respect to the original data.

score = multissim3(dlnoisy,dlref)

score =
 1x1 single dlarray

1 Functions

1-2396

 0.8341

Input Arguments
V — Input volume
numeric array | dlarray object

Input volume, specified as a numeric array of three or more dimensions or a dlarray object.
Formatted dlarray objects cannot include more than one channel label, more than one batch label,
and more than three spatial labels.
Data Types: single | double | int16 | uint8 | uint16

Vref — Reference volume
numeric array

Reference volume, specified as a numeric array of three or more dimensions or a dlarray object.
Formatted dlarray objects cannot include more than one channel label, more than one batch label,
and more than three spatial labels. The reference volume must be of the same size and data type as
the input volume, V.
Data Types: single | double | int16 | uint8 | uint16

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: score = multissim3(V,Vref,'NumScales',3);

NumScales — Number of scales
5 (default) | positive integer

Number of scales used to calculate MS-SSIM, specified as the comma-separated pair consisting of
'NumScales' and a positive integer. Setting 'NumScales' to 1 is equivalent to the use of the ssim
function with the 'Exponents' name-value pair argument set to [1 1 1]. The size of the input
volume limits the number of scales. The multissim3 function scales the volume (NumScales - 1)
times, downsampling the volume by a factor of 2 with each scaling.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ScaleWeights — Relative values across scales
vector of positive numbers

Relative values across the scales, specified as the comma-separated pair consisting of
'ScaleWeights' and a vector of positive numbers. The length of the vector is equal to the number
of scales, because each element corresponds to one of the scaled versions of the original volume. The
multissim3 function normalizes the values to 1. By default, the scale weights equal
fspecial('gaussian',[1,numScales],1). The multissim3 function uses a Gaussian
distribution as the default because the human visual sensitivity peaks at middle frequencies and
decreases in both directions. For an example of setting 'ScaleWeights', see “Calculate MS-SSIM
Specifying Weights for Each Scaled Volume” on page 1-2395.

 multissim3

1-2397

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Sigma — Standard deviation
1.5 (default) | positive number

Standard deviation of the isotropic Gaussian function, specified as the comma-separated pair
consisting of 'Sigma' and a positive number. This value specifies the weighting of the neighborhood
voxels around a voxel for estimating local statistics. The multissim3 function uses this weighting to
avoid blocking artifacts in estimating local statistics.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

DynamicRange — Dynamic range of input volume
positive number

Dynamic range of the input volume, specified as a positive number. The default value of
DynamicRange depends on the data type of volume V, and is calculated as
diff(getrangefromclass(V)). For example, the default dynamic range is 255 for volumes of data
type uint8, and the default is 1 for volumes of data type double or single with voxel values in the
range [0, 1].
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Output Arguments
score — MS-SSIM index
numeric scalar | numeric array | dlarray object

MS-SSIM index for image quality, returned as a numeric scalar, numeric array, or dlarray object as
indicated in the table. The value of score is typically in the range [0, 1]. The value 1 indicates the
highest quality and occurs when V and Vref are equivalent. Smaller values correspond to poorer
quality. For some combinations of inputs and name-value pair arguments, score can be negative.

Input Volume Type MS-SSIM Value
3-D numeric matrices Numeric scalar with a single MS-SSIM

measurement.
3-D dlarray objects 1-by-1 dlarray object with a single MS-SSIM

measurement.
N-D numeric arrays with N>3 Numeric array of the same dimensionality as the

input volumes. The first three dimensions of
score are singleton dimensions. There is one
MS-SSIM measurement for each element along
the higher dimensions.

Unformatted N-D dlarray objects with N>3 dlarray object of the same dimensionality as the
input volumes. The first three dimensions of
score are singleton dimensions. There is one
MS-SSIM measurement for each element along
the higher dimensions.

1 Functions

1-2398

Input Volume Type MS-SSIM Value
Formatted N-D dlarray objects with N>3 dlarray object of the same dimensionality as the

input volumes. The spatial dimensions of score
are singleton dimensions. There is one MS-SSIM
measurement for each element along any channel
or batch dimension.

qualityMaps — Local MS-SSIM index values
cell array of numeric arrays | cell array of dlarray objects

Local MS-SSIM index values for each pixel in each scaled version, returned as a cell array of numeric
arrays or a cell array of dlarray objects. The size of the cell array is 1-by-NumScales. Each element
in qualityMaps indicates the quality of the corresponding pixel at the corresponding scale factor.
The format of each element uses the formatting of the score argument, based on the format of the
input volumes.

Algorithms
The structural similarity (SSIM) index measures perceived quality by quantifying the structural
similarity between a volume and a reference volume (see ssim). The multissim3 function calculates
the MS-SSIM by combining the SSIM index of several versions of the volume at various scales. The
MS-SSIM index can be more robust when compared to the SSIM index with regard to variations in
viewing conditions.

The multissim3 function uses double-precision arithmetic for input volumes of class double. All
other types of input volumes use single-precision arithmetic.

References
[1] Wang, Z., Simoncelli, E.P., Bovik, A.C. Multiscale Structural Similarity for Image Quality

Assessment. In: The Thirty-Seventh Asilomar Conference on Signals, Systems & Computers,
2003, 1398–1402. Pacific Grove, CA, USA: IEEE, 2003. https://doi.org/10.1109/
ACSSC.2003.1292216.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on a GPU”.

See Also
ssim | multissim | psnr

Topics
“Image Quality Metrics”

Introduced in R2020a

 multissim3

1-2399

multithresh
Multilevel image thresholds using Otsu’s method

Syntax
thresh = multithresh(A)
thresh = multithresh(A,N)
[thresh,metric] = multithresh(___)

Description
thresh = multithresh(A) returns the single threshold value thresh computed for image A using
Otsu’s method. You can use thresh as an input argument to imquantize to convert an image into a
two-level image.

thresh = multithresh(A,N) returns thresh a 1-by-N vector containing N threshold values using
Otsu’s method. You can use thresh as an input argument to imquantize to convert image A into an
image with N+1 discrete levels.

[thresh,metric] = multithresh(___) returns metric, a measure of the effectiveness of the
computed thresholds.

Examples

Segment Image Into Two Regions

Read image and display it.

I = imread('coins.png');
imshow(I)

1 Functions

1-2400

Calculate a single threshold value for the image.

level = multithresh(I);

Segment the image into two regions using imquantize , specifying the threshold level returned by
multithresh .

seg_I = imquantize(I,level);
figure
imshow(seg_I,[])

 multithresh

1-2401

Segment Image into Three Levels Using Two Thresholds

Read image and display it.

I = imread('circlesBrightDark.png');
imshow(I)
axis off
title('Original Image')

1 Functions

1-2402

Calculate two threshold levels.

thresh = multithresh(I,2);

Segment the image into three levels using imquantize .

seg_I = imquantize(I,thresh);

Convert segmented image into color image using label2rgb and display it.

RGB = label2rgb(seg_I);
figure;
imshow(RGB)
axis off
title('RGB Segmented Image')

 multithresh

1-2403

Compare Thresholding Entire Image Versus Plane-by-Plane Thresholding

Read truecolor (RGB) image and display it.

I = imread('peppers.png');
imshow(I)
axis off
title('RGB Image');

1 Functions

1-2404

Generate thresholds for seven levels from the entire RGB image.

threshRGB = multithresh(I,7);

Generate thresholds for each plane of the RGB image.

threshForPlanes = zeros(3,7);

for i = 1:3
 threshForPlanes(i,:) = multithresh(I(:,:,i),7);
end

Process the entire image with the set of threshold values computed from entire image.

value = [0 threshRGB(2:end) 255];
quantRGB = imquantize(I, threshRGB, value);

Process each RGB plane separately using the threshold vector computed from the given plane.
Quantize each RGB plane using threshold vector generated for that plane.

quantPlane = zeros(size(I));

for i = 1:3
 value = [0 threshForPlanes(i,2:end) 255];

 multithresh

1-2405

 quantPlane(:,:,i) = imquantize(I(:,:,i),threshForPlanes(i,:),value);
end

quantPlane = uint8(quantPlane);

Display both posterized images and note the visual differences in the two thresholding schemes.

imshowpair(quantRGB,quantPlane,'montage')
axis off
title('Full RGB Image Quantization Plane-by-Plane Quantization')

To compare the results, calculate the number of unique RGB pixel vectors in each output image. Note
that the plane-by-plane thresholding scheme yields about 23% more colors than the full RGB image
scheme.

dim = size(quantRGB);
quantRGBmx3 = reshape(quantRGB, prod(dim(1:2)), 3);
quantPlanemx3 = reshape(quantPlane, prod(dim(1:2)), 3);

colorsRGB = unique(quantRGBmx3, 'rows');
colorsPlane = unique(quantPlanemx3, 'rows');

disp(['Unique colors in RGB image : ' int2str(length(colorsRGB))]);

Unique colors in RGB image : 188

disp(['Unique colors in Plane-by-Plane image : ' int2str(length(colorsPlane))]);

Unique colors in Plane-by-Plane image : 231

Check Results Using the Metric Output Argument

Read image.

I = imread('circlesBrightDark.png');

1 Functions

1-2406

Find all unique grayscale values in image.

uniqLevels = unique(I(:));

disp(['Number of unique levels = ' int2str(length(uniqLevels))]);

Number of unique levels = 148

Compute a series of thresholds at monotonically increasing values of N.

Nvals = [1 2 4 8];
for i = 1:length(Nvals)
 [thresh, metric] = multithresh(I, Nvals(i));
 disp(['N = ' int2str(Nvals(i)) ' | metric = ' num2str(metric)]);
end

N = 1 | metric = 0.54767
N = 2 | metric = 0.98715
N = 4 | metric = 0.99648
N = 8 | metric = 0.99902

Apply the set of 8 threshold values to obtain a 9-level segmentation using imquantize .

seg_Neq8 = imquantize(I,thresh);
uniqLevels = unique(seg_Neq8(:))

uniqLevels = 9×1

 1
 2
 3
 4
 5
 6
 7
 8
 9

Threshold the image using seg_Neq8 as an input to multithresh. Set N equal to 8, which is 1 less
than the number of levels in this segmented image. multithresh returns a metric value of 1.

[thresh, metric] = multithresh(seg_Neq8,8)

thresh = 1×8

 1.8784 2.7882 3.6667 4.5451 5.4549 6.3333 7.2118 8.1216

metric = 1

Threshold the image again, this time increasing the value of N by 1. This value now equals the
number of levels in the image. Note how the input is degenerate because the number of levels in the
image is too few for the number of requested thresholds. Hence, multithresh returns a metric
value of 0.

[thresh, metric] = multithresh(seg_Neq8,9)

Warning: No solution exists because the number of unique levels in the image are too few to find 9 thresholds. Returning an arbitrarily chosen solution.

 multithresh

1-2407

thresh = 1×9

 1 2 3 4 5 6 7 8 9

metric = 0

Input Arguments
A — Image to be thresholded
numeric array

Image to be thresholded, specified as a numeric array of any dimension. multithresh finds the
thresholds based on the aggregate histogram of the entire array. multithresh considers an RGB
image as a 3-D numeric array and computes the thresholds for the combined data from all three color
planes.

multithresh uses the range of the input image A, [min(A(:)) max(A(:))], as the limits for
computing the histogram used in subsequent computations. multithresh ignores any NaNs in
computation. Any Infs and -Infs are counted in the first and last bin of the histogram, respectively.

For degenerate inputs where the number of unique values in A is less than or equal to N, there is no
viable solution using Otsu's method. For such inputs, the return value thresh contains all the unique
values from A and possibly some extra values that are chosen arbitrarily.
Data Types: single | double | int16 | uint8 | uint16

N — Number of threshold values
1 (default) | positive integer

Number of threshold values, specified as a positive integer. For N > 2, multithresh uses search-
based optimization of Otsu's criterion to find the thresholds. The search-based optimization
guarantees only locally optimal results. Since the chance of converging to local optimum increases
with N, it is preferable to use smaller values of N, typically N < 10. The maximum allowed value for N
is 20.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
thresh — Set of threshold values
1-by-N numeric vector

Set of threshold values used to quantize an image, returned as a 1-by-N numeric vector, whose data
type is the same as image A.

These thresholds are in the same range as the input image A, unlike the graythresh function, which
returns a normalized threshold in the range [0, 1].

metric — Measure of effectiveness
number in the range [0, 1]

Measure of the effectiveness of the thresholds, returned as a number in the range [0, 1]. Higher
values indicates greater effectiveness of the thresholds in separating the input image into N+1 classes

1 Functions

1-2408

based on Otsu's objective criterion. For degenerate inputs where the number of unique values in A is
less than or equal to N, metric equals 0.
Data Types: double

References
[1] Otsu, N., "A Threshold Selection Method from Gray-Level Histograms," IEEE Transactions on

Systems, Man, and Cybernetics, Vol. 9, No. 1, 1979, pp. 62-66.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• multithresh supports the generation of C code (requires MATLAB Coder). Note that if you
choose the generic MATLAB Host Computer target platform, multithresh generates code that
uses a precompiled, platform-specific shared library. Use of a shared library preserves
performance optimizations but limits the target platforms for which code can be generated. For
more information, see “Types of Code Generation Support in Image Processing Toolbox”.

• The input argument N must be a compile-time constant.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The input argument N must be a compile-time constant.

See Also
graythresh | imquantize | im2bw | rgb2ind

Introduced in R2012b

 multithresh

1-2409

niftiinfo
Read metadata from NIfTI file

Syntax
info = niftiinfo(filename)

Description
info = niftiinfo(filename) returns metadata, info, from the Neuroimaging Informatics
Technology Initiative (NIfTI) file specified by filename. The niftiinfo function supports both the
NIfTI1 and NIfTI2 file formats.

Examples

View Metadata Fields from NIfTI Header File

Load metadata from the NIfTI file brain.nii.

info = niftiinfo('brain.nii');

Display the version of the file.

info.Version

ans =
'NIfTI1'

Display the pixel dimensions of the file.

info.PixelDimensions

ans = 1×3

 1 1 1

Display the raw header content.

info.raw

ans = struct with fields:
 sizeof_hdr: 348
 dim_info: ' '
 dim: [3 256 256 21 1 1 1 1]
 intent_p1: 0
 intent_p2: 0
 intent_p3: 0
 intent_code: 0
 datatype: 2
 bitpix: 8
 slice_start: 0

1 Functions

1-2410

 pixdim: [1 1 1 1 0 0 0 0]
 vox_offset: 352
 scl_slope: 0
 scl_inter: 0
 slice_end: 0
 slice_code: 0
 xyzt_units: 0
 cal_max: 0
 cal_min: 0
 slice_duration: 0
 toffset: 0
 descrip: ''
 aux_file: ''
 qform_code: 0
 sform_code: 0
 quatern_b: 0
 quatern_c: 0
 quatern_d: 0
 qoffset_x: 0
 qoffset_y: 0
 qoffset_z: 0
 srow_x: [0 0 0 0]
 srow_y: [0 0 0 0]
 srow_z: [0 0 0 0]
 intent_name: ''
 magic: 'n+1 '

Display the intent code from the raw structure.

info.raw.intent_code

ans = 0

Input Arguments
filename — Name of NIfTI file
character vector | string scalar

Name of NIfTI file, specified as a string scalar or a character vector.

• If you do not specify a file extension, then niftiinfo looks for a file with the extension .nii
(or .nii.gz if the file is compressed).

• If niftiinfo cannot find a file with the .nii or .nii.gz extension, then it looks for a file with
the file extension .hdr (or .hdr.gz if the file is compressed). In the dual-file NIfTI format,
the .hdr file holds the metadata associated with the volume.

Data Types: char | string

Output Arguments
info — Metadata associated with a NIfTI volume
structure

Metadata associated with a NIfTI volume, returned as a structure.

 niftiinfo

1-2411

niftiinfo returns the metadata from the header in simplified form. The function renames, reorders,
and packages fields into easier to read MATLAB structures. For example, niftiinfo creates the
DisplayIntensityRange field from the cal_max and cal_min fields of the file metadata. To view
the metadata as it appears in the file, see the raw field of the structure returned.

References
[1] Cox, R. W., J. Ashburner, H. Breman, K. Fissell, C. Haselgrove, C. J. Holmes, J. L. Lancaster, D. E.

Rex, S. M. Smith, J. B. Woodward, and S. C. Strother. "A (sort of) new image data format
standard: NiFTI-1." 10th Annual Meeting of Organisation of Human Brain Mapping,
Budapest, Hungary, June 2004.

See Also
niftiread | niftiwrite

Introduced in R2017b

1 Functions

1-2412

niftiread
Read NIfTI image

Syntax
V = niftiread(filename)
V = niftiread(headerfile,imgfile)
V = niftiread(info)

Description
V = niftiread(filename) reads the NIfTI image file specified by filename in the current folder
or on the path, and returns volumetric data in V. The niftiread function supports both the NIfTI1
and NIfTI2 file formats.

V = niftiread(headerfile,imgfile) reads a NIfTI header file (.hdr) and image file (.img)
pair.

V = niftiread(info) reads a NIfTI file described by the metadata structure info. To create an
info structure, use the niftiinfo function

Examples

Load Volume from NIfTI File Using File Name

Load volumetric data from a NIfTI file. The file uses the NIfTI combined format—the image and
metadata are in the same file. This type of NIfTI file has the .nii file extension.

V = niftiread('brain.nii');

View the variable in the workspace.

whos V

 Name Size Bytes Class Attributes

 V 256x256x21 1376256 uint8

Load Volume from NIfTI File Using Its Header Structure

Read the metadata from a NIfTI file.

info = niftiinfo('brain.nii');

Read the volumetric image using the metadata structure returned by niftiinfo.

V = niftiread(info);

 niftiread

1-2413

View the variable in the workspace.

whos V

 Name Size Bytes Class Attributes

 V 256x256x21 1376256 uint8

Input Arguments
filename — Name of NIfTI file
string scalar | character vector

Name of the NIfTI file, specified as a string scalar or character vector. The file can be in the NIfTI1
or NIfTI2 file format.

• If you do not specify a file extension, then niftiread looks for a file with the .nii extension.
• If niftiread cannot find a file with the .nii extension, then it looks for a gzipped version of the
file, with extension .nii.gz.

• If niftiread cannot find a file with the .nii.gz extension, then it looks for a file with
the .hdr, .hdr.gz, .img, or .img.gz file extension.

• If niftiread cannot find a file that matches any of these options, then it returns an error.

Data Types: char | string

headerfile — Name of file containing metadata
string scalar | character vector

Name of the file containing metadata, specified as a string scalar or a character vector. The NIfTI
header file (.hdr) holds the metadata associated with a NIfTI volume. If you do not specify a
corresponding imgfile, then niftiread looks in the same folder for a file with the same name and
extension .img.
Data Types: char | string

imgfile — Name of file containing volume
string scalar | character vector

Name of the file containing volume, specified as a string scalar or a character vector. The NIfTI image
file (.img) holds the volume data. If you do not specify a corresponding header file, then niftiread
looks in the same folder for a file with the same name and extension .hdr.
Data Types: char | string

info — NIfTI file metadata
structure

NIfTI file metadata, specified as a structure returned by niftiinfo.
Data Types: struct

1 Functions

1-2414

Output Arguments
V — Volumetric data
numeric array

Volumetric data, returned as a numeric array.

More About
NIfTI File Format

NIfTI (Neuroimaging Informatics Technology Initiative) is an NIH-sponsored working group to
promote the interoperability of functional neuroimaging software tools. NIfTI uses a single or dual file
storage format.

• The dual file format stores data in a pair of files: a header file (.hdr) containing the metadata and
a data file (.img) containing image data.

• The single file format stores the data in a single file (.nii), which contains header information
followed by image data.

References
[1] Cox, R. W., J. Ashburner, H. Breman, K. Fissell, C. Haselgrove, C. J. Holmes, J. L. Lancaster, D. E.

Rex, S. M. Smith, J. B. Woodward, and S. C. Strother. "A (sort of) new image data format
standard: NiFTI-1." 10th Annual Meeting of Organisation of Human Brain Mapping,
Budapest, Hungary, June 2004.

See Also
niftiwrite | niftiinfo

Introduced in R2017b

 niftiread

1-2415

niftiwrite
Write volume to file using NIfTI format

Syntax
niftiwrite(V,filename)
niftiwrite(V,filename,info)
niftiwrite(V,filename,info,Name,Value)

Description
niftiwrite(V,filename) writes the volumetric image data V to a file by using the Neuroimaging
Informatics Technology Initiative (NIfTI) format. By default, niftiwrite creates a combined NIfTI
file that contains both metadata and volumetric data. niftiwrite names the file filename, adding
the .nii file extension. niftiwrite populates the metadata using appropriate default values and
volume properties, such as size and data type.

niftiwrite supports both the NIfTI1 and NIfTI2 file formats. NIfTI1 is the default file format.
To write NifTI data in the NIfTI2 format, use the syntax with Name,Value pair arguments. Specify
the Version argument as 'NIfTI2'.

niftiwrite(V,filename,info) writes the volumetric data V to a file, including the file metadata
from info. If the metadata does not match the image contents and size, then niftiwrite returns an
error.

niftiwrite(V,filename,info,Name,Value) writes the volumetric data to a file, using options
specified in Name,Value pairs.

Examples

Write Median-Filtered Volume to NIfTI File

Load a NIfTI image by using its .nii file name.

V = niftiread('brain.nii');

Filter the image in 3-D by using a 3-by-3 median filter.

V = medfilt3(V);

Write the filtered image to a .nii file, using default header values.

niftiwrite(V,'outbrain.nii');

Write Data to NIfTI File and Modify Header Structure

Read the metadata from a NIfTI file by using its .nii file name.

1 Functions

1-2416

info = niftiinfo('brain.nii');

Read volumetric data from the file by using the file metadata.

V = niftiread(info);

Edit the Description metadata field of the file.

info.Description = 'Modified using MATLAB R2017b';

Write the volumetric data with the modified metadata to a new .nii file.

niftiwrite(V,'outbrain.nii',info);

Input Arguments
filename — Name of NIfTI file
character vector | string scalar

Name of NIfTI file, specified as a string scalar or character vector. By default, niftiwrite creates a
combined format file that contains both metadata and image data and has the file extension .nii. If
you specify the 'Compressed' name-value pair, niftiwrite adds the file extension .nii.gz. If you
set the 'Combined' name-value pair to false, then niftiwrite creates two files with the same
name and different file extensions. One file contains the metadata associated with the volume and has
the file extension .hdr. The other file contains image data and has the file extension .img.
Data Types: char | string

V — Volumetric data
numeric array

Volumetric data, specified as a numeric array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

info — File metadata
structure

File metadata, specified as a structure returned by the niftiinfo function.
Data Types: struct

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: niftiwrite(V,'outbrain.nii','Compressed',true)

Combined — Type of NIfTI file to create
true (default) | false

Type of NIfTI file to create, specified as true or false. If true (the default), niftiwrite creates a
single file with the file extension .nii. If false, niftiwrite creates a pair of files with the same

 niftiwrite

1-2417

name but with different file extensions: .hdr for the file containing metadata, and .img for the file
containing the volumetric data.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Compressed — Compress image data
false (default) | true

Compress image data, specified as true or false. If 'Compressed' is true, then niftiwrite
generates compressed files, using gzip, with the file name extension .gz.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Endian — Endianness of the data
'little' (default) | 'big'

Endianness of the data, specified as 'little', to indicate little-endian format (default) or 'big', to
indicate big-endian format.
Data Types: char | string

Version — NIfTI data format
'NIfTI1' | 'NIfTI2'

NIfTI data format, specified as 'NIfTI1' or 'NIfTI2'.

• If specified as 'NIfTI1', then niftiwrite writes the input according to NIfTI1 data format.
• If specified as 'NIfTI2', then niftiwrite writes the input according to NIfTI2 data format.
• If not specified, then the default value for 'Version' is chosen based on the maximum dimension

of the input volumetric data.

• If the maximum dimension of the input is less than or equal to 32767, then the default value is
NIfTI1.

• If the maximum dimension of the input is greater than 32767, then the default value is
NIfTI2.

Data Types: char | string

References
[1] Cox, R. W., J. Ashburner, H. Breman, K. Fissell, C. Haselgrove, C. J. Holmes, J. L. Lancaster, D. E.

Rex, S. M. Smith, J. B. Woodward, and S. C. Strother. "A (sort of) new image data format
standard: NiFTI-1." 10th Annual Meeting of Organisation of Human Brain Mapping,
Budapest, Hungary, June 2004.

See Also
niftiread | niftiinfo

Introduced in R2017b

1 Functions

1-2418

niqe
Naturalness Image Quality Evaluator (NIQE) no-reference image quality score

Syntax
score = niqe(A)
score = niqe(A,model)

Description
score = niqe(A) calculates the no-reference image quality score for image A using the
Naturalness Image Quality Evaluator (NIQE). niqe compares A to a default model computed from
images of natural scenes. A smaller score indicates better perceptual quality.

score = niqe(A,model) calculates the image quality score using a custom model.

Examples

Calculate NIQE Score Using Default Feature Model

Compute the NIQE score for a natural image and its distorted versions using the default model.

Read an image into the workspace. Create copies of the image with noise and blurring distortions.

I = imread('lighthouse.png');
Inoise = imnoise(I,'salt & pepper',0.02);
Iblur = imgaussfilt(I,2);

Display the images.

figure
montage({I,Inoise,Iblur},'Size',[1 3])
title('Original Image | Noisy Image | Blurry Image')

 niqe

1-2419

Calculate the NIQE score for each image using the default model. Display the score.

niqeI = niqe(I);
fprintf('NIQE score for original image is %0.4f.\n',niqeI)

NIQE score for original image is 2.5455.

niqeInoise = niqe(Inoise);
fprintf('NIQE score for noisy image is %0.4f.\n',niqeInoise)

NIQE score for noisy image is 10.8770.

niqeIblur = niqe(Iblur);
fprintf('NIQE score for blurry image is %0.4f.\n',niqeIblur)

NIQE score for blurry image is 5.2661.

The original undistorted image has the best perceptual quality and therefore the lowest NIQE score.

Calculate NIQE Score Using Custom Feature Model

Load a set of natural images into an image datastore. These images are shipped in Image Processing
Toolbox™ in a directory named 'imdata'.

setDir = fullfile(toolboxdir('images'),'imdata');
imds = imageDatastore(setDir,'FileExtensions',{'.jpg'});

Train a custom NIQE model using the image datastore.

model = fitniqe(imds);

Extracting features from 38 images.
..

1 Functions

1-2420

Completed 4 of 38 images. Time: Calculating...
....
Completed 13 of 38 images. Time: 00:23 of 00:55
..
Completed 18 of 38 images. Time: 00:35 of 01:09
....
Completed 32 of 38 images. Time: 00:46 of 00:54
..
Done.

Read an image of a natural scene. Display the image.

I = imread('car1.jpg');
imshow(I)

Calculate the NIQE score for the image using the custom model. Display the score.

niqeI = niqe(I,model);
fprintf('NIQE score for the image is %0.4f.\n',niqeI)

NIQE score for the image is 1.8728.

 niqe

1-2421

Input Arguments
A — Input image
2-D grayscale image | 2-D RGB image

Input image, specified as a 2-D grayscale or RGB image.
Data Types: single | double | int16 | uint8 | uint16

model — Custom model
niqeModel object

Custom model of image features, specified as a niqeModel object. model is derived from natural
scene statistics.

Output Arguments
score — No-reference image quality score
nonnegative scalar

No-reference image quality score, returned as a nonnegative scalar. Lower values of score reflect
better perceptual quality of image A with respect to the input model.
Data Types: double

Algorithms
NIQE measures the distance between the NSS-based features calculated from image A to the features
obtained from an image database used to train the model. The features are modeled as
multidimensional Gaussian distributions.

References
[1] Mittal, A., R. Soundararajan, and A. C. Bovik. "Making a Completely Blind Image Quality

Analyzer." IEEE Signal Processing Letters. Vol. 22, Number 3, March 2013, pp. 209–212.

See Also
Functions
brisque | fitbrisque | fitniqe | piqe

Objects
niqeModel

Topics
“Image Quality Metrics”

Introduced in R2017b

1 Functions

1-2422

niqeModel
Naturalness Image Quality Evaluator (NIQE) model

Description
A niqeModel object encapsulates a model used to calculate the Naturalness Image Quality Evaluator
(NIQE) perceptual quality score of an image.

Creation
You can create a niqeModel object using the following methods:

• fitniqe — Train a NIQE model with parameters derived from your image datastore. Use this
function if you do not have a pretrained model.

• The niqeModel function described here. Use this function if you have a pretrained NIQE model,
or if the default model is sufficient for your application.

Syntax
m = niqeModel
m = niqeModel(mean,covariance,blockSize,sharpnessThreshold)

Description

m = niqeModel creates a NIQE model object with default property values that are derived from the
pristine image database noted in [1].

m = niqeModel(mean,covariance,blockSize,sharpnessThreshold) creates a custom NIQE
model and sets the Mean, Covariance, BlockSize, and SharpnessThreshold properties. You
must provide all four arguments to create a custom model.

Properties
Mean — Mean of natural scene statistics (NSS) based image feature vectors
36-element numeric row vector

Mean of natural scene statistics (NSS) based image feature vectors, specified as a 36-element
numeric row vector.
Example: rand(1,36)
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Covariance — Covariance matrix of NSS-based image feature vectors
36-by-36 numeric matrix

Covariance matrix of NSS-based image feature vectors, specified as a 36-by-36 numeric matrix.
Example: rand(36,36)

 niqeModel

1-2423

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

BlockSize — Block size used to partition an image
[96 96] (default) | 2-element row vector of positive even integers

Block size used to partition an image into nonoverlapping blocks, specified as a 2-element row vector
of positive even integers. The two elements specify the number of rows and columns in each partition,
respectively.
Example: [10 10]
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

SharpnessThreshold — Sharpness threshold used to calculate feature vectors
0 (default) | real scalar in the range [0, 1]

Sharpness threshold used to calculate feature vectors, specified as a real scalar in the range [0, 1].
The threshold determines which blocks are selected to calculate the feature vectors.
Example: 0.25
Data Types: single | double

Examples

Create NIQE Model Object with Default Properties

model = niqeModel

model =
 niqeModel with properties:

 Mean: [2.3167 0.7556 0.7429 0.0746 0.0951 0.1466 ...]
 Covariance: [36x36 double]
 BlockSize: [96 96]
 SharpnessThreshold: 0

Create NIQE Model Object with Custom Properties

Create a niqeModel object using precomputed Mean, Covariance, BlockSize, and
SharpnessThreshold properties. Random initializations are shown for illustrative purposes only.

 model = niqeModel(rand(1,36),rand(36,36),[10 10],0.25);

You can use the custom model to calculate the NIQE score for an image.

I = imread('lighthouse.png');
score = niqe(I,model)

score = 3.6866

1 Functions

1-2424

References
[1] Mittal, A., R. Soundararajan, and A. C. Bovik. "Making a Completely Blind Image Quality

Analyzer." IEEE Signal Processing Letters. Vol. 22, Number 3, March 2013, pp. 209–212.

See Also
Functions
niqe | fitniqe

Objects
brisqueModel

Topics
“Image Quality Metrics”
“Train and Use No-Reference Quality Assessment Model”

Introduced in R2017b

 niqeModel

1-2425

nitfinfo
Read metadata from National Imagery Transmission Format (NITF) file

Syntax
info = nitfinfo(filename)

Description
info = nitfinfo(filename) returns the file-level metadata about the images, annotations, and
graphics in a National Imagery Transmission Format (NITF) file specified by filename. NITF is an
image format used by the U.S. government and military for transmitting documents. A NITF file can
contain multiple images and include text and graphic layers.

Input Arguments
filename — Name of NITF file
character vector | string scalar

Name of NITF file, specified as a character vector or string scalar.
Data Types: char | string

Output Arguments
info — Metadata of NITF file
struct

Metadata of NITF file, returned as a structure.

Tips
• nitfinfo supports version 2.0 and 2.1 NITF files, at all Joint Interoperability Test Command

(JITC) compliance levels, as well as the NATO Secondary Image Format (NSIF) 1.0. nitfinfo
does not support NITF 1.1 files.

See Also
isnitf | nitfread

Introduced in R2007b

1 Functions

1-2426

nitfread
Read image from NITF file

Syntax
X = nitfread(filename)
X = nitfread(filename,idx)
X = nitfread(___ ,'PixelRegion',regions)

Description
X = nitfread(filename) reads the first image from the National Imagery Transmission Format
(NITF) file specified by filename.

X = nitfread(filename,idx) reads the image with index number idx from an NITF file that
contains multiple images.

X = nitfread(___ ,'PixelRegion',regions) additionally specifies regions of the image to be
read from an NITF file, .

Examples
Read Image Data from NITF File

To run this example, replace the name of the file with the name of an NITF file on your system. You
can find sample NITF files on the web.

Read the second image from an NITF file containing multiple images. The example reads a subset of
the image data starting at (row,column) location (100, 200), reading every other value until location
(105, 205).

subsec = {[100 2 105],[200 2 205]}

ntfdata = nitfread('your_file.ntf',2,'PixelRegion',subsec);

Input Arguments
filename — Name of NITF file
character vector

Name of the NITF file, specified as a character vector. The file must be in the current folder or in a
folder on the MATLAB path, or filename must contain the full path to the file.
Data Types: char

idx — Index number of image in NITF file
positive integer

Index number of the image in the NITF file, specified as a positive integer.
Data Types: double

 nitfread

1-2427

regions — Regions of image to be read
2-column cell array

Regions of image to be read from the NITF file, specified as a 2-column cell array. The first column
specifies row indices and the second column specifies column indices of the regions. Each element in
the cell array is a 2-element vector of positive integers of the form [start stop] or a 3-element
vector of positive integers of the form [start increment stop].
Example: {[100 150],[200 250]} — read pixels starting at row/column location (100, 200) and
ending at location (150, 250)
Example: {[100 2 150],[200 2 250]} — read every other pixel starting at row/column location
(100, 200) and ending at location (150, 250)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
cell

Output Arguments
X — Image data from NITF file
numeric array

Image data from the NITF file, returned as a numeric array.

Tips
• nitfread supports version 2.0 and 2.1 NITF files, and NSIF 1.0 files. Image submasks and NITF

1.1 files are not supported.

See Also
isnitf | nitfinfo | tiffreadVolume

Introduced in R2007b

1 Functions

1-2428

nlfilter
General sliding-neighborhood operations

Syntax
B = nlfilter(A,[m n],fun)
B = nlfilter(A,'indexed', ___)

Description
B = nlfilter(A,[m n],fun) applies the function fun to each m-by-n sliding block of the
grayscale image A.

B = nlfilter(A,'indexed', ___) processes A as an indexed image, padding with 0s if the class
of A is uint8, uint16, or logical, and padding with 1s otherwise.

Note nlfilter can take a long time to process large images. In some cases, the colfilt function
can perform the same operation much faster.

Examples

Apply Median Filter to Image

This example shows how to apply a median filter to an image using nlfilter. This example
produces the same result as calling medfilt2 with a 3-by-3 neighborhood.

Read an image into the workspace.

A = imread('cameraman.tif');

Convert the image to double.

A = im2double(A);

Create the function you want to apply to the image—a median filter.

fun = @(x) median(x(:));

Apply the filter to the image.

B = nlfilter(A,[3 3],fun);

Display the original image and the filtered image, side-by-side.

montage({A,B})
title('Original Image (Left) and Median Filtered Image (Right)')

 nlfilter

1-2429

Input Arguments
A — Image to be filtered
numeric array

Image to be filtered, specified as a numeric array of any class supported by fun. When A is grayscale,
it can be any numeric type or logical. When A is indexed, it can be logical, uint8, uint16,
single, or double.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

[m n] — Block size
2-element vector of positive integers

Block size, specified as a 2-element vector of positive integers. m is the number of rows and n is the
number of columns in the block.
Example: B = nlfilter(A,[3 3],fun);
Data Types: single | double | logical

fun — Function handle
handle

Function handle specified as a handle. The function must accept an m-by-n matrix as input and return
a scalar result.

c = fun(x)

1 Functions

1-2430

c is the output value for the center pixel in the m-by-n block x. nlfilter calls fun for each pixel in
A. nlfilter zero-pads the m-by-n block at the edges, if necessary.
Data Types: function_handle

Output Arguments
B — Filtered image
numeric array

Filtered image, returned as numeric array. The class of B depends on the class of the output from
fun.

See Also
blockproc | colfilt

Topics
“Anonymous Functions”
“Parameterizing Functions”
“Create Function Handle”

Introduced before R2006a

 nlfilter

1-2431

normxcorr2
Normalized 2-D cross-correlation

Syntax
C = normxcorr2(template,A)

Description
C = normxcorr2(template,A) computes the normalized cross-correlation of the matrices
template and A. The resulting matrix C contains the correlation coefficients.

Examples

Use Cross-Correlation to Find Template in Image

Read two images into the workspace, and convert them to grayscale for use with normxcorr2.
Display the images side-by-side.

onion = im2gray(imread('onion.png'));
peppers = im2gray(imread('peppers.png'));
montage({peppers,onion})

Perform cross-correlation, and display the result as a surface.

c = normxcorr2(onion,peppers);
surf(c)
shading flat

1 Functions

1-2432

Find the peak in cross-correlation.

[ypeak,xpeak] = find(c==max(c(:)));

Account for the padding that normxcorr2 adds.

yoffSet = ypeak-size(onion,1);
xoffSet = xpeak-size(onion,2);

Display the matched area by using the drawrectangle function. The 'Position' name-value pair
argument specifies the upper left coordinate, width, and height of the ROI as the 4-element vector
[xmin,ymin,width,height]. Specify the face of the ROI as fully transparent.

imshow(peppers)
drawrectangle(gca,'Position',[xoffSet,yoffSet,size(onion,2),size(onion,1)], ...
 'FaceAlpha',0);

 normxcorr2

1-2433

Input Arguments
template — Input template
numeric matrix

Input template, specified as a numeric matrix. The values of template cannot all be the same.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

A — Input image
numeric matrix

Input image, specified as a numeric image. A must be larger than the matrix template for the
normalization to be meaningful.

Normalized cross-correlation is an undefined operation in regions where A has zero variance over the
full extent of the template. In these regions, normxcorr2 assigns correlation coefficients of zero to
the output C.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

1 Functions

1-2434

Output Arguments
C — Correlation coefficients
numeric matrix

Correlation coefficients, returned as a numeric matrix with values in the range [-1, 1].
Data Types: double

Algorithms
normxcorr2 uses the following general procedure [1], [2]:

1 Calculate cross-correlation in the spatial or the frequency domain, depending on size of images.
2 Calculate local sums by precomputing running sums [1].
3 Use local sums to normalize the cross-correlation to get correlation coefficients.

The implementation closely follows the formula from [1]:

γ(u, v) = ∑x, y f x, y − f u, v t x− u, y − v − t

∑x, y f x, y − f u, v
2∑x, y t(x− u, y − v)− t 2 0.5

where

• f is the image.
• t is the mean of the template
• f u, v is the mean of f (x, y) in the region under the template.

References
[1] Lewis, J. P., "Fast Normalized Cross-Correlation," Industrial Light & Magic

[2] Haralick, Robert M., and Linda G. Shapiro, Computer and Robot Vision, Volume II, Addison-Wesley,
1992, pp. 316-317.

Extended Capabilities
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on a GPU”.

 normxcorr2

1-2435

http://scribblethink.org/Work/nvisionInterface/nip.pdf

See Also
corrcoef | corr2

Introduced before R2006a

1 Functions

1-2436

ntsc2rgb
Convert NTSC values to RGB color space

Syntax
RGB = ntsc2rgb(YIQ)

Description
RGB = ntsc2rgb(YIQ) converts the luma (Y) and chrominance (I and Q) values of an NTSC image
to red, green, and blue values of an RGB image.

Examples

Convert Image from YIQ to RGB

This example shows how to convert an image from RGB to NTSC color space and back.

Read an RGB image into the workspace.

RGB = imread('board.tif');

Convert the image to YIQ color space.

YIQ = rgb2ntsc(RGB);

Display the NTSC luminance, represented by the first color channel in the YIQ image.

imshow(YIQ(:,:,1))
title('Luminance in YIQ Color Space')

 ntsc2rgb

1-2437

Convert the YIQ image back to RGB color space.

RGB2 = ntsc2rgb(YIQ);

Display the image that was converted from YIQ to RGB color space.

1 Functions

1-2438

figure
imshow(RGB2)
title('Image Converted from YIQ to RGB Color Space')

 ntsc2rgb

1-2439

Input Arguments
YIQ — YIQ color values
numeric array

YIQ color values to convert, specified as a numeric array in one of these formats.

• c-by-3 colormap. Each row specifies one YIQ color value. Values should be in the range [0, 1] with
data type double.

• m-by-n-by-3 image. Values can be data type single, double, uint8, uint16, or int16.

Attribute Description
Y Luma, or brightness of the image. Values are in the range [0, 1], where 0

specifies black and 1 specifies white. Colors increase in brightness as Y
increases.

I In-phase, which is approximately the amount of blue or orange tones in the
image. I in the range [-0.5959, 0.5959], where negative numbers indicate
blue tones and positive numbers indicate orange tones. As the magnitude
of I increases, the saturation of the color increases.

Q Quadrature, which is approximately the amount of green or purple tones in
the image. Q in the range [-0.5229, 0.5229], where negative numbers
indicate green tones and positive numbers indicate purple tones. As the
magnitude of Q increases, the saturation of the color increases.

Data Types: single | double | uint8 | uint16 | int16

Output Arguments
RGB — Converted RGB color values
numeric array

Converted RGB color values, returned as a numeric array of the same size as the input. Values are in
the range [0, 1]. The output data type is double unless the input data type is single, in which case
the output data type is also single.
Data Types: double | single

Algorithms
ntsc2rgb computes the RGB values from the NTSC components using

R
G
B

=
1.000 0.956 0.621
1.000 −0.272 −0.647
1.000 −1.106 1.703

Y
I
Q

.

See Also
rgb2ntsc | hsv2rgb | lab2rgb | xyz2rgb | ycbcr2rgb

Topics
“Understanding Color Spaces and Color Space Conversion”

1 Functions

1-2440

Introduced before R2006a

 ntsc2rgb

1-2441

obliqueslice
Extract oblique slice from 3-D volumetric data

Syntax
B = obliqueslice(V,point,normal)
B = obliqueslice(___ ,Name,Value)
[B,x,y,z] = obliqueslice(___)

Description
B = obliqueslice(V,point,normal) extracts a 2-D oblique slice from a 3-D volumetric data V.
The slice is extracted with reference to a given point on the volume and a normal vector. The slicing
plane is perpendicular to the normal vector and passes through the specified point.

For information about how the slice is extracted with respect to the given point and the normal, see
“Oblique Slicing” on page 1-2450.

B = obliqueslice(___ ,Name,Value) specifies options using one or more name-value
arguments in addition to the input arguments in the previous syntax.

[B,x,y,z] = obliqueslice(___) also returns the 3-D Cartesian coordinates of the extracted
slice in the input volume. For information about how the intensity values at these 3-D coordinates are
mapped to 2-D plane, see “Mapping Values from 3-D Coordinate Space to Image Plane” on page 1-
2450.

Examples

Extract Oblique Slice from 3-D Volumetric Data

Load a 3-D volumetric data set into the workspace.

load mri

Remove singleton dimensions by using the squeeze function.

V = squeeze(D);

Display horizontal slices of the data by using the montage function.

montage(V,map,'Size',[3 9]);

1 Functions

1-2442

Specify a point in the volume for the slice to pass through.

point = [73 50 15.5];

Specify a normal vector in 3-D coordinate space.

normal = [0 15 20];

Extract a slice from the volumetric data. The slice is perpendicular to the normal vector and passes
through the specified point.

[B,x,y,z] = obliqueslice(V,point,normal);

Display the extracted slice in the 3-D coordinate space.

figure
surf(x,y,z,B,'EdgeColor','None','HandleVisibility','off');
grid on
view([-38 12])
colormap(gray)
xlabel('x-axis')
ylabel('y-axis');
zlabel('z-axis');
title('Slice in 3-D Coordinate Space')

Plot the point and the normal vector.

hold on
plot3(point(1),point(2),point(3),'or','MarkerFaceColor','r');
plot3(point(1)+[0 normal(1)],point(2)+[0 normal(2)],point(3)+[0 normal(3)], ...
 '-b','MarkerFaceColor','b');
hold off
legend('Point in the volume','Normal vector')

 obliqueslice

1-2443

Display the extracted slice in the image plane.

figure
imshow(B,[])
title('Slice in Image Plane')

Extract Multiple Slices Along Normal Vector

Load a 3-D volumetric data set into the workspace.

s = load(fullfile(toolboxdir('images'),'imdata','BrainMRILabeled','images','vol_001.mat'));
V = s.vol;

Display horizontal slices of the data by using the montage function.

1 Functions

1-2444

montage(V,'Indices',12:118,'Size',[8 12],'DisplayRange',[]);

Specify the normal vector to a plane in 3-D coordinate space.

normal = [20 0 10];

Extract multiple slices along the direction of the normal vector using a for loop. In each iteration:

• Specify a point that the slice has to pass through.
• Extract the slice, specifying the output size to 'Full' and the fill value for padding pixels as 255.

The extracted slices are perpendicular to the normal vector and pass through the specified point.
• Display the extracted slices.

sliceIdx = 10:5:180;

figure
for s = 1:length(sliceIdx)

 pt = [sliceIdx(s) 150 80];
 [B,x,y,z] = obliqueslice(V,pt,normal,'OutputSize','Full','FillValues',255);

 Bslices(:,:,s) = B;

 % Display the slice in 3-D coordinate space
 subplot('Position',[0.11 0.36 0.38 0.5])

 obliqueslice

1-2445

 surf(x,y,z,B,'EdgeColor','None','HandleVisibility','off');
 grid on
 view([-24 12])
 colormap(gray)
 xlabel('x-axis')
 ylabel('y-axis');
 zlabel('z-axis');
 zlim([0 155]);
 ylim([0 250]);
 xlim([0 250]);
 title('Slice in 3-D Coordinate Space')
 % Plot the point and the normal vector.
 hold on
 plot3(pt(1),pt(2),pt(3),'or','MarkerFaceColor','r')
 plot3(...
 pt(1)+[-normal(1) normal(1)], ...
 pt(2)+[-normal(2) normal(2)], ...
 pt(3)+[-normal(3) normal(3)], ...
 '-b','MarkerFaceColor','b')
 legend('Point in the volume','Normal vector','Position',[0.1 0.12 0.3 0.08])
 hold off
 % Display the extracted slice.
 subplot('Position',[0.6 0.37 0.34 0.49])
 imshow(B,[])
 title('Slice in Image Plane')
 pause(0.5);
end

1 Functions

1-2446

Display the extracted image slices by using the montage function.

figure
montage(Bslices,'Size',[5 7],'DisplayRange',[]);

Input Arguments
V — Input volume
3-D numeric array | 3-D categorical array

Input volume, specified as a 3-D numeric or 3-D categorical array.

 obliqueslice

1-2447

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical |
categorical

point — Point in volume
3-element row vector

Point in the volume, specified as a 3-element row vector of the form [px py pz].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

normal — Normal vector
3-element row vector

Normal vector, specified as a 3-element row vector of form [a b c]. The normal vector is a vector that
is perpendicular to a surface or plane.

To extract an orthogonal slice, you can set the normal vector to one of these values:

• [1 0 0] — Extract slice in the yz-plane.
• [0 1 0] — Extract slice in the xz-plane.
• [0 0 1] — Extract slice in the xy-plane.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: obliqueslice(V,point,normal,'OutputSize','Full')

Method — Interpolation method
'linear' | 'nearest'

Interpolation method, specified as the comma-separated pair consisting of 'Method' and one of
these values:

• 'linear' — linear interpolation
• 'nearest' — nearest neighbor interpolation

If V is numeric, the interpolation method defaults to 'linear' but can also be specified as
'nearest'. If V is categorical, then the interpolation method must be 'nearest'.
Data Types: char | string

OuputSize — Size of output image
'limit' (default) | 'full'

Size of output image, specified as the comma-separated pair consisting of 'OutputSize' and one of
these values:

• 'limit' — The size of the output image is the actual size of the 2-D slice with respect to the
dimensions of input volume. If the extracted slice region is not square or rectangular, the function
automatically pads the extracted slice region with extra pixels to yield a square or rectangular
image.

1 Functions

1-2448

• 'full' — The size of the output image may not be equal to the actual size of the 2-D slice. The
size of the output image is set to the maximal slice size that can be obtained from the input
volume with respect to the normal vector normal. To resize the image, the border of the extracted
2-D slice is padded with extra rows and columns.

The fill value for the padded pixels is 0 by default. You can use the 'FillValues' name-value pair
argument to change the value.

Data Types: char | string

FillValues — Fill value for padded pixels
0 (default) | numeric scalar | character vector | missing

Fill value for padded pixels, specified as the comma-separated pair consisting of 'FillValues' and
a numeric scalar, character vector, or missing.

When V is a numeric array, specify

• 0 for zero padding.
• numeric scalar for constant padding.

When V is a categorical array, specify

• character vector that denotes a category in the input data. To know the categories, use the
categories function.

• missing, if the category in input data is equal to <undefined>.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char

Output Arguments
B — Output 2-D slice
numeric matrix | categorical matrix

Output 2-D slice, returned as a numeric or categorical matrix. The data type of the output slice is
same as the data type of the input volume.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical |
categorical

x — x-coordinates of output slice
numeric matrix

x-coordinates of the output slice in the 3-D volume, returned as a numeric matrix of the size same as
the output slice, B.
Data Types: single

y — y-coordinates of output slice
numeric matrix

y-coordinates of the output slice in the 3-D volume, returned as a numeric matrix of the size same as
the output slice, B.
Data Types: single

 obliqueslice

1-2449

z — z-coordinates of output slice
numeric matrix

z-coordinates of the output slice in the 3-D volume, returned as a numeric matrix of the size same as
the output slice, B.
Data Types: single

More About
Oblique Slicing

Given a point (px, py, pz) and the normal vector (a, b, c), the function solves the plane equation a(x-px)
+b(y-py)+c(z-pz) = 0

The point (px, py, pz) lies in the volumetric data. The slicing plane is perpendicular to the normal
vector and passes through the given point.

Mapping Values from 3-D Coordinate Space to Image Plane

The order in which the coordinates of the extracted slice in 3-D space is mapped to a 2-D plane
depends on its inclination angle with respect to the horizontal and vertical planes.

The obliqueslice function returns the output matrices x, y, and z that contain the x, y, z
coordinates of the points in 3-D coordinate space that form the image slice. The obliqueslice
function interpolates the intensity values at these points and maps it to the 2-D plane. The first value
in the output matrices x(1,1), y(1,1), z(1,1) specify 3-D coordinate of a point that maps as the upper-
left pixel, (1, 1) in the image plane. Starting from this point, the 3-D coordinates that constitute the
image slice along with the associated intensity values are read in left-to-right, top-to-bottom scan
order. These intensity values fill the 2-D image plane in the same left-to-right, top-to-bottom scan
order.

Suppose V is the input volumetric data and B is the output 2-D image, then B(i,j) = V(a,b,c).

Where, a = x(i,j), b = y(i,j), and c = z(i,j).

1 Functions

1-2450

See Also
Functions
slice

Objects
sliceViewer | orthosliceViewer | volshow

Introduced in R2020a

 obliqueslice

1-2451

offsetstrel
Morphological offset structuring element

Description
An offsetstrel object represents a nonflat morphological structuring element, which is an
essential part of morphological dilation and erosion operations.

A nonflat structuring element is a matrix that identifies the pixel in the image being processed and
defines the neighborhood used in the processing of that pixel. A nonflat structuring element contains
finite values used as additive offsets in the morphological computation. The center pixel of the matrix,
called the origin, identifies the pixel in the image that is being processed. Pixels in the neighborhood
with the value -Inf are not used in the computation.

You can only use offsetstrel objects for morphological operations on grayscale images.

To create a flat structuring element, use strel.

Creation
Syntax
SE = offsetstrel(offset)

SE = offsetstrel('ball',r,h)
SE = offsetstrel('ball',r,h,n)

Description

SE = offsetstrel(offset) creates a nonflat structuring element with the additive offset
specified in the matrix offset.

SE = offsetstrel('ball',r,h) creates a nonflat, ball-shaped structuring element whose radius
in the x-y plane is r and whose maximum offset height is h. For improved performance,
offsetstrel approximates this shape by a sequence of eight nonflat line-shaped structuring
elements.

SE = offsetstrel('ball',r,h,n) creates a nonflat ball-shaped structuring element, where n
specifies the number of nonflat, line-shaped structuring elements that offsetstrel uses to
approximate the shape. Morphological operations using ball approximations run much faster when
you specify a value for n greater than 0.

Input Arguments

offset — Values to be added to each pixel location in the neighborhood
numeric matrix

Values to be added to each pixel location in the neighborhood when performing the morphological
operation, specified as a numeric matrix. Values that are -Inf are not considered in the computation.

1 Functions

1-2452

Data Types: double

r — Radius of the ball-shaped structuring element
positive integer

Radius of the ball-shaped structuring element in the x-y plane, specified as a positive integer.
Data Types: double

h — Maximum offset height
real scalar

Maximum offset height, specified as a real scalar.
Data Types: double

n — Number of nonflat line-shaped structuring elements used to approximate the shape
8 (default) | positive even number

Number of nonflat line-shaped structuring elements used to approximate the shape, specified as a
positive even number or 0.

Value of n Behavior
n > 0 offsetstrel uses a sequence of n nonflat, line-shaped structuring

elements to approximate the shape. n must be an even number.
n = 0 offsetstrel does not use any approximation. The structuring element

members comprise all pixels whose centers are no greater than r away
from the origin. The corresponding height values are determined from
the formula of the ellipsoid specified by r and h.

Data Types: double

Properties
Offset — Structuring element neighborhood with offsets
numeric matrix

Structuring element neighborhood with offsets, specified as a numeric matrix.
Data Types: double

Dimensionality — Dimensions of structuring element
nonnegative scalar

Dimensions of structuring element, specified as a nonnegative scalar.
Data Types: double

Object Functions
imdilate Dilate image
imerode Erode image
imclose Morphologically close image
imopen Morphologically open image
imbothat Bottom-hat filtering

 offsetstrel

1-2453

imtophat Top-hat filtering
decompose Return sequence of decomposed structuring elements
reflect Reflect structuring element
translate Translate structuring element

Examples

Create Ball-shaped Structuring Element

Create a ball-shaped structuring element.

SE = offsetstrel('ball',5, 6)

SE =
offsetstrel is a ball shaped offset structuring element with properties:

 Offset: [11x11 double]
 Dimensionality: 2

View the structuring element.

SE.Offset

ans = 11×11

 -Inf -Inf 0 0.7498 1.4996 2.2494 1.4996 0.7498 0 -Inf -Inf
 -Inf 0.7498 1.4996 2.2494 2.9992 2.9992 2.9992 2.2494 1.4996 0.7498 -Inf
 0 1.4996 2.2494 2.9992 3.7491 3.7491 3.7491 2.9992 2.2494 1.4996 0
 0.7498 2.2494 2.9992 3.7491 4.4989 4.4989 4.4989 3.7491 2.9992 2.2494 0.7498
 1.4996 2.9992 3.7491 4.4989 5.2487 5.2487 5.2487 4.4989 3.7491 2.9992 1.4996
 2.2494 2.9992 3.7491 4.4989 5.2487 5.9985 5.2487 4.4989 3.7491 2.9992 2.2494
 1.4996 2.9992 3.7491 4.4989 5.2487 5.2487 5.2487 4.4989 3.7491 2.9992 1.4996
 0.7498 2.2494 2.9992 3.7491 4.4989 4.4989 4.4989 3.7491 2.9992 2.2494 0.7498
 0 1.4996 2.2494 2.9992 3.7491 3.7491 3.7491 2.9992 2.2494 1.4996 0
 -Inf 0.7498 1.4996 2.2494 2.9992 2.9992 2.9992 2.2494 1.4996 0.7498 -Inf
 ⋮

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• offsetstrel supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

• The 'ball' input argument must be compile-time constants.
• The methods associated with offsetstrel objects are not supported in code generation.

See Also
strel

1 Functions

1-2454

Topics
“Structuring Elements”

Introduced before R2006a

 offsetstrel

1-2455

openrset
Open R-Set file and display R-Set

Syntax
openrset(filename)

Description
openrset(filename) opens the reduced resolution dataset (R-Set) file and displays the R-Set in the
Image Viewer app.

Examples

Open Image Stored as R-Set File

Load an R-Set file into the workspace.

filename = 'mandi.rset';

Open the R-Set file and display the R-Set data.

openrset(filename)

1 Functions

1-2456

Input Arguments
filename — Name of R-Set file
character vector | string scalar

Name of the R-Set file, specified as a character vector or string scalar. Create an R-Set file by using
the rsetwrite function.
Data Types: char | string

See Also
Image Viewer | rsetwrite | isrset

Introduced in R2010a

 openrset

1-2457

ordfilt2
2-D order-statistic filtering

Syntax
B = ordfilt2(A,order,domain)
B = ordfilt2(A,order,domain,S)
B = ordfilt2(___ ,padopt)

Description
B = ordfilt2(A,order,domain) replaces each element in A by the orderth element in the
sorted set of neighbors specified by the nonzero elements in domain.

B = ordfilt2(A,order,domain,S) filters A, where ordfilt2 uses the values of S corresponding
to the nonzero values of domain as additive offsets. You can use this syntax to implement grayscale
morphological operations, including grayscale dilation and erosion.

B = ordfilt2(___ ,padopt) filters A, where padopt specifies how ordfilt2 pads the matrix
boundaries.

Examples

Filter Image with Maximum Filter

Read image into workspace and display it.

A = imread('snowflakes.png');
figure
imshow(A)

Filter the image and display the result.

B = ordfilt2(A,25,true(5));
figure
imshow(B)

1 Functions

1-2458

Input Arguments
A — Data to filter
2-D numeric matrix | 2-D logical matrix

Data to filter, specified as a 2-D numeric matrix or 2-D logical matrix.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

order — Element to replace target pixel
positive integer

Element to replace the target pixel, specified as a real scalar integer.
Data Types: double

domain — Neighborhood
2-D numeric matrix | 2-D logical matrix

Neighborhood, specified as a numeric or logical matrix containing 1s and 0s. domain is equivalent to
the structuring element used for binary image operations. The 1-valued elements define the
neighborhood for the filtering operation. The table gives examples of some common filters.

Type of Filtering
Operation

MATLAB code Neighborhood Sample Image Data,
Indicating Selected
Element

Median filter B =
ordfilt2(A,5,ones(
3,3))

 ordfilt2

1-2459

Type of Filtering
Operation

MATLAB code Neighborhood Sample Image Data,
Indicating Selected
Element

Minimum filter B =
ordfilt2(A,1,ones(
3,3))

Maximum filter B =
ordfilt2(A,9,ones(
3,3))

Minimum of north, east,
south, and west
neighbors

B = ordfilt2(A,1,
[0 1 0; 1 0 1; 0 1
0])

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

S — Additive offsets
numeric matrix

Additive offsets, specified as a numeric matrix of the same size as domain.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

padopt — Padding option
'zeros' (default) | 'symmetric'

Padding option, specified as one of the following values.

Option Description
'zeros' Pad array boundaries with 0’s.
'symmetric' Pad array with mirror reflections of itself.

Data Types: char | string

1 Functions

1-2460

Output Arguments
B — Filtered data
2-D numeric matrix | 2-D logical matrix

Filtered data, returned as a 2-D numeric matrix or 2-D logical matrix of the same class as the input
data A.

Tips
• When working with large domain matrices that do not contain any zero-valued elements,

ordfilt2 can achieve higher performance if A is in an integer data format (uint8, int8,
uint16, int16). The gain in speed is larger for uint8 and int8 than for the 16-bit data types.
For 8-bit data formats, the domain matrix must contain seven or more rows. For 16-bit data
formats, the domain matrix must contain three or more rows and 520 or more elements.

References
[1] Haralick, Robert M., and Linda G. Shapiro, Computer and Robot Vision, Volume I, Addison-Wesley,

1992.

[2] Huang, T.S., G.J.Yang, and G.Y.Tang. "A fast two-dimensional median filtering algorithm.", IEEE
transactions on Acoustics, Speech and Signal Processing, Vol ASSP 27, No. 1, February 1979

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• ordfilt2 supports the generation of C code (requires MATLAB Coder). Note that if you choose
the generic MATLAB Host Computer target platform, ordfilt2 generates code that uses a
precompiled, platform-specific shared library. Use of a shared library preserves performance
optimizations but limits the target platforms for which code can be generated. For more
information, see “Types of Code Generation Support in Image Processing Toolbox”.

• When generating code, the padopt argument must be a compile-time constant.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• GPU code generation requires the inputs to be bounded. If the input is of variable dimension, the
software generates C code.

• When generating code, the padopt argument must be a compile-time constant.
• The generated GPU code is not optimized if the domain value that defines the neighborhood for

the filtering operation is of size greater than 11x11.

For better performance, consider setting the StackLimitPerThread option in the
coder.gpuConfig object to Inf.

 ordfilt2

1-2461

See Also
medfilt2

Introduced before R2006a

1 Functions

1-2462

orthosliceViewer
Browse orthogonal slices in grayscale or RGB volume

Description
An orthosliceViewer object displays volumetric image data by presenting three orthogonal views
of the volume along the x, y, and z dimensions.

Use orthosliceViewer to look at individual slices in a volume. The orthosliceViewer opens,
displaying the center slice in each dimension. Each view of the image stack includes a crosshair that
you can use to view the different slices of the image stack. The crosshairs are linked so that if you
move one, the crosshairs in the related views also move.

The orthosliceViewer object supports properties, object functions, and events that you can use to
customize its appearance and functioning. The orthosliceViewer object can send notifications

 orthosliceViewer

1-2463

when certain events occur, such as the crosshair moving. For more information, see “Events” on page
1-2472.

Note By default, clicking and dragging the mouse in the slices displayed interactively changes their
brightness and contrast, a technique called window/level. Dragging the mouse horizontally from left
to right changes the contrast. Dragging the mouse vertically up and down changes the brightness.
Holding down the Ctrl key when clicking and dragging the mouse accelerates changes. Holding down
the Shift key while clicking and dragging the mouse slows the rate of change. Press these keys
before clicking and dragging. To control this behavior, use the DisplayRangeInteraction property.

Creation
Description

orthosliceViewer(V) displays the volume V in a figure.

orthosliceViewer(___ ,Name,Value) sets properties on page 1-2464 using name-value pair
arguments. You can specify multiple name-value pairs. Enclose each property name in single quotes.
Example: orthosliceViewer(V,'Colormap',cmap) creates an orthosliceViewer object and
specifies the colormap used to display the volume.

s = orthosliceViewer(___) returns an orthosliceViewer object, s, with properties that can
be used to control the visualization of the images. Use input arguments from any of the previous
syntaxes.

Input Arguments

V — Input volume
numeric array

Input volume, specified as an m-by-n-by-p-by-c numeric array. For grayscale volumes, c is 1. For RGB
volumes, c is 3. RGB volumes can only be of class uint8, uint16, single, and double.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Properties
General Properties

Colormap — Colormap of image stack
gray(256) (default) | m-by-3 numeric array

Colormap of the image stack, specified as an m-by-3 numeric array with values in the range [0, 1].
The Colormap property has no effect when V is an RGB image stack.

DisplayRange — Display range of grayscale volume
[min(V(:)) max(V(:))] (default) | 2-element vector

Display range of grayscale volume, specified as a 2-element vector of the form [low high]. The
value low (and any value less than low) displays as black. The value high (and any value greater
than high) displays as white. Values in between are displayed as intermediate shades of gray, using

1 Functions

1-2464

the default number of gray levels. If you specify an empty matrix ([]), orthosliceViewer uses the
default value. DisplayRange has no effect when you specify an RGB volume.

DisplayRangeInteraction — Interactive control of display range
'on' | 'off'

Interactive control of the display range, specified as one of the following values. This property has no
affect when you specify an RGB image stack. For more information about using this capability, see
Events on page 1-2472.

Value Description
'on' (default for grayscale intensity
volumes)

You can control the display range of a grayscale image stack
by left-clicking the mouse and dragging it on the axes.

'off' (default for logical and RGB
volumes)

No display range interactivity.

Parent — Parent of orthosliceViewer object
gcf (default) | uipanel | figure

Parent of the orthosliceViewer object, specified as a handle to a uipanel or as a figure created
with either the figure or uifigure function. If you do not specify a parent, the parent of the
orthosliceViewer object is gcf.

ScaleFactors — Scale factors used to rescale the volume
[1 1 1] (default) | 1-by-3 positive numeric vector

Scale factors used to rescale the volume, specified as a 1-by-3 positive numeric vector. The values in
the array correspond to the scale factor applied in the x, y, and z directions.

SliceNumbers — Indices of image slices to be displayed
center slices in each orthogonal direction | 1-by-3 nonnegative numeric array

Indices of image slices to be displayed, specified as a 1-by-3 nonnegative numeric array.
orthosliceViewer displays the corresponding slices at the [x,y,z] indices in the YZ, XZ, and XY
views.

Crosshair Properties

CrosshairColor — Crosshair color
[1 1 0] (default) | RGB triplet | color name | short color name

Crosshair color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]

 orthosliceViewer

1-2465

Color Name Short Name RGB Triplet Appearance
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'CrosshairColor','r'
Example: 'CrosshairColor','green'
Example: 'CrosshairColor',[0 0.4470 0.7410]

CrosshairEnable — State of linked crosshair objects
'on' (default) | 'inactive' | 'off'

State of the linked crosshair objects, specified as one of the values in this table.

Value Description
'on' Crosshair is visible and can be interacted with.
'inactive' Crosshair is visible but cannot be interacted with
'off' Crosshair is not visible.

CrosshairLineWidth — Width of crosshair line
number of points per screen pixel (default) | positive numeric scalar

Width of the crosshair line, specified as a positive numeric scalar, measured in points. The default
value is the number of points per screen pixel.

CrosshairStripeColor — Color of crosshair stripe
'none' (default) | RGB triplet | color name | short color name

Color of the crosshair stripe, specified as an RGB triplet, a color name, a short color name, or
'none'. If you specify 'none', then the crosshair is a solid color specified by the CrosshairColor

1 Functions

1-2466

property. Otherwise, the crosshair is striped, with colors alternating between the color specified by
this property and the color specified by the CrosshairColor property.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'CrosshairStripeColor','r'
Example: 'CrosshairStripeColor','green'
Example: 'CrosshairStripeColor',[0 0.4470 0.7410]

Object Functions
addlistener Create event listener bound to event source
getAxesHandles Get handles to axes in Orthoslice Viewer

Examples

View MRI Data in Orthoslice Viewer

Load an image stack into the workspace.

 orthosliceViewer

1-2467

load(fullfile(toolboxdir('images'),'imdata','BrainMRILabeled','images','vol_001.mat'));

Create a custom Colormap.

cmap = parula(256);

View the MRI data in the Orthoslice Viewer.

s = orthosliceViewer(vol,'Colormap',cmap)

s =
 orthosliceViewer with properties:

 SliceNumbers: [121 121 78]
 CrosshairColor: [1 1 0]
 CrosshairLineWidth: 1
 CrosshairStripeColor: 'none'
 CrosshairEnable: 'on'
 Parent: [1×1 Panel]
 Colormap: [256×3 double]
 DisplayRange: [0 2239]
 ScaleFactors: [1 1 1]
 DisplayRangeInteraction: 'on'

1 Functions

1-2468

Create GIF of MRI Data Slices using Orthoslice Viewer

Load MRI data and view it in the Orthoslice Viewer.

load(fullfile(toolboxdir('images'),'imdata','BrainMRILabeled','images','vol_001.mat'));
s = orthosliceViewer(vol);

Get the handle of the axes that contains the slice.

[hXYAxes, hYZAxes, hXZAxes] = getAxesHandles(s);

Turn off crosshair for better visibility.

set(s,'CrosshairEnable','off');

Specify the name of the GIF file.

filename = 'animatedYZSlice.gif';

 orthosliceViewer

1-2469

Create an array of slice numbers in the required direction. Consider the YZ direction.

sliceNums = 1:240;

Loop through and create an image at the specified slice position.

for idx = sliceNums
 % Update X slice number to get YZ Slice.
 s.SliceNumbers(1) = idx;

 % Use getframe to capture image.
 I = getframe(hYZAxes);
 [indI,cm] = rgb2ind(I.cdata,256);

 % Write frame to the GIF File.
 if idx == 1
 imwrite(indI,cm,filename,'gif','Loopcount',inf,'DelayTime',0.05);
 else
 imwrite(indI,cm,filename,'gif','WriteMode','append','DelayTime',0.05);
 end
end

View the animated GIF.

Set Up Listener for Orthoslice Viewer Crosshair Events

Load a stack of images.

load(fullfile(toolboxdir('images'),'imdata','BrainMRILabeled','images','vol_001.mat'));

Create a custom colormap for viewing slices.

cmap = parula(256);

View the image stack in the Orthoslice Viewer.

1 Functions

1-2470

os = orthosliceViewer(vol,'Colormap',cmap);

Set up listeners for the two Orthoslice Viewer crosshair moving events. When you move the crosshair,
the Orthoslice Viewer sends notifications of these events and executes the callback function you
specify.

addlistener(os,'CrosshairMoving',@allevents);
addlistener(os,'CrosshairMoved',@allevents);

The allevents callback function displays the name of each event with the previous position and the
current position of the crosshair.

function allevents(src,evt)
evname = evt.EventName;
 switch(evname)
 case{'CrosshairMoved'}
 disp(['Crosshair moved previous position: ' mat2str(evt.PreviousPosition)]);
 disp(['Crosshair moved current position: ' mat2str(evt.CurrentPosition)]);
 case{'CrosshairMoving'}
 disp(['Crosshair moving previous position: ' mat2str(evt.PreviousPosition)]);

 orthosliceViewer

1-2471

 disp(['Crosshair moving current position: ' mat2str(evt.CurrentPosition)]);
 end
 end

More About
Events

The orthosliceViewer object can send notifications when the crosshair moves. To receive these
notifications, use the addListener function to set up a listener. To set up a listener, specify the
name of the event, for example, 'CrosshairMoving', and the function you want executed when the
event occurs. The following table lists events supported by the orthosliceViewer object. For an
example, see “Set Up Listener for Orthoslice Viewer Crosshair Events” on page 1-2470.

Event Name Trigger Event Data Event Attributes
CrosshairMoving The crosshair in the

orthosliceViewer is
moving.

images.stack.brows
er.CrosshairMoving
EventData

NotifyAccess:
private

ListenAccess:
public

CrosshairMoved The crosshair in the
orthosliceViewer
has stopped moving.

images.stack.brows
er.CrosshairMoving
EventData

NotifyAccess:
private

ListenAccess:
public

See Also
sliceViewer | Volume Viewer | volshow | slice | Crosshair | obliqueslice

Introduced in R2019b

1 Functions

1-2472

getAxesHandles
Get handles to axes in Orthoslice Viewer

Syntax
[hXY hYZ hXZ] = getAxesHandles(s)

Description
[hXY hYZ hXZ] = getAxesHandles(s) returns the axes containing each of the views of the
image volume in the orthosliceViewer object s.

Input Arguments
s — Orthoslice Viewer
orthosliceViewer object

Orthoslice Viewer, specified as an orthosliceViewer object.

Output Arguments
[hXY hYZ hXZ] — Axes in Orthoslice Viewer
1-by-3 vector of Axes objects

Axes in Orthoslice Viewer, returned as a 1-by-3 vector of Axes objects.

Examples

Create GIF of MRI Data Slices using Orthoslice Viewer

Load MRI data and view it in the Orthoslice Viewer.

load(fullfile(toolboxdir('images'),'imdata','BrainMRILabeled','images','vol_001.mat'));
s = orthosliceViewer(vol);

Get the handle of the axes that contains the slice.

[hXYAxes, hYZAxes, hXZAxes] = getAxesHandles(s);

Turn off crosshair for better visibility.

set(s,'CrosshairEnable','off');

Specify the name of the GIF file.

filename = 'animatedYZSlice.gif';

Create an array of slice numbers in the required direction. Consider the YZ direction.

sliceNums = 1:240;

 getAxesHandles

1-2473

Loop through and create an image at the specified slice position.

for idx = sliceNums
 % Update X slice number to get YZ Slice.
 s.SliceNumbers(1) = idx;

 % Use getframe to capture image.
 I = getframe(hYZAxes);
 [indI,cm] = rgb2ind(I.cdata,256);

 % Write frame to the GIF File.
 if idx == 1
 imwrite(indI,cm,filename,'gif','Loopcount',inf,'DelayTime',0.05);
 else
 imwrite(indI,cm,filename,'gif','WriteMode','append','DelayTime',0.05);
 end
end

View the animated GIF.

See Also
orthosliceViewer

Introduced in R2019b

1 Functions

1-2474

otf2psf
Convert optical transfer function to point-spread function

Syntax
PSF = otf2psf(OTF)
PSF = otf2psf(OTF,sz)

Description
PSF = otf2psf(OTF) computes the inverse Fast Fourier Transform of the optical transfer function
(OTF) and creates a point-spread function (PSF), centered at the origin.

PSF = otf2psf(OTF,sz) specifies the size, sz, of the output point-spread function.

Examples

Convert OTF to PSF

Create a point-spread function (PSF).

PSF = fspecial('gaussian',13,1);

Convert the PSF to an Optical Transfer Function (OTF).

OTF = psf2otf(PSF,[31 31]);

Convert the OTF back to a PSF.

PSF2 = otf2psf(OTF,size(PSF));

Plot the PSF and the OTF.

subplot(1,2,1)
surf(abs(OTF))
title('|OTF|');
axis square
axis tight
subplot(1,2,2)
surf(PSF2)
title('Corresponding PSF');
axis square
axis tight

 otf2psf

1-2475

Input Arguments
OTF — Optical transfer function
numeric array

Optical transfer function, specified as a numeric array of any dimension.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
Complex Number Support: Yes

sz — Size of point-spread function
vector of positive integers

Size of the output point-spread function PSF, specified as a vector of positive integers. The size of
PSF must not exceed the size of OTF in any dimension. By default, PSF is the same size as OTF.
Data Types: double

Output Arguments
PSF — Point-spread function
numeric array

Point-spread function, centered at the origin, returned as a numeric array of size sz.

1 Functions

1-2476

Data Types: double
Complex Number Support: Yes

Tips
• To center the PSF at the origin, otf2psf circularly shifts the values of the output array down (or

to the right) until the (1,1) element reaches the central position, then it crops the result to match
dimensions specified by sz.

• This function is used in image convolution and deconvolution when the operations involve the FFT.

See Also
psf2otf | circshift | padarray | ifftn | fftn

Topics
“Create Your Own Deblurring Functions”

Introduced before R2006a

 otf2psf

1-2477

otsuthresh
Global histogram threshold using Otsu's method

Syntax
T = otsuthresh(counts)
[T,EM] = otsuthresh(counts)

Description
T = otsuthresh(counts) computes a global threshold T from histogram counts, counts, using
Otsu's method [1]. Otsu's method chooses a threshold that minimizes the intraclass variance of the
thresholded black and white pixels. The global threshold T can be used with imbinarize to convert
a grayscale image to a binary image.

[T,EM] = otsuthresh(counts) returns the effectiveness metric, EM, which indicates the
effectiveness of the thresholding.

Examples

Compute Threshold from Image Histogram and Binarize Image

Read image into the workspace.

I = imread('coins.png');

Calculate a 16-bin histogram for the image.

[counts,x] = imhist(I,16);
stem(x,counts)

1 Functions

1-2478

Compute a global threshold using the histogram counts.

T = otsuthresh(counts);

Create a binary image using the computed threshold and display the image.

BW = imbinarize(I,T);
figure
imshow(BW)

 otsuthresh

1-2479

Input Arguments
counts — Histogram counts
vector of nonnegative numbers

Histogram counts, specified as a vector of nonnegative numbers.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
T — Global threshold
numeric scalar

Global threshold, returned as a numeric scalar in the range [0, 1].
Data Types: double

EM — Effectiveness metric
numeric scalar

Effectiveness metric of the threshold, returned as a numeric scalar in the range [0, 1]. The lower
bound is attainable only by histogram counts with all data in a single non-zero bin. The upper bound
is attainable only by histogram counts with two non-zero bins.
Data Types: double

1 Functions

1-2480

References
[1] Otsu, N., "A Threshold Selection Method from Gray-Level Histograms." IEEE Transactions on

Systems, Man, and Cybernetics. Vol. 9, No. 1, 1979, pp. 62–66.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

otsuthresh supports the generation of C code (requires MATLAB Coder). For more information, see
“Code Generation for Image Processing”.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
imbinarize | adaptthresh | graythresh

Introduced in R2016a

 otsuthresh

1-2481

outputLimits
Package:

Find output spatial limits given input spatial limits

Syntax
[xLimitsOut,yLimitsOut] = outputLimits(tform,xLimitsIn,yLimitsIn)
[xLimitsOut,yLimitsOut,zLimitsOut] = outputLimits(tform,xLimitsIn,yLimitsIn,
zLimitsIn)

Description
[xLimitsOut,yLimitsOut] = outputLimits(tform,xLimitsIn,yLimitsIn) estimates the
output spatial limits corresponding to a set of input spatial limits, xLimitsIn and yLimitsIn, given
2-D geometric transformation tform.

[xLimitsOut,yLimitsOut,zLimitsOut] = outputLimits(tform,xLimitsIn,yLimitsIn,
zLimitsIn) estimates the output spatial limits, given 3-D geometric transformation tform.

Examples

Estimate the Output Limits for a 2-D Affine Transformation

Create an affine2d object that defines a rotation of 10 degrees counter-clockwise.

theta = 10;
tform = affine2d([cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0; 0 0 1]);

tform =

 affine2d with properties:

 T: [3x3 double]
 Dimensionality: 2

Estimate the output spatial limits, given the geometric transformation.

[xlim, ylim] = outputLimits(tform,[1 240],[1 291])

xlim =

 1.1585 286.8855

ylim =

 -40.6908 286.4054

1 Functions

1-2482

Estimate the Output Limits for a 3-D Affine Transformation

Create an affine3d object that defines a different scale factor in each dimension.

Sx = 1.2;
Sy = 1.6;
Sz = 2.4;
tform = affine3d([Sx 0 0 0; 0 Sy 0 0; 0 0 Sz 0; 0 0 0 1]);

tform =

 affine3d with properties:

 T: [4x4 double]
 Dimensionality: 3

Estimate the output spatial limits, given the geometric transformation.

[xlim, ylim, zlim] = outputLimits(tform,[1 128],[1 128],[1 27])

xlim =

 1.2000 153.6000

ylim =

 1.6000 204.8000

zlim =

 2.4000 64.8000

Input Arguments
tform — Geometric transformation
geometric transformation object

Geometric transformation, specified as a geometric transformation object.

For 2-D geometric transformations, tform can be a rigid2d, affine2d, projective2d,
LocalWeightedMeanTransformation2D, PiecewiseLinearTransformation2D, or
PolynomialTransformation2D geometric transformation object.

For 3-D geometric transformations, tform can be an affine3d or rigid3d object.

xLimitsIn — Input spatial limits in the x-dimension
1-by-2 numeric vector

Input spatial limits in the x-dimension, specified as a 1-by-2 numeric vector.
Data Types: double

yLimitsIn — Input spatial limits in the y-dimension
1-by-2 numeric vector

Input spatial limits in the y-dimension, specified as a 1-by-2 numeric vector.

 outputLimits

1-2483

Data Types: double

zLimitsIn — Input spatial limits in the z-dimension
1-by-2 numeric vector

Input spatial limits in the z-dimension, specified as a 1-by-2 numeric vector. Provide zLimitsIn only
when tform is an affine3d object or a rigid3d object.
Data Types: double

Output Arguments
xLimitsOut — Output spatial limits in the x-dimension
1-by-2 numeric vector

Output spatial limits in the x-dimension, returned as a 1-by-2 numeric vector.
Data Types: double

yLimitsOut — Output spatial limits in the y-dimension
1-by-2 numeric vector

Output spatial limits in the y-dimension, returned as a 1-by-2 numeric vector.
Data Types: double

zLimitsOut — Output spatial limits in the z-dimension
1-by-2 numeric vector

Output spatial limits in the z-dimension, returned as a 1-by-2 numeric vector. outputLimits returns
zLimitsIn only when tform is an affine3d object or a rigid3d object.
Data Types: double

See Also
rigid3d | affine2d | affine3d | projective2d | LocalWeightedMeanTransformation2D |
PiecewiseLinearTransformation2D | PolynomialTransformation2D

Introduced in R2013a

1 Functions

1-2484

padarray
Pad array

Syntax
B = padarray(A,padsize)
B = padarray(A,padsize,padval)
B = padarray(___ ,direction)

Description
B = padarray(A,padsize) pads array A with an amount of padding in each dimension specified by
padsize. The padarray function pads numeric or logical images with the value 0 and categorical
images with the category <undefined>. By default, paddarray adds padding before the first
element and after the last element of each dimension.

B = padarray(A,padsize,padval) pads array A where padval specifies a constant value to use
for padded elements or a method to replicate array elements.

B = padarray(___ ,direction) pads A in the direction specified by direction.

Examples

Add Padding to 2-D and 3-D Arrays

Pad the Beginning of a Vector

Add three elements of padding to the beginning of a vector with padding value 9.

A = [1 2 3 4]

A = 1×4

 1 2 3 4

B = padarray(A,3,9,'pre')

B = 4×4

 9 9 9 9
 9 9 9 9
 9 9 9 9
 1 2 3 4

 padarray

1-2485

Pad Each Dimension of a 2-D Array

Add three elements of padding to the end of the first dimension of the array and two elements of
padding to the end of the second dimension. Use the value of the last array element on each
dimension as the padding value.

A = [1 2; 3 4]

A = 2×2

 1 2
 3 4

B = padarray(A,[3 2],'replicate','post')

B = 5×4

 1 2 2 2
 3 4 4 4
 3 4 4 4
 3 4 4 4
 3 4 4 4

Pad Each Dimension of a 3-D Array

Add three elements of padding to each dimension of a three-dimensional array. Each pad element
contains the value 0.

First create the 3-D array.

A = [1 2; 3 4];
B = [5 6; 7 8];
C = cat(3,A,B)

C =
C(:,:,1) =

 1 2
 3 4

C(:,:,2) =

 5 6
 7 8

Pad the 3-D Array

D = padarray(C,[3 3],0,'both')

D =
D(:,:,1) =

 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0

1 Functions

1-2486

 0 0 0 0 0 0 0 0
 0 0 0 1 2 0 0 0
 0 0 0 3 4 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0

D(:,:,2) =

 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 5 6 0 0 0
 0 0 0 7 8 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0

Input Arguments
A — Array to be padded
numeric array | logical array | categorical array

Array to be padded, specified as a numeric, logical, or categorical array of any dimension.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | categorical

padsize — Amount of padding
vector of nonnegative integers

Amount of padding to add to each dimension, specified as a vector of nonnegative integers. For
example, a padsize value of [2 3] adds two elements of padding along the first dimension and
three elements of padding along the second dimension.
Data Types: double

padval — Pad value
0 | numeric scalar | 'circular' | 'replicate' | 'symmetric' | string scalar | character vector |
missing

Pad value, specified as one of the following.

Image Type Format of Fill Values
Numeric image or
logical image

• Numeric scalar — Pad array with elements of constant value. The
default pad value of numeric and logical images is 0.

• 'circular' — Pad with circular repetition of elements within the
dimension.

• 'replicate' — Pad by repeating border elements of array.
• 'symmetric' — Pad with mirror reflections of the array along the

border.

 padarray

1-2487

Image Type Format of Fill Values
Categorical image • Valid category in the image, specified as a string scalar or character

vector.
• missing, which corresponds to the <undefined> category. This is the

default pad value for categorical images. For more information, see
missing.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string

direction — Direction to pad array
'both' (default) | 'post' | 'pre'

Direction to pad array along each dimension, specified as one of the following values:

Value Meaning
'both' Pads before the first element and after the last array element along each

dimension.
'post' Pad after the last array element along each dimension.
'pre' Pad before the first array element along each dimension.

Data Types: char | string

Output Arguments
B — Padded array
numeric array | logical array | categorical array

Padded array, returned as an array of the same data type as A.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• padarray supports the generation of C code (requires MATLAB Coder). For more information,
see “Code Generation for Image Processing”.

• Input arrays of data type categorical are not supported.
• When generating code, padarray supports only up to 3-D inputs
• The input arguments padval and direction must be compile-time constants.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• Input arrays of data type categorical are not supported.

1 Functions

1-2488

• When generating code, padarray supports only up to 3-D inputs.
• The input arguments padval and direction must be compile-time constants.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on a GPU”.

See Also
circshift | imfilter

Introduced before R2006a

 padarray

1-2489

para2fan
Convert parallel-beam projections to fan-beam

Syntax
F = para2fan(P,D)
F = fan2para(P,D,Name,Value)
[F,fan_sensor_positions,fan_rotation_angles] = fan2para(___)

Description
F = para2fan(P,D) converts the parallel-beam data P to the fan-beam data F. Each column of P
contains the parallel-beam sensor samples at one rotation angle. D is the distance from the fan-beam
vertex to the center of rotation.

The parallel-beam sensors are assumed to have a one-pixel spacing. The parallel-beam rotation
angles are spaced equally to cover [0,180] degrees. The calculated fan-beam rotation angles have the
same spacing as the parallel-beam rotation angles, and cover [0,360) degrees. The calculated fan-
beam angles are equally spaced with the spacing set to the smallest angle implied by the sensor
spacing.

F = fan2para(P,D,Name,Value) uses name-value pairs to control aspects of the data conversion.

[F,fan_sensor_positions,fan_rotation_angles] = fan2para(___) returns the fan-beam
sensor locations in fan_sensor_positions and rotation angles in fan_rotation_angles.

Examples

Convert Parallel-beam Projections to Fan-beam Projections

Generate parallel-beam projections

ph = phantom(128);
theta = 0:180;
[P,xp] = radon(ph,theta);
imshow(P,[],'XData',theta,'YData',xp,'InitialMagnification','fit')
axis normal
title('Parallel-Beam Projections')
xlabel('\theta (degrees)')
ylabel('x''')
colormap(gca,hot), colorbar

1 Functions

1-2490

Convert to fan-beam projections

[F,Fpos,Fangles] = para2fan(P,100);
figure
imshow(F,[],'XData',Fangles,'YData',Fpos,'InitialMagnification','fit')
axis normal
title('Fan-Beam Projections')
xlabel('\theta (degrees)')
ylabel('Sensor Locations (degrees)')
colormap(gca,hot), colorbar

 para2fan

1-2491

Input Arguments
P — Parallel-beam projection data
numeric matrix

Parallel-beam projection data, specified as a numeric matrix. Each column of P contains the parallel-
beam data at one rotation angle. The number of columns indicates the number of parallel-beam
rotation angles and the number of rows indicates the number of parallel-beam sensors.
Data Types: double | single

D — Distance from fan beam vertex to center of rotation
positive number

Distance in pixels from the fan beam vertex to the center of rotation, specified as a positive number.
para2fan assumes that the center of rotation is the center point of the projections, which is defined
as ceil(size(F,1)/2). The value of D must be greater than or equal to
ParallelSensorSpacing*(SIZE(P,1)-1)/2

The figure illustrates D in relation to the fan-beam vertex for one fan-beam projection.

1 Functions

1-2492

Data Types: double | single

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: F = para2fan(P,D,'FanRotationIncrement',5)

FanCoverage — Range of fan-beam rotation
'cycle' (default) | 'minimal'

Range of fan-beam rotation, specified as the comma-separated pair consisting of 'FanCoverage'
and one of these values.

• 'cycle' — Rotate through the full range [0, 360) degrees.
• 'minimal' — Rotate through the minimum range necessary to represent the object.

FanRotationIncrement — Fan-beam rotation angle increment
positive scalar

Fan-beam rotation angle increment in degrees, specified as the comma-separated pair consisting of
'FanRotationIncrement' and a positive scalar.

• If FanCoverage is 'cycle', then 360/FanRotationIncrement must be an integer.
• If you do not specify FanRotationIncrement, then the default value is equal to the parallel-

beam rotation angle.

 para2fan

1-2493

Data Types: double

FanSensorGeometry — Fan-beam sensor positioning
'arc' (default) | 'line'

Fan-beam sensor positioning, specified as the comma-separated pair consisting of
'FanSensorGeometry' and one of the following values.

Value Meaning Diagram
'arc' Sensors are spaced at equal angles

along a circular arc at distance D from
the center of rotation.

FanSensorSpacing defines the
angular spacing in degrees.

1 Functions

1-2494

Value Meaning Diagram
'line' Sensors are spaced at equal distances

along a line that is parallel to the x'
axis. The closest sensor is distance D
from the center of rotation.

FanSensorSpacing defines the
distance between fan-beams on the x'
axis, in pixels.

FanSensorSpacing — Fan-beam sensor spacing
positive scalar

Fan-beam sensor spacing, specified as the comma-separated pair consisting of
'FanSensorSpacing' and a positive scalar.

• If FanSensorGeometry is 'arc', then FanSensorSpacing defines the angular spacing in
degrees.

• If FanSensorGeometry is 'line', then FanSensorSpacing defines the linear distance between
fan-beams, in pixels. Linear spacing is measured on the x' axis.

If you do not specify FanSensorGeometry, then the default value of FanSensorSpacing is the
smallest value implied by ParallelSensorSpacing such that:

• If FanSensorGeometry is 'arc', then FanSensorSpacing is 180/
pi*ASIN(ParallelSensorSpacing/D)

• If FanSensorGeometry is 'line', then FanSensorSpacing is
D*ASIN(ParallelSensorSpacing/D)

Data Types: double

Interpolation — Type of interpolation
'Linear' (default) | 'nearest' | 'spline' | 'pchip'

Type of interpolation used between the parallel-beam and fan-beam data, specified as the comma-
separated pair consisting of 'Interpolation' and one of these values.

'nearest' — Nearest-neighbor

'linear' — Linear (the default)

 para2fan

1-2495

'spline' — Piecewise cubic spline

'pchip' — Piecewise cubic Hermite (PCHIP)

ParallelCoverage — Range of parallel-beam rotation
'halfcycle' (default) | 'cycle

Range of parallel-beam rotation, specified as the comma-separated pair consisting of
'ParallelCoverage' and one of these values.

• 'cycle' — Parallel data covers the full range of [0, 360) degrees.
• 'halfcycle' — Parallel data covers [0, 180) degrees.

ParallelSensorSpacing — Parallel-beam sensor spacing
1 | positive scalar

Parallel-beam sensor spacing in pixels, specified as the comma-separated pair consisting of
'ParallelSensorSpacing' and a positive scalar.
Data Types: double

Output Arguments
F — Fan-beam projection data
numeric matrix

Fan-beam projection data, returned as a numeric matrix. Each column of F contains the fan-beam
sensor samples at one rotation angle.

Parallel-beam projection data, returned as a numeric matrix. Each column of F contains the fan-beam
data at one rotation angle. The number of columns indicates the total number of fan-beam rotation
angles and is equal to the length of fan_rotation_angles. The number of rows indicates the total
number of parallel-beam sensors and is equal to the length of fan_sensor_positions.
Data Types: double

fan_sensor_positions — Fan-beam sensor locations
numeric column vector

Fan-beam sensor locations, returned as a numeric column vector.

• If 'FanSensorGeometry' is 'arc' (the default), then fan_sensor_positions contains the
fan-beam sensor measurement angles.

• If 'FanSensorGeometry' is 'line', then fan_sensor_positions contains the fan-beam
sensor positions along the line of sensors.

Data Types: double

fan_rotation_angles — Fan-beam rotation angles
numeric row vector

Fan-beam rotation angles, returned as a numeric row vector.
Data Types: double

1 Functions

1-2496

See Also
fan2para | fanbeam | iradon | ifanbeam | phantom | radon

Introduced before R2006a

 para2fan

1-2497

patchGANDiscriminator
Create PatchGAN discriminator network

Syntax
net = patchGANDiscriminator(inputSize)
net = patchGANDiscriminator(inputSize,Name,Value)

Description
net = patchGANDiscriminator(inputSize) creates a PatchGAN discriminator network for
input of size inputSize. For more information about the PatchGAN network architecture, see
“PatchGAN Discriminator Network” on page 1-2502.

This function requires Deep Learning Toolbox.

net = patchGANDiscriminator(inputSize,Name,Value) controls properties of the PatchGAN
network using name-value arguments.

You can create a 1-by-1 PatchGAN discriminator network, called a pixel discriminator network, by
specifying the 'NetworkType' argument as "pixel". For more information about the pixel
discriminator network architecture, see “Pixel Discriminator Network” on page 1-2503.

Examples

Create PatchGAN Discriminator for Color Images

Specify the input size of the network for a color image of size 256-by-256 pixels.

inputSize = [256 256 3];

Create the PatchGAN discriminator network with the specified input size.

net = patchGANDiscriminator(inputSize)

net =
 dlnetwork with properties:

 Layers: [13x1 nnet.cnn.layer.Layer]
 Connections: [12x2 table]
 Learnables: [16x3 table]
 State: [6x3 table]
 InputNames: {'input_top'}
 OutputNames: {'conv2d_final'}
 Initialized: 1

Display the network.

analyzeNetwork(net)

1 Functions

1-2498

Create Pixel Discriminator

Specify the input size of the network for a color image of size 256-by-256 pixels.

inputSize = [256 256 3];

Create the pixel discriminator network with the specified input size.

net = patchGANDiscriminator(inputSize,"NetworkType","pixel")

net =
 dlnetwork with properties:

 Layers: [7x1 nnet.cnn.layer.Layer]
 Connections: [6x2 table]
 Learnables: [8x3 table]
 State: [2x3 table]
 InputNames: {'input_top'}
 OutputNames: {'conv2d_final'}
 Initialized: 1

Display the network.

analyzeNetwork(net)

Input Arguments
inputSize — Network input size
3-element vector of positive integers

Network input size, specified as a 3-element vector of positive integers. inputSize has the form [H
W C], where H is the height, W is the width, and C is the number of channels. If the input to the
discriminator is a channel-wise concatenated dlarray object, then C must be the concatenated size.
Example: [28 28 3] specifies an input size of 28-by-28 pixels for a 3-channel image.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'FilterSize',5 creates a discriminator whose convolution layers have a filter of size 5-
by-5 pixels

NetworkType — Type of discriminator network
"patch" (default) | "pixel"

Type of discriminator network, specified as one of these values.

• "patch" – Create a PatchGAN discriminator
• "pixel" – Create a pixel discriminator, which is a 1-by-1 PatchGAN discriminator

 patchGANDiscriminator

1-2499

Data Types: char | string

NumDownsamplingBlocks — Number of downsampling blocks
3 (default) | positive integer

Number of downsampling operations of the network, specified as a positive integer. The discriminator
network downsamples the input by a factor of 2^NumDownsamplingBlocks. This argument is
ignored when you specify 'NetworkType' as "pixel".

NumFiltersInFirstBlock — Number of output channels in first discriminator block
64 (default) | positive integer

Number of filters in the first discriminator block, specified as a positive integer.

FilterSize — Filter size of convolution layers
4 (default) | positive integer | 2-element vector of positive integers

Filter size of convolution layers, specified as a positive integer or 2-element vector of positive
integers of the form [height width]. When you specify the filter size as a scalar, the filter has equal
height and width. Typical filters have height and width between 1 and 4. This argument has an effect
only when you specify 'NetworkType' as "patch".

ConvolutionPaddingValue — Style of padding
0 (default) | numeric scalar | "replicate" | "symmetric-include-edge" | "symmetric-
exclude-edge"

Style of padding used in the network, specified as one of these values.

PaddingValue Description Example
Numeric scalar Pad with the specified numeric

value
3 1 4
1 5 9
2 6 5

2 2 2 2 2 2 2
2 2 2 2 2 2 2
2 2 3 1 4 2 2
2 2 1 5 9 2 2
2 2 2 6 5 2 2
2 2 2 2 2 2 2
2 2 2 2 2 2 2

'symmetric-include-edge' Pad using mirrored values of the
input, including the edge values

3 1 4
1 5 9
2 6 5

5 1 1 5 9 9 5
1 3 3 1 4 4 1
1 3 3 1 4 4 1
5 1 1 5 9 9 5
6 2 2 6 5 5 6
6 2 2 6 5 5 6
5 1 1 5 9 9 5

1 Functions

1-2500

PaddingValue Description Example
'symmetric-exclude-edge' Pad using mirrored values of the

input, excluding the edge values
3 1 4
1 5 9
2 6 5

5 6 2 6 5 6 2
9 5 1 5 9 5 1
4 1 3 1 4 1 3
9 5 1 5 9 5 1
5 6 2 6 5 6 2
9 5 1 5 9 5 1
4 1 3 1 4 1 3

'replicate' Pad using repeated border
elements of the input

3 1 4
1 5 9
2 6 5

3 3 3 1 4 4 4
3 3 3 1 4 4 4
3 3 3 1 4 4 4
1 1 1 5 9 9 9
2 2 2 6 5 5 5
2 2 2 6 5 5 5
2 2 2 6 5 5 5

ConvolutionWeightsInitializer — Weight initialization used in convolution layers
"glorot" (default) | "he" | "narrow-normal" | function

Weight initialization used in convolution layers, specified as "glorot", "he", "narrow-normal", or
a function handle. For more information, see “Specify Custom Weight Initialization Function” (Deep
Learning Toolbox).

ActivationLayer — Activation function
"leakyRelu" (default) | "relu" | "elu" | layer object

Activation function to use in the network, specified as one of these values. For more information and
a list of available layers, see “Activation Layers” (Deep Learning Toolbox).

• "relu" — Use a reluLayer
• "leakyRelu" — Use a leakyReluLayer with a scale factor of 0.2
• "elu" — Use an eluLayer
• A layer object

FinalActivationLayer — Activation function after final convolution
"none" (default) | "sigmoid" | "softmax" | "tanh" | layer object

Activation function after the final convolution layer, specified as one of these values. For more
information and a list of available layers, see “Output Layers” (Deep Learning Toolbox).

• "tanh" — Use a tanhLayer
• "sigmoid" — Use a sigmoidLayer
• "softmax" — Use a softmaxLayer
• "none" — Do not use a final activation layer
• A layer object

NormalizationLayer — Normalization operation
"batch" (default) | "none" | "instance" | layer object

 patchGANDiscriminator

1-2501

Normalization operation to use after each convolution, specified as one of these values. For more
information and a list of available layers, see “Normalization, Dropout, and Cropping Layers” (Deep
Learning Toolbox).

• "instance" — Use an instanceNormalizationLayer
• "batch" — Use a batchNormalizationLayer
• "none" — Do not use a normalization layer
• A layer object

NamePrefix — Prefix to all layer names
"" (default) | string | character vector

Prefix to all layer names in the network, specified as a string or character vector.
Data Types: char | string

Output Arguments
net — PatchGAN discriminator network
dlnetwork object

PatchGAN discriminator network, returned as a dlnetwork object.

More About
PatchGAN Discriminator Network

A PatchGAN discriminator network consists of an encoder module that downsamples the input by a
factor of 2^NumDownsamplingBlocks. The default network follows the architecture proposed by
Zhu et. al. [2].

The encoder module consists of an initial block of layers that performs one downsampling operation,
NumDownsamplingBlocks–1 downsampling blocks, and a final block.

The table describes the blocks of layers that comprise the encoder module.

Block Type Layers Diagram of Default Block
Initial block • An imageInputLayer

• A convolution2dLayer with a
stride of [2 2] that performs
downsampling

• An activation layer specified by the
ActivationLayer name-value
argument

1 Functions

1-2502

Block Type Layers Diagram of Default Block
Downsampling
block

• A convolution2dLayer with a
stride of [2 2] to perform
downsampling

• An optional normalization layer,
specified by the
NormalizationLayer name-value
argument

• An activation layer specified by the
ActivationLayer name-value
argument

Final block • A convolution2dLayer with a
stride of [1 1]

• An optional normalization layer,
specified by the
NormalizationLayer name-value
argument

• An activation layer specified by the
ActivationLayer name-value
argument

• A second convolution2dLayer
with a stride of [1 1] and 1 output
channel

• An optional activation layer
specified by the
FinalActivationLayer name-
value argument

Pixel Discriminator Network

A pixel discriminator network consists of an initial block and final block that return an output of size
[H W C]. This network does not perform downsampling. The default network follows the architecture
proposed by Zhu et. al. [2].

The table describes the blocks of layers that comprise the network.

Block Type Layers Diagram of Default Block
Initial block • An imageInputLayer

• A convolution2dLayer with a
stride of [1 1]

• An activation layer specified by the
ActivationLayer name-value
argument

 patchGANDiscriminator

1-2503

Block Type Layers Diagram of Default Block
Final block • A convolution2dLayer with a

stride of [1 1]
• An optional normalization layer,
specified by the
NormalizationLayer name-value
argument

• An activation layer specified by the
ActivationLayer name-value
argument

• A second convolution2dLayer
with a stride of [1 1] and 1 output
channel

• An optional activation layer
specified by the
FinalActivationLayer name-
value argument

References
[1] Isola, Phillip, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. "Image-to-Image Translation with

Conditional Adversarial Networks." In 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 5967–76. Honolulu, HI: IEEE, 2017. https://arxiv.org/abs/1611.07004.

[2] Zhu, Jun-Yan, Taesung Park, and Tongzhou Wang. "CycleGAN and pix2pix in PyTorch." https://
github.com/junyanz/pytorch-CycleGAN-and-pix2pix.

See Also
cycleGANGenerator

Topics
“Unsupervised Day-to-Dusk Image Translation Using UNIT”
“Get Started with GANs for Image-to-Image Translation”
“Create Modular Neural Networks”
“List of Deep Learning Layers” (Deep Learning Toolbox)

Introduced in R2021a

1 Functions

1-2504

https://arxiv.org/abs/1611.07004
https://ieeexplore.ieee.org/document/8237506
https://ieeexplore.ieee.org/document/8237506

phantom
Create head phantom image

Syntax
P = phantom(def,n)
P = phantom(E,n)
[P,E] = phantom(___)

Description
P = phantom(def,n) generates an image of a head phantom that can be used to test the numerical
accuracy of radon and iradon or other two-dimensional reconstruction algorithms. P is a grayscale
image that consists of one large ellipse (representing the brain) containing several smaller ellipses
(representing features in the brain). def specifies the type of head phantom to generate, and n
specifies the number of rows and columns in the phantom image.

P = phantom(E,n) generates a user-defined phantom, where each row of the matrix E specifies an
ellipse in the image. E has six columns, with each column containing a different parameter for the
ellipses.

[P,E] = phantom(___) returns the matrix E used to generate the phantom.

Examples

Create Modified Shepp-Logan Head Phantom Image

Create the modified Shepp-Logan head phantom image and display it.

P = phantom('Modified Shepp-Logan',200);
imshow(P)

 phantom

1-2505

Input Arguments
def — Type of head phantom
'Modified Shepp-Logan' (default) | 'Shepp-Logan'

Type of head phantom to generate, specified as one of the following.

• 'Shepp-Logan' — Test image used widely by researchers in tomography
• 'Modified Shepp-Logan' — Variant of the Shepp-Logan phantom in which the contrast is

improved for better visual perception

Data Types: char | string

n — Number of rows and columns
256 (default) | positive integer

Number of rows and columns in the phantom image, specified as a positive integer.
Data Types: double

E — Ellipses
e-by-6 numeric matrix

Ellipses that define the phantom, specified as an e-by-6 numeric matrix defining e ellipses. The six
columns of E are the ellipse parameters.

Column Parameter Meaning
Column 1 A Additive intensity value of the ellipse
Column 2 a Length of the horizontal semiaxis of the ellipse
Column 3 b Length of the vertical semiaxis of the ellipse
Column 4 x0 x-coordinate of the center of the ellipse

1 Functions

1-2506

Column Parameter Meaning
Column 5 y0 y-coordinate of the center of the ellipse
Column 6 phi Angle (in degrees) between the horizontal semiaxis of the

ellipse and the x-axis of the image

The domains for the x- and y-axes are [-1,1]. Columns 2 through 5 must be specified in terms of this
range.
Data Types: double

Output Arguments
P — Phantom image
n-by-n numeric matrix

Phantom image, returned as an n-by-n numeric matrix.
Data Types: double

Tips
For any given pixel in the output image, the pixel's value is equal to the sum of the additive intensity
values of all ellipses that the pixel is a part of. If a pixel is not part of any ellipse, its value is 0.

The additive intensity value A for an ellipse can be positive or negative; if it is negative, the ellipse
will be darker than the surrounding pixels. Note that, depending on the values of A, some pixels can
have values outside the range [0, 1].

References
[1] Jain, Anil K., Fundamentals of Digital Image Processing, Englewood Cliffs, NJ, Prentice Hall, 1989,

p. 439.

See Also
radon | iradon

Introduced before R2006a

 phantom

1-2507

piqe
Perception based Image Quality Evaluator (PIQE) no-reference image quality score

Syntax
score = piqe(A)
[score,activityMask,noticeableArtifactsMask,noiseMask] = piqe(A)

Description
score = piqe(A) calculates the no-reference image quality score for image A using a perception
based image quality evaluator.

[score,activityMask,noticeableArtifactsMask,noiseMask] = piqe(A) also returns the
spatial quality masks computed from the input image.

Examples

Calculate PIQE Score for Images and Display Results

Calculate PIQE score for an image and the corresponding distorted images. Display the results with
their corresponding image.

Read an image into the workspace. Generate distorted images by adding noise and blur. Use
imnoise function to generate the noisy image and imgaussfilt function to generate the blurred
image.

A = imread('lighthouse.png');
Anoise = imnoise(A,'Gaussian',0,0.05);
Ablur = imgaussfilt(A,2);

Calculate PIQE score for the original image and the distorted images.

score = piqe(A);
score_noise = piqe(Anoise);
score_blur = piqe(Ablur);

Display the images as a montage with their corresponding scores as a part of the figure title.

figure
montage({A,Anoise,Ablur},'Size',[1 3])
title({['Original Image: PIQE score = ', num2str(score),' | Noisy Image: PIQE score = ', num2str(score_noise),' ' ...
 '| Blurred Image: PIQE score = ', num2str(score_blur)]}, 'FontSize',12)

1 Functions

1-2508

Calculate PIQE Score, Spatial Quality Masks for Image, and Display Results

Calculate PIQE score of an image distorted due to blocking artifacts and Gaussian noise. Generate
spatial quality masks that indicate the high spatially active blocks, noticeable artifacts blocks, and
noise blocks in the image. Visualize the spatial quality masks by overlaying them on the distorted
image. Display the image with and without the masks and the PIQE score for the image.

Read a distorted image (distortion due to JPEG2K) into the workspace.

Adistorted = imread('DistortedImage.png');

Calculate PIQE score and the spatial quality masks.

[score,activityMask,noticeableArtifactsMask,noiseMask] = piqe(Adistorted);

Overlay the spatial quality masks on the input image.

mask_1 = labeloverlay(Adistorted,activityMask,'Colormap','winter','Transparency',0.25);
mask_2 = labeloverlay(Adistorted,noticeableArtifactsMask,'Colormap','autumn','Transparency',0.25);
mask_3 = labeloverlay(Adistorted,noiseMask,'Colormap','hot','Transparency',0.25);

Display the original distorted image and the distorted images with overlaid spatial quality masks as a
montage.

figure
montage({Adistorted,mask_1,mask_2,mask_3},'Size',[1 4])
title('Distorted Image | Overlay activityMask | Overlay noticeableArtifactsMask | Overlay noiseMask','FontSize',12)

 piqe

1-2509

Display PIQE score for the distorted image.

fprintf('PIQE score for the distorted image is %0.4f.\n',score)

PIQE score for the distorted image is 65.1855.

Input Arguments
A — Input image
2-D grayscale image | 2-D RGB image

Input image, specified as a 2-D grayscale image of size m-by-n or 2-D RGB image of size m-by-n-by-3.
Data Types: single | double | int16 | uint8 | uint16

Output Arguments
score — PIQE score
nonnegative scalar

PIQE score for the input image A, returned as a nonnegative scalar in the range [0, 100]. The PIQE
score is the no-reference image quality score and it is inversely correlated to the perceptual quality of
an image. A low score value indicates high perceptual quality and high score value indicates low
perceptual quality.
Data Types: double

activityMask — Spatial quality mask of active blocks
2-D Binary image

Spatial quality mask of active blocks, returned as a 2-D binary image of size m-by-n, where m and n
are the dimensions of the input image A. The activityMask is composed of high spatially active
blocks in the input image. The high spatially active blocks in the input image are the regions with
more spatial variability due to factors that include compression artifacts and noise. The high spatially
active blocks are assigned a value '1' in the activityMask.
Data Types: logical

1 Functions

1-2510

noticeableArtifactsMask — Spatial quality mask of noticeable artifacts
2-D Binary image

Spatial quality mask of noticeable artifacts, returned as a 2-D binary image of size m-by-n, where m
and n are the dimensions of the input image A. The noticeableArtifactsMask is composed of
blocks in activityMask that contain blocking artifacts (due to compression) or sudden distortions.
Data Types: logical

noiseMask — Spatial quality mask of Gaussian noise
2-D Binary image

Spatial quality mask of Gaussian noise, returned as a 2-D binary image of size m-by-n, where m and n
are the dimensions of the input image A. The noiseMask is composed of blocks in activityMask
that contain Gaussian noise.
Data Types: logical

Algorithms
PIQE calculates the no-reference quality score for an image through block-wise distortion estimation,
using these steps:

1 Compute the Mean Subtracted Contrast Normalized (MSCN) coefficient for each pixel in the
image using the algorithm proposed by N. Venkatanath and others [1].

2 Divide the input image into nonoverlapping blocks of size 16-by-16.
3 Identify high spatially active blocks based on the variance of the MSCN coefficients.
4 Generate activityMask using the identified high spatially active blocks.
5 In each block, evaluate distortion due to blocking artifacts and noise using the MSCN

coefficients.
6 Use threshold criteria to classify the blocks as distorted blocks with blocking artifacts, distorted

blocks with Gaussian noise, and undistorted blocks.
7 Generate noticeableArtifactsMask from the distorted blocks with blocking artifacts and

noiseMask from the distorted blocks with Gaussian noise.
8 Compute the PIQE score for the input image as the mean of scores in the distorted blocks.
9 The quality scale of the image based on its PIQE score is given in this table. The quality scale and

respective score range are assigned through experimental analysis on the dataset in LIVE Image
Quality Assessment Database Release 2 [2].

 piqe

1-2511

Q
u
a
l
i
t
y
S
c
a
l
e

S
c
o
r
e
R
a
n
g
e

E
x
c
e
l
l
e
n
t

[
0
,
2
0
]

G
o
o
d

[
2
1
,
3
5
]

F
a
i
r

[
3
6
,
5
0
]

P
o
o
r

[
5
1
,
8
0
]

1 Functions

1-2512

B
a
d

[
8
1
,
1
0
0
]

References
[1] N. Venkatanath, D. Praneeth, Bh. M. Chandrasekhar, S. S. Channappayya, and S. S. Medasani.

"Blind Image Quality Evaluation Using Perception Based Features", In Proceedings of the 21st

National Conference on Communications (NCC). Piscataway, NJ: IEEE, 2015.

[2] Sheikh, H. R., Z. Wang, L. Cormack and A.C. Bovik, "LIVE Image Quality Assessment Database
Release 2 ", https://live.ece.utexas.edu/research/quality/.

See Also
Functions
immse | ssim | psnr | brisque | niqe

Topics
“Image Quality Metrics”

Introduced in R2018b

 piqe

1-2513

https://live.ece.utexas.edu/research/quality/

pix2pixHDGlobalGenerator
Create pix2pixHD global generator network

Syntax
net = pix2pixHDGlobalGenerator(inputSize)
net = pix2pixHDGlobalGenerator(inputSize,Name,Value)

Description
net = pix2pixHDGlobalGenerator(inputSize) creates a pix2pixHD generator network for
input of size inputSize. For more information about the network architecture, see “pix2pixHD
Generator Network” on page 1-2518.

This function requires Deep Learning Toolbox.

net = pix2pixHDGlobalGenerator(inputSize,Name,Value) modifies properties of the
pix2pixHD network using name-value arguments.

Examples

Create Pix2PixHD Generator

Specify the network input size for 32-channel data of size 512-by-1024 pixels.

inputSize = [512 1024 32];

Create a pix2pixHD global generator network.

net = pix2pixHDGlobalGenerator(inputSize)

net =
 dlnetwork with properties:

 Layers: [84x1 nnet.cnn.layer.Layer]
 Connections: [92x2 table]
 Learnables: [110x3 table]
 State: [0x3 table]
 InputNames: {'GlobalGenerator_inputLayer'}
 OutputNames: {'GlobalGenerator_fActivation'}
 Initialized: 1

Display the network.

analyzeNetwork(net)

1 Functions

1-2514

Create Pix2PixHD Generator with Batch Normalization

Specify the network input size for 32-channel data of size 512-by-1024 pixels.

inputSize = [512 1024 32];

Create a pix2pixHD generator network that performs batch normalization after each convolution.

net = pix2pixHDGlobalGenerator(inputSize,"Normalization","batch")

net =
 dlnetwork with properties:

 Layers: [84x1 nnet.cnn.layer.Layer]
 Connections: [92x2 table]
 Learnables: [110x3 table]
 State: [54x3 table]
 InputNames: {'GlobalGenerator_inputLayer'}
 OutputNames: {'GlobalGenerator_fActivation'}
 Initialized: 1

Display the network.

analyzeNetwork(net)

Input Arguments
inputSize — Network input size
3-element vector of positive integers

Network input size, specified as a 3-element vector of positive integers. inputSize has the form [H
W C], where H is the height, W is the width, and C is the number of channels.
Example: [28 28 3] specifies an input size of 28-by-28 pixels for a 3-channel image.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'NumFiltersInFirstBlock',32 creates a network with 32 filters in the first convolution
layer

NumDownsamplingBlocks — Number of downsampling blocks
4 (default) | positive integer

Number of downsampling blocks in the network encoder module, specified as a positive integer. In
total, the network downsamples the input by a factor of 2^NumDownsamplingBlocks. The decoder
module consists of the same number of upsampling blocks.

NumFiltersInFirstBlock — Number of filters in first convolution layer
64 (default) | positive even integer

Number of filters in the first convolution layer, specified as a positive even integer.

 pix2pixHDGlobalGenerator

1-2515

NumOutputChannels — Number of output channels
3 (default) | positive integer

Number of output channels, specified as a positive integer.

FilterSizeInFirstAndLastBlocks — Filter size in first and last convolution layers
7 (default) | positive odd integer | 2-element vector of positive odd integers

Filter size in the first and last convolution layers of the network, specified as a positive odd integer or
2-element vector of positive odd integers of the form [height width]. When you specify the filter size
as a scalar, the filter has equal height and width.

FilterSizeInIntermediateBlocks — Filter size in intermediate convolution layers
3 (default) | 2-element vector of positive odd integers | positive odd integer

Filter size in intermediate convolution layers, specified as a positive odd integer or 2-element vector
of positive odd integers of the form [height width]. The intermediate convolution layers are the
convolution layers excluding the first and last convolution layer. When you specify the filter size as a
scalar, the filter has identical height and width. Typical values are between 3 and 7.

NumResidualBlocks — Number of residual blocks
9 (default) | positive integer

Number of residual blocks, specified as a positive integer.

ConvolutionPaddingValue — Style of padding
"symmetric-exclude-edge" (default) | "symmetric-include-edge" | "replicate" | numeric
scalar

Style of padding used in the network, specified as one of these values.

PaddingValue Description Example
Numeric scalar Pad with the specified numeric

value
3 1 4
1 5 9
2 6 5

2 2 2 2 2 2 2
2 2 2 2 2 2 2
2 2 3 1 4 2 2
2 2 1 5 9 2 2
2 2 2 6 5 2 2
2 2 2 2 2 2 2
2 2 2 2 2 2 2

'symmetric-include-edge' Pad using mirrored values of the
input, including the edge values

3 1 4
1 5 9
2 6 5

5 1 1 5 9 9 5
1 3 3 1 4 4 1
1 3 3 1 4 4 1
5 1 1 5 9 9 5
6 2 2 6 5 5 6
6 2 2 6 5 5 6
5 1 1 5 9 9 5

1 Functions

1-2516

PaddingValue Description Example
'symmetric-exclude-edge' Pad using mirrored values of the

input, excluding the edge values
3 1 4
1 5 9
2 6 5

5 6 2 6 5 6 2
9 5 1 5 9 5 1
4 1 3 1 4 1 3
9 5 1 5 9 5 1
5 6 2 6 5 6 2
9 5 1 5 9 5 1
4 1 3 1 4 1 3

'replicate' Pad using repeated border
elements of the input

3 1 4
1 5 9
2 6 5

3 3 3 1 4 4 4
3 3 3 1 4 4 4
3 3 3 1 4 4 4
1 1 1 5 9 9 9
2 2 2 6 5 5 5
2 2 2 6 5 5 5
2 2 2 6 5 5 5

UpsampleMethod — Method used to upsample activations
"transposedConv" (default) | "bilinearResize" | "pixelShuffle"

Method used to upsample activations, specified as one of these values:

• "transposedConv" — Use a transposedConv2dLayer with a stride of [2 2]
• "bilinearResize" — Use a convolution2dLayer with a stride of [1 1] followed by a

resize2dLayer with a scale of [2 2]
• "pixelShuffle" — Use a convolution2dLayer with a stride of [1 1] followed by a

depthToSpace2dLayer with a block size of [2 2]

Data Types: char | string

ConvolutionWeightsInitializer — Weight initialization used in convolution layers
"narrow-normal" (default) | "glorot" | "he" | function

Weight initialization used in convolution layers, specified as "glorot", "he", "narrow-normal", or
a function handle. For more information, see “Specify Custom Weight Initialization Function” (Deep
Learning Toolbox).

ActivationLayer — Activation function
"relu" (default) | "leakyRelu" | "elu" | layer object

Activation function to use in the network, specified as one of these values. For more information and
a list of available layers, see “Activation Layers” (Deep Learning Toolbox).

• "relu" — Use a reluLayer
• "leakyRelu" — Use a leakyReluLayer with a scale factor of 0.2
• "elu" — Use an eluLayer
• A layer object

FinalActivationLayer — Activation function after final convolution
"tanh" (default) | "sigmoid" | "softmax" | "none" | layer object

 pix2pixHDGlobalGenerator

1-2517

Activation function after the final convolution layer, specified as one of these values. For more
information and a list of available layers, see “Output Layers” (Deep Learning Toolbox).

• "tanh" — Use a tanhLayer
• "sigmoid" — Use a sigmoidLayer
• "softmax" — Use a softmaxLayer
• "none" — Do not use a final activation layer
• A layer object

NormalizationLayer — Normalization operation
"instance" (default) | "none" | "batch" | layer object

Normalization operation to use after each convolution, specified as one of these values. For more
information and a list of available layers, see “Normalization, Dropout, and Cropping Layers” (Deep
Learning Toolbox).

• "instance" — Use an instanceNormalizationLayer
• "batch" — Use a batchNormalizationLayer
• "none" — Do not use a normalization layer
• A layer object

Dropout — Probability of dropout
0 (default) | number in the range [0, 1]

Probability of dropout, specified as a number in the range [0, 1]. If you specify a value of 0, then the
network does not include dropout layers. If you specify a value greater than 0, then the network
includes a dropoutLayer in each residual block.

NamePrefix — Prefix to all layer names
"GlobalGenerator_" (default) | string | character vector

Prefix to all layer names in the network, specified as a string or character vector.
Data Types: char | string

Output Arguments
net — pix2pixHD generator network
dlnetwork object

Pix2pixHD generator network, returned as a dlnetwork object.

More About
pix2pixHD Generator Network

A pix2pixHD generator network consists of an encoder module followed by a decoder module. The
default network follows the architecture proposed by Wang et. al. [1].

The encoder module downsamples the input by a factor of 2^NumDownsamplingBlocks. The
encoder module consists of an initial block of layers, NumDownsamplingBlocks downsampling
blocks, and NumResidualBlocks residual blocks. The decoder module upsamples the input by a

1 Functions

1-2518

factor of 2^NumDownsamplingBlocks. The decoder module consists of NumDownsamplingBlocks
upsampling blocks and a final block.

The table describes the blocks of layers that comprise the encoder and decoder modules.

Block Type Layers Diagram of Default Block
Initial block • An imageInputLayer

• A convolution2dLayer with a
stride of [1 1] and a filter size of
FilterSizeInFirstAndLastBlo
cks

• An optional normalization layer,
specified by the
NormalizationLayer name-value
argument.

• An activation layer specified by the
ActivationLayer name-value
argument.

Downsampling
block

• A convolution2dLayer with a
stride of [2 2] to perform
downsampling. The convolution
layer has a filter size of
FilterSizeInIntermediateBlo
cks.

• An optional normalization layer,
specified by the
NormalizationLayer name-value
argument.

• An activation layer specified by the
ActivationLayer name-value
argument.

 pix2pixHDGlobalGenerator

1-2519

Block Type Layers Diagram of Default Block
Residual block • A convolution2dLayer with a

stride of [1 1] and a filter size of
FilterSizeInIntermediateBlo
cks.

• An optional normalization layer,
specified by the
NormalizationLayer name-value
argument.

• An activation layer specified by the
ActivationLayer name-value
argument.

• An optional dropoutLayer. By
default, residual blocks omit a
dropout layer. Include a dropout
layer by specifying the Dropout
name-value argument as a value in
the range (0, 1].

• A second convolution2dLayer.
• An optional second normalization

layer.
• An additionLayer that provides a

skip connection between every
block.

Upsampling block • An upsampling layer that upsamples
by a factor of 2 according to the
UpsampleMethod name-value
argument. The convolution layer
has a filter size of
FilterSizeInIntermediateBlo
cks.

• An optional normalization layer,
specified by the
NormalizationLayer name-value
argument.

• An activation layer specified by the
ActivationLayer name-value
argument.

Final block • A convolution2dLayer with a
stride of [1 1] and a filter size of
FilterSizeInFirstAndLastBlo
cks.

• An optional activation layer
specified by the
FinalActivationLayer name-
value argument.

1 Functions

1-2520

Tips
• You can create the discriminator network for pix2pixHD by using the patchGANDiscriminator

function.
• Train the pix2pixHD GAN network using a custom training loop.

References
[1] Wang, Ting-Chun, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. "High-

Resolution Image Synthesis and Semantic Manipulation with Conditional GANs." In 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8798–8807. Salt Lake
City, UT, USA: IEEE, 2018. https://doi.org/10.1109/CVPR.2018.00917.

See Also
addPix2PixHDLocalEnhancer | encoderDecoderNetwork | blockedNetwork |
cycleGANGenerator | unitGenerator

Topics
“Generate Image from Segmentation Map Using Deep Learning” (Computer Vision Toolbox)
“Get Started with GANs for Image-to-Image Translation”
“Create Modular Neural Networks”
“List of Deep Learning Layers” (Deep Learning Toolbox)

Introduced in R2021a

 pix2pixHDGlobalGenerator

1-2521

https://doi.org/10.1109/CVPR.2018.00917

planar2raw
Combine planar sensor images into full Bayer pattern CFA

Syntax
cfa = planar2raw(I)

Description
cfa = planar2raw(I) combines the individual sensor element images, stored as channels of the
input image I, into a complete Bayer pattern Color Filter Array (CFA) image, cfa.

Examples

Combine Sensor Data into Complete CFA Image

Read RAW image data into the workspace.

cfa = rawread("colorCheckerTestImage.NEF");

Create an image with individual channels for each sensor in the CFA image.

rggb = raw2planar(cfa);

Convert the image with separate channels for each sensor into a complete CFA image.

cfaFull = planar2raw(rggb);

Input Arguments
I — Image with channel for each sensor element
M-by-N-by-4 numeric array

Image with a channel for each sensor element, specified as an M-by-N-by-4 numeric array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
cfa — CFA image
(2*M)-by-(2*N) numeric matrix

CFA image, returned as a (2*M)-by-(2*N) numeric matrix of the same class as I.

planar2raw constructs the CFA image by placing I(:,:,1) starting at cfa(1,1), placing
I(:,:,2) starting at cfa(1,2), placing I(:,:,3) starting at cfa(2,1), and placing I(:,:,4)
starting at cfa(2,2).

1 Functions

1-2522

See Also
raw2planar | rawread | rawinfo | raw2rgb

Topics
“Implement Digital Camera Processing Pipeline”

Introduced in R2021a

 planar2raw

1-2523

plotChromaticity
Plot color reproduction on chromaticity diagram

Syntax
plotChromaticity(colorTable)
plotChromaticity
plotChromaticity(___ ,Name,Value)

Description
plotChromaticity(colorTable) plots on a chromaticity diagram the measured and reference
colors, colorTable, for color patch regions of interest (ROIs) in a test chart.

plotChromaticity plots an empty chromaticity diagram.

plotChromaticity(___ ,Name,Value) adjusts aspects of the display using name-value
arguments.

Examples

Display Chromaticity Diagram from Color Accuracy Measurements

This example shows how to display the chromaticity diagram from measurements of color accuracy
on an Imatest® eSFR chart.

Read an image of an eSFR chart into the workspace.

I = imread('eSFRTestImage.jpg');

Create an esfrChart object. Display the chart, highlighting the 16 color patches.

chart = esfrChart(I);
displayChart(chart,'displayEdgeROIs',false, ...
 'displayGrayROIs',false,'displayRegistrationPoints',false)

1 Functions

1-2524

http://www.imatest.com/mathworks/esfr

Measure the color in all color patch ROIs.

colorTable = measureColor(chart);

Plot the measured and reference colors in the CIE 1976 L*a*b* color space on a chromaticity
diagram. Red circles indicate the reference color and green circles indicate the measured color of
each color patch. The chromaticity diagram does not portray the brightness of color.

figure
plotChromaticity(colorTable)

 plotChromaticity

1-2525

Display Chromaticity Diagram from ColorChecker Chart

Read an image of an X-Rite® ColorChecker® chart into the workspace.

I = imread('colorCheckerTestImage.jpg');

Create a colorChecker object, then display the chart with ROI annotations.

chart = colorChecker(I);
displayChart(chart)

1 Functions

1-2526

Measure the color in each color patch ROI.

colorTable = measureColor(chart);

Plot the measured and reference colors on a chromaticity diagram.

figure
plotChromaticity(colorTable)

 plotChromaticity

1-2527

Plot sRGB Primaries and White Point on Chromaticity Diagram

Convert sRGB primary colors to the XYZ color space.

xyz_primaries = rgb2xyz([1 0 0; 0 1 0; 0 0 1]);

Normalize the x and y values of the primary colors.

xyzMag = sum(xyz_primaries,2);
x_primary = xyz_primaries(:,1)./xyzMag;
y_primary = xyz_primaries(:,2)./xyzMag;

Calculate and normalize the D65 white point.

wp = whitepoint('D65');

Normalize the x and y values of the white point.

wpMag = sum(wp,2);
x_whitepoint = wp(:,1)./wpMag;
y_whitepoint = wp(:,2)./wpMag;

Create an empty 2-D chromaticity diagram.

plotChromaticity

1 Functions

1-2528

Add the (x,y) coordinates of the primaries and white point to the chromaticity diagram.

hold on
scatter(x_whitepoint,y_whitepoint,36,'black')
scatter(x_primary,y_primary,36,'black')
plot([x_primary; x_primary],[y_primary; y_primary],'k')
hold off

Display 3-D Color Solid in u'v'L Color Space

Display a 3-D color solid of the u'v'L color space on an empty chromaticity diagram. Include all u'v'L
colors by specifying the brightness threshold as 0.

plotChromaticity("ColorSpace","uv","View",3,"BrightnessThreshold",0)

 plotChromaticity

1-2529

Input Arguments
colorTable — Color values
color table

Color values in each color patch, specified as an m-by-8 color table, where m is the number of
patches. The eight columns represent these variables:

Variable Description
ROI Index of the sampled ROI. The value of ROI is an integer in the range [1,

16]. The indices match the ROI numbers displayed by displayChart.
Measured_R Mean value of red channel pixels in an ROI. Measured_R is a scalar of the

same data type as chart.Image, which can be of type single, double,
uint8, or uint16.

Measured_G Mean value of green channel pixels in an ROI. Measured_G is a scalar of
the same data type as chart.Image.

Measured_B Mean value of blue channel pixels in an ROI. Measured_B is a scalar of the
same data type as chart.Image.

Reference_L Reference L* value corresponding to the ROI. Reference_L is a scalar of
type double.

1 Functions

1-2530

Variable Description
Reference_a Reference a* value corresponding to the ROI. Reference_a is a scalar of

type double.
Reference_b Reference b* value corresponding to the ROI. Reference_b is a scalar of

type double.
Delta_E Euclidean color distance between the measured and reference color

values, as outlined in CIE 1976.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'displayROIIndex',false turns off the display of the ROI indices on the chromaticity
diagram.

BrightnessThreshold — Brightness threshold
0.15 (default) | number in the range [0, 1]

Brightness threshold, specified as the comma-separated pair consisting of 'BrightnessThreshold'
and a number in the range [0, 1]. The plotChromaticity function does not display color values
with a Y or L value (depending on the color space) less than the brightness threshold.

ColorSpace — Color space
'xy' (default) | 'uv'

Color space, specified as the comma-separated pair consisting of 'ColorSpace' and 'xy' to plot in
the xyY color space or 'uv' to plot in the u'v'L color space.
Data Types: char | string

displayROIIndex — Display ROI index labels
true or 1 (default) | false or 0

Display ROI index labels, specified as the comma-separated pair consisting of 'displayROIIndex'
and a numeric or logical 1 (true) or 0 (false). When displayROIIndex is true, then the
plotChromaticity function overlays color patch ROI index labels on the chromaticity diagram. The
indices match the ROI numbers displayed by the displayChart function.

Parent — Parent axes
Axes object

Parent axes of the chromaticity diagram, specified as the comma-separated pair consisting of
'Parent' and an Axes object.

View — Dimensionality of chromaticity diagram
2 (default) | 3

Dimensionality of chromaticity diagram, specified as the comma-separated pair consisting of 'View'
and 2 for a 2-D projection or 3 for a 3-D color solid.

 plotChromaticity

1-2531

Tips
• To obtain a color table of the correct format from an esfrChart or colorChecker object, use

the measureColor function. You can also create your own color table containing measured and
reference colors for an arbitrary number of color ROIs.

• The reference L*a*b* values of a colorTable measured from a colorChecker object are for the
"After November 2014" version of the X-Rite ColorChecker chart. The white point of the reference
values is the CIE standard illuminant D50.

See Also
Functions
measureColor | displayColorPatch | displayChart

Objects
esfrChart | colorChecker

Introduced in R2017b

1 Functions

1-2532

plotSFR
Plot spatial frequency response of edge

Syntax
plotSFR(sharpnessMeasurementTable)
plotSFR(sharpnessMeasurementTable,Name,Value)

Description
plotSFR(sharpnessMeasurementTable) plots the spatial frequency response (SFR) in a
sharpness measurement table or aggregate sharpness measurement table.

plotSFR(sharpnessMeasurementTable,Name,Value) plots the SFR, specifying additional
parameters to control aspects of the display.

Examples

Plot Spatial Frequency Response of Specific ROIs from an eSFR Chart

This example shows how to display the spatial frequency response (SFR) plot of a specified subset of
the 60 slanted edge ROIs on an Imatest® eSFR chart.

Read an image of an eSFR chart into the workspace.

I = imread('eSFRTestImage.jpg');

Create an esfrChart object, then display the chart with ROI annotations. The 60 slanted edge ROIs
are labeled with green numbers.

chart = esfrChart(I);
displayChart(chart,'displayGrayROIs',false,...
 'displayColorROIs',false,'displayRegistrationPoints',false)

 plotSFR

1-2533

http://www.imatest.com/mathworks/esfr

Measure the edge sharpness in all ROIs and return the measurements in sharpnessTable.

sharpnessTable = measureSharpness(chart);

Display the SFR plot of ROIs 26 and 27 only.

plotSFR(sharpnessTable,'ROIIndex',[26 27]);

1 Functions

1-2534

 plotSFR

1-2535

Input Arguments
sharpnessMeasurementTable — SFR measurements
sharpness table | aggregate sharpness table

SFR measurements of edges, specified as a sharpness table or aggregate sharpness table with m
rows:

• When sharpnessMeasurementTable is a sharpness table, m is the number of sampled ROIs.
• When sharpnessMeasurementTable is an aggregate sharpness table, m is either 1 or 2,

corresponding to the number of sampled orientations.

To obtain a sharpness table or aggregate sharpness table, use the measureSharpness function.
Data Types: table

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: plotSFR(myTable,'ROIIndex',2) displays the measured sharpness only of ROI 2.

ROIIndex — ROI indices
scalar | vector

1 Functions

1-2536

ROI indices to display, specified as the comma-separated pair consisting of 'ROIIndex' and a scalar
or vector of integers in the range [1, 60]. The indices match the ROI numbers displayed by
displayChart.

• When sharpnessMeasurementTable is a sharpness table, by default plotSFR creates only one
figure, showing the SFR plot from the first row of the table.

• When sharpnessMeasurementTable is an aggregate sharpness table, plotSFR ignores the
specified ROIIndex, and creates one figure for each row in the table.

Example: 29:32
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

displayLegend — Display plot legend
true (default) | false

Display plot legend, specified as the comma-separated pair consisting of 'displayLegend' and
true or false. When displayLegend is true, the SFR plot shows a legend that identifies the
different curves on the plot.
Data Types: logical

displayTitle — Display plot title
true (default) | false

Display plot title, specified as the comma-separated pair consisting of 'displayTitle' and true or
false. When displayTitle is true, the SFR plot shows a title that indicates the individual ROI
index or aggregate ROI orientation.
Data Types: logical

Parent — Axes handle of displayed image object
axes handle

Axes handle of the displayed image object, specified as the comma-separated pair consisting of
'Parent' and an axes handle. Parent specifies the parent of the image object created by plotSFR.

See Also
Functions
measureSharpness | displayChart

Objects
esfrChart

Introduced in R2017b

 plotSFR

1-2537

poly2label
Create label matrix from set of ROIs

Syntax
L = poly2label(ROIpositions,ROILabelIDs,imagesize)
L = poly2label(ROIpositions,ROILabelIDs,R)

Description
L = poly2label(ROIpositions,ROILabelIDs,imagesize) creates a numeric label matrix L
from the regions of interest (ROIs) defined in ROIpositions. ROILabelIDs specifies the numeric ID
for each ROI in ROIpositions. imagesize specifies the size of the output label matrix.

L = poly2label(ROIpositions,ROILabelIDs,R) creates a numeric label matrix where the
spatial referencing object R specifies the coordinate system used by the ROI positions in
ROIpositions. The function assumes that the ROI positions are in world limits defined by R. The
ImageSize property of R specifies the size of the label matrix L.

Examples

Create Label Matrix from Multiple ROIs

Read an image into the workspace and display it.

 figure
 I = imread('baby.jpg');
 imshow(I)

Initialize the ROI position cell array and image size variables. If you pass poly2label a size value
containing three dimensions, it only uses the first two, m-by-n.

numPolygon = 3;
roiPositions = cell(numPolygon,1);
imSize = size(I);

Specify the coordinates of three ROIs in the roiPositions cell array. In this example, the first ROI
is a triangle, requiring coordinates for three corners. The other two ROIs are quadrilaterals,
requiring coordinates for four corners.

roiPositions{1} = [500 500; 250 1300; 1000 500];
roiPositions{2} = [1500 1100; 1500 1400; 2000 1400; 2000 700];
roiPositions{3} = [80 2600; 480 2700; 470 3000; 100 3000];

Create an array for label IDs the same size as the roiPositions cell array.

roilabelID = zeros(numPolygon,1,'uint8');

Specify label ID values that correspond to the order in which you listed the ROIs in roiPositions.
The first ROI is a triangle so give it the label 1. The next two ROIs are both quadrilaterals so give
them the label 2.

1 Functions

1-2538

roilabelID(1) = 1;
roilabelID(2) = 2;
roilabelID(3) = 2;

Draw the three ROIs on the figure.

for id = 1:numPolygon
 drawpolygon('Position',roiPositions{id});
end

 poly2label

1-2539

Create a label matrix from the ROIs. The label matrix is the same size, m-by-n, as the original image.

L = poly2label(roiPositions,roilabelID,imSize);

Display the label matrix overlaid on the original image.

figure;
B = labeloverlay(I,L);
imshow(B);

1 Functions

1-2540

Input Arguments
ROIpositions — Coordinate vectors
1-by-P cell array of numeric coordinate vectors

Coordinate vectors, specified as a 1-by-P cell array of numeric coordinate vectors, where P is the total
number of ROIs. Each cell array element is an s-by-2 coordinate vector of the form [x1 y1; …; xs
ys], where s is the total number of vertices for that ROI. Each x,y pair defines a vertex of the ROI. If
the ROI shape is not already closed, the poly2label function closes the shape automatically. You
can specify any number of ROIs.
Data Types: double | cell

ROILabelIDs — Labels for each ROI
numeric vector

Labels for each ROI, specified as a numeric vector of the same length as the ROIpositions
argument. Each label in the vector corresponds to the ROI in the associated position in the
ROIpositions cell array.

poly2label assigns the value 0 to all background pixels in the output image.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

imagesize — Size of the output label matrix
2-element numeric vector | 3-element numeric vector

Size of the output label matrix, specified as a 2- or 3-element numeric vector. If you specify a 3-
element vector, the poly2label function uses only the first two dimensions, m-by-n.
Data Types: double

R — Spatial referencing information
imref2d object

Spatial referencing information, specified as an imref2d object.

Output Arguments
L — Label matrix
m-by-n matrix of nonnegative values

Label matrix, returned as an m-by-n matrix of nonnegative values, the same class as ROIlabelIDs.
Pixels labeled 0 are the background.

Tips
• The poly2label function sets pixels that are inside an ROI to a label value. For information

about how poly2label handles pixels that are only partially inside an ROI, see the poly2mask
function.

• When the positions of several ROIs overlap each other, the ROI label with the lowest index number
in the ROIpositions cell array overwrites the other ROIs.

 poly2label

1-2541

See Also
poly2mask | drawpolygon | labeloverlay | roipoly | polyToBlockedImage

Introduced in R2020b

1 Functions

1-2542

poly2mask
Convert region of interest (ROI) polygon to region mask

Syntax
BW = poly2mask(xi,yi,m,n)

Description
BW = poly2mask(xi,yi,m,n) computes a binary region of interest (ROI) mask, BW, of size m-by-n,
from an ROI polygon with vertices at coordinates xi and yi. If the polygon is not already closed, then
poly2mask closes the polygon automatically.

The poly2mask function sets pixels that are inside the polygon to 1 and sets pixels outside the
polygon to 0. For more information about classifying pixels that are partially enclosed by the ROI, see
Algorithm on page 1-2547.

Examples

Define Polygon and Create Mask

Specify the x- and y-coordinates of the polygon.

x = [63 186 54 190 63];
y = [60 60 209 204 60];

Create the mask specifying the size of the image.

bw = poly2mask(x,y,256,256);

Display the mask, drawing a line around the polygon.

imshow(bw)
hold on
plot(x,y,'b','LineWidth',2)
hold off

 poly2mask

1-2543

Create Mask Using Random Points to Define Polygon

Define two sets of random points for the x- and y-coordinates.

x = 256*rand(1,4);
y = 256*rand(1,4);
x(end+1) = x(1);
y(end+1) = y(1);

Create the mask.

bw = poly2mask(x,y,256,256);

Display the mask and draw a line around the polygon.

imshow(bw)
hold on
plot(x,y,'b','LineWidth',2)
hold off

1 Functions

1-2544

Input Arguments
xi — x-coordinate of polygon vertices
numeric vector

x-coordinate of polygon vertices, specified as a numeric vector. The length of xi and yi must match.
Data Types: double

yi — y-coordinate of polygon vertices
numeric vector

y-coordinate of polygon vertices, specified as a numeric vector. The length of xi and yi must match.
Data Types: double

m — Number of rows in mask
nonnegative integer

Number of rows in the mask, specified as a nonnegative integer.
Data Types: double

n — Number of columns in mask
nonnegative integer

Number of columns in the mask, specified as a nonnegative integer.
Data Types: double

 poly2mask

1-2545

Output Arguments
BW — Binary image
m-by-n logical matrix

Binary image, returned as an m-by-n logical matrix.
Data Types: logical

Tips
• To specify a polygon that includes a given rectangular set of pixels, make the edges of the polygon

lie along the outside edges of the bounding pixels, instead of the center of the pixels.

For example, to include pixels in columns 4 through 10 and rows 4 through 10, you might specify
the polygon vertices like this:

x = [4 10 10 4 4];
y = [4 4 10 10 4];
mask = poly2mask(x,y,12,12)

mask =

 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 1 1 1 1 1 1 0 0
 0 0 0 0 1 1 1 1 1 1 0 0
 0 0 0 0 1 1 1 1 1 1 0 0
 0 0 0 0 1 1 1 1 1 1 0 0
 0 0 0 0 1 1 1 1 1 1 0 0
 0 0 0 0 1 1 1 1 1 1 0 0
 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0

In this example, the polygon goes through the center of the bounding pixels, with the result that
only some of the desired bounding pixels are determined to be inside the polygon (the pixels in
row 4 and column 4 and not in the polygon). To include these elements in the polygon, use
fractional values to specify the outside edge of the 4th row (3.5) and the 10th row (10.5), and the
outside edge of the 4th column (3.5) and the outside edge of the 10th column (10.5) as vertices, as
in the following example:

x = [3.5 10.5 10.5 3.5 3.5];
y = [3.5 3.5 10.5 10.5 3.5];
mask = poly2mask(x,y,12,12)

mask =

 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 1 1 1 1 1 1 1 0 0
 0 0 0 1 1 1 1 1 1 1 0 0
 0 0 0 1 1 1 1 1 1 1 0 0
 0 0 0 1 1 1 1 1 1 1 0 0
 0 0 0 1 1 1 1 1 1 1 0 0
 0 0 0 1 1 1 1 1 1 1 0 0
 0 0 0 1 1 1 1 1 1 1 0 0
 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0

1 Functions

1-2546

Algorithms
When creating a region of interest (ROI) mask, poly2mask must determine which pixels are included
in the region. This determination can be difficult when pixels on the edge of a region are only
partially covered by the border line. The following figure illustrates a triangular region of interest,
examining in close-up one of the vertices of the ROI. The figure shows how pixels can be partially
covered by the border of a region-of-interest.

Pixels on the Edge of an ROI Are Only Partially Covered by Border

To determine which pixels are in the region, poly2mask uses the following algorithm:

1 Divide each pixel into a 5-by-5 subpixel grid.

The figure shows the pixel that contains the vertex of the ROI shown previously with this 5-by-5
subpixel grid.

2 Adjust the position of the vertices.

 poly2mask

1-2547

poly2mask moves each vertex of the polygon to the nearest intersection of the subpixel grid.
Note how poly2mask rounds x and y coordinates to the nearest subpixel grid corner. This
creates a second, modified polygon. The figure shows the modified vertex with a red "X".

3 Draw a path between adjusted vertices.

poly2mask forms a path from each adjusted vertex to the next, following the edges of the
subpixel grid. The figure shows a portion of this modified polygon by the thick dark lines.

4 Determine which border pixels are inside the polygon.

poly2mask uses the following rule to determine which border pixels are inside the polygon: if
the pixel's central subpixel is inside the boundaries defined by the path between adjusted
vertices, then the pixel is inside the region.

In the following figure, the central subpixels of pixels on the ROI border are shaded a dark gray
color. Pixels inside the polygon are shaded a lighter gray. Note that the pixel containing the
vertex is not part of the ROI because its center pixel is not inside the modified polygon.

1 Functions

1-2548

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

poly2mask supports the generation of C code (requires MATLAB Coder). For more information, see
“Code Generation for Image Processing”.

See Also
roipoly | roifilt2

Introduced before R2006a

 poly2mask

1-2549

polyToBlockedImage
Create labeled blockedImage object from set of ROIs

Syntax
Bout = polyToBlockedImage(ROIpositions,ROILabelIDs,imageSize)
Bout = polyToBlockedImage(___ ,Name=Value)

Description
Bout = polyToBlockedImage(ROIpositions,ROILabelIDs,imageSize) creates a numeric,
labeled 2-D blocked image Bout of the specified size imageSize from the regions of interest (ROIs)
defined in ROIpositions and label IDs defined in ROILabelIDs.

Bout = polyToBlockedImage(___ ,Name=Value) specifies object properties of Bout using
name-value arguments in addition to the input arguments from the previous syntax.
Example: polyToBlockedImage(ROIpositions,ROILabelIDs,BlockSize=[512,512]) creates
a blocked image with a block size of 512-by-512 pixels.

Examples

Create Labeled Blocked Image from ROIs

Create a blocked image.

bim = blockedImage("baby.jpg");

Initialize the ROI position cell array.

numPolygon = 3;
roiPositions = cell(numPolygon,1);

Specify the coordinates of three ROIs in the roiPositions cell array. The first ROI is a triangle,
requiring x,y coordinates for three vertices. The other two ROIs are quadrilaterals, requiring x,y
coordinates for four vertices.

roiPositions{1} = [500 500; 250 1300; 1000 500];
roiPositions{2} = [1500 1100; 1500 1400; 2000 1400; 2000 700];
roiPositions{3} = [80 2600; 480 2700; 470 3000; 100 3000];

Display the blocked image, and draw the three ROIs on the figure.

bigimageshow(bim);
for id = 1:numPolygon
 drawpolygon(Position=roiPositions{id});
end

1 Functions

1-2550

Create an array for label IDs the same size as the roiPositions cell array.

roilabelID = zeros(numPolygon,1,"uint8");

Specify label ID values that correspond to the order in which you listed the ROIs in roiPositions.
The first ROI is a triangle, so label it 1. The other two ROIs are quadrilaterals, so label them 2.

roilabelID(1) = 1;
roilabelID(2) = 2;
roilabelID(3) = 2;

Specify the size of the new labeled blocked image to match the size of the initial blocked image.

imageSize = bim.Size(1:2);

Create a labeled blockedImage object from the ROIs.

L = polyToBlockedImage(roiPositions,roilabelID,imageSize);

Display the labeled blocked image. Use color scaling and color axis limits to visualize the differences
between the labels for triangular and quadrilateral ROIs.

 polyToBlockedImage

1-2551

bigimageshow(L,CDataMapping="scaled")
caxis([0 2]);

Display the labeled blocked image overlaid on the original blocked image.

hbim = bigimageshow(bim);
showlabels(hbim,L)

1 Functions

1-2552

Create Labeled Blocked Image Specifying World Coordinates

Create a blocked image.

bim = blockedImage("tumor_091R.tif");

Initialize the ROI position cell array.

numPolygon = 3;
roiPositions = cell(numPolygon,1);

Specify the center and radius parameters for three circular ROIs.

center = [2774 1607; 2071 3100; 2208 2262];
radius = [390; 470; 161];

Display the blocked image, and use drawcircle to draw the three circular ROIs on the figure. Add
the x,y coordinates of the vertices for each ROI to the roiPositions cell array.

 polyToBlockedImage

1-2553

hbim = bigimageshow(bim);
for id = 1:numPolygon
 hROI = drawcircle(Radius=radius(id),Center=center(id,:));
 roiPositions{id} = hROI.Vertices;
end

Create an array for label IDs the same size as the roiPositions cell array.

roilabelID = zeros(numPolygon,1,"uint8");

Specify label ID values that correspond to the order in which you listed the ROIs in roiPositions.
You can assign each ROI a different label, or group multiple ROIs under the same label.

roilabelID(1) = 1;
roilabelID(2) = 2;
roilabelID(3) = 2;

Specify an image size for the new labeled blocked image equal to that of the second resolution level
of the initial blocked image, bim.

maskLevel = 2;
imageSize = bim.Size(maskLevel,1:2);

1 Functions

1-2554

Create a labeled blockedImage object from the ROIs. Use the WorldStart and WorldEnd name-
value arguments to maintain the same world coordinates as the initial blocked image at the specified
resolution level.

L = polyToBlockedImage(roiPositions,roilabelID, ...
imageSize,WorldStart=bim.WorldStart(maskLevel, 1:2), ...
WorldEnd=bim.WorldEnd(maskLevel, 1:2));

Display the labeled blocked image overlaid on the original blocked image.

showlabels(hbim,L)

Input Arguments
ROIpositions — Coordinate vectors
P-element cell array of numeric vectors

Coordinate vectors, specified as a P-element cell array of numeric vectors, where P is the total
number of ROIs. Each cell array element is an s-by-2 coordinate vector of the form [x1 y1; … ; xs

 polyToBlockedImage

1-2555

ys], where s is the total number of vertices for that ROI. Each x,y pair defines a vertex of the ROI. If
the ROI shape is not already closed, the polyToBlockedImage function closes the shape
automatically. You can specify any number of ROIs.
Data Types: cell

ROILabelIDs — Labels for each ROI
P-element numeric vector | P-element logical vector

Labels for each ROI, specified as a P-element numeric vector or P-element logical vector, where P is
the total number of ROIs.

polyToBlockedImage assigns the value 0 to all background pixels in the output image.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

imageSize — Size of output labeled blocked image
numeric vector of positive integers

Size of the output labeled blocked image, specified as a numeric vector of positive integers. If you
specify more than two dimensions, the polyToBlockedImage function uses only the first two
dimensions.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example:
polyToBlockedImage(ROIpositions,ROILabelIDs,imageSize,BlockSize=[512,512])
creates a labeled blocked image with a block size of 512-by-512 pixels.

Adapter — Read and write interface for blocked image object
InMemory object | MATBlocks object | PNGBlocks object | TIFF object | ...

Read and write interface for the blocked image object, specified as one of these adapter objects.

Adapter Description
BINBlocks Store each block as a binary file in a folder
GenericImage Store blocks in a single image
GenericImageBlocks Store each block as an image file in a folder
H5 Store blocks in a single HDF5 image
H5Blocks Store each block as an HDF5 file in a folder
InMemory Store blocks in a variable in main memory
JPEGBlocks Store each block as a JPEG file in a folder
MATBlocks Store each block as a MAT file in a folder
PNGBlocks Store each block as a PNG file in a folder
TIFF Store blocks in a single TIFF file

1 Functions

1-2556

You can also create your own adapter using the images.blocked.Adapter class.

If OutputLocation is specified, then the function automatically selects an adapter based on the
output location. If OutputLocation is not specified, then the default adapter is an InMemory object.

BlockSize — Block size
[512,512] (default) | numeric vector of positive integers

Block size, specified as a numeric vector of positive integers. If you specify more than two
dimensions, the polyToBlockedImage function uses only the first two dimensions.
Data Types: double

DisplayWaitbar — Wait bar display toggle
true or 1 (default) | false or 0

Wait bar display toggle, specified as a numeric or logical 1 (true) or 0 (false). When set to true,
the polyToBlockedImage function displays a wait bar for long-running operations. If you cancel the
wait bar, the polyToBlockedImage function returns a partial output, if available.
Data Types: logical

OutputLocation — Location to store output labeled blocked image
[] (default) | character vector | string scalar

Location to store the output labeled blocked image, specified as a character vector or string scalar.
By default, the output blocked image is stored in memory.

Destination Type Image Format
Folder name (without a file extension) The polyToBlockedImage function creates the

folder and stores blocks of data as files within the
folder.

• For numeric image data,
polyToBlockedImage stores each block as a
binary file using the BINBlocks adapter.

• For categorical and structure image data,
polyToBlockedImage stores each block as a
MAT file in the folder using the MATBlocks
adapter.

File name with TIF or TIFF file extension The polyToBlockedImage function stores data
as a single TIFF image using the TIFF adapter.

The initialValue must be numeric or logical
with data type uint8, int8, uint16, int16,
uint32, int32, single, double or logical.

File name with H5 file extension The polyToBlockedImage function stores data
as a single HDF5 image using the H5 adapter.

The initialValue must be numeric with data
type uint8, int8, uint16, int16, uint32,
int32, single, or double.

 polyToBlockedImage

1-2557

Destination Type Image Format
[] The blockedImage object stores data as a

variable in memory using the InMemory adapter.

To specify a custom adapter for other output formats, use the Adapter property.

WorldStart — World coordinates of starting edge of image
numeric vector

World coordinates of the starting edge of the image, specified as a numeric vector. By default, the
value is [0.5,0.5].
Data Types: double

WorldEnd — World coordinates of ending edge of image
numeric vector

World coordinates of the ending edge of the image, specified as a numeric vector. By default, the
value is imageSize + 0.5, resulting in pixels that are one unit wide.
Data Types: double

Output Arguments
Bout — Numeric labeled 2-D blocked image
blockedImage object

Numeric labeled 2-D blocked image, returned as a blockedImage object.

Tips
• To create a labeled blocked image, Bout, to overlay on an existing blocked image, match

imageSize to the size of the existing blocked image at the desired resolution level. If the
resolution level of Bout matches the finest resolution level of the existing blocked image, you can
use the default values for WorldStart and WorldEnd. To display the overlay at a coarse
resolution level, specify WorldStart and WorldEnd to match the world extents of the existing
blocked image at the desired resolution level.

• Creating the labeled blocked image at a coarser resolution level decreases the memory required
to store the new blocked image, but decreases the smoothness of the ROI edges.

• If a pixel is inside multiple overlapping ROIs, the function assigns the pixel the label
corresponding to the overlapping ROI with the lowest index in ROIpositions.

See Also
blockedImage | bigimageshow | showlabels | poly2label | drawcircle

Topics
“Convert Image Labeler Polygons to Labeled Blocked Image for Semantic Segmentation”

Introduced in R2021b

1 Functions

1-2558

pretrainedEncoderNetwork
Create encoder network from pretrained network

Syntax
net = pretrainedEncoderNetwork(networkName,depth)
[net,outputNames] = pretrainedEncoderNetwork(networkName,depth)

Description
net = pretrainedEncoderNetwork(networkName,depth) creates an encoder network, net,
from a pretrained network, networkName. The encoder network performs depth downsampling
operations.

This function requires Deep Learning Toolbox.

[net,outputNames] = pretrainedEncoderNetwork(networkName,depth) also returns the
names, outputNames, of activation layers that occur directly before downsampling operations. These
activations correspond to features of interest at particular spatial resolutions or scales.

Examples

Create Encoder Network from Pretrained SqueezeNet Network

Create an encoder with three downsampling operations based on the SqueezeNet pretrained
network.

encoderNet = pretrainedEncoderNetwork('squeezenet',3)

encoderNet =
 dlnetwork with properties:

 Layers: [33x1 nnet.cnn.layer.Layer]
 Connections: [36x2 table]
 Learnables: [26x3 table]
 State: [0x3 table]
 InputNames: {'data'}
 OutputNames: {'fire5-concat'}
 Initialized: 1

Display the encoder network.

analyzeNetwork(encoderNet)

 pretrainedEncoderNetwork

1-2559

Create U-Net from Pretrained GoogLeNet

Create a GAN encoder network with four downsampling operations from a pretrained GoogLeNet
network.

depth = 4;
[encoder,outputNames] = pretrainedEncoderNetwork('googlenet',depth);

Determine the input size of the encoder network.

inputSize = encoder.Layers(1).InputSize;

Determine the output size of the activation layers in the encoder network by creating a sample data
input and then calling forward, which returns the activations.

exampleInput = dlarray(zeros(inputSize),'SSC');
exampleOutput = cell(1,length(outputNames));
[exampleOutput{:}] = forward(encoder,exampleInput,'Outputs',outputNames);

Determine the number of channels in the decoder blocks as the length of the third channel in each
activation.

numChannels = cellfun(@(x) size(extractdata(x),3),exampleOutput);
numChannels = fliplr(numChannels(1:end-1));

Define a function that creates an array of layers for one decoder block.

decoderBlock = @(block) [
 transposedConv2dLayer(2,numChannels(block),'Stride',2)
 convolution2dLayer(3,numChannels(block),'Padding','same')
 reluLayer
 convolution2dLayer(3,numChannels(block),'Padding','same')
 reluLayer];

Create the decoder module with the same number of upsampling blocks as there are downsampling
blocks in the encoder module.

decoder = blockedNetwork(decoderBlock,depth);

Create the U-Net network by connecting the encoder module and decoder module and adding skip
connections.

net = encoderDecoderNetwork([224 224 3],encoder,decoder, ...
 'OutputChannels',3,'SkipConnections','concatenate')

net =
 dlnetwork with properties:

 Layers: [139x1 nnet.cnn.layer.Layer]
 Connections: [167x2 table]
 Learnables: [116x3 table]
 State: [0x3 table]
 InputNames: {'data'}
 OutputNames: {'encoderDecoderFinalConvLayer'}
 Initialized: 1

Display the network.

1 Functions

1-2560

analyzeNetwork(net)

Input Arguments
networkName — Pretrained network name
"googlenet" | "inceptionv3" | "resnet101" | "vgg19" | ...

Pretrained network name, specified as one of these string values. You must install the associated Add-
On for the selected pretrained network.

• "alexnet" — See alexnet for more information.
• "googlenet" — See googlenet for more information.
• "inceptionresnetv2" — See inceptionresnetv2 for more information.
• "inceptionv3" — See inceptionv3 for more information.
• "mobilenetv2" — See mobilenetv2 for more information.
• "resnet18" — See resnet18 for more information.
• "resnet50" — See resnet50 for more information.
• "resnet101" — See resnet101 for more information.
• "squeezenet" — See squeezenet for more information.
• "vgg16" — See vgg16 for more information.
• "vgg19" — See vgg19 for more information.

Data Types: char | string

depth — Number of downsampling operations
2 (default) | positive integer

Number of downsampling operations in the encoder, specified as a positive integer. The encoder
downsamples the input by a factor of 2^depth. You cannot specify a depth greater than the depth of
the pretrained network.

Output Arguments
net — Encoder network
dlnetwork object

Encoder network, returned as a dlnetwork object. The network has depth distinct spatial
resolutions. The final layer of the encoder network is the layer that comes directly before the next
downsampling operation of the pretrained network.

outputNames — Layer names
string vector

Layer names in the network net that come directly before downsampling operations, returned as a
string vector.

See Also
encoderDecoderNetwork

 pretrainedEncoderNetwork

1-2561

Topics
“Create Modular Neural Networks”
“Get Started with GANs for Image-to-Image Translation”

Introduced in R2021a

1 Functions

1-2562

projective2d
2-D projective geometric transformation

Description
A projective2d object encapsulates a 2-D projective geometric transformation.

Creation
You can create a projective2d object using the following methods:

• fitgeotrans — Estimates a geometric transformation that maps pairs of control points between
two images

• The projective2d function described here

Syntax
tform = projective2d
tform = projective2d(A)

Description

tform = projective2d creates a projective2d object with default property settings that
correspond to the identity transformation.

tform = projective2d(A) sets the property T with a valid projective transformation defined by
nonsingular matrix A.

Properties
T — Forward 2-D projective transformation
nonsingular 3-by-3 numeric matrix

Forward 2-D projective transformation, specified as a nonsingular 3-by-3 numeric matrix.

The matrix T uses the convention:

[x y 1] = [u v 1] * T

where T has the form:

[a b c;...
 d e f;...
 g h i];

The default of T is the identity transformation.
Data Types: double | single

 projective2d

1-2563

Dimensionality — Dimensionality of the geometric transformation
2

Dimensionality of the geometric transformation for both input and output points, specified as the
value 2.

Object Functions
invert Invert geometric transformation
outputLimits Find output spatial limits given input spatial limits
transformPointsForward Apply forward geometric transformation
transformPointsInverse Apply inverse geometric transformation

Examples

Apply Projective Transformation to Image

This example shows how to apply rotation and tilt to an image, using a projective2d geometric
transformation object created directly from a transformation matrix.

Read a grayscale image into the workspace.

I = imread('pout.tif');

Combine rotation and tilt into a transformation matrix, tm. Use this transformation matrix to create a
projective2d geometric transformation object, tform.

theta = 10;
tm = [cosd(theta) -sind(theta) 0.001; ...
 sind(theta) cosd(theta) 0.01; ...
 0 0 1];
tform = projective2d(tm);

Apply the transformation using imwarp. View the transformed image.

outputImage = imwarp(I,tform);
imshow(outputImage)

1 Functions

1-2564

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• projective2d supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

• When generating code, you can only specify singular objects—arrays of objects are not supported.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• When generating code, you can only specify singular objects—arrays of objects are not supported.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
Functions
imwarp | fitgeotrans

Objects
affine2d | rigid2d | geometricTransform2d | LocalWeightedMeanTransformation2D |
PiecewiseLinearTransformation2D | PolynomialTransformation2D

Topics
“Register Images with Projection Distortion Using Control Points”
“2-D and 3-D Geometric Transformation Process Overview”
“Matrix Representation of Geometric Transformations”

Introduced in R2013a

 projective2d

1-2565

psf2otf
Convert point-spread function to optical transfer function

Syntax
OTF = psf2otf(PSF)
OTF = psf2otf(PSF,sz)

Description
OTF = psf2otf(PSF) computes the fast Fourier transform (FFT) of the point-spread function (PSF)
array and creates the optical transfer function array, OTF, that is not influenced by the PSF off-
centering.

OTF = psf2otf(PSF,sz) specifies the size, sz, of the optical transfer function.

Examples

Convert PSF to OTF

Create a point-spread function (PSF).

PSF = fspecial('gaussian',13,1);

Convert the PSF to an Optical Transfer Function (OTF).

OTF = psf2otf(PSF,[31 31]);

Plot the PSF and the OTF.

subplot(1,2,1);
surf(PSF);
title('PSF');
axis square;
axis tight
subplot(1,2,2);
surf(abs(OTF));
title('Corresponding |OTF|');
axis square;
axis tight

1 Functions

1-2566

Input Arguments
PSF — Point-spread function
numeric array

Point-spread function, specified as a numeric array of any dimension.
Example: PSF = fspecial('gaussian',13,1);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
Complex Number Support: Yes

sz — Size of optical transfer function
vector of positive integers

Size of the output optical transfer function OTF, specified as a vector of positive integers. The size of
OTF must not exceed the size of PSF in any dimension. By default, OTF is the same size as PSF.
Data Types: double

Output Arguments
OTF — Optical transfer function
numeric array

Optical transfer function, returned as a numeric array of size sz.

 psf2otf

1-2567

Data Types: double
Complex Number Support: Yes

Tips
• To ensure that OTF is not altered because of PSF off-centering, psf2otf postpads PSF (down or to

the right) with 0s to match dimensions specified in sz. Then psf2otf circularly shifts the values
of PSF up (or to the left) until the central pixel reaches (1,1) position.

• This function is used in image convolution and deconvolution when the operations involve the FFT.

See Also
otf2psf | circshift | padarray | fftn | ifftn

Topics
“Create Your Own Deblurring Functions”

Introduced before R2006a

1 Functions

1-2568

psnr
Peak signal-to-noise ratio (PSNR)

Syntax
peaksnr = psnr(A,ref)
peaksnr = psnr(A,ref,peakval)
peaksnr = psnr(___ ,'DataFormat',dataFormat)
[peaksnr,snr] = psnr(___)

Description
peaksnr = psnr(A,ref) calculates the peak signal-to-noise ratio (PSNR) for the image A, with the
image ref as the reference.

peaksnr = psnr(A,ref,peakval) calculates the PSNR of image A using the peak signal value
peakval.

peaksnr = psnr(___ ,'DataFormat',dataFormat) also specifies the dimension labels,
dataFormat, of unformatted image data. Use this syntax to return a separate PSNR for each element
along a batch dimension.

[peaksnr,snr] = psnr(___) also returns the simple signal-to-noise ratio, snr.

Examples

Calculate PSNR for Noisy Image Given Original Image as Reference

Read image and create a copy with added noise. The original image is the reference image.

ref = imread('pout.tif');
A = imnoise(ref,'salt & pepper', 0.02);

Calculate the PSNR.

[peaksnr, snr] = psnr(A, ref);

fprintf('\n The Peak-SNR value is %0.4f', peaksnr);

 The Peak-SNR value is 22.6437

fprintf('\n The SNR value is %0.4f \n', snr);

 The SNR value is 15.5524

Calculate PSNR for dlarray Input

Read an image into the workspace, then create an unformatted dlarray object with the image data.

 psnr

1-2569

ref = imread("strawberries.jpg");
ref = im2single(ref);
dlref = dlarray(ref);

Add salt and pepper noise to the image, then create an unformatted dlarray object with the noisy
image data.

noisy = imnoise(ref,'salt & pepper');
dlnoisy = dlarray(noisy);

Calculate the peak SNR and SNR of the noisy data with respect to the original data.

[peaksnr,snr] = psnr(dlnoisy,dlref)

peaksnr =
 1x1 single dlarray

 17.5941

snr =
 1x1 single dlarray

 11.1265

Calculate PSNR of Images in Image Sequence

Read a reference image into the workspace.

ref = imread("office_1.jpg");

Preallocate two arrays that store a sequence of six images of the size of the reference image.

numFrames = 6;
imsOriginal = zeros([size(ref) numFrames],class(ref));
imsNoisy = zeros([size(ref) numFrames],class(ref));

Read and add images to the preallocated arrays. One array stores the original image data. The
second array stores the image data with added salt and pepper noise.

for p = 1:numFrames
 filename = strcat("office_",num2str(p),".jpg");
 im = imread(filename);
 imsOriginal(:,:,:,p) = im;
 imsNoisy(:,:,:,p) = imnoise(im,"salt & pepper");
end

Display the image sequences in a montage. The first row shows the sequence with original image
data. The second row shows the sequence with noisy image data.

montage(cat(4,imsOriginal,imsNoisy),"Size",[2 numFrames])

1 Functions

1-2570

Calculate the peak PSNR of each noisy image with respect to the corresponding pristine image by
specifying the data format of the input arrays as 'SSCB' (spatial, spatial, channel, batch).

peak_psnrs = psnr(imsNoisy,imsOriginal,"DataFormat","SSCB");
peak_psnrs = squeeze(peak_psnrs)

peak_psnrs = 6×1

 16.3560
 16.9698
 17.8079
 18.1843
 18.0656
 17.1682

Input Arguments
A — Image to be analyzed
numeric array | dlarray object

Image to be analyzed, specified as a numeric array of any dimension or a dlarray object.
Data Types: single | double | int16 | uint8 | uint16

ref — Reference image
numeric matrix | dlarray object

Reference image, specified as a numeric array or a dlarray object. The reference image has the
same size and data type as image A.
Data Types: single | double | int16 | uint8 | uint16

peakval — Peak signal level
nonnegative number

Peak signal level, specified as a nonnegative number. If not specified, the default value for peakval
depends on the class of A and ref.

• If the images are of data type double or single, then psnr assumes that image data is in the
range [0, 1]. The default value of peakval is 1.

 psnr

1-2571

• If the images are of integer data types, then the default value of peakval is the largest value
allowed by the range of the class. For uint8 data, the default value of peakval is 255. For
uint16 or int16, the default is 65535.

dataFormat — Dimension labels
string scalar | character vector

Dimension labels of the input images A and ref, specified as a string scalar or character vector. Each
character in dataFormat must be one of these labels:

• S — Spatial
• C — Channel
• B — Batch observations

The format cannot include more than one channel label or batch label. Do not specify the
'dataFormat' argument when the input images are formatted dlarray objects.
Example: 'SSC' indicates that the array has two spatial dimensions and one channel dimension,
appropriate for 2-D RGB image data.
Example: 'SSCB' indicates that the array has two spatial dimensions, one channel dimension, and
one batch dimension, appropriate for a sequence of 2-D RGB image data.

Output Arguments
peaksnr — PSNR
numeric scalar | numeric array | dlarray object

PSNR in decibels, returned as one of these values.

Input Image Type PSNR Value
• Unformatted numeric arrays
• Formatted numeric arrays without a batch

('B') dimension

Numeric scalar with a single PSNR measurement.

• Unformatted dlarray objects 1-by-1 dlarray object with a single PSNR
measurement.

• Numeric arrays with a batch dimension
specified using the dataFormat argument

Numeric array of the same dimensionality as the
input images. The spatial and channel dimensions
of peaksnr are singleton dimensions. There is
one PSNR measurement for each element along
the batch dimension.

• Formatted dlarray objects with a batch
dimension

• Unformatted dlarray objects with a batch
dimension specified using the dataFormat
argument

dlarray object of the same dimensionality as the
input images. The spatial and channel dimensions
of peaksnr are singleton dimensions. There is
one PSNR measurement for each element along
the batch dimension.

If A and ref have data type single, then peaksnr has data type single. Otherwise, peaksnr has
data type double.

snr — Signal-to-noise ratio
numeric scalar | numeric array | dlarray object

1 Functions

1-2572

Signal-to-noise ratio in decibels, returned as one of these values.

Input Image Type PSNR Value
• Unformatted numeric arrays
• Formatted numeric arrays without a batch

('B') dimension

Numeric scalar with a single SNR measurement.

• Unformatted dlarray objects 1-by-1 dlarray object with a single SNR
measurement.

• Numeric arrays with a batch dimension
specified using the dataFormat argument

Numeric array of the same dimensionality as the
input images. The spatial and channel dimensions
of snr are singleton dimensions. There is one
SNR measurement for each element along the
batch dimension.

• Formatted dlarray objects with a batch
dimension

• Unformatted dlarray objects with a batch
dimension specified using the dataFormat
argument

dlarray object of the same dimensionality as the
input images. The spatial and channel dimensions
of peaksnr are singleton dimensions. There is
one SNR measurement for each element along
the batch dimension.

If A and ref have data type single, then snr has data type single. Otherwise, snr has data type
double.

Algorithms
The psnr function implements this equation to calculate PSNR:

PSNR = 10log10 peakval2/MSE

peakval is either specified by the user or taken from the range of the image data type. For example,
for an image of data type uint8, the peakval is 255. MSE is the mean square error between A and
ref.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

psnr supports the generation of C code (requires MATLAB Coder). For more information, see “Code
Generation for Image Processing”.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on a GPU”.

See Also
multissim | multissim3 | ssim | immse | mean | median | var

 psnr

1-2573

Topics
“Image Quality Metrics”

Introduced in R2014a

1 Functions

1-2574

qtdecomp
Quadtree decomposition

Syntax
S = qtdecomp(I)
S = qtdecomp(I,threshold)
S = qtdecomp(I,threshold,mindim)
S = qtdecomp(I,threshold,[mindim maxdim])
S = qtdecomp(I,fun)

Description
S = qtdecomp(I) performs a quadtree decomposition on the grayscale image I and returns the
quadtree structure in the sparse matrix S. By default, qtdecomp splits a block unless all elements in
the block are equal.

S = qtdecomp(I,threshold) splits a block if the maximum value of the block elements minus the
minimum value of the block elements is greater than threshold.

S = qtdecomp(I,threshold,mindim) will not produce blocks smaller than mindim, even if the
resulting blocks do not meet the threshold condition.

S = qtdecomp(I,threshold,[mindim maxdim]) will not produce blocks smaller than mindim or
larger than maxdim. Blocks larger than maxdim are split even if they meet the threshold condition.

S = qtdecomp(I,fun) uses the function fun to determine whether to split a block.

Examples

Perform Quadtree Decomposition of Sample Matrix

Create a small sample matrix.

I = uint8([1 1 1 1 2 3 6 6;...
 1 1 2 1 4 5 6 8;...
 1 1 1 1 7 7 7 7;...
 1 1 1 1 6 6 5 5;...
 20 22 20 22 1 2 3 4;...
 20 22 22 20 5 4 7 8;...
 20 22 20 20 9 12 40 12;...
 20 22 20 20 13 14 15 16]);

Perform the quadtree decomposition and display the results.

S = qtdecomp(I,.05);
disp(full(S));

 4 0 0 0 4 0 0 0
 0 0 0 0 0 0 0 0

 qtdecomp

1-2575

 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 4 0 0 0 2 0 2 0
 0 0 0 0 0 0 0 0
 0 0 0 0 2 0 1 1
 0 0 0 0 0 0 1 1

View Block Representation of Quadtree Decomposition

Read image into the workspace.

I = imread('liftingbody.png');

Perform the quadtree decomposition and display the block representation in a figure.

S = qtdecomp(I,.27);
blocks = repmat(uint8(0),size(S));

for dim = [512 256 128 64 32 16 8 4 2 1];
 numblocks = length(find(S==dim));
 if (numblocks > 0)
 values = repmat(uint8(1),[dim dim numblocks]);
 values(2:dim,2:dim,:) = 0;
 blocks = qtsetblk(blocks,S,dim,values);
 end
end

blocks(end,1:end) = 1;
blocks(1:end,end) = 1;

imshow(I)

1 Functions

1-2576

figure
imshow(blocks,[])

 qtdecomp

1-2577

Input Arguments
I — Grayscale image
m-by-n numeric matrix

Grayscale image, specified as an m-by-n numeric matrix. If the syntax includes a function handle,
fun, then the image can be of any class supported by the function.
Data Types: single | double | int16 | uint8 | uint16 | logical

threshold — Threshold of block homogeneity
scalar in the range [0, 1]

Threshold of block homogeneity, specified as a scalar in the range [0, 1].

1 Functions

1-2578

• If I is of class uint8, then qtdecomp multiplies the value of threshold by 255 to determine the
actual threshold to use.

• If I is of class uint8, then qtdecomp multiplies the value of threshold by 65535 to determine
the actual threshold to use.

mindim — Minimum block dimension
positive integer

Minimum block size, specified as a positive integer. mindim must be a factor of the image size.

maxdim — Maximum block dimension
positive integer

Maximum block size, specified as a positive integer. maxdim/mindim must be a power of 2.

fun — Function handle
handle

Function handle, specified as a handle. The function must accept as input all m-by-m blocks stacked
into an m-by-m-by-k array, where k is the number of blocks. The function must return a logical k-
element vector, whose values are 1 if the corresponding block should be split, and 0 otherwise. For
example, if k(3) is 0, then the third m-by-m block should not be split.

For more information about function handles, see “Create Function Handle”.

Output Arguments
S — Quadtree structure
sparse matrix

Quadtree structure, returned as a sparse matrix. If S(k,m) is nonzero, then (k,m) is the upper left
corner of a block in the decomposition, and the size of the block is given by S(k,m).
Data Types: double

Tips
• qtdecomp is appropriate primarily for square images whose dimensions are a power of 2, such as

128-by-128 or 512-by-512. These images can be divided until the blocks are as small as 1-by-1. If
you use qtdecomp with an image whose dimensions are not a power of 2, at some point the blocks
cannot be divided further. For example, if an image is 96-by-96, it can be divided into blocks of
size 48-by-48, then 24-by-24, 12-by-12, 6-by-6, and finally 3-by-3. No further division beyond 3-
by-3 is possible. To process this image, you must set mindim to 3 (or to 3 times a power of 2); if
you are using the syntax that includes a function, fun, the function must return 0 at the point
when the block cannot be divided further.

Algorithms
The qtdecomp function divides a square image into four equal-sized square blocks, and then tests
each block to see if it meets some criterion of homogeneity. If a block meets the criterion, it is not
divided any further. If it does not meet the criterion, it is subdivided again into four blocks, and the
test criterion is applied to those blocks. This process is repeated iteratively until each block meets the
criterion. The result can have blocks of several different sizes.

 qtdecomp

1-2579

See Also
qtgetblk | qtsetblk

Introduced before R2006a

1 Functions

1-2580

qtgetblk
Block values in quadtree decomposition

Syntax
[vals,r,c] = qtgetblk(I,S,dim)
[vals,idx] = qtgetblk(I,S,dim)

Description
[vals,r,c] = qtgetblk(I,S,dim) returns blocks of size dim-by-dim from image I with
quadtree decomposition S. The function returns the block values in vals and the row and column
coordinates of the upper left corner of the blocks in r and c.

[vals,idx] = qtgetblk(I,S,dim) returns the block values in vals and the linear indices of the
upper left corners of the blocks in idx.

Examples

Get Blocks from Quadtree Decomposition

Create a sample matrix representing a small image.

I = [1 1 1 1 2 3 6 6
 1 1 2 1 4 5 6 8
 1 1 1 1 10 15 7 7
 1 1 1 1 20 25 7 7
 20 22 20 22 1 2 3 4
 20 22 22 20 5 6 7 8
 20 22 20 20 9 10 11 12
 22 22 20 20 13 14 15 16];

Perform a quadtree decomposition of the image, specifying a threshold of 5. qtdecomp splits a block
if the maximum value of the block elements minus the minimum value of the block elements is
greater than the threshold.

S = qtdecomp(I,5)

S =
 (1,1) 4
 (5,1) 4
 (1,5) 2
 (3,5) 1
 (4,5) 1
 (5,5) 2
 (7,5) 2
 (3,6) 1
 (4,6) 1
 (1,7) 2
 (3,7) 2
 (5,7) 2

 qtgetblk

1-2581

 (7,7) 2

Get the blocks of size 4-by-4 from the quadtree decomposition. qtgetblk finds two blocks of this
size.

[vals,r,c] = qtgetblk(I,S,4);

Select the second returned block. Display the values and the (row,column) coordinates of the upper
left corner of the block.

blknum = 2;
blockValues = vals(:,:,blknum)

blockValues = 4×4

 20 22 20 22
 20 22 22 20
 20 22 20 20
 22 22 20 20

blockCoordinates = ['(',num2str(r(blknum)),',',num2str(c(blknum)),')']

blockCoordinates =
'(5,1)'

Input Arguments
I — Grayscale image
numeric matrix

Grayscale image, specified as a numeric matrix.
Data Types: single | double | int16 | uint8 | uint16 | logical

S — Quadtree structure
sparse matrix

Quadtree structure, specified as a sparse matrix. If S(m,n) is nonzero, then the coordinate (m,n) is the
upper left corner of a block in the decomposition, and the size of the block is given by S(m,n). You can
get a quadtree structure by using the qtdecomp function.
Data Types: double

dim — Block size
positive integer

Block size, specified as a positive integer.

Output Arguments
vals — Block values
dim-by-dim-by-k array | []

1 Functions

1-2582

Block values, returned as a dim-by-dim-by-k array, where k is the number of dim-by-dim blocks in the
quadtree decomposition. If the quadtree decomposition contains no blocks of the specified size, then
vals is returned as an empty matrix.

The ordering of the blocks in vals matches the column-wise order of the blocks in I. For example, if
vals is 4-by-4-by-2, then vals(:,:,1) contains the values from the first 4-by-4 block in I, and
vals(:,:,2) contains the values from the second 4-by-4 block.

r — Row coordinates of upper left corners of blocks
k-element column vector | []

Row coordinates of the upper left corners of blocks, returned as a k-element column vector of positive
integers, where k is the number of dim-by-dim blocks in the quadtree decomposition. If the quadtree
decomposition contains no blocks of the specified size, then r is returned as an empty matrix.

c — Column coordinates of upper left corners of blocks
k-element column vector | []

Column coordinates of the upper left corners of blocks, returned as a k-element column vector of
positive integers, where k is the number of dim-by-dim blocks in the quadtree decomposition. If the
quadtree decomposition contains no blocks of the specified size, then c is returned as an empty
matrix.

idx — Linear indices of upper left corners of blocks
k-element column vector | []

Linear indices of upper left corners of blocks, returned as a k-element column vector of positive
integers, where k is the number of dim-by-dim blocks in the quadtree decomposition. If the quadtree
decomposition contains no blocks of the specified size, then idx is returned as an empty matrix.

See Also
qtdecomp | qtsetblk

Topics
“Quadtree Decomposition”

Introduced before R2006a

 qtgetblk

1-2583

qtsetblk
Set block values in quadtree decomposition

Syntax
J = qtsetblk(I,S,dim,vals)

Description
J = qtsetblk(I,S,dim,vals) replaces each dim-by-dim block in the quadtree decomposition of
image I with the corresponding block in vals. S contains the quadtree structure.

Examples

Set Blocks in Quadtree Decomposition

Create a sample matrix representing a small image.

I = [1 1 1 1 2 3 6 6
 1 1 2 1 4 5 6 8
 1 1 1 1 10 15 7 7
 1 1 1 1 20 25 7 7
 20 22 20 22 1 2 3 4
 20 22 22 20 5 6 7 8
 20 22 20 20 9 10 11 12
 22 22 20 20 13 14 15 16];

Perform a quadtree decomposition of the image, specifying a threshold of 5. qtdecomp splits a block
if the maximum value of the block elements minus the minimum value of the block elements is
greater than the threshold.

S = qtdecomp(I,5);

Get the blocks of size 4-by-4 from the quadtree decomposition.

vals = qtgetblk(I,S,4);

Calculate the mode of each 4-by-4 block, and set all values to equal the mode.

valmodes = zeros(size(vals));
for blknum = 1:size(vals,3)
 valmodes(:,:,blknum) = mode(vals(:,:,blknum),'all');
end

Set the blocks in the image to the new values. The 4-by-4 blocks in the image are now homogenous.

J = qtsetblk(I,S,4,valmodes)

J = 8×8

 1 1 1 1 2 3 6 6

1 Functions

1-2584

 1 1 1 1 4 5 6 8
 1 1 1 1 10 15 7 7
 1 1 1 1 20 25 7 7
 20 20 20 20 1 2 3 4
 20 20 20 20 5 6 7 8
 20 20 20 20 9 10 11 12
 20 20 20 20 13 14 15 16

Input Arguments
I — Grayscale image
numeric matrix

Grayscale image, specified as a numeric matrix.
Data Types: single | double | int16 | uint8 | uint16 | logical

S — Quadtree structure
sparse matrix

Quadtree structure, specified as a sparse matrix. If S(m,n) is nonzero, then the coordinate (m,n) is the
upper left corner of a block in the decomposition, and the size of the block is given by S(m,n). You can
get a quadtree structure by using the qtdecomp function.
Data Types: double

dim — Block size
positive integer

Block size, specified as a positive integer.

vals — Block values
dim-by-dim-by-k array

Block values, specified as a dim-by-dim-by-k array, where k is the number of dim-by-dim blocks in the
quadtree decomposition.

The ordering of the blocks in vals must match the column-wise order of the blocks in I. For example,
if vals is 4-by-4-by-2, then vals(:,:,1) contains the values used to replace the first 4-by-4 block in
I, and vals(:,:,2) contains the values used to replace the second 4-by-4 block.

See Also
qtdecomp | qtgetblk

Introduced before R2006a

 qtsetblk

1-2585

radon
Radon transform

Syntax
R = radon(I)
R = radon(I,theta)
[R,xp] = radon(___)

Description
R = radon(I) returns the Radon transform R of 2-D grayscale image I for angles in the range [0,
179] degrees. The Radon transform is the projection of the image intensity along a radial line
oriented at a specific angle.

R = radon(I,theta) returns the Radon transform for the angles specified by theta.

[R,xp] = radon(___) returns a vector xp containing the radial coordinates corresponding to
each row of the image.

Examples

Calculate Radon Transform and Display Plot

Make the axes scale visible for this image.

iptsetpref('ImshowAxesVisible','on')

Create a sample image.

I = zeros(100,100);
I(25:75, 25:75) = 1;

Calculate the Radon transform.

theta = 0:180;
[R,xp] = radon(I,theta);

Display the transform.

imshow(R,[],'Xdata',theta,'Ydata',xp,'InitialMagnification','fit')
xlabel('\theta (degrees)')
ylabel('x''')
colormap(gca,hot), colorbar

1 Functions

1-2586

Make the axes scale invisible.

iptsetpref('ImshowAxesVisible','off')

Input Arguments
I — Grayscale image
2-D numeric matrix

Grayscale image, specified as a 2-D numeric matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

theta — Projection angles
0:179 (default) | numeric scalar | numeric vector

Projection angles in degrees, specified as a numeric scalar or numeric vector.
Data Types: double

Output Arguments
R — Radon transform
numeric column vector | numeric matrix

 radon

1-2587

Radon transform of image I, returned as one of the following.

• If theta is a scalar, then R is a numeric column vector containing the Radon transform for theta
degrees.

• If theta is a vector, then R is a matrix in which each column is the Radon transform for one of the
angles in theta.

xp — Radial coordinates
numeric vector

Radial coordinates corresponding to each row of R, returned as a numeric vector. The radial
coordinates are the values along the x'-axis, which is oriented at theta degrees counterclockwise
from the x-axis. The origin of both axes is the center pixel of the image, which is defined as

floor((size(I)+1)/2)

For example, in a 20-by-30 image, the center pixel is (10,15).

Algorithms
The Radon transform of an image is the sum of the Radon transforms of each individual pixel.

The algorithm first divides pixels in the image into four subpixels and projects each subpixel
separately, as shown in the following figure.

Each subpixel's contribution is proportionally split into the two nearest bins, according to the
distance between the projected location and the bin centers. If the subpixel projection hits the center
point of a bin, the bin on the axes gets the full value of the subpixel, or one-fourth the value of the
pixel. If the subpixel projection hits the border between two bins, the subpixel value is split evenly
between the bins.

1 Functions

1-2588

References
[1] Bracewell, Ronald N., Two-Dimensional Imaging, Englewood Cliffs, NJ, Prentice Hall, 1995, pp.

505-537.

[2] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood Cliffs, NJ, Prentice Hall,
1990, pp. 42-45.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on a GPU”.

See Also
fan2para | fanbeam | ifanbeam | iradon | para2fan | phantom

Introduced before R2006a

 radon

1-2589

randomAffine2d
Create randomized 2-D affine transformation

Syntax
tform = randomAffine2d
tform = randomAffine2d(Name,Value)

Description
tform = randomAffine2d creates an affine2d object with default property values consistent
with the identity transformation.

tform = randomAffine2d(Name,Value) specifies the type of affine transformations using name-
value pair arguments.

Examples

Randomly Rotate Image

Read and display an image.

I = imread('kobi.png');
imshow(I)

1 Functions

1-2590

Create an affine2d transformation object that rotates images. The randomAffine2d function picks
a rotation angle randomly from a continuous uniform distribution within the interval [35, 55] degrees.

tform1 = randomAffine2d('Rotation',[35 55]);

Rotate the image and display the result.

J = imwarp(I,tform1);
imshow(J)

 randomAffine2d

1-2591

The transformation object, tform1, rotates all images by the same amount. To rotate an image by a
different randomly selected amount, create a new affine2d transformation object.

tform2 = randomAffine2d('Rotation',[-10 10]);
J2 = imwarp(I,tform2);
imshow(J2)

1 Functions

1-2592

Randomly Rotate Image with Custom Rotation Range

Read and display an image.

I = imread('sherlock.jpg');
imshow(I)

 randomAffine2d

1-2593

Create an affine2d transformation object that rotates images. To select a rotation angle from a
custom range, specify the 'Rotation' name-value pair argument as a function handle. This example
specifies a function called myrange (defined at the end of the example) that selects an angle from
within two disjoint intervals.

tform = randomAffine2d('Rotation',@myrange);

Rotate the image and display the result.

J = imwarp(I,tform);
imshow(J)

1 Functions

1-2594

Supporting Function

This example defines the myrange function that first randomly selects one of two intervals (-10, 10)
and (170, 190) with equal probability. Within the selected interval, the function returns a single
random number from a uniform distribution.

function angle = myrange()
 if randi([0 1],1)
 a = -10;
 b = 10;
 else
 a = 170;
 b = 190;
 end

 randomAffine2d

1-2595

 angle = a + (b-a).*rand(1);
end

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: tform = randomAffine2d('XReflection',true)

XReflection — Random horizontal reflection
false (default) | true

Random horizontal reflection, specified as the comma-separated pair consisting of 'XReflection'
and false or true. When XReflection is true (1), the transformation tform reflects images
horizontally with 50% probability. By default, the transformation does not reflect images in the
horizontal direction.

YReflection — Random vertical reflection
false (default) | true

Random vertical reflection, specified as the comma-separated pair consisting of 'YReflection' and
false or true. When YReflection is true (1), the transformation tform reflects images vertically
with 50% probability. By default, the transformation does not reflect images in the vertical direction.

Rotation — Range of rotation
[0 0] (default) | 2-element numeric vector | function handle

Range of rotation, in degrees, applied to the input image, specified as the comma-separated pair
consisting of 'Rotation' and one of the following.

• 2-element numeric vector. The second element must be larger than or equal to the first element.
The rotation angle is picked randomly from a continuous uniform distribution within the specified
interval.

• function handle. The function must accept no input arguments and return the rotation angle as a
numeric scalar. Use a function handle to pick rotation angles from a disjoint interval or using a
nonuniform probability distribution. For more information about function handles, see “Create
Function Handle”.

By default, the transformation tform does not rotate images.
Example: [-45 45]

Scale — Range of uniform scaling
[1 1] (default) | 2-element numeric vector | function handle

Range of uniform (isotropic) scaling applied to the input image, specified as the comma-separated
pair consisting of 'Scale' and one of the following.

• 2-element numeric vector. The second element must be larger than or equal to the first element.
The scale factor is picked randomly from a continuous uniform distribution within the specified
interval.

1 Functions

1-2596

• function handle. The function must accept no input arguments and return the scale factor as a
numeric scalar. Use a function handle to pick scale factors from a disjoint interval or using a
nonuniform probability distribution. For more information about function handles, see “Create
Function Handle”.

By default, the transformation tform does not scale images.
Example: [0.5 4]

XShear — Range of horizontal shear
[0 0] (default) | 2-element numeric vector | function handle

Range of horizontal shear applied to the input image, specified as the comma-separated pair
consisting of 'XShear' and one of the following. Shear is measured as an angle in degrees, and is in
the range (–90, 90).

• 2-element numeric vector. The second element must be larger than or equal to the first element.
The horizontal shear angle is picked randomly from a continuous uniform distribution within the
specified interval.

• function handle. The function must accept no input arguments and return the horizontal shear
angle as a numeric scalar. Use a function handle to pick horizontal shear angles from a disjoint
interval or using a nonuniform probability distribution. For more information about function
handles, see “Create Function Handle”.

By default, the transformation tform does not shear images in the horizontal direction.
Example: [0 45]

YShear — Range of vertical shear
[0 0] (default) | 2-element numeric vector | function handle

Range of vertical shear applied to the input image, specified as the comma-separated pair consisting
of 'YShear' and one of the following. Shear is measured as an angle in degrees, and is in the range
(–90, 90).

• 2-element numeric vector. The second element must be larger than or equal to the first element.
The vertical shear angle is picked randomly from a continuous uniform distribution within the
specified interval.

• function handle. The function must accept no input arguments and return the vertical shear angle
as a numeric scalar. Use a function handle to pick vertical shear angles from a disjoint interval or
using a nonuniform probability distribution. For more information about function handles, see
“Create Function Handle”.

By default, the transformation tform does not shear images in the vertical direction.
Example: [0 45]

XTranslation — Range of horizontal translation
[0 0] (default) | 2-element numeric vector | function handle

Range of horizontal translation applied to the input image, specified as the comma-separated pair
consisting of 'XTranslation' and one of the following. Translation distance is measured in pixels.

• 2-element numeric vector. The second element must be larger than or equal to the first element.
The horizontal translation distance is picked randomly from a continuous uniform distribution
within the specified interval.

 randomAffine2d

1-2597

• function handle. The function must accept no input arguments and return the horizontal
translation distance as a numeric scalar. Use a function handle to pick horizontal translation
distances from a disjoint interval or using a nonuniform probability distribution. For more
information about function handles, see “Create Function Handle”.

By default, the transformation tform does not translate images in the horizontal direction.
Example: [-5 5]

YTranslation — Range of vertical translation
[0 0] (default) | 2-element numeric vector | function handle

Range of vertical translation applied to the input image, specified as the comma-separated pair
consisting of 'YTranslation' and one of the following. Translation distance is measured in pixels.

• 2-element numeric vector. The second element must be larger than or equal to the first element.
The vertical translation distance is picked randomly from a continuous uniform distribution within
the specified interval.

• function handle. The function must accept no input arguments and return the vertical translation
distance as a numeric scalar. Use a function handle to pick vertical translation distances from a
disjoint interval or using a nonuniform probability distribution. For more information about
function handles, see “Create Function Handle”.

By default, the transformation tform does not translate images in the vertical direction.
Example: [-5 5]

Output Arguments
tform — Affine transformation
affine2d object

Affine transformation, specified as an affine2d object.

See Also
imwarp | randomAffine3d | randomWindow2d | centerCropWindow2d

Topics
“Augment Images for Deep Learning Workflows Using Image Processing Toolbox” (Deep Learning
Toolbox)

Introduced in R2019b

1 Functions

1-2598

randomAffine3d
Create randomized 3-D affine transformation

Syntax
tform = randomAffine3d
tform = randomAffine3d(Name,Value)

Description
tform = randomAffine3d creates an affine3d object with default property values consistent
with the identity transformation.

tform = randomAffine3d(Name,Value) specifies the type of affine transformations using name-
value pair arguments.

Examples

Randomly Shear 3-D Volume

Create a sample volume.

volumeCube = ones(100,100,100);
figure
volshow(volumeCube);

 randomAffine3d

1-2599

Create an affine3d transformation object that shears 3-D volumes. The randomAffine3d function
picks a shear amount randomly from a continuous uniform distribution within the interval [40, 60]
degrees. randomAffine3d picks a random shear direction aligned with the x-, y-, or z-axis.

tform1 = randomAffine3d('Shear',[40 60]);
J1 = imwarp(volumeCube,tform1);
figure
volshow(J1);

To shear a volume by a different randomly selected amount, create a new affine3d transformation
object. Note the difference in the shear direction.

tform2 = randomAffine3d('Shear',[40 60]);
J2 = imwarp(volumeCube,tform2);
figure
volshow(J2);

1 Functions

1-2600

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: tform = randomAffine3d('XReflection',true)

XReflection — Random horizontal reflection
false (default) | true

Random horizontal reflection, specified as the comma-separated pair consisting of 'XReflection'
and false or true. When XReflection is true (1), the transformation tform reflects images
horizontally with 50% probability. By default, the transformation does not reflect images in the
horizontal direction.

YReflection — Random vertical reflection
false (default) | true

Random vertical reflection, specified as the comma-separated pair consisting of 'YReflection' and
false or true. When YReflection is true (1), the transformation tform reflects images vertically
with 50% probability. By default, the transformation does not reflect images in the vertical direction.

ZReflection — Random reflection along depth
false (default) | true

Random reflection along the depth direction, specified as the comma-separated pair consisting of
'ZReflection' and false or true. When ZReflection is true (1), the transformation tform
reflects images along the depth direction with 50% probability. By default, the transformation does
not reflect images in the depth direction.

Rotation — Range of rotation
[0 0] (default) | 2-element numeric vector | function handle

Range of rotation applied to the input image, specified as the comma-separated pair consisting of
'Rotation' and one of the following. Rotation is measured in degrees.

• 2-element numeric vector. The second element must be larger than or equal to the first element.
randomAffine3d picks a rotation angle randomly from a continuous uniform distribution within
the specified interval. randomAffine3d selects a random axis of rotation from the unit sphere.

• function handle of the form

[rotationAxis,theta] = selectRotation

The function selectRotation must accept no input arguments. The function must return two
output arguments: rotationAxis, a 3-element vector defining the axis of rotation, and theta, a
rotation angle in degrees.

Use a function handle to pick rotation angles from a disjoint interval or using a nonuniform
probability distribution. You can also use a function handle to specify an axis of rotation. For more
information about function handles, see “Create Function Handle”.

By default, the transformation tform does not rotate images.

 randomAffine3d

1-2601

Example: [-45 45]

Scale — Range of uniform scaling
[1 1] (default) | 2-element numeric vector | function handle

Range of uniform (isotropic) scaling applied to the input image, specified as the comma-separated
pair consisting of 'Scale' and one of the following.

• 2-element numeric vector. The second element must be larger than or equal to the first element.
The scale factor is picked randomly from a continuous uniform distribution within the specified
interval.

• function handle. The function must accept no input arguments and return the scale factor as a
numeric scalar. Use a function handle to pick scale factors from a disjoint interval or using a
nonuniform probability distribution. For more information about function handles, see “Create
Function Handle”.

By default, the transformation tform does not scale images.
Example: [0.5 4]

Shear — Range of shear
[0 0] (default) | 2-element numeric vector | function handle

Range of shear applied to the input image, specified as the comma-separated pair consisting of
'Shear' and one of the following. Shear is measured as an angle in degrees, and is in the range (–
90, 90).

• 2-element numeric vector. The second element must be larger than or equal to the first element.
The shear angle is picked randomly from a continuous uniform distribution within the specified
interval. randomAffine3d applies shear with uniform randomness to one of the principle x-, y-,
and z-directions with respect to one of the two possible orthogonal directions.

• function handle. The function must accept no input arguments and return the shear angle as a
numeric scalar. Use a function handle to pick a shear angle from a disjoint interval or using a
nonuniform probability distribution. For more information about function handles, see “Create
Function Handle”.

By default, the transformation tform does not shear images in the horizontal direction.
Example: [0 45]

XTranslation — Range of horizontal translation
[0 0] (default) | 2-element numeric vector | function handle

Range of horizontal translation applied to the input image, specified as the comma-separated pair
consisting of 'XTranslation' and one of the following. Translation distance is measured in pixels.

• 2-element numeric vector. The second element must be larger than or equal to the first element.
The translation distance is picked randomly from a continuous uniform distribution within the
specified interval.

• function handle. The function must accept no input arguments and return the translation distance
as a numeric scalar. Use a function handle to pick a translation distance from a disjoint interval or
using a nonuniform probability distribution. For more information about function handles, see
“Create Function Handle”.

By default, the transformation tform does not translate images in the horizontal direction.

1 Functions

1-2602

Example: [-5 5]

YTranslation — Range of vertical translation
[0 0] (default) | 2-element numeric vector | function handle

Range of vertical translation applied to the input image, specified as the comma-separated pair
consisting of 'YTranslation' and one of the following. Translation distance is measured in pixels.

• 2-element numeric vector. The second element must be larger than or equal to the first element.
The translation distance is picked randomly from a continuous uniform distribution within the
specified interval.

• function handle. The function must accept no input arguments and return the translation distance
as a numeric scalar. Use a function handle to pick a translation distance from a disjoint interval or
using a nonuniform probability distribution. For more information about function handles, see
“Create Function Handle”.

By default, the transformation tform does not translate images in the vertical direction.
Example: [-5 5]

ZTranslation — Range of translation along depth
[0 0] (default) | 2-element numeric vector | function handle

Range of translation along the depth direction applied to the input image, specified as the comma-
separated pair consisting of 'ZTranslation' and one of the following. Translation distance is
measured in pixels.

• 2-element numeric vector. The second element must be larger than or equal to the first element.
The translation distance is picked randomly from a continuous uniform distribution within the
specified interval.

• function handle. The function must accept no input arguments and return the translation distance
as a numeric scalar. Use a function handle to pick a translation distance from a disjoint interval or
using a nonuniform probability distribution. For more information about function handles, see
“Create Function Handle”.

By default, the transformation tform does not translate images in the depth direction.
Example: [-5 5]

Output Arguments
tform — Affine transformation
affine3d object

Affine transformation, specified as an affine3d object.

See Also
imwarp | randomAffine2d | randomCropWindow3d | centerCropWindow3d

Topics
“Augment Images for Deep Learning Workflows Using Image Processing Toolbox” (Deep Learning
Toolbox)

 randomAffine3d

1-2603

Introduced in R2019b

1 Functions

1-2604

randomCropWindow2d
(Not recommended) Create randomized rectangular cropping window

Note randomCropWindow2d is not recommended. Use randomWindow2d instead. For more
information, see “Compatibility Considerations”.

Syntax
win = randomCropWindow2d(inputSize,targetSize)

Description
win = randomCropWindow2d(inputSize,targetSize) determines the window to crop from a 2-
D input image of size inputSize such that the size of the cropped image is targetSize. The
coordinates of the window are selected from a random position in the input image.

Examples

Randomly Crop Image To Target Size

Read and display an image.

A = imread('kobi.png');
imshow(A)

 randomCropWindow2d

1-2605

Specify the target size of the cropping window.

targetSize = [1000 1000];

Create three random crop windows. Each window has a different position from the input image.

win1 = randomCropWindow2d(size(A),targetSize);
win2 = randomCropWindow2d(size(A),targetSize);
win3 = randomCropWindow2d(size(A),targetSize);

Crop the original image using each of the random crop windows.

B1 = imcrop(A,win1);
B2 = imcrop(A,win2);
B3 = imcrop(A,win3);

Display the three cropped images as a montage.

montage({B1,B2,B3},'Size',[1 3]);

1 Functions

1-2606

Input Arguments
inputSize — Input image size
2-element vector of positive integers | 3-element vector of positive integers

Input image size, specified as one of the following.

Type of Input Image Format of inputSize
2-D grayscale or binary image 2-element vector of positive integers of the form [height width]
2-D RGB or multispectral image
of size

3-element vector of positive integers of the form [height width
channels]

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

targetSize — Target image size
2-element vector of positive integers | 3-element vector of positive integers

Target image size, specified as one of the following.

Type of Target Image Format of targetSize
2-D grayscale or binary image 2-element vector of positive integers of the form [height width]
2-D RGB or multispectral image
of size

3-element vector of positive integers of the form [height width
channels]

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
win — Cropping window
Rectangle object

Cropping window, returned as a Rectangle object.

 randomCropWindow2d

1-2607

Compatibility Considerations
randomCropWindow2d is not recommended
Not recommended starting in R2021a

randomCropWindow2d is limited to selecting regions of fixed size. In R2021a, the randomWindow2d
function was introduced. This function enables randomizing the size and shape of the cropped region.

To update your code, change instances of the function name randomCropWindow2d to
randomWindow2d. You do not need to change the input arguments.

There are no plans to remove randomCropWindow2d at this time.

See Also
centerCropWindow2d | randomCropWindow3d | imcrop

Topics
“Augment Images for Deep Learning Workflows Using Image Processing Toolbox” (Deep Learning
Toolbox)

Introduced in R2019b

1 Functions

1-2608

randomCropWindow3d
Create randomized cuboidal cropping window

Syntax
win = randomCropWindow3d(inputSize,targetSize)

Description
win = randomCropWindow3d(inputSize,targetSize) determines the window to crop from a 3-
D input image of size inputSize such that the size of the cropped image is targetSize. The
coordinates of the window are selected from a random position in the input image.

Examples

Randomly Crop 3-D Image Volume To Target Size

Read a 3-D MRI volume. Use the squeeze function to remove any singleton dimensions.

load mri;
D = squeeze(D);

Display the volume in a display panel.

fullViewPnl = uipanel(figure,'Title','Original Volume');
volshow(D,'Parent',fullViewPnl);

 randomCropWindow3d

1-2609

Specify the target size of the cropping window.

targetSize = [64 64 10];

Create a random crop window that crops the input volume from a randomly-selected position.

win = randomCropWindow3d(size(D),targetSize);

Crop the volume using the random crop window.

Dcrop = imcrop3(D,win);

Display the cropped volume in a display panel.

fullViewPnl = uipanel(figure,'Title','Cropped Volume');
volshow(Dcrop,'Parent',fullViewPnl);

1 Functions

1-2610

Input Arguments
inputSize — Input image size
3-element vector of positive integers | 4-element vector of positive integers

Input image size, specified as one of the following.

Type of Input Image Format of inputSize
3-D grayscale or binary image 3-element vector of positive integers of the form [height width

depth]
3-D RGB or multispectral image 4-element vector of positive integers of the form [height width

depth channels]

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

targetSize — Target image size
3-element vector of positive integers | 4-element vector of positive integers

Target image size, specified as one of the following.

 randomCropWindow3d

1-2611

Type of Target Image Format of targetSize
3-D grayscale or binary image 3-element vector of positive integers of the form [height width

depth]
3-D RGB or multispectral image 4-element vector of positive integers of the form [height width

depth channels]

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
win — Cropping window
Cuboid object

Cropping window, returned as a Cuboid object.

See Also
centerCropWindow3d | randomWindow2d | imcrop3

Topics
“Augment Images for Deep Learning Workflows Using Image Processing Toolbox” (Deep Learning
Toolbox)

Introduced in R2019b

1 Functions

1-2612

randomPatchExtractionDatastore
Datastore for extracting random 2-D or 3-D random patches from images or pixel label images

Description
A randomPatchExtractionDatastore extracts corresponding randomly-positioned patches from
two image-based datastores. For example, the input datastores can be two image datastores that
contain the network inputs and desired network responses for training image-to-image regression
networks, or ground truth images and pixel label data for training semantic segmentation networks.

This object requires that you have Deep Learning Toolbox.

Note When you use a randomPatchExtractionDatastore as a source of training data, the
datastore extracts multiple random patches from each image for each epoch, so that each epoch uses
a slightly different data set. The actual number of training patches at each epoch is the number of
training images multiplied by PatchesPerImage. The image patches are not stored in memory.

Creation

Syntax
patchds = randomPatchExtractionDatastore(ds1,ds2,PatchSize)
patchds = randomPatchExtractionDatastore(ds1,ds2,PatchSize,Name,Value)

Description

patchds = randomPatchExtractionDatastore(ds1,ds2,PatchSize) creates a datastore that
extracts randomly-positioned patches of size PatchSize from input data in datastore ds1 and
response data in datastore ds2.

patchds = randomPatchExtractionDatastore(ds1,ds2,PatchSize,Name,Value) uses
name-value pairs to set the PatchesPerImage, DataAugmentation, and DispatchInBackground
properties. You can specify multiple name-value pairs. Enclose each property name in quotes.

For example, randomPatchExtractionDatastore(imds1,imds2,50,'PatchesPerImage',40)
creates a datastore that randomly generates 40 patches of size 50-by-50 pixels from each image in
image datastores imds1 and imds2.

Input Arguments

ds1 — Input data
ImageDatastore | PixelLabelDatastore | TransformedDatastore

Input data containing training input to the network, specified as an ImageDatastore,
PixelLabelDatastore, or TransformedDatastore.

Specifying a PixelLabelDatastore requires Computer Vision Toolbox.

 randomPatchExtractionDatastore

1-2613

Note ImageDatastore allows batch-reading of JPG or PNG image files using prefetching. If you use
a custom function for reading the images, then prefetching does not happen.

ds2 — Response data
ImageDatastore | PixelLabelDatastore | TransformedDatastore

Response data representing the desired network responses, specified as an ImageDatastore,
PixelLabelDatastore, or TransformedDatastore. If you specify a TransformedDatastore,
then the underlying datastore must be an ImageDatastore or a PixelLabelDatastore.

Specifying a PixelLabelDatastore requires Computer Vision Toolbox.

Note ImageDatastore allows batch-reading of JPG or PNG image files using prefetching. If you use
a custom function for reading the images, then prefetching does not happen.

Properties
PatchSize — Patch size
2-element vector of positive integers | 3-element vector of positive integers

This property is read-only.

Patch size, specified as one of the following.

• A 2-element vector of positive integers for 2-D patches. PatchSize has the form [r c] where r
specifies the number of rows and c specifies the number of columns in the patch.

• A 3-element vector of positive integers for 3-D patches. PatchSize has the form [r c p] where r
specifies the number of rows, c specifies the number of columns, and p specifies the number of
planes in the patch.

PatchesPerImage — Number of random patches per image
128 (default) | positive integer

Number of random patches per image, specified as a positive integer.

DataAugmentation — Preprocessing applied to input images
'none' (default) | imageDataAugmenter object

Preprocessing applied to input images, specified as an imageDataAugmenter object or 'none'.
When DataAugmentation is 'none', no preprocessing is applied to input images.

Augment data with random transformations, such as resizing, rotation, and reflection, to help prevent
the network from overfitting and memorizing the exact details of the training data. The
randomPatchExtractionDatastore applies the same random transformation to both patches in
each pair. The datastore augments data in real-time while training.

The DataAugmentation property is not supported for 3-D data. To preprocess 3-D data, use the
transform function.

DispatchInBackground — Dispatch observations in background
false (default) | true

1 Functions

1-2614

Dispatch observations in the background during training, prediction, or classification, specified as
false or true. To use background dispatching, you must have Parallel Computing Toolbox.

MiniBatchSize — Number of observations in each batch
128 | positive integer

Number of observations that are returned in each batch. You can change the value of
MiniBatchSize only after you create the datastore. For training, prediction, and classification, the
MiniBatchSize property is set to the mini-batch size defined in trainingOptions.

NumObservations — Total number of observations in the datastore
positive integer

This property is read-only.

Total number of observations in the randomPatchExtractionDatastore. The number of
observations is the length of one training epoch.

Object Functions
combine Combine data from multiple datastores
hasdata Determine if data is available to read
numpartitions Number of datastore partitions
partition Partition a datastore
partitionByIndex Partition randomPatchExtractionDatastore according to indices
preview Preview subset of data in datastore
read Read data from randomPatchExtractionDatastore
readall Read all data in datastore
readByIndex Read data specified by index from randomPatchExtractionDatastore
reset Reset datastore to initial state
shuffle Shuffle data in datastore
transform Transform datastore
isPartitionable Determine whether datastore is partitionable
isShuffleable Determine whether datastore is shuffleable

Examples

Create Random Patch Extraction Datastore

Create an image datastore containing training images. The datastore in this example contains JPEG
color images.

imageDir = fullfile(toolboxdir('images'),'imdata');
imds1 = imageDatastore(imageDir,'FileExtensions','.jpg');

Create a second datastore that transforms the images in imds1 by applying a Gaussian blur.

imds2 = transform(imds1,@(x)imgaussfilt(x,2));

Create an imageDataAugmenter that rotates images by random angles in the range [0, 90] degrees
and randomly reflects image data horizontally.

augmenter = imageDataAugmenter('RandRotation',[0 90],'RandXReflection',true)

 randomPatchExtractionDatastore

1-2615

augmenter =
 imageDataAugmenter with properties:

 FillValue: 0
 RandXReflection: 1
 RandYReflection: 0
 RandRotation: [0 90]
 RandScale: [1 1]
 RandXScale: [1 1]
 RandYScale: [1 1]
 RandXShear: [0 0]
 RandYShear: [0 0]
 RandXTranslation: [0 0]
 RandYTranslation: [0 0]

Create a randomPatchExtractionDatastore object that extracts random patches of size 100-
by-100 from the unprocessed training images and corresponding smoothed response images. Specify
the augmentation options by setting the DataAugmentation property.

patchds = randomPatchExtractionDatastore(imds1,imds2,[100 100], ...
 'DataAugmentation',augmenter)

patchds =
 randomPatchExtractionDatastore with properties:

 PatchesPerImage: 128
 PatchSize: [100 100]
 DataAugmentation: [1×1 imageDataAugmenter]
 MiniBatchSize: 128
 NumObservations: []
 DispatchInBackground: 0

Preview a set of augmented image patches and the corresponding smoothed image patches.

minibatch = preview(patchds);
inputs = minibatch.InputImage;
responses = minibatch.ResponseImage;
test = cat(2,inputs,responses);
montage(test','Size',[8 2])
title('Inputs (Left) and Responses (Right)')

1 Functions

1-2616

 randomPatchExtractionDatastore

1-2617

Train Semantic Segmentation Network Using Random Patch Extraction Datastore

Create an image datastore containing training images.

dataDir = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
imageDir = fullfile(dataDir,'trainingImages');
imds = imageDatastore(imageDir);

Define class names and their associated label IDs. Then, create a pixel label datastore containing the
ground truth pixel labels for the training images.

classNames = ["triangle","background"];
labelIDs = [255 0];
labelDir = fullfile(dataDir,'trainingLabels');
pxds = pixelLabelDatastore(labelDir,classNames,labelIDs);

Create a random patch extraction datastore to extract random patches of size 32-by-32 pixels from
the images and corresponding pixel labels. Set the optional PatchesPerImage property to extract
512 random patches from each image and pixel label pair.

patchds = randomPatchExtractionDatastore(imds,pxds,32, ...
 'PatchesPerImage',512);

Create a network for semantic segmentation.

layers = [
 imageInputLayer([32 32 1])
 convolution2dLayer(3,64,'Padding',1)
 reluLayer()
 maxPooling2dLayer(2,'Stride',2)
 convolution2dLayer(3,64,'Padding',1)
 reluLayer()
 transposedConv2dLayer(4,64,'Stride',2,'Cropping',1)
 convolution2dLayer(1,2)
 softmaxLayer()
 pixelClassificationLayer()
]

layers =
 10x1 Layer array with layers:

 1 '' Image Input 32x32x1 images with 'zerocenter' normalization
 2 '' Convolution 64 3x3 convolutions with stride [1 1] and padding [1 1 1 1]
 3 '' ReLU ReLU
 4 '' Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0]
 5 '' Convolution 64 3x3 convolutions with stride [1 1] and padding [1 1 1 1]
 6 '' ReLU ReLU
 7 '' Transposed Convolution 64 4x4 transposed convolutions with stride [2 2] and output cropping [1 1]
 8 '' Convolution 2 1x1 convolutions with stride [1 1] and padding [0 0 0 0]
 9 '' Softmax softmax
 10 '' Pixel Classification Layer Cross-entropy loss

Set up training options. To reduce training time, set MaxEpochs to 5.

options = trainingOptions('sgdm', ...
 'InitialLearnRate',1e-3, ...

1 Functions

1-2618

 'MaxEpochs',5, ...
 'Verbose',false);

Train the network.

net = trainNetwork(patchds,layers,options);

Tips
• The randomPatchExtractionDatastore expects that the output from the read operation on

the input datastores return arrays of the same size.
• If the input datastore is an ImageDatastore, then the values in its Labels property are ignored

by the randomPatchExtractionDatastore.
• To visualize 2-D data in a randomPatchExtractionDatastore, you can use the preview

function, which returns a subset of data in a table. Visualize all of the patches in the same figure
by using the montage function. For example, this code displays a preview of image patches from a
randomPatchExtractionDatastore called patchds.

minibatch = preview(patchds);
montage(minibatch.InputImage)

See Also
augmentedImageDatastore | pixelLabelDatastore | imageDatastore |
pixelLabelImageDatastore | trainNetwork | imageDataAugmenter |
TransformedDatastore

Topics
“Single Image Super-Resolution Using Deep Learning”
“JPEG Image Deblocking Using Deep Learning”
“Image Processing Operator Approximation Using Deep Learning”
“Semantic Segmentation of Multispectral Images Using Deep Learning”
“Datastores for Deep Learning” (Deep Learning Toolbox)
“Preprocess Images for Deep Learning” (Deep Learning Toolbox)
“Deep Learning in MATLAB” (Deep Learning Toolbox)

Introduced in R2018b

 randomPatchExtractionDatastore

1-2619

partitionByIndex
Partition randomPatchExtractionDatastore according to indices

Syntax
patchds2 = partitionByIndex(patchds,ind)

Description
patchds2 = partitionByIndex(patchds,ind) partitions a subset of observations in a random
patch extraction datastore, patchds, into a new datastore, patchds2. The desired observations are
specified by indices, ind.

Input Arguments
patchds — Random patch extraction datastore
randomPatchExtractionDatastore

Random patch extraction datastore, specified as a randomPatchExtractionDatastore object.

ind — Indices
vector of positive integers

Indices of observations, specified as a vector of positive integers.

Output Arguments
patchds2 — Output datastore
randomPatchExtractionDatastore object

Output datastore, returned as a randomPatchExtractionDatastore object containing a subset of
files from patchds.

See Also
randomPatchExtractionDatastore | read | readall | readByIndex

Introduced in R2018b

1 Functions

1-2620

read
Read data from randomPatchExtractionDatastore

Syntax
data = read(patchds)
[data,info] = read(patchds)

Description
data = read(patchds) returns a batch of data from a random patch extraction datastore,
patchds. Subsequent calls to the read function continue reading from the endpoint of the previous
call.

[data,info] = read(patchds) also returns information about the extracted data, including
metadata, in info.

Input Arguments
patchds — Random patch extraction datastore
randomPatchExtractionDatastore

Random patch extraction datastore, specified as a randomPatchExtractionDatastore object. The
datastore specifies a MiniBatchSize number of observations in each batch, and a
numObservations total number of observations.

Output Arguments
data — Output data
table

Output data, returned as a table with MiniBatchSize number of rows.

• The first variable is InputImage and contains input image patches.
• If the network responses are images in an image datastore, then the second variable is

ResponseImage.
• If the network responses are pixel label images in a pixel label datastore, then the second variable

is ResponsePixelLabelImage.

Each column contains a cell array of patches of size determined by PatchSize and the type of image
data.

• For 2-D single-channel images, the patches are size m-byn, where m specifies the number of rows
and n specifies the number of columns in the patch.

• For 2-D multi-channel images, the patches are size m-byn-by-c, where c specifies the number of
color channels of the patch. c is 3 for RGB images.

• For 3-D single-channel volumetric images, the patches are size m-byn-by-p, where p specifies the
number of planes of the volume.

 read

1-2621

For the last batch of data in the datastore patchds, if numObservations is not cleanly divisible by
MiniBatchSize, then read returns a partial batch containing all the remaining observations in the
datastore.

info — Information about read data
structure array

Information about read data, returned as a structure array. The structure array can contain the
following fields.

Field Name Description
RandomPatchRectangles MiniBatchSize-by-4 numeric matrix. Each row

specifies the size and position of the patch in the
format [xywidthheight]. The elements define the x-
and y-coordinate of the top left corner, and the width
and height of the patch.

ImageIndices MiniBatchSize-by-1 numeric vector that specifies
the indices of the read images in the input datastores.

InputImageFilename MiniBatchSize-by-1 cell array that specifies the
fully resolved path containing the path string, name
of the file, and file extension of each input image.

ResponseImageFilename MiniBatchSize-by-1 cell array that specifies the
fully resolved path containing the path string, name
of the file, and file extension of each response image
or pixel label image.

See Also
randomPatchExtractionDatastore | read (Datastore) | readByIndex | readall

Introduced in R2018b

1 Functions

1-2622

readByIndex
Read data specified by index from randomPatchExtractionDatastore

Syntax
data = readByIndex(patchds,ind)
[data,info] = readByIndex(patchds,ind)

Description
data = readByIndex(patchds,ind) returns a subset of observations from a random patch
extraction datastore, patchds. The desired observations are specified by indices, ind.

[data,info] = readByIndex(patchds,ind) also returns information about the observations,
including metadata, in info.

Input Arguments
patchds — Random patch extraction datastore
randomPatchExtractionDatastore

Random patch extraction datastore, specified as a randomPatchExtractionDatastore object.

ind — Indices
vector of positive integers

Indices of observations, specified as a vector of positive integers.

Output Arguments
data — Observations from datastore
table

Observations from the datastore, returned as a table with length(ind) number of rows.

info — Information about read data
structure array

Information about read data, returned as a structure array. The structure array can contain the
following fields.

Field Name Description
RandomPatchRectangles length(ind)-by-4 numeric matrix. Each row

specifies the size and position of the patch in the
format [xywidthheight]. The elements define the x-
and y-coordinate of the top left corner, and the width
and height of the patch.

 readByIndex

1-2623

Field Name Description
ImageIndices length(ind)-by-1 numeric vector that specifies the

indices of the read images in the input datastores.
InputImageFilename length(ind)-by-1 cell array that specifies the fully

resolved path containing the path string, name of the
file, and file extension of each input image.

ResponseImageFilename length(ind)-by-1 cell array that specifies the fully
resolved path containing the path string, name of the
file, and file extension of each response image or
pixel label image.

See Also
randomPatchExtractionDatastore | read | readall | partitionByIndex

Introduced in R2018b

1 Functions

1-2624

shuffle
Shuffle data in datastore

Syntax
dsrand = shuffle(ds)

Description
dsrand = shuffle(ds) returns a datastore that contains a random ordering of the data from
datastore ds.

Input Arguments
ds — Datastore
randomPatchExtractionDatastore | blockedImageDatastore | denoisingImageDatastore

Datastore, specified as a randomPatchExtractionDatastore, blockedImageDatastore, or
denoisingImageDatastore.

Output Arguments
dsrand — Output datastore
datastore

Output datastore, returned as a datastore of the same type as ds that contains randomly ordered
data from ds.

See Also
randomPatchExtractionDatastore | blockedImageDatastore | denoisingImageDatastore

Introduced in R2018b

 shuffle

1-2625

randomWindow2d
Randomly select rectangular region in image

Syntax
win = randomWindow2d(inputSize,targetSize)
win = randomWindow2d(inputSize,'Scale',scale,'DimensionRatio',dimensionRatio)

Description
win = randomWindow2d(inputSize,targetSize) selects a rectangular region of size
targetSize from a random position in an image of size inputSize.

win = randomWindow2d(inputSize,'Scale',scale,'DimensionRatio',dimensionRatio)
selects a rectangular region, specifying the size of the region relative to the input image, scale, and
the aspect ratio of the region, dimensionRatio.

Examples

Select Random Rectangular Region of Target Size

Read and display an image.

I = imread("flamingos.jpg");
imshow(I)

1 Functions

1-2626

Specify the size of the input image and the target size of the rectangular region.

inputSize = size(I);
targetSize = [40 60];

Select a region of the target size from a random location in the image.

rect = randomWindow2d(inputSize,targetSize);

Convert the region from a Rectangle object to a 4-element vector of the form [xmin ymin width
height].

rectXYWH = [rect.XLimits(1) rect.YLimits(1) ...
 diff(rect.XLimits)+1 diff(rect.YLimits)+1];

Display the boundary of the rectangular region overlaid on the original image.

annotatedI = insertShape(I,"Rectangle",rectXYWH,"LineWidth",3);
imshow(annotatedI)

 randomWindow2d

1-2627

Select Rectangular Region Specifying Scale and Dimension Ratio

Read and display an image.

I = imread("strawberries.jpg");
imshow(I)

1 Functions

1-2628

Specify the size of the input image.

inputSize = size(I);

Specify a fractional area of the region between 2% and 13% of the area of the input image. Specify a
range of aspect ratios between 1:5 and 4:3.

scale = [0.02 0.13];
dimensionRatio = [1 5;4 3];

Specify a region with a randomly selected fractional area and aspect ratio from a random location in
the image.

rect = randomWindow2d(inputSize,"Scale",scale,"DimensionRatio",dimensionRatio);

Crop the original image to the randomly selected region and display the result.

Icrop = imcrop(I,rect);
imshow(Icrop)

 randomWindow2d

1-2629

Input Arguments
inputSize — Input image size
2-element vector of positive integers | 3-element vector of positive integers

Input image size, specified as one of the following.

Type of Input Image Format of inputSize
2-D grayscale or binary image 2-element vector of positive integers of the form [height width]
2-D RGB or multispectral image 3-element vector of positive integers of the form [height width

channels]

targetSize — Target image size
2-element vector of positive integers | 3-element vector of positive integers

Target image size, specified as one of the following.

Type of Target Image Format of targetSize
2-D grayscale or binary image 2-element vector of positive integers of the form [height width]
2-D RGB or multispectral image 3-element vector of positive integers of the form [height width

channels]

scale — Region area as fraction of input image area
2-element numeric vector | function handle

1 Functions

1-2630

Region area as a fraction of the input image area, specified as one of these values.

• 2-element nondecreasing numeric vector with values in the range [0, 1]. The elements define a
minimum and maximum fractional area of the region, respectively. randomWindow2d selects a
random value within the range to use as the fractional region area. To use a fixed region area,
specify the same value for both elements.

• Function handle. The function must take no input arguments and return one number in the range
[0, 1] specifying a valid fractional region area. For more information about function handles, see
“Create Function Handle”.

dimensionRatio — Range of aspect ratios of rectangular region
2-by-2 matrix of positive numbers | function handle

Range of aspect ratios of the rectangular region, specified as one of these values.

• 2-by-2 matrix of positive numbers. The first row defines the defines the minimum aspect ratio and
the second row defines the maximum aspect ratio. randomWindow2d selects a random value
within the range to use as the aspect ratio. To use a fixed aspect ratio, specify identical values for
the first and second rows.

• Function handle. The function must take no input arguments and return one positive number
specifying a valid dimension ratio. For example, a value of 1.2 specifies a 5:4 aspect ratio. For
more information about function handles, see “Create Function Handle”.

Example: [1 8;1 4] selects an aspect ratio in the range 1:8 to 1:4

Output Arguments
win — Rectangular window
Rectangle object

Rectangular window, returned as a Rectangle object.

See Also
centerCropWindow2d | randomCropWindow3d | imcrop

Topics
“Augment Images for Deep Learning Workflows Using Image Processing Toolbox” (Deep Learning
Toolbox)

Introduced in R2021a

 randomWindow2d

1-2631

rangefilt
Local range of image

Syntax
J = rangefilt(I)
J = rangefilt(I,nhood)

Description
J = rangefilt(I) returns the array J, where each output pixel contains the range value
(maximum value − minimum value) of the 3-by-3 neighborhood around the corresponding pixel in the
input image I.

J = rangefilt(I,nhood) returns the local range of image I using the specified neighborhood,
nhood.

Examples

Identify Objects in 2-D Image

Read an image into the workspace.

I = imread('liftingbody.png');

Filter the image. The rangefilt function returns an array where each output pixel contains the
range value (maximum value - minimum value) of the 3-by-3 neighborhood around the corresponding
pixel in the input image.

J = rangefilt(I);

Display the original image and the filtered image side-by-side.

imshowpair(I,J,'montage')

1 Functions

1-2632

Detect Regions of Texture in Images

This example shows how to detect regions of texture in an image using the texture filter functions

Read an image into the workspace and display it. In the figure, the background is smooth—there is
very little variation in the gray-level values. In the foreground, the surface contours of the coins
exhibit more texture. In this image, foreground pixels have more variability and thus higher range
values.

I = imread('eight.tif');
imshow(I)

 rangefilt

1-2633

Filter the image with the rangefilt function and display the results. Range filtering makes the
edges and contours of the coins visible.

K = rangefilt(I);
figure
imshow(K)

1 Functions

1-2634

Identify Vertical Edges Using Range Filtering

Read an image into the workspace, and display it.

I = imread('circuit.tif');
imshow(I);

Define a neighborhood. In this example, the neighborhood returns a large value when there is a large
difference between pixel values to the left and right of an input pixel. The filtering does not consider
pixels above and blow the input pixel. Thus, this neighborhood emphasizes vertical edges.

nhood = [1 1 1];

Perform the range filtering operation using this neighborhood. For comparison, also perform range
filtering using the default 3-by-3 neighborhood. Compare the results.

J = rangefilt(I,nhood);
K = rangefilt(I);
figure
imshowpair(J,K,'montage');
title('Range filtering using specified neighborhood (left) and default neighborhood (right)');

 rangefilt

1-2635

The result using the specified neighborhood emphasizes vertical edges, as expected. In comparison,
the default filter is not sensitive to edge directionality.

Input Arguments
I — Image to be filtered
numeric array

Image to be filtered, specified as a numeric array of any dimension.
Data Types: double | uint8 | uint16 | uint32 | logical

nhood — Neighborhood
true(3) (default) | logical or numeric array containing zeros and ones

Neighborhood, specified as a logical or numeric array containing zeros and ones. The size of nhood
must be odd in each dimension. rangefilt determines the center element of the neighborhood by
floor((size(NHOOD) + 1)/2).

To specify neighborhoods of other shapes, such as a disk, use the strel function to create a
structuring element object of the desired shape. Then, extract the neighborhood from the structuring
element object’s neighborhood property.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

1 Functions

1-2636

Output Arguments
J — Filtered image
numeric array

Filtered image, returned as a numeric array, the same size and class as the input image I, except for
signed integer data types. The output class for signed data types is the corresponding unsigned
integer data type. For example, if the class of I is int8, then the class of J is uint8.

Algorithms
rangefilt uses the morphological functions imdilate and imerode to determine the maximum
and minimum values in the specified neighborhood. Consequently, rangefilt uses the padding
behavior of these morphological functions.

See Also
Functions
stdfilt | entropyfilt | getnhood

Objects
strel | offsetstrel

Topics
“Calculate Statistical Measures of Texture”
“What Is Image Filtering in the Spatial Domain?”

Introduced before R2006a

 rangefilt

1-2637

rawinfo
Read metadata from RAW file

Syntax
info = rawinfo(filename)

Description
info = rawinfo(filename) reads metadata from a RAW file specified by filename.

Examples

Determine Sensor Layout in RAW File

Retrieve metadata from a RAW image file.

info = rawinfo("colorCheckerTestImage.NEF");

Examine the CFALayout field to determine the sensor layout.

sensor_layout = info.CFALayout

sensor_layout =
"RGGB"

Input Arguments
filename — Name of RAW file
character vector | string scalar

Name of RAW file, specified as a string scalar or character vector. Specify filename as a full path,
containing the file name and extension, or as a relative path from the current folder or from any
folder on the MATLAB path.
Data Types: char | string

Output Arguments
info — Metadata from RAW file
struct

Metadata from the RAW file, returned as a struct with these fields.

Field Description
Filename String scalar specifying the full name, including

the path, to the RAW image file.

1 Functions

1-2638

Field Description
CFASensorType String scalar specifying the type of the sensor

that captured the image. rawinfo supports these
sensors: "Bayer", "Fuji X-Trans", "Foveon",
"Fuji Super-CCD", and "Non-Bayer".

CFALayout String scalar specifying the sensor layout for
Bayer sensors. Sensor layouts supported by
rawinfo include but are not limited to "BGGR",
"RGGB", "GBRG", and "GRGB". For non-Bayer
sensors, this value is empty.

CFAImageSize Two-element row vector of type double
specifying the total number of rows and columns
present in the CFA image.

SamplesPerPixel Scalar of type double specifying the number of
samples in every pixel of the image.

ImageSizeInfo Structure containing all the size information that
describes a CFA image.

ColorInfo Structure containing all of the color information
required to render an RGB image from the CFA
image.

ExifTags Structure containing the EXIF Tags, if any,
present in the file. The Makernotes, if any, are
included in this field.

LensInfo Structure containing information about the lens
used to capture the image.

MiscInfo Structure containing information, if any, about
the camera and image creator present in the file.

XMPData String scalar containing the Adobe Extensible
Metadata Platform (XMP) data, if any, present in
the file.

FormatSpecificInfo Structure containing format specific information,
such as DNG Tags and X-Trans sensor layout
descriptions. If no format specific information is
available, this value is an empty structure.

LibrawVersion String scalar specifying the version of the LibRaw
library currently being used. LibRaw is a library
for reading RAW files obtained from digital photo
cameras. For more information, see libraw.org.

Limitations
• The rawinfo function does not support RAW file formats that employ JPEG compression.

 rawinfo

1-2639

https://www.libraw.org

More About
RAW File Format

The RAW file format preserves image data in its most unedited state, recorded directly from the
camera sensor. Most camera manufacturers define their own proprietary RAW file format, such as the
Nikon NEF file format and the Canon CRW format. Adobe has also defined a RAW file format, DNG
(digital negative), which is supported by several cameras. The name of the format is typically
capitalized, like other file formats such as JPG and TIF. However, unlike other file formats, RAW is not
an acronym.

Tips
• The function uses LibRaw version 0.20.2 for reading the CFA image data.

See Also
raw2planar | rawread | planar2raw | raw2rgb

Topics
“Implement Digital Camera Processing Pipeline”

Introduced in R2021a

1 Functions

1-2640

rawread
Read color filter array (CFA) image from RAW file

Syntax
cfaimage = rawread(filename)
cfaimage = rawread(filename,'VisibleImageOnly',visibleImageOnly)

Description
cfaimage = rawread(filename) reads a CFA image from the RAW image file specified by
filename.

cfaimage = rawread(filename,'VisibleImageOnly',visibleImageOnly) specifies
whether to read only the visible portion of the CFA or to read the entire CFA including the frame.

Examples

Read CFA Image Data from File

Read only the visible Color Filter Array (CFA) image data from a file. By default, rawread returns
only the visible portion of the CFA image.

cfa = rawread("colorCheckerTestImage.NEF");

Read the entire CFA image from a file, including the image frame. In a RAW image, the frame is
typically used to calculate the black-level surrounding the visible image.

cfa = rawread("colorCheckerTestImage.NEF", "VisibleImageOnly", false);

Input Arguments
filename — Name of RAW file
character vector | string scalar

Name of RAW file, specified as a string scalar or char vector. Specify filename as a full path,
containing the file name and extension, or as a relative path from the current folder or from any
folder on the MATLAB path.
Data Types: char | string

visibleImageOnly — Return only visible CFA image data
true (default) | false

Return only visible CFA image data, specified as a logical scalar true or false. In a RAW image, the
frame is typically used to calculate the black-level surrounding the visible image. To read only the
visible portion of the CFA, specify true. To read the entire CFA, including the frame, specify false.
This table provides more detail for each option.

 rawread

1-2641

Value Description
true The dimensions of the cfaimage are

VisibleImageSize(1)-by-
VisibleImageSize(2)-by-P, where P is the
number of planes.

VisibleImageSize is a field in the
ImageSizeInfo structure returned by rawinfo.

false The dimensions of the cfaimage are
CFAImageSize(1)-by-CFAImageSize(2)-by-P,
where P is the number of planes.

CFAImageSize is a field in the structure
returned by rawinfo.

Data Types: logical

Output Arguments
cfaimage — CFA image
m-by-n-by-p numeric array

CFA image, returned as an m-by-n-by-p numeric array.

By default, rawread returns only the visible portion of the CFA image. In this case, the values of m
and n correspond to the first and second elements of the VisibleImageSize field reported by
rawinfo, respectively. If you choose to include the frame in the returned image, the values of m and
n correspond to the first and second elements of the CFAImageSize field reported by rawinfo,
respectively. For both types of returned images, the value of p depends on the type of CFA sensor. For
Bayer type sensors, the value is 1. For a Foveon sensor, the value is 3.
Data Types: uint16 | single

Limitations
• The rawread function does not support RAW file formats that employ JPEG compression.

More About
RAW File Format

The RAW file format preserves image data in its most unedited state, recorded directly from the
camera sensor. Most camera manufacturers define their own proprietary RAW file format, such as the
Nikon NEF file format and the Canon CRW format. Adobe has also defined a RAW file format, DNG
(digital negative), which is supported by several cameras. The name of the format is typically
capitalized, like other file formats such as JPG and TIF. However, unlike other file formats, RAW is not
an acronym.

Tips
• The function uses LibRaw version 0.20.2 for reading the CFA image data.

1 Functions

1-2642

See Also
raw2planar | rawinfo | planar2raw | raw2rgb

Topics
“Implement Digital Camera Processing Pipeline”

Introduced in R2021a

 rawread

1-2643

raw2planar
Separate Bayer pattern Color Filter Array (CFA) image into sensor element images

Syntax
I = raw2planar(cfa)

Description
I = raw2planar(cfa) separates the channels of the Bayer pattern CFA image cfa into a
multidimensional image, I, with a channel for each individual sensor element.

Examples

Split CFA Image into Individual Sensor Component Images

Read a Color Filter Array (CFA) image into the workspace. The rawread function returns cfa, a
4012-by-6034 image.

cfa = rawread("colorCheckerTestImage.NEF");

Split the returned CFA image into several individual images, each representing a CFA sensor
component. The CFA image has a Bayer pattern of RGGB. The raw2planar function returns 2206-
by-3017-by-4 array representing each component of the RGGB pattern.

rggb = raw2planar(cfa);

Input Arguments
cfa — Bayer pattern CFA image
M-by-N numeric matrix

Bayer pattern CFA image, specified as an M-by-N numeric matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
I — Image with channel for each sensor element
(M/2)-by-(N/2)-by-4 numeric array

Image with a channel for each sensor element, returned as an (M/2)-by-(N/2)-by-4 numeric array of
the same class as cfa.

The order of the channels in the output image depends on the Bayer pattern of the CFA: the order of
the red, green, and blue sensors. The 2-by-2 grid of pixels in the upper-left corner of the CFA image
describes the channel order, from left-to-right, top-to-bottom. I(:,:,1) corresponds to the sensor at

1 Functions

1-2644

cfa(1,1), I(:,:,2) to the sensor at cfa(1,2), I(:,:,3) to the sensor at cfa(2,1), and
I(:,:,4) to the sensor at cfa(2,2).

See Also
rawread | rawinfo | planar2raw | raw2rgb

Topics
“Implement Digital Camera Processing Pipeline”

Introduced in R2021a

 raw2planar

1-2645

raw2rgb
Transform Color Filter Array (CFA) image in RAW file into RGB image

Syntax
rgbimage = raw2rgb(filename)
rgbimage = raw2rgb(filename,Name,Value)

Description
rgbimage = raw2rgb(filename) transforms the CFA image in the RAW file specified by
filename into an RGB image.

rgbimage = raw2rgb(filename,Name,Value) specifies additional options with name-value
arguments.

Examples

Convert CFA Image to RGB

Convert the Color Filter Array (CFA) image in the file into a 16-bit RGB image in the sRGB
colorspace.

rgb = raw2rgb("colorCheckerTestImage.NEF");
imshow(rgb)

1 Functions

1-2646

Convert the CFA image into a 8-bit RGB image in the Adobe RGB 1998 colorspace.

rgb = raw2rgb("colorCheckerTestImage.NEF", "BitsPerSample", 8, "ColorSpace", "adobe-rgb-1998");
imshow(rgb)

 raw2rgb

1-2647

Convert the CFA image into a 16-bit image, in the camera's native colorspace, white-balanced against
a D65 illuminant.

rgb = raw2rgb("colorCheckerTestImage.NEF", "ColorSpace", "camera", "WhiteBalanceMultipliers", "D65");
imshow(rgb)

1 Functions

1-2648

Input Arguments
filename — Name of RAW file
character vector | string scalar

Name of RAW file, specified as a string scalar or character vector. Specify filename as a full path,
containing the file name and extension, or as a relative path from the current folder or from any
folder on the MATLAB path.
Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: rgb =
raw2rgb("colorCheckerTestImage.NEF","BitsPerSample",8,"ColorSpace","adobe-
rgb-1998");

ApplyContrastStretch — Apply contrast stretching when rendering the RGB image
false or 0 (default) | true or 1

 raw2rgb

1-2649

Apply contrast stretching when rendering the RGB image, specified as a logical 0 (false) or 1
(true).
Data Types: logical

BitsPerSample — Bits per sample of output RGB image
16 (default) | 8

Bits per sample of the output RGB image, specified as the numeric scalar 8 or 16.

ColorSpace — Color space of output RGB values
'srgb' (default) | 'camera' | 'adobe-rgb-1998'

Color space of the output RGB values, specified as 'srgb','camera', or 'adobe-rgb-1998'. For
more information about the 'srgb' and 'adobe-rgb-1998' color spaces, see “Understanding
Color Spaces and Color Space Conversion”. The 'camera' color space is native to the device.
Data Types: char | string

WhiteBalanceMultipliers — White balance adjustment for rendering
'AsTaken' (default) | 'D65' | 'ComputeFromImage' | 1-by-N numeric vector

White balance adjustment for rendering the RGB image, specified as one of the strings in this list, or
as a 1-by-N vector of class double.

Value Description
'AsTaken' White balance multipliers used by the camera to

capture the image
'D65' White balance multipliers required to balance

image using the D65 illuminant
'ComputeFromImage' White balance multipliers determined by

analyzing the CFA image
1-by-N vector Custom white balance multipliers specified as a

1-by-N vector of class single or double. For
Bayer sensor images, N must be 4 and the order
of the coefficients should match the CFALayout
field reported by rawinfo. For non-Bayer
sensors, N should match the SamplesPerPixel
field reported by rawinfo.

Data Types: double | char | string

Output Arguments
rgbimage — RGB image
numeric array

RGB image, returned as an M-by-N-by-3 numeric array. The values of M and N correspond to the first
and second elements of the RenderedImageSize field reported by rawinfo, respectively.

rgbimage can be either uint8 or uint16, depending on the value of the BitsPerSample name-
value pair.

1 Functions

1-2650

Limitations
• The raw2rgb function does not support RAW file formats that employ JPEG compression.

Tips
• The function uses LibRaw version 0.20.2 for reading the CFA image data.

See Also
raw2planar | rawread | rawinfo | planar2raw

Topics
“Implement Digital Camera Processing Pipeline”

Introduced in R2021a

 raw2rgb

1-2651

reducepoly
Reduce density of points in ROI using Ramer–Douglas–Peucker algorithm

Syntax
P_reduced = reducepoly(P)
P_reduced = reducepoly(P,tolerance)

Description
P_reduced = reducepoly(P) reduces the density of points in array P. The reducepoly function
uses the Ramer-Douglas-Peucker line simplification algorithm, removing points along straight lines
and leaving only knickpoints (points where the line curves).

P_reduced = reducepoly(P,tolerance) reduces the density of points in array P, where
tolerance specifies how much a point can deviate from a straight line.

Examples

Compare Polygon with Full and Reduced Vertices

Read an image into the workspace.

I = imread('coins.png');
imshow(I)

1 Functions

1-2652

Convert the image from grayscale to binary.

bw = imbinarize(I);

Obtain the boundaries of all the coins in the binary image.

[B,L] = bwboundaries(bw,'noholes');

Select the boundary of the first detected coin.

coinNumber = 1;
boundary = B{coinNumber};

Plot the boundary for the first detected coin over the original image.

hold on
visboundaries({boundary})
xlim([min(boundary(:,2))-10 max(boundary(:,2))+10])
ylim([min(boundary(:,1))-10 max(boundary(:,1))+10])
hold off

Use reducepoly to reduce the number of points defining the coin boundary. Return a smaller
number of points by increasing the tolerance from the default value of 0.001.

tolerance = 0.02;
p_reduced = reducepoly(boundary,tolerance);

To see how well the reduced polygon matches the original polygon, plot the reduced polygon vertices
over the image.

line(p_reduced(:,2),p_reduced(:,1), ...
 'color','b','linestyle','-','linewidth',1.5,...
 'marker','o','markersize',5);
title('Original Polygon (Red) and Reduced Polygon (Blue)');

 reducepoly

1-2653

Input Arguments
P — Points to be reduced
n-by-2 numeric matrix

Points to be reduced, specified as an n-by-2 numeric matrix of the form [x1 y1; ...; xn yn].
Each row in the array defines a vertex in an ROI shape, such as a polyline, polygon, or freehand.

For example, you can draw a freehand ROI by using the drawfreehand function. Then, get the ROI
vertices from the Position property of the freehand ROI object.

roi = drawfreehand;
P = roi.Position;

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

tolerance — Sensitivity of reduction algorithm
0.001 (default) | numeric scalar

Sensitivity of the reduction algorithm, specified as a numeric scalar in the range [0, 1]. Increasing the
tolerance increases the number of points removed. A tolerance value of 0 has a minimum reduction in
points. A tolerance value of 1 results in maximum reduction in points, leaving only the end points of
the line.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
P_reduced — Reduced data set
m-by-2 numeric matrix

1 Functions

1-2654

Reduced data set, returned as an m-by-2 numeric matrix. The number of reduced points is usually
smaller than the number of original points in P.
Data Types: double

Algorithms
The Ramer-Douglas-Peucker line simplification algorithm recursively subdivides a shape looking to
replace a run of points with a straight line. The algorithm checks that no point in the run deviates
from the straight line by more than the value specified by tolerance.

See Also
drawfreehand | drawpolygon | drawpolyline | drawassisted | bwboundaries

Introduced in R2019b

 reducepoly

1-2655

reflect
Reflect structuring element

Syntax
SE2 = reflect(SE)

Description
SE2 = reflect(SE) reflects the structuring element (or structuring elements) specified by SE. This
method reflects the structuring element through its center. The effect is the same as if you rotated
the structuring element's domain 180 degrees around its center (for a 2-D structuring element).

Examples

Reflect a Structuring Element

Create a structuring element.

se = strel([0 0 1; 0 0 0; 0 0 0])

se =
strel is a arbitrary shaped structuring element with properties:

 Neighborhood: [3x3 logical]
 Dimensionality: 2

Look at the neighborhood.

se.Neighborhood

ans = 3x3 logical array

 0 0 1
 0 0 0
 0 0 0

Reflect it.

se2 = reflect(se)

se2 =
strel is a arbitrary shaped structuring element with properties:

 Neighborhood: [3x3 logical]
 Dimensionality: 2

Look at the reflected neighborhood.

1 Functions

1-2656

se2.Neighborhood

ans = 3x3 logical array

 0 0 0
 0 0 0
 1 0 0

Reflect Offset Structuring Element

Create an offset strel structuring element.

se = offsetstrel('ball',5,6.5)

se =
offsetstrel is a ball shaped offset structuring element with properties:

 Offset: [11x11 double]
 Dimensionality: 2

Reflect the structuring element.

se2 = se.reflect()

se2 =
offsetstrel is a ball shaped offset structuring element with properties:

 Offset: [11x11 double]
 Dimensionality: 2

Input Arguments
SE — Structuring element
strel or offsetstrel object or array of objects

Structuring element, specified as a strel or offsetstrel object or array of objects. If SE is an
array of structuring element objects, then reflect reflects each element of SE.

Output Arguments
SE2 — Reflected structuring element
strel or offsetstrel object or array of objects

Reflected structuring element, returned as a strel or offsetstrel object or array of objects. SE2
has the same size as SE.

See Also
translate

 reflect

1-2657

Topics
“Structuring Elements”

Introduced before R2006a

1 Functions

1-2658

regionfill
Fill in specified regions in image using inward interpolation

Syntax
J = regionfill(I,mask)
J = regionfill(I,x,y)

Description
J = regionfill(I,mask) fills the regions in image I specified by mask. Non-zero pixels in mask
designate the pixels of image I to fill. You can use regionfill to remove objects in an image or to
replace invalid pixel values using their neighbors.

J = regionfill(I,x,y) fills the region in image I corresponding to the polygon with vertices
specified by x and y.

Examples

Fill Region in Grayscale Image

Read and display a grayscale image.

I = imread('eight.tif');
imshow(I)

Specify the x- and y-coordinates of a polygon that completely surrounds one of the coins in the image.

 regionfill

1-2659

x = [222 272 300 270 221 194];
y = [21 21 75 121 121 75];

Fill the polygon by using the regionfill function.

J = regionfill(I,x,y);

Display the filled image.

imshow(J)
title('Filled Image with One Fewer Coin')

Fill Regions Using Mask Image

Read and display a grayscale image.

I = imread('eight.tif');
imshow(I)

1 Functions

1-2660

Specify the vertices of a polygon ROI that completely surrounds two of the coins by using the
drawpolygon function. Specify the 'Position' name-value pair argument as the x-coordinates and y-
coordinates of the polygon vertices. If you want to draw the polygon interactively, then omit the
'Position' name-value pair argument.

x = [68 296 296 113 68];
y = [12 12 120 120 66];
roi = drawpolygon(gca,'Position',[x;y]');

 regionfill

1-2661

Create a mask image in which the ROI is true and the background is false. Display the mask.

mask = createMask(roi);
imshow(mask)

Fill the regions in the input image using the mask image. Display the filled image.

J = regionfill(I,mask);
imshow(J)

1 Functions

1-2662

Input Arguments
I — Grayscale image
2-D numeric matrix

Grayscale image, specified as a 2-D numeric matrix of size greater than or equal to 3-by-3.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

mask — Mask binary image
logical array

Mask binary image, specified as a logical array of the same size as I.
Data Types: logical

x — x-coordinates of polygon vertices
numeric vector

x-coordinates of polygon vertices, specified as a numeric vector. The length of x must be the same
length as y.
Example: [222 272 300 270 221 194];
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

y — y-coordinates of polygon vertices
numeric vector

y-coordinates of polygon vertices, specified as a numeric vector. The length of x must be the same
length as y.
Example: [21 21 75 121 121 75];
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Output Arguments
J — Filled grayscale image
2-D numeric array

Filled grayscale image, returned as a 2-D numeric array. J has the same size and class as I.

Tips
• To interactively create the ROI mask mask, you can use the roipoly function or the

drawpolygon function followed by createMask.

Algorithms
regionfill smoothly interpolates inward from the pixel values on the outer boundary of the
regions. regionfill computes the discrete Laplacian over the regions and solves the Dirichlet
boundary value problem.

 regionfill

1-2663

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

regionfill supports the generation of C code (requires MATLAB Coder). For more information, see
“Code Generation for Image Processing”.

See Also
imfill | drawpolygon | Polygon | poly2mask | roifilt2 | roipoly | inpaintCoherent |
inpaintExemplar

Introduced in R2015a

1 Functions

1-2664

regionprops
Measure properties of image regions

Syntax
stats = regionprops(BW,properties)
stats = regionprops(CC,properties)
stats = regionprops(L,properties)
stats = regionprops(___ ,I,properties)
stats = regionprops(output, ___)

Description
stats = regionprops(BW,properties) returns measurements for the set of properties for each
8-connected component (object) in the binary image, BW. You can use regionprops on contiguous
regions and discontiguous regions (see “More About” on page 1-2676).

Note To return measurements of a 3-D volumetric image, consider using regionprops3. While
regionprops can accept 3-D images, regionprops3 calculates more statistics for 3-D images than
regionprops.

For all syntaxes, if you do not specify the properties argument, then regionprops returns the
'Area', 'Centroid', and 'BoundingBox' measurements.

stats = regionprops(CC,properties) measures a set of properties for each connected
component (object) in CC, which is a structure returned by bwconncomp.

stats = regionprops(L,properties) measures a set of properties for each labeled region in
label image L.

stats = regionprops(___ ,I,properties) returns measurements for the set of properties
specified by properties for each labeled region in the image I. The first input to regionprops
(BW, CC, or L) identifies the regions in I.

stats = regionprops(output, ___) returns measurements for a set of properties, where
output specifies the type of return value. regionprops can return measurements in a struct
array or a table.

Examples

Calculate Centroids and Superimpose Locations on Image

Read a binary image into workspace.

BW = imread('text.png');

Calculate centroids for connected components in the image using regionprops. The regionprops
function returns the centroids in a structure array.

 regionprops

1-2665

s = regionprops(BW,'centroid');

Store the x- and y-coordinates of the centroids into a two-column matrix.

centroids = cat(1,s.Centroid);

Display the binary image with the centroid locations superimposed.

imshow(BW)
hold on
plot(centroids(:,1),centroids(:,2),'b*')
hold off

Estimate Center and Radii of Circular Objects and Plot Circles

Estimate the center and radii of circular objects in an image and use this information to plot circles
on the image. In this example, regionprops returns the measured region properties in a table.

Read an image into workspace.

a = imread('circlesBrightDark.png');

Turn the input image into a binary image.

bw = a < 100;
imshow(bw)
title('Image with Circles')

1 Functions

1-2666

Calculate properties of regions in the image and return the data in a table.

stats = regionprops('table',bw,'Centroid',...
 'MajorAxisLength','MinorAxisLength')

stats=4×3 table
 Centroid MajorAxisLength MinorAxisLength
 ________________ _______________ _______________

 256.5 256.5 834.46 834.46
 300 120 81.759 81.759
 330.47 369.83 111.78 110.36
 450 240 101.72 101.72

 regionprops

1-2667

Get centers and radii of the circles.

centers = stats.Centroid;
diameters = mean([stats.MajorAxisLength stats.MinorAxisLength],2);
radii = diameters/2;

Plot the circles.

hold on
viscircles(centers,radii);
hold off

1 Functions

1-2668

Input Arguments
BW — Binary image
logical array

Binary image, specified as a logical array of any dimension.
Data Types: logical

CC — Connected components
structure

Connected components, specified as a structure returned by bwconncomp.
Data Types: struct

L — Label image
numeric array | categorical array

Label image, specified as one of the following.

• A numeric array of any dimension. Pixels labeled 0 are the background. Pixels labeled 1 make up
one object; pixels labeled 2 make up a second object; and so on. regionprops treats negative-
valued pixels as background and rounds down input pixels that are not integers. You can get a
numeric label image from labeling functions such as watershed or labelmatrix.

• A categorical array. Each category corresponds to a different region.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | categorical

properties — Type of measurement
'basic' (default) | comma-separated list of string scalars or character vectors | cell array of string
scalars or character vectors | 'all'

Type of measurement, specified as a comma-separated list of string scalars or character vectors, a
cell array of string scalars or character vectors, or as 'all' or 'basic'.

• If you specify 'all', then regionprops computes all the shape measurements and, for grayscale
images, the pixel value measurements as well.

• If you specify 'basic', then regionprops computes only the 'Area', 'Centroid', and
'BoundingBox' measurements.

The following tables list all the properties that provide shape measurements. The properties listed in
the Pixel Value Measurements table are valid only when you specify a grayscale image.

 regionprops

1-2669

Shape Measurements

Property
Name

Description N-D
Suppo
rt

GPU
Suppo
rt

Code
Genera
tion

'Area' Actual number of pixels in the region, returned as a scalar.
(This value might differ slightly from the value returned by
bwarea, which weights different patterns of pixels
differently.)

To find the equivalent to the area of a 3-D volume, use the
'Volume' property of regionprops3.

Yes Yes Yes

'Bounding
Box'

Position and size of the smallest box containing the region,
returned as a 1-by-(2*Q) vector. The first Q elements are the
coordinates of the minimum corner of the box. The second Q
elements are the size of the box along each dimension. For
example, a 2-D bounding box with value [5.5 8.5 11 14]
indicates that the (x,y) coordinate of the top-left corner of
the box is (5.5, 8.5), the horizontal width of the box is 11
pixels, and the vertical height of the box is 14 pixels.

Yes Yes Yes

'Centroid
'

Center of mass of the region, returned as a 1-by-Q vector.
The first element of Centroid is the horizontal coordinate
(or x-coordinate) of the center of mass. The second element
is the vertical coordinate (or y-coordinate). All other
elements of Centroid are in order of dimension. This figure
illustrates the centroid and bounding box for a discontiguous
region. The region consists of the white pixels; the green box
is the bounding box, and the red dot is the centroid.

Yes Yes Yes

'Circular
ity'

Roundness of objects, returned as a structure with field
Circularity. The structure contains the circularity value
for each object in the input image. The circularity value is
computed as (4*Area*pi)/(Perimeter2). For a perfect
circle, the circularity value is 1. The input must be a label
matrix or binary image with contiguous regions. If the image
contains discontiguous regions, regionprops returns
unexpected results.

Note Circularity is not recommended for very small
objects such as a 3-by-3 square. For such cases, the results
might exceed the circularity value for a perfect circle.

2-D
only

No Yes

'ConvexAr
ea'

Number of pixels in 'ConvexImage', returned as a scalar. 2-D
only

No No

1 Functions

1-2670

Property
Name

Description N-D
Suppo
rt

GPU
Suppo
rt

Code
Genera
tion

'ConvexHu
ll'

Smallest convex polygon that can contain the region,
returned as a p-by-2 matrix. Each row of the matrix contains
the x- and y-coordinates of one vertex of the polygon.

2-D
only

No No

'ConvexIm
age'

Image that specifies the convex hull, with all pixels within
the hull filled in (set to on), returned as a binary image
(logical). The image is the size of the bounding box of the
region. (For pixels that the boundary of the hull passes
through, regionprops uses the same logic as roipoly to
determine whether the pixel is inside or outside the hull.)

2-D
only

No No

'Eccentri
city'

Eccentricity of the ellipse that has the same second-moments
as the region, returned as a scalar. The eccentricity is the
ratio of the distance between the foci of the ellipse and its
major axis length. The value is between 0 and 1. (0 and 1 are
degenerate cases. An ellipse whose eccentricity is 0 is
actually a circle, while an ellipse whose eccentricity is 1 is a
line segment.)

2-D
only

Yes Yes

'EquivDia
meter'

Diameter of a circle with the same area as the region,
returned as a scalar. Computed as sqrt(4*Area/pi).

2-D
only

Yes Yes

'EulerNum
ber'

Number of objects in the region minus the number of holes
in those objects, returned as a scalar. This property is
supported only for 2-D label matrices. regionprops uses 8-
connectivity to compute the Euler number (also known as
the Euler characteristic). To learn more about connectivity,
see “Pixel Connectivity”.

2-D
only

No Yes

'Extent' Ratio of pixels in the region to pixels in the total bounding
box, returned as a scalar. Computed as the Area divided by
the area of the bounding box.

2-D
only

Yes Yes

'Extrema' Extrema points in the region, returned as an 8-by-2 matrix.
Each row of the matrix contains the x- and y-coordinates of
one of the points. The format of the vector is [top-left
top-right right-top right-bottom bottom-right
bottom-left left-bottom left-top]. This figure
illustrates the extrema of two different regions. In the region
on the left, each extrema point is distinct. In the region on
the right, certain extrema points (such as top-left and
left-top) are identical.

2-D
only

Yes Yes

 regionprops

1-2671

Property
Name

Description N-D
Suppo
rt

GPU
Suppo
rt

Code
Genera
tion

'FilledAr
ea'

Number of on pixels in FilledImage, returned as a scalar. Yes No Yes

'FilledIm
age'

Image the same size as the bounding box of the region,
returned as a binary (logical) array. The on pixels
correspond to the region, with all holes filled in, as shown in
this figure.

Yes No Yes

'Image' Image the same size as the bounding box of the region,
returned as a binary (logical) array. The on pixels
correspond to the region, and all other pixels are off.

Yes Yes Yes

'MajorAxi
sLength'

Length (in pixels) of the major axis of the ellipse that has the
same normalized second central moments as the region,
returned as a scalar.

2-D
only

Yes Yes

1 Functions

1-2672

Property
Name

Description N-D
Suppo
rt

GPU
Suppo
rt

Code
Genera
tion

'MaxFeret
Propertie
s'

Feret properties that include maximum Feret diameter, its
relative angle, and coordinate values, returned as a
structure with fields:

Field Description
MaxFeretDiameter Maximum Feret diameter

measured as the maximum
distance between any two

boundary points on the
antipodal vertices of convex
hull that enclose the object.

MaxFeretAngle Angle of the maximum Feret
diameter with respect to

horizontal axis of the image.
MaxFeretCoordinates Endpoint coordinates of the

maximum Feret diameter.

The input can be a binary image, connected component, or a
label matrix.

2-D
only

No No

'MinFeret
Propertie
s'

Feret properties that include minimum Feret diameter, its
relative angle, and coordinate values, returned as a
structure with fields:

Field Description
MinFeretDiameter Minimum Feret diameter

measured as the minimum
distance between any two

boundary points on the antipodal
vertices of convex hull that

enclose the object.
MinFeretAngle Angle of the minimum Feret

diameter with respect to
horizontal axis of the image.

MinFeretCoordinate
s

Endpoint coordinates of the
minimum Feret diameter.

The input can be a binary image, a connected component, or
a label matrix.

2-D
only

No No

'MinorAxi
sLength'

Length (in pixels) of the minor axis of the ellipse that has the
same normalized second central moments as the region,
returned as a scalar.

2-D
only

Yes Yes

 regionprops

1-2673

Property
Name

Description N-D
Suppo
rt

GPU
Suppo
rt

Code
Genera
tion

'Orientat
ion'

Angle between the x-axis and the major axis of the ellipse
that has the same second-moments as the region, returned
as a scalar. The value is in degrees, ranging from -90
degrees to 90 degrees. This figure illustrates the axes and
orientation of the ellipse. The left side of the figure shows an
image region and its corresponding ellipse. The right side
shows the same ellipse with the solid blue lines representing
the axes. The red dots are the foci. The orientation is the
angle between the horizontal dotted line and the major axis.

2-D
only

Yes Yes

'Perimete
r'

Distance around the boundary of the region returned as a
scalar. regionprops computes the perimeter by calculating
the distance between each adjoining pair of pixels around
the border of the region. If the image contains discontiguous
regions, regionprops returns unexpected results. This
figure illustrates the pixels included in the perimeter
calculation for this object.

2-D
only

No Yes

'PixelIdx
List'

Linear indices of the pixels in the region, returned as a p-
element vector.

Yes Yes Yes

'PixelLis
t'

Locations of pixels in the region, returned as a p-by-Q matrix.
Each row of the matrix has the form [x y z ...] and
specifies the coordinates of one pixel in the region.

Yes Yes Yes

1 Functions

1-2674

Property
Name

Description N-D
Suppo
rt

GPU
Suppo
rt

Code
Genera
tion

'Solidity
'

Proportion of the pixels in the convex hull that are also in the
region, returned as a scalar. Computed as Area/
ConvexArea.

2-D
only

No No

'Subarray
Idx'

Elements of L inside the object bounding box, returned as a
cell array that contains indices such that L(idx{:})
extracts the elements.

Yes Yes No

The pixel value measurement properties in the following table are valid only when you specify a
grayscale image, I.

Pixel Value Measurements

Property
Name

Description N-D
Suppo
rt

GPU
Supp
ort

Code
Genera
tion

'MaxIntens
ity'

Value of the pixel with the greatest intensity in the region,
returned as a scalar.

Yes Yes Yes

'MeanInten
sity'

Mean of all the intensity values in the region, returned as a
scalar.

Yes Yes Yes

'MinIntens
ity'

Value of the pixel with the lowest intensity in the region,
returned as a scalar.

Yes Yes Yes

'PixelValu
es'

Number of pixels in the region, returned as a p-by-1 vector,
where p is the number of pixels in the region. Each element in
the vector contains the value of a pixel in the region.

Yes Yes Yes

'WeightedC
entroid'

Center of the region based on location and intensity value,
returned as a p-by-Q vector of coordinates. The first element
of WeightedCentroid is the horizontal coordinate (or x-
coordinate) of the weighted centroid. The second element is
the vertical coordinate (or y-coordinate). All other elements of
WeightedCentroid are in order of dimension.

Yes Yes Yes

Data Types: char | string | cell

I — Image to be measured
grayscale image

Image to be measured, specified as a grayscale image. The size of the image must match the size of
the binary image BW, connected component structure CC, or label image L.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32

output — Return type
'struct' (default) | 'table'

Return type, specified as either of the following values.

 regionprops

1-2675

Value Description
'struct' Returns an array of structures with length equal to the number of objects in BW,

CC.NumObjects, or max(L(:)). The fields of the structure array denote
different properties for each region, as specified by properties.

'table' Returns a table with height (number of rows) equal to the number of objects in
BW, CC.NumObjects, or max(L(:)). The variables (columns) denote different
properties for each region, as specified by properties.

Data Types: char | string

Output Arguments
stats — Measurement values
struct array (default) | table

Measurement values, returned as an array of structures or a table. The number of structures in the
array or the number of rows in the table is equal to the number of objects in BW, CC.NumObjects, or
max(L(:)). The fields of each structure or the variables in each row denote the properties
calculated for each region, as specified by properties. If the input image is a categorical label
image L, then stats includes an additional field or variable with the property 'LabelName'.

More About
Contiguous Regions and Discontiguous Regions

Contiguous regions are also called objects, connected components, or blobs. A label image L
containing contiguous regions might look like this:

1 1 0 2 2 0 3 3
1 1 0 2 2 0 3 3

Elements of L equal to 1 belong to the first contiguous region or connected component; elements of L
equal to 2 belong to the second connected component; and so on.

Discontiguous regions are regions that can contain multiple connected components. A label image
containing discontiguous regions might look like this:

1 1 0 1 1 0 2 2
1 1 0 1 1 0 2 2

Elements of L equal to 1 belong to the first region, which is discontiguous and contains two
connected components. Elements of L equal to 2 belong to the second region, which is a single
connected component.

Tips
• The ismember function is useful for creating a binary image containing only objects or regions

that meet certain criteria. For example, these commands create a binary image containing only
the regions whose area is greater than 80 and whose eccentricity is less than 0.8.

cc = bwconncomp(BW);
stats = regionprops(cc,'Area','Eccentricity');

1 Functions

1-2676

idx = find([stats.Area] > 80 & [stats.Eccentricity] < 0.8);
BW2 = ismember(labelmatrix(cc),idx);

• The default connectivity is 8-connected for 2-D images, and maximal connectivity for higher
dimensions. To specify nondefault connectivity, use bwconncomp to create the connected
components and then pass the result to regionprops.

• regionprops takes advantage of intermediate results when computing related measurements.
Therefore, it is fastest to compute all the desired measurements in a single call to regionprops.

• Most of the measurements take little time to compute. However, these measurements can take
longer, depending on the number of regions in L:

• 'ConvexHull'
• 'ConvexImage'
• 'ConvexArea'
• 'FilledImage'

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• regionprops supports the generation of C code (requires MATLAB Coder). Note that if you
choose the generic MATLAB Host Computer target platform, regionprops generates code that
uses a precompiled, platform-specific shared library. Use of a shared library preserves
performance optimizations but limits the target platforms for which code can be generated. For
more information, see “Types of Code Generation Support in Image Processing Toolbox”.

• Supports only binary images or numeric label images. Input label images of data type categorical
are not supported.

• Specifying the output type 'table' is not supported.
• Passing a cell array of properties is not supported. Use a comma-separated list instead.
• All properties are supported except 'ConvexArea', 'ConvexHull', 'ConvexImage',

'MaxFeretProperties', 'MinFeretProperties', 'Solidity', and 'SubarrayIdx'.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• GPU Coder generates optimized CUDA code for only binary images. Code generated for input
label images is not optimized. Input label images of data type categorical are not supported.

• Specifying the output type 'table' is not supported.
• Passing a cell array of properties is not supported. Use a comma-separated list instead.
• Only 'Area', 'BoundingBox', 'Centroid', 'Eccentricity', 'EquivDiameter', 'Extent',

'MajorAxisLength', 'MinorAxisLength', 'Orientation',
'PixelIdxList''PixelList', 'MaxIntensity', 'MeanIntensity', 'MinIntensity',
'PixelValues', and 'WeightedCentroid' properties are supported.

 regionprops

1-2677

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• gpuArray input must be a 2-D logical matrix or a 2-D label matrix.
• The connected component structure (CC) input is not supported.
• The following properties are not supported: 'ConvexArea', 'ConvexHull', 'ConvexImage',

'Circularity', 'EulerNumber', 'FilledArea', 'FilledImage',
'MaxFeretProperties', 'MinFeretProperties', and 'Solidity'.

• 'struct' is the only return type supported.

For more information, see “Image Processing on a GPU”.

See Also
bwconncomp | bwpropfilt | bwferet | watershed | labelmatrix | regionprops3

Topics
“Measuring Regions in Grayscale Images”
“Identifying Round Objects”

Introduced before R2006a

1 Functions

1-2678

regionprops3
Measure properties of 3-D volumetric image regions

Syntax
stats = regionprops3(BW,properties)
stats = regionprops3(CC,properties)
stats = regionprops3(L,properties)
stats = regionprops3(___ ,V,properties)

Description
stats = regionprops3(BW,properties) measures a set of properties for each connected
component (object) in the 3-D volumetric binary image BW. The output stats denote different
properties for each object.

For all syntaxes, if you do not specify the properties argument, regionprops3 returns the
'Volume', 'Centroid', and 'BoundingBox' measurements.

stats = regionprops3(CC,properties) measures a set of properties for each connected
component (object) in CC, which is a structure returned by bwconncomp.

stats = regionprops3(L,properties) measures a set of properties for each labeled region in
the 3-D label image L.

stats = regionprops3(___ ,V,properties) measures a set of properties for each labeled
region in the 3-D volumetric grayscale image V. The first input (BW, CC, or L) identifies the regions in
V.

Examples

Estimate Centers and Radii of Objects in 3-D Volumetric Image

Create a binary image with two spheres.

[x,y,z] = meshgrid(1:50,1:50,1:50);
bw1 = sqrt((x-10).^2 + (y-15).^2 + (z-35).^2) < 5;
bw2 = sqrt((x-20).^2 + (y-30).^2 + (z-15).^2) < 10;
bw = bw1 | bw2;

Get the centers and radii of the two spheres.

s = regionprops3(bw,"Centroid","PrincipalAxisLength");
centers = s.Centroid

centers = 2×3

 20 30 15
 10 15 35

 regionprops3

1-2679

diameters = mean(s.PrincipalAxisLength,2)

diameters = 2×1

 17.8564
 8.7869

radii = diameters/2

radii = 2×1

 8.9282
 4.3935

Get All Statistics for Cube Within a Cube

Make a 9-by-9 cube of 0s that contains a 3-by-3 cube of 1s at its center.

innercube = ones(3,3,3);
cube_in_cube = padarray(innercube,[3 3],0,'both');

Get all statistics on the cube within the cube.

stats = regionprops3(cube_in_cube,'all')

stats=1×18 table
 Volume Centroid BoundingBox SubarrayIdx Image EquivDiameter Extent VoxelIdxList VoxelList PrincipalAxisLength Orientation EigenVectors EigenValues ConvexHull ConvexImage ConvexVolume Solidity SurfaceArea
 ______ ___________ ___________ ___________________________________ _______________ _____________ ______ _____________ _____________ __________________________ ___________ ____________ ____________ _____________ _______________ ____________ ________ ___________

 27 5 5 2 1x6 double {[4 5 6]} {[4 5 6]} {[1 2 3]} {3x3x3 logical} 3.7221 1 {27x1 double} {27x3 double} 3.4641 3.4641 3.4641 0 0 0 {3x3 double} {3x1 double} {24x3 double} {3x3x3 logical} 27 1 41.07

Input Arguments
BW — Volumetric binary image
3-D logical array

Volumetric binary image, specified as a 3-D logical array.
Data Types: logical

CC — Connected components
structure

Connected components of a 3-D volumetric image, specified as a structure returned by bwconncomp
using a 3-D connectivity value, such as 6, 18, or 26. CC.ImageSize must be a 1-by-3 vector.
Data Types: struct

L — Label image
3-D numeric array | 3-D categorical array

Label image, specified as one of the following.

1 Functions

1-2680

• A 3-D numeric array. Voxels labeled 0 are the background. Voxels labeled 1 make up one object;
voxels labeled 2 make up a second object; and so on. regionprops3 treats negative-valued voxels
as background and rounds down input voxels that are not integers. You can get a numeric label
image from labeling functions such as watershed or labelmatrix.

• A 3-D categorical array. Each category corresponds to a different region.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | categorical

properties — Type of measurement
'basic' (default) | comma-separated list of strings or character vectors | cell array of strings or
character vectors | 'all'

Type of measurement, specified as a comma-separated list of strings or character vectors, a cell array
of strings or character vectors, 'all' or 'basic'.

• If you specify 'all', then regionprops3 computes all the shape measurements. If you also
specify a grayscale image, then regionprops3 returns all of the voxel value measurements.

• If you specify 'basic' or do not specify the properties argument, then regionprops3
computes only the 'Volume', 'Centroid', and 'BoundingBox' measurements.

The following table lists all the properties that provide shape measurements. The Voxel Value
Measurements table lists additional properties that are valid only when you specify a grayscale
image.

 regionprops3

1-2681

Shape Measurements

Property Name Description
'BoundingBox' Smallest cuboid containing the region, returned as a 1-by-6 vector of the form

[ulf_x ulf_y ulf_z width_x width_y width_z]. ulf_x, ulf_y, and
ulf_z specify the upper-left front corner of the cuboid. width_x, width_y, and
width_z specify the width of the cuboid along each dimension.

'Centroid' Center of mass of the region, returned as a 1-by-3 vector of the form
[centroid_x centroid_y and centroid_z]. The first element,
centroid_x, is the horizontal coordinate (or x-coordinate) of the center of mass.
The second element, centroid_y, is the vertical coordinate (or y-coordinate).
The third element, centroid_z, is the planar coordinate (or z-coordinate).

'ConvexHull' Smallest convex polygon that can contain the region, returned as a p-by-3 matrix.
Each row of the matrix contains the x-, y-, and z-coordinates of one vertex of the
polygon.

'ConvexImage' Image of the convex hull, returned as a volumetric binary image (logical) with
all voxels within the hull filled in (set to on). The image is the size of the bounding
box of the region.

'ConvexVolume
'

Number of voxels in 'ConvexImage', returned as a scalar.

'EigenValues' Eigenvalues of the voxels representing a region, returned as a 3-by-1 vector.
regionprops3 uses the eigenvalues to calculate the principal axes lengths.

'EigenVectors
'

Eigenvectors of the voxels representing a region, returned as a 3-by-3 vector.
regionprops3 uses the eigenvectors to calculate the orientation of the ellipsoid
that has the same normalized second central moments as the region.

'EquivDiamete
r'

Diameter of a sphere with the same volume as the region, returned as a scalar.
Computed as (6*Volume/pi)^(1/3).

'Extent' Ratio of voxels in the region to voxels in the total bounding box, returned as a
scalar. Computed as the value of Volume divided by the volume of the bounding
box. [Volume/(bounding box width * bounding box height *
bounding box depth)]

'Image' Bounding box of the region, returned as a volumetric binary image (logical) that
is the same size as the bounding box of the region. The on voxels correspond to
the region, and all other voxels are off.

'Orientation' Euler angles [2], returned as a 1-by-3 vector. The angles are based on the right-
hand rule. regionprops3 interprets the angles by looking at the origin along the
x-, y-, and z-axis representing roll, pitch, and yaw respectively. A positive angle
represents a rotation in the counterclockwise direction. Rotation operations are
not commutative so they must be applied in the correct order to have the intended
effect.

'PrincipalAxi
sLength'

Length (in voxels) of the major axes of the ellipsoid that have the same normalized
second central moments as the region, returned as 1-by-3 vector. regionprops3
sorts the values from highest to lowest.

'Solidity' Proportion of the voxels in the convex hull that are also in the region, returned as
a scalar. Computed as Volume/ConvexVolume.

1 Functions

1-2682

Property Name Description
'SubarrayIdx' Indices used to extract elements inside the object bounding box, returned as a cell

array such that L(idx{:}) extracts the elements of L inside the object bounding
box.

'SurfaceArea' Distance around the boundary of the region [1], returned as a scalar.
'Volume' Count of the actual number of 'on' voxels in the region, returned as a scalar.

Volume represents the metric or measure of the number of voxels in the regions
within the volumetric binary image, BW.

'VoxelIdxList
'

Linear indices of the voxels in the region, returned as a p-element vector.

'VoxelList' Locations of voxels in the region, returned as a p-by-3 matrix. Each row of the
matrix has the form [x y z] and specifies the coordinates of one voxel in the
region.

The voxel value measurement properties in the following table are valid only when you specify a
grayscale volumetric image, V.

Voxel Value Measurements
Property Name Description
'MaxIntensity' Value of the voxel with the greatest intensity in the region, returned as a scalar.
'MeanIntensity
'

Mean of all the intensity values in the region, returned as a scalar.

'MinIntensity' Value of the voxel with the lowest intensity in the region, returned as a scalar.
'VoxelValues' Value of the voxels in the region, returned as a p-by-1 vector, where p is the

number of voxels in the region. Each element in the vector contains the value of
a voxel in the region.

'WeightedCentr
oid'

Center of the region based on location and intensity value, returned as a p-by-3
vector of coordinates. The first element of WeightedCentroid is the horizontal
coordinate (or x-coordinate) of the weighted centroid. The second element is the
vertical coordinate (or y-coordinate). The third element is the planar coordinate
(or z-coordinate).

Data Types: char | string | cell

V — Volumetric grayscale image
3-D numeric array

Volumetric grayscale image, specified as a 3-D numeric array. The size of the image must match the
size of the binary image BW, connected component structure CC, or label matrix L.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32

Output Arguments
stats — Measurement values
table

Measurement values, returned as a table. The number of rows in the table corresponds to the number
of objects in BW, CC.NumObjects, or max(L(:)). The variables (columns) in each table row denote

 regionprops3

1-2683

the properties calculated for each region, as specified by properties. If the input image is a
categorical label image L, then stats includes an additional variable with the property
'LabelName'.

References
[1] Lehmann, Gaetan and David Legland. Efficient N-Dimensional surface estimation using Crofton

formula and run-length encoding, The Insight Journal, 2012. (https://insight-journal.org/
browse/publication/852)

[2] Shoemake, Ken, Graphics Gems IV. Edited by Paul S. Heckbert, Morgan Kaufmann, 1994, pp. 222–
229.

See Also
bwconncomp | bwlabeln | ismember | regionprops

Introduced in R2017b

1 Functions

1-2684

https://insight-journal.org/browse/publication/852
https://insight-journal.org/browse/publication/852

MattesMutualInformation
Mattes mutual information metric configuration

Description
A MattesMutualInformation object describes a mutual information metric configuration that you
pass to the function imregister to solve image registration problems.

Creation
You can create a MattesMutualInformation object using the following methods:

• imregconfig — Returns a MattesMutualInformation object paired with an appropriate
optimizer for registering multimodal images

• Entering

metric = registration.metric.MattesMutualInformation;

on the command line creates a MattesMutualInformation object with default settings

Properties
NumberOfSpatialSamples — Number of spatial samples used to compute the mutual
information metric
500 (default) | positive integer scalar

Number of spatial samples used to compute the mutual information metric, specified as a positive
integer scalar. NumberOfSpatialSamples defines the number of random pixels imregister uses
to compute the metric. Your registration results are more reproducible (at the cost of performance) as
you increase this value. imregister only uses NumberOfSpatialSamples when UseAllPixels =
0 (false).
Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

NumberOfHistogramBins — Number of histogram bins used to compute the mutual
information metric
50 (default) | positive integer scalar

Number of histogram bins used to compute the mutual information metric, specified as a positive
integer scalar. NumberOfHistogramBins defines the number of bins imregister uses to compute
the joint distribution histogram. The minimum value is 5.
Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

UseAllPixels — Option to include all pixels in the overlap region when computing the
mutual information metric
1 (true) (default) | logical scalar

 MattesMutualInformation

1-2685

Option to compute the metric using all pixels in the overlap region of the images when computing the
mutual information metric, specified as a logical scalar.

You can achieve significantly better performance if you set this property to 0 (false). When
UseAllPixels = 0, the NumberOfSpatialSamples property controls the number of random pixel
locations that imregister uses to compute the metric. The results of your registration might not be
reproducible when UseAllPixels = 0. This is because imregister selects a random subset of
pixels from the images to compute the metric.

Examples
Register Images with Mattes Mutual Information Metric

Create a MattesMutualInformation object and use it to register two MRI images of a knee that
were obtained using different protocols.

Read the images into the workspace. The images are multimodal because they have different
brightness and contrast.

fixed = dicomread('knee1.dcm');
moving = dicomread('knee2.dcm');

View the misaligned images.

figure
imshowpair(fixed, moving,'Scaling','joint');

1 Functions

1-2686

Create the optimizer configuration object suitable for registering multimodal images.

optimizer = registration.optimizer.OnePlusOneEvolutionary;

Create the metric configuration object suitable for registering multimodal images.

metric = registration.metric.MattesMutualInformation

metric =
 registration.metric.MattesMutualInformation

 Properties:
 NumberOfSpatialSamples: 500
 NumberOfHistogramBins: 50
 UseAllPixels: 1

 MattesMutualInformation

1-2687

Tune the properties of the optimizer so that the problem will converge on a global maxima. Increase
the number of iterations the optimizer will use to solve the problem.

optimizer.InitialRadius = 0.009;
optimizer.Epsilon = 1.5e-4;
optimizer.GrowthFactor = 1.01;
optimizer.MaximumIterations = 300;

Perform the registration.

movingRegistered = imregister(moving,fixed,'affine',optimizer,metric);

View the registered images.

figure
imshowpair(fixed, movingRegistered,'Scaling','joint');

1 Functions

1-2688

Tips
• Larger values of mutual information correspond to better registration results. You can examine

the computed values of Mattes mutual information if you enable 'DisplayOptimization' when
you call imregister, for example:
movingRegistered = imregister(moving,fixed,'rigid',optimizer,metric,'DisplayOptimization',true);

Algorithms
Mutual information metrics are information theoretic techniques for measuring how related two
variables are. These algorithms use the joint probability distribution of a sampling of pixels from two
images to measure the certainty that the values of one set of pixels map to similar values in the other
image. This information is a quantitative measure of how similar the images are. High mutual
information implies a large reduction in the uncertainty (entropy) between the two distributions,
signaling that the images are likely better aligned.

The Mattes mutual information algorithm uses a single set of pixel locations for the duration of the
optimization, instead of drawing a new set at each iteration. The number of samples used to compute
the probability density estimates and the number of bins used to compute the entropy are both user
selectable. The marginal and joint probability density function is evaluated at the uniformly spaced
bins using the samples. Entropy values are computed by summing over the bins. Zero-order and
third-order B-spline kernels are used to compute the probability density functions of the fixed and
moving images, respectively [1].

References
[1] Rahunathan, Smriti, D. Stredney, P. Schmalbrock, and B.D. Clymer. Image Registration Using

Rigid Registration and Maximization of Mutual Information. Poster presented at: MMVR13.
The 13th Annual Medicine Meets Virtual Reality Conference; 2005 January 26–29; Long
Beach, CA.

[2] D. Mattes, D.R. Haynor, H. Vesselle, T. Lewellen, and W. Eubank. "Non-rigid multimodality image
registration." (Proceedings paper).Medical Imaging 2001: Image Processing. SPIE
Publications, 3 July 2001. pp. 1609–1620.

Extended Capabilities
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
Functions
imregister | imregconfig

 MattesMutualInformation

1-2689

Objects
MeanSquares | OnePlusOneEvolutionary | RegularStepGradientDescent

Topics
“Create an Optimizer and Metric for Intensity-Based Image Registration”

Introduced in R2012a

1 Functions

1-2690

MeanSquares
Mean square error metric configuration

Description
A MeanSquares object describes a mean square error metric configuration that you pass to the
function imregister to solve image registration problems.

Creation
You can create a MeanSquares object using the following methods:

• imregconfig — Returns a MeanSquares object paired with an appropriate optimizer for
registering monomodal images

• Entering

metric = registration.metric.MeanSquares;

on the command line creates a MeanSquares object

Examples
Register Images with Mean Squares Metric

Create a MeanSquares object and use it to register two images with similar brightness and contrast.

Read the reference image and create an unregistered copy.

fixed = imread('pout.tif');
moving = imrotate(fixed,5,'bilinear','crop');

View the misaligned images.

imshowpair(fixed,moving,'Scaling','joint');

 MeanSquares

1-2691

Create the metric configuration object suitable for registering monomodal images.

metric = registration.metric.MeanSquares

metric =
 registration.metric.MeanSquares

 This class has no properties.

Create the optimizer configuration object.

optimizer = registration.optimizer.RegularStepGradientDescent;

Modify the optimizer configuration to get more precision.

optimizer.MaximumIterations = 300;
optimizer.MinimumStepLength = 5e-4;

Perform the registration.

movingRegistered = imregister(moving,fixed,'rigid',optimizer,metric);

View the registered images.

imshowpair(fixed, movingRegistered,'Scaling','joint');

1 Functions

1-2692

Tips
• The mean squares metric is an element-wise difference between two input images. The ideal value

is zero. You can examine the computed values of mean square error if you enable
'DisplayOptimization' when you call imregister. For example, movingRegistered =
imregister(moving,fixed,'rigid',optimizer,metric,'DisplayOptimization',true
);

Algorithms
The mean squares image similarity metric is computed by squaring the difference of corresponding
pixels in each image and taking the mean of the squared differences.

Extended Capabilities
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

 MeanSquares

1-2693

See Also
Functions
imregister | imregconfig

Objects
MattesMutualInformation | OnePlusOneEvolutionary | RegularStepGradientDescent

Topics
“Create an Optimizer and Metric for Intensity-Based Image Registration”

Introduced in R2012a

1 Functions

1-2694

OnePlusOneEvolutionary
One-plus-one evolutionary optimizer configuration

Description
A OnePlusOneEvolutionary object describes a one-plus-one evolutionary optimization
configuration that you pass to the function imregister to solve image registration problems.

Creation
You can create a OnePlusOneEvolutionary object using the following methods:

• imregconfig — Returns a OnePlusOneEvolutionary object paired with an appropriate metric
for registering multimodal images

• Entering

metric = registration.optimizer.OnePlusOneEvolutionary;

on the command line creates a OnePlusOneEvolutionary object with default settings

Properties
GrowthFactor — Growth factor of the search radius
1.05 (default) | positive scalar

Growth factor of the search radius, specified as a positive scalar. The optimizer uses GrowthFactor
to control the rate at which the search radius grows in parameter space. If you set GrowthFactor to
a large value, the optimization is fast, but it might result in finding only the metric’s local extrema. If
you set GrowthFactor to a small value, the optimization is slower, but it is likely to converge on a
better solution.
Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

Epsilon — Minimum size of the search radius
1.5e-6 (default) | positive scalar

Minimum size of the search radius, specified as a positive scalar. Epsilon controls the accuracy of
convergence by adjusting the minimum size of the search radius. If you set Epsilon to a small value,
the optimization of the metric is more accurate, but the computation takes longer. If you set Epsilon
to a large value, the computation time decreases at the expense of accuracy.
Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

InitialRadius — Initial size of search radius
6.25e-3 | positive scalar

Initial size of search radius, specified as a positive scalar. If you set InitialRadius to a large value,
the computation time decreases. However, overly large values of InitialRadius might result in an
optimization that fails to converge.

 OnePlusOneEvolutionary

1-2695

Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

MaximumIterations — Maximum number of optimizer iterations
100 (default) | positive integer scalar

Maximum number of optimizer iterations, specified as a positive integer scalar. MaximumIterations
determines the maximum number of iterations the optimizer performs at any given pyramid level. The
registration could converge before the optimizer reaches the maximum number of iterations.
Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

Examples
Register Images with One Plus One Evolutionary Optimizer

Create a OnePlusOneEvolutionary object and use it to register two MRI images of a knee that
were obtained using different protocols.

Read the images into the workspace. The images are multimodal because they have different
brightness and contrast.

fixed = dicomread('knee1.dcm');
moving = dicomread('knee2.dcm');

View the misaligned images.

figure
imshowpair(fixed, moving,'Scaling','joint');

1 Functions

1-2696

Create the optimizer configuration object suitable for registering multimodal images.

optimizer = registration.optimizer.OnePlusOneEvolutionary

optimizer =
 registration.optimizer.OnePlusOneEvolutionary

 Properties:
 GrowthFactor: 1.050000e+00
 Epsilon: 1.500000e-06
 InitialRadius: 6.250000e-03
 MaximumIterations: 100

Create the metric configuration object suitable for registering multimodal images.

metric = registration.metric.MattesMutualInformation;

 OnePlusOneEvolutionary

1-2697

Tune the properties of the optimizer so that the problem will converge on a global maxima. Increase
the number of iterations the optimizer will use to solve the problem.

optimizer.InitialRadius = 0.009;
optimizer.Epsilon = 1.5e-4;
optimizer.GrowthFactor = 1.01;
optimizer.MaximumIterations = 300;

Perform the registration.

movingRegistered = imregister(moving,fixed,'affine',optimizer,metric);

View the registered images.

figure
imshowpair(fixed, movingRegistered,'Scaling','joint');

1 Functions

1-2698

Algorithms
An evolutionary algorithm iterates to find a set of parameters that produce the best possible
registration result. It does this by perturbing, or mutating, the parameters from the last iteration (the
parent). If the new (child) parameters yield a better result, then the child becomes the new parent
whose parameters are perturbed, perhaps more aggressively. If the parent yields a better result, it
remains the parent and the next perturbation is less aggressive.

References
[1] Styner, M., C. Brechbuehler, G. Székely, and G. Gerig. "Parametric estimate of intensity

inhomogeneities applied to MRI." IEEE Transactions on Medical Imaging. Vol. 19, Number 3,
2000, pp. 153-165.

Extended Capabilities
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
Functions
imregister | imregconfig

Objects
MattesMutualInformation | MeanSquares | RegularStepGradientDescent

Topics
“Create an Optimizer and Metric for Intensity-Based Image Registration”

Introduced in R2012a

 OnePlusOneEvolutionary

1-2699

RegularStepGradientDescent
Regular step gradient descent optimizer configuration

Description
A RegularStepGradientDescent object describes a regular step gradient descent optimization
configuration that you pass to the function imregister to solve image registration problems.

Creation
You can create a RegularStepGradientDescent object using the following methods:

• imregconfig — Returns a RegularStepGradientDescent object paired with an appropriate
metric for registering monomodal images

• Entering

metric = registration.optimizer.RegularStepGradientDescent;

on the command line creates a RegularStepGradientDescent object with default settings

Properties
GradientMagnitudeTolerance — Gradient magnitude tolerance
1e-4 (default) | positive scalar

Gradient magnitude tolerance, specified as a positive scalar. GradientMagnitudeTolerance
controls the optimization process. When the value of the gradient is smaller than
GradientMagnitudeTolerance, it is an indication that the optimizer might have reached a
plateau.
Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

MinimumStepLength — Tolerance for convergence
1e-5 (default) | positive scalar

Tolerance for convergence, specified as a positive scalar. MinimumStepLength controls the accuracy
of convergence. If you set MinimumStepLength to a small value, the optimization takes longer to
compute, but it is likely to converge on a more accurate metric value.
Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

MaximumStepLength — Initial step length
0.0625 (default) | positive scalar

Initial step length, specified as a positive scalar. The initial step length is the maximum step length
because the optimizer reduces the step size during convergence. If you set MaximumStepLength to a
large value, the computation time decreases. However, the optimizer might fail to converge if you set
MaximumStepLength to an overly large value.
Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

1 Functions

1-2700

MaximumIterations — Maximum number of iterations
100 (default) | positive integer scalar

Maximum number of iterations, specified as a positive integer scalar. MaximumIterations is a
positive scalar integer value that determines the maximum number of iterations the optimizer
performs at any given pyramid level. The registration could converge before the optimizer reaches
the maximum number of iterations.
Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

RelaxationFactor — Step length reduction factor
0.5 (default) | positive scalar between 0 and 1

Step length reduction factor, specified as a positive scalar between 0 and 1. RelaxationFactor
defines the rate at which the optimizer reduces step size during convergence. Whenever the
optimizer determines that the direction of the gradient changed, it reduces the size of the step
length. If your metric is noisy, you can set RelaxationFactor to a larger value. This leads to a more
stable convergence at the expense of computation time.
Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

Examples
Register Images with Regular Step Gradient Descent Optimizer

Create a RegularStepGradientDescent object and use it to register two images with similar
brightness and contrast.

Read the reference image and create an unregistered copy.

fixed = imread('pout.tif');
moving = imrotate(fixed, 5, 'bilinear', 'crop');

View the misaligned images.

figure
imshowpair(fixed, moving,'Scaling','joint');

 RegularStepGradientDescent

1-2701

Create the optimizer configuration object suitable for registering monomodal images.

optimizer = registration.optimizer.RegularStepGradientDescent

optimizer =
 registration.optimizer.RegularStepGradientDescent

 Properties:
 GradientMagnitudeTolerance: 1.000000e-04
 MinimumStepLength: 1.000000e-05
 MaximumStepLength: 6.250000e-02
 MaximumIterations: 100
 RelaxationFactor: 5.000000e-01

Create the metric configuration object.

metric = registration.metric.MeanSquares;

Modify the optimizer configuration to get more precision.

optimizer.MaximumIterations = 300;
optimizer.MinimumStepLength = 5e-4;

Perform the registration.

movingRegistered = imregister(moving,fixed,'rigid',optimizer,metric);

View the registered images.

figure
imshowpair(fixed, movingRegistered,'Scaling','joint');

1 Functions

1-2702

Algorithms
The regular step gradient descent optimization adjusts the transformation parameters so that the
optimization follows the gradient of the image similarity metric in the direction of the extrema. It
uses constant length steps along the gradient between computations until the gradient changes
direction. At this point, the step length is reduced based on the RelaxationFactor, which halves
the step length by default.

Extended Capabilities
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
Functions
imregister | imregconfig

Objects
MattesMutualInformation | MeanSquares | OnePlusOneEvolutionary

 RegularStepGradientDescent

1-2703

Topics
“Create an Optimizer and Metric for Intensity-Based Image Registration”

Introduced in R2012a

1 Functions

1-2704

rgb2lab
Convert RGB to CIE 1976 L*a*b*

Syntax
lab = rgb2lab(RGB)
lab = rgb2lab(RGB,Name,Value)

Description
lab = rgb2lab(RGB) converts sRGB values to CIE 1976 L*a*b* values.

lab = rgb2lab(RGB,Name,Value) specifies additional conversion options, such as the color space
of the RGB image, using one or more name-value pair arguments.

Examples

Convert RGB White to L*a*b*

Use rgb2lab to convert the RGB white value to L*a*b.

rgb2lab([1 1 1])

ans = 1×3

 100.0000 0 0.0000

Convert Color Value to L*a*b* Specifying Color Space

Convert an Adobe RGB (1998) color value to L*a*b* using the ColorSpace parameter.

rgb2lab([.2 .3 .4],'ColorSpace','adobe-rgb-1998')

ans = 1×3

 30.1783 -5.6902 -20.8223

Convert RGB color to L*a*b* Specifying Reference White

Use rgb2lab to convert an RGB color to L*a*b using the D50 reference white.

rgb2lab([.2 .3 .4],'WhitePoint','d50')

ans = 1×3

 rgb2lab

1-2705

 31.3294 -4.0732 -18.1750

Convert RGB Image to L*a*b* and Display L* Component

Read RGB image into the workspace.

rgb = imread('peppers.png');

Convert the RGB image to the L*a*b* color space.

lab = rgb2lab(rgb);

Display the L* component of the L*a*b* image.

imshow(lab(:,:,1),[0 100])

1 Functions

1-2706

Input Arguments
RGB — RGB color values
numeric array

RGB color values to convert, specified as a numeric array in one of these formats.

• c-by-3 colormap. Each row specifies one RGB color value.
• m-by-n-by-3 image
• m-by-n-by-3-by-p stack of images

Data Types: single | double | uint8 | uint16

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: rgb2lab([0.25 0.40 0.10],'WhitePoint','d50')

ColorSpace — Color space of the input RGB values
'srgb' (default) | 'adobe-rgb-1998' | 'linear-rgb'

Color space of the input RGB values, specified as the comma-separated pair consisting of
'ColorSpace' and one of 'srgb', 'adobe-rgb-1998', or 'linear-rgb'. If you specify
'linear-rgb', then rgb2lab assumes the input RGB values are linearized sRGB values.
Data Types: char

WhitePoint — Reference white point
'd65' (default) | 'a' | 'c' | 'e' | 'd50' | 'd55' | 'icc' | 1-by-3 vector

Reference white point, specified as the comma-separated pair consisting of 'WhitePoint' and a 1-
by-3 vector or one of the CIE standard illuminants listed in the table.

Value White Point
'a' CIE standard illuminant A, [1.0985, 1.0000, 0.3558]. Simulates typical,

domestic, tungsten-filament lighting with correlated color temperature of 2856 K.
'c' CIE standard illuminant C, [0.9807, 1.0000, 1.1822]. Simulates average or

north sky daylight with correlated color temperature of 6774 K. Deprecated by
CIE.

'e' Equal-energy radiator, [1.000, 1.000, 1.000]. Useful as a theoretical
reference.

'd50' CIE standard illuminant D50, [0.9642, 1.0000, 0.8251]. Simulates warm
daylight at sunrise or sunset with correlated color temperature of 5003 K. Also
known as horizon light.

'd55' CIE standard illuminant D55, [0.9568, 1.0000, 0.9214]. Simulates mid-
morning or mid-afternoon daylight with correlated color temperature of 5500 K.

'd65' CIE standard illuminant D65, [0.9504, 1.0000, 1.0888]. Simulates noon
daylight with correlated color temperature of 6504 K.

 rgb2lab

1-2707

Value White Point
'icc' Profile Connection Space (PCS) illuminant used in ICC profiles. Approximation of

[0.9642, 1.000, 0.8249] using fixed-point, signed, 32-bit numbers with 16
fractional bits. Actual value: [31595,32768, 27030]/32768.

Data Types: single | double | char

Output Arguments
lab — Converted L*a*b* color values
numeric array

Converted L*a*b* color values, returned as a numeric array of the same size as the input. The output
type is double unless the input type is single, in which case the output type is also single.

Attribute Description
L* Luminance or brightness of the image. Values are in the range [0, 100],

where 0 specifies black and 100 specifies white. As L* increases, colors
become brighter.

a* Amount of red or green tones in the image. A large positive a* value
corresponds to red/magenta. A large negative a* value corresponds to
green. Although there is no single range for a*, values commonly fall in the
range [-100, 100] or [-128, 127).

b* Amount of yellow or blue tones in the image. A large positive b* value
corresponds to yellow. A large negative b* value corresponds to blue.
Although there is no single range for b*, values commonly fall in the range
[-100, 100] or [-128, 127).

Data Types: double | single

Tips
• If you specify the input RGB color space as 'linear-rgb', then rgb2lab assumes the input

values are linearized sRGB values. If instead you want the input color space to be linearized Adobe
RGB (1998), then you can use the lin2rgb function.

For example, to convert linearized Adobe RGB (1998) image RGBlinadobe to the CIE 1976 L*a*b*
color space, perform the conversion in two steps:

RGBadobe = lin2rgb(RGBlinadobe,'ColorSpace','adobe-rgb-1998');
LAB = rgb2lab(RGBadobe,'ColorSpace','adobe-rgb-1998');

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• rgb2lab supports the generation of C code (requires MATLAB Coder). For more information, see
“Code Generation for Image Processing”.

1 Functions

1-2708

• When generating code, all character vector input arguments must be compile-time constants.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• When generating code, all character vector input arguments must be compile-time constants.

See Also
rgb2xyz | lab2rgb | xyz2lab

Topics
“Understanding Color Spaces and Color Space Conversion”
“Device-Independent Color Spaces”

Introduced in R2014b

 rgb2lab

1-2709

rgb2lightness
Convert RGB color values to lightness values

Syntax
lightness = rgb2lightness(rgb)

Description
lightness = rgb2lightness(rgb) converts RGB color values to lightness values, excluding the
color components. lightness is same as the L* component in the CIE 1976 L*a*b* color space.

Examples

Convert RGB Color to Lightness Component

Read RGB image into the workspace.

rgb = imread('peppers.png');

Convert the RGB color values to lightness component, excluding the color information.

lightness = rgb2lightness(rgb);

Display the RGB image and the derived lightness component of image.

figure
imshow(rgb)
title('Input RGB Image')

1 Functions

1-2710

figure
imshow(lightness,[])
title('Lightness Component of Image')
colorbar

 rgb2lightness

1-2711

Input Arguments
rgb — RGB color values
m-by-n-by-3 image array

RGB color values, specified as an m-by-n-by-3 image array. The input rgb must be in sRGB color
space with a reference white point of D65.
Data Types: single | double | uint8 | uint16

Output Arguments
lightness — Converted lightness values
m-by-n image array

Converted lightness values, returned as an m-by-n image array. If the input data type is double, the
output data type is double. Otherwise, the output data type is single.
Data Types: single | double

1 Functions

1-2712

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

rgb2lightness supports the generation of C code (requires MATLAB Coder). For more information,
see “Code Generation for Image Processing”.

See Also
rgb2xyz | lab2rgb | xyz2lab | rgb2lab | lab2xyz | xyz2rgb

Introduced in R2019a

 rgb2lightness

1-2713

rgb2lin
Linearize gamma-corrected RGB values

Syntax
B = rgb2lin(A)
B = rgb2lin(A,Name,Value)

Description
B = rgb2lin(A) undoes the gamma correction of the sRGB values in image A so that B contains
linear RGB values.

B = rgb2lin(A,Name,Value) undoes gamma correction using name-value pairs to control
additional options.

Examples

Linearize an sRGB Image

Open an image. The JPEG file format saves images in the gamma-corrected sRGB color space.

A = imread('foosball.jpg');

Display the image.

imshow(A)
title('Scene With sRGB Gamma Correction')

1 Functions

1-2714

Undo the gamma correction and linearize the image by using the rgb2lin function. Optionally,
specify the data type of the linearized values.

B = rgb2lin(A,'OutputType','double');

Display the linearized image. Shadows in the linearized image are darker than in the original image,
as expected.

imshow(B)
title('Scene Without sRGB Gamma Correction')

 rgb2lin

1-2715

Input Arguments
A — Gamma-corrected RGB color values
numeric array

Gamma-corrected RGB color values, specified as a numeric array in one of the following formats.

• c-by-3 colormap. Each row specifies one RGB color value.
• m-by-n-by-3 image
• m-by-n-by-3-by-p stack of images

Data Types: single | double | uint8 | uint16

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: B = lin2rgb(I,'ColorSpace','adobe-rgb-1998') linearizes the gamma-corrected
image, I, according to the Adobe RGB (1998) standard.

ColorSpace — Color space of the input image
'srgb' (default) | 'adobe-rgb-1998'

1 Functions

1-2716

Color space of the input image, specified as the comma-separated pair consisting of 'ColorSpace'
and 'srgb' or 'adobe-rgb-1998'.
Data Types: char | string

OutputType — Data type of output RGB values
'double' | 'single' | 'uint8' | 'uint16'

Data type of the output RGB values, specified as the comma-separated pair consisting of
'OutputType' and 'double', 'single', 'uint8', or 'uint16'. By default, the output data type
is the same as the data type of A.
Data Types: char | string

Output Arguments
B — Linearized RGB color values
numeric array

Linearized RGB color values, returned as a numeric array of the same size as the input A.

Algorithms
Linearization Using the sRGB Standard

sRGB tristimulus values are linearized using the following parametric curve:

 f(u) = -f(-u), u < 0

 f(u) = c ⋅ u, 0 ≤ u < d

 f(u) = (a ⋅ u + b)ɣ, u ≥ d,

where u represents a color value with these parameters:

 a = 1/1.055

 b = 0.055/1.055

 c = 1/12.92

 d = 0.04045

 ɣ = 2.4

Linearization Using the Adobe RGB (1998) Standard

Adobe RGB (1998) tristimulus values are linearized using a simple power function:

 v = uɣ,

with

 ɣ = 2.19921875

 rgb2lin

1-2717

References
[1] Ebner, Marc. "Gamma Correction." Color Constancy. Chichester, West Sussex: John Wiley & Sons,

2007.

[2] Adobe Systems Incorporated. "Inverting the color component transfer function." Adobe RGB
(1998) Color Image Encoding. Section 4.3.5.2, May 2005, p.12.

See Also
lin2rgb

Introduced in R2017b

1 Functions

1-2718

rgb2ntsc
Convert RGB color values to NTSC color space

Syntax
YIQ = rgb2ntsc(RGB)

Description
YIQ = rgb2ntsc(RGB) converts the red, green, and blue values of an RGB image to luminance (Y)
and chrominance (I and Q) values of an NTSC image.

Examples

Convert Image from RGB to YIQ

This example shows how to convert an image from RGB to NTSC color space.

Read an RGB image into the workspace.

RGB = imread('board.tif');

Convert the image to YIQ color space.

YIQ = rgb2ntsc(RGB);

Display the NTSC luminance value, represented by the first color channel in the YIQ image.

imshow(YIQ(:,:,1));
title('Luminance in YIQ Color Space');

 rgb2ntsc

1-2719

1 Functions

1-2720

Input Arguments
RGB — RGB color values
numeric array

RGB color values to convert, specified as a numeric array in one of these formats.

• c-by-3 colormap. Each row specifies one RGB color value.
• m-by-n-by-3 image

Data Types: single | double | uint8 | uint16 | int16

Output Arguments
YIQ — Converted YIQ color values
numeric array

Converted YIQ color values, returned as a numeric array of the same size as the input.

Attribute Description
Y Luma, or brightness of the image. Values are in the range [0, 1], where 0

specifies black and 1 specifies white. Colors increase in brightness as Y
increases.

I In-phase, which is approximately the amount of blue or orange tones in the
image. I in the range [-0.5959, 0.5959], where negative numbers indicate
blue tones and positive numbers indicate orange tones. As the magnitude
of I increases, the saturation of the color increases.

Q Quadrature, which is approximately the amount of green or purple tones in
the image. Q in the range [-0.5229, 0.5229], where negative numbers
indicate green tones and positive numbers indicate purple tones. As the
magnitude of Q increases, the saturation of the color increases.

Data Types: double

Algorithms
In the NTSC color space, the luminance is the grayscale signal used to display pictures on
monochrome (black and white) televisions. The other components carry the hue and saturation
information. The value 0 corresponds to the absence of the component, while the value 1 corresponds
to full saturation of the component.

rgb2ntsc defines the NTSC components using

Y
I
Q

=
0.299 0.587 0.114
0.596 −0.274 −0.322
0.211 −0.523 0.312

R
G
B

See Also
ntsc2rgb | rgb2ycbcr | rgb2lab | rgb2xyz | rgb2hsv

 rgb2ntsc

1-2721

Topics
“Understanding Color Spaces and Color Space Conversion”

Introduced before R2006a

1 Functions

1-2722

rgb2xyz
Convert RGB to CIE 1931 XYZ

Syntax
XYZ = rgb2xyz(RGB)
XYZ = rgb2xyz(RGB,Name,Value)

Description
XYZ = rgb2xyz(RGB) converts the red, green, and blue values of an sRGB image to CIE 1931 XYZ
values (2° observer).

XYZ = rgb2xyz(RGB,Name,Value) specifies additional conversion options, such as the color space
of the RGB image, using one or more name-value pair arguments.

Examples

Convert RGB to XYZ

Convert images and color values from RGB to CIE 1931 XYZ color space.

Convert RGB Image to XYZ

Read an RGB image into the workspace.

RGB = imread('peppers.png');

Convert the image to XYZ color space.

XYZ = rgb2xyz(RGB);

Display the original image alongside the new image.

figure
imshowpair(RGB,XYZ,'montage');
title('Image in RGB Color Space (Left) and XYZ Color Space (Right)');

 rgb2xyz

1-2723

Convert RGB Color Value to XYZ

Convert the value of white from RGB to XYZ color space. In RGB, white is represented by the vector
[1 1 1].

rgb2xyz([1 1 1])

ans = 1×3

 0.9505 1.0000 1.0888

Convert RGB Color to XYZ using D50 as Reference White

XYZ_D50 = rgb2xyz(RGB,'WhitePoint','d50');

Display the first output XYZ image alongside the XYZ image with D50 as reference white.

figure
imshowpair(XYZ,XYZ_D50,'montage');
title('XYZ Image, Without (Left) and With (Right) Reference White');

1 Functions

1-2724

Convert Adobe RGB (1998) Color to XYZ

XYZ_Adobe = rgb2xyz(RGB,'ColorSpace','adobe-rgb-1998');

Display the XYZ images generated from the default RGB and the Adobe RGB (1998) color spaces.

figure
imshowpair(XYZ,XYZ_Adobe,'montage');
title(['XYZ Image, Starting From Default RGB (Left) and Adobe RGB ',...
 '(Right) Color Space']);

Input Arguments
RGB — RGB color values
numeric array

RGB color values to convert, specified as a numeric array in one of these formats.

 rgb2xyz

1-2725

• c-by-3 colormap. Each row specifies one RGB color value.
• m-by-n-by-3 image
• m-by-n-by-3-by-p stack of images

Data Types: single | double | uint8 | uint16

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: rgb2xyz([.2 .3 .4],'WhitePoint','d50')

ColorSpace — Color space of the input RGB values
'srgb' (default) | 'adobe-rgb-1998' | 'linear-rgb'

Color space of the input RGB values, specified as the comma-separated pair consisting of
'ColorSpace' and one of 'srgb', 'adobe-rgb-1998', or 'linear-rgb'. If you specify
'linear-rgb', then rgb2xyz assumes the input RGB values are linearized sRGB values.
Data Types: char

WhitePoint — Reference white point
'd65' (default) | 'a' | 'c' | 'e' | 'd50' | 'd55' | 'icc' | 1-by-3 vector

Reference white point, specified as the comma-separated pair consisting of 'WhitePoint' and a 1-
by-3 vector or one of the CIE standard illuminants listed in the table.

Value White Point
'a' CIE standard illuminant A, [1.0985, 1.0000, 0.3558]. Simulates typical,

domestic, tungsten-filament lighting with correlated color temperature of 2856 K.
'c' CIE standard illuminant C, [0.9807, 1.0000, 1.1822]. Simulates average or

north sky daylight with correlated color temperature of 6774 K. Deprecated by
CIE.

'e' Equal-energy radiator, [1.000, 1.000, 1.000]. Useful as a theoretical
reference.

'd50' CIE standard illuminant D50, [0.9642, 1.0000, 0.8251]. Simulates warm
daylight at sunrise or sunset with correlated color temperature of 5003 K. Also
known as horizon light.

'd55' CIE standard illuminant D55, [0.9568, 1.0000, 0.9214]. Simulates mid-
morning or mid-afternoon daylight with correlated color temperature of 5500 K.

'd65' CIE standard illuminant D65, [0.9504, 1.0000, 1.0888]. Simulates noon
daylight with correlated color temperature of 6504 K.

'icc' Profile Connection Space (PCS) illuminant used in ICC profiles. Approximation of
[0.9642, 1.000, 0.8249] using fixed-point, signed, 32-bit numbers with 16
fractional bits. Actual value: [31595,32768, 27030]/32768.

Data Types: single | double | char

1 Functions

1-2726

Output Arguments
XYZ — Converted XYZ color values
numeric array

Converted XYZ color values, returned as a numeric array of the same size as the input. The output
type is class double unless the input type is single, in which case the output type is also single.

Tips
• If you specify the input RGB color space as 'linear-rgb', then rgb2xyz assumes the input

values are linearized sRGB values. If instead you want the input color space to be linearized Adobe
RGB (1998), then you can use the lin2rgb function.

For example, to convert linearized Adobe RGB (1998) image RGBlinadobe to CIE 1931 XYZ color
space, perform the conversion in two steps:

RGBadobe = lin2rgb(RGBlinadobe,'ColorSpace','adobe-rgb-1998');
XYZ = rgb2xyz(RGBadobe,'ColorSpace','adobe-rgb-1998');

See Also
xyz2rgb | rgb2lab | lab2xyz | lin2rgb | rgbwide2xyz | xyz2rgbwide

Topics
“Understanding Color Spaces and Color Space Conversion”
“Device-Independent Color Spaces”

Introduced in R2014b

 rgb2xyz

1-2727

rgbwide2xyz
Convert wide-gamut RGB color values to CIE 1931 XYZ color values

Syntax
XYZ = rgbwide2xyz(RGB,BPS)
XYZ = rgbwide2xyz(RGB,BPS,Name,Value)

Description
XYZ = rgbwide2xyz(RGB,BPS) converts wide-gamut RGB values in the BT.2020 or BT.2100 color
spaces to CIE 1931 XYZ color values. BPS specifies the number of bits required to represent each
input channel.

XYZ = rgbwide2xyz(RGB,BPS,Name,Value) specifies options using one or more name-value pair
arguments.

Examples

Convert Wide-Gamut RGB Values to CIE 1931 XYZ Values

Convert 10-bit or 12-bit wide-gamut RGB color values in the BT.2020 or BT.2100 color spaces to CIE
1931 XYZ color values.

Convert 10-bit BT.2020 RGB Green Value to XYZ

Create a wide-gamut RGB value for the color green.

rgbvalue = uint16([64 940 64]);

Convert the 10-bit BT.2020 RGB color value to an XYZ color value.

xyzvalue = rgbwide2xyz(rgbvalue,10);

Convert 12-bit BT.2100 RGB Blue Value to XYZ

Create a wide-gamut RGB color value for the color blue.

rgbvalue = uint16([64 64 940]);

Convert the 12-bit BT.2100 RGB value to an XYZ color value.

xyzvalue = rgbwide2xyz(rgbvalue, 12,'ColorSpace','BT.2100');

Convert 10-bit BT.2100 RGB White Value to XYZ Using HLG

Create a wide-gamut RGB value for the color white.

rgbvalue = uint16([940 940 940]);

Convert the 10-bit BT.2100 RGB color value to an XYZ color value, using the Hybrid Log Gamma
(HLG) transfer function.

1 Functions

1-2728

xyzvalue = rgbwide2xyz(rgbvalue,10,'ColorSpace','BT.2100','LinearizationFcn','HLG');

Input Arguments
RGB — Wide-gamut RGB color values
p-by-3 | m-by-n-by-3 numeric array | m-by-n-by-3-by-f numeric array

Wide-gamut RGB color values, specified as one of the following:

• p-by-3 numeric matrix of color values (one color per row)
• m-by-n-by-3 numeric array representing an image
• m-by-n-by-3-by-f numeric array representing a stack of images

The following table shows the data range for wide-gamut, integer color values for 10- and 12-bit data.
The minimum value in the range maps to black, and the maximum value in the range maps to white.
Only pixels with RGB values within the supported data range for wide-gamut values are guaranteed
to be mapped to realizable colors.

Data Type Full Data Range Data Range for Wide-
Gamut RGB

10-bit [0, 1023] [64, 940]
12-bit [0, 4095] [256, 3760]

Data Types: uint16

BPS — Bits per sample for each channel of input image
10 | 12

Bits per sample for each channel of the input wide-gamut RGB image, specified as 10 or 12.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: xyzvalue = rgbwide2xyz(rgbvalue,12,'ColorSpace','BT.2100');

ColorSpace — Color space of wide-gamut RGB values
'BT.2020' (default) | 'BT.2100'

Color space of the wide-gamut RGB values, specified as the comma-separated pair consisting of
'ColorSpace' and the value 'BT.2020' or 'BT.2100'.
Data Types: char | string

WhitePoint — Reference white point
'd65' (default) | 'a' | 'c' | 'd50' | 'd55' | 'icc' | 'e' | 3-element row vector

Reference white point, specified as the comma-separated pair consisting of 'WhitePoint' and a 3-
element row vector or one of the CIE standard illuminants listed in the table.

 rgbwide2xyz

1-2729

Value White Point
'a' CIE standard illuminant A, [1.0985, 1.0000, 0.3558]. Simulates typical,

domestic, tungsten-filament lighting with correlated color temperature of 2856 K.
'c' CIE standard illuminant C, [0.9807, 1.0000, 1.1822]. Simulates average or

north sky daylight with correlated color temperature of 6774 K. Deprecated by
CIE.

'e' Equal-energy radiator, [1.000, 1.000, 1.000]. Useful as a theoretical
reference.

'd50' CIE standard illuminant D50, [0.9642, 1.0000, 0.8251]. Simulates warm
daylight at sunrise or sunset with correlated color temperature of 5003 K. Also
known as horizon light.

'd55' CIE standard illuminant D55, [0.9568, 1.0000, 0.9214]. Simulates mid-
morning or mid-afternoon daylight with correlated color temperature of 5500 K.

'd65' CIE standard illuminant D65, [0.9504, 1.0000, 1.0888]. Simulates noon
daylight with correlated color temperature of 6504 K.

'icc' Profile Connection Space (PCS) illuminant used in ICC profiles. Approximation of
[0.9642, 1.000, 0.8249] using fixed-point, signed, 32-bit numbers with 16
fractional bits. Actual value: [31595,32768, 27030]/32768.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string

LinearizationFcn — Transfer function for transformation
'PQ' (default) | 'HLG'

Transfer function for transformation, specified as the comma-separated pair consisting of
'LinearizationFcn' and either of these values:

Value Description
'PQ' Perceptual Quantization
'HLG' Hybrid Log Gamma

Data Types: char | string

Output Arguments
XYZ — Values in CIE 1931 XYZ color space
numeric array

Values in the CIE 1931 XYZ color space, returned as a numeric array of the same size as the RGB
input color values.
Data Types: double

References
[1] Rec. ITU-R BT.2020-2 (10/2015). "Parameter values for ultra-high definition television systems for

production and international programme exchange." International Telecommunication Union;
Broadcasting service (television). https://www.itu.int/rec/R-REC-BT.2020.

1 Functions

1-2730

https://www.itu.int/rec/R-REC-BT.2020

[2] Rec. ITU-R BT.2100-2 (07/2018). "Image parameter values for dynamic range television for use in
production and international programme exchange." International Telecommunication Union;
Broadcasting service (television). https://www.itu.int/rec/R-REC-BT.2100.

[3] Rec. ITU-R BT.2390-7 (07/2019). "High dynamic range television for production and international
programme exchange." International Telecommunication Union; Broadcasting service
(television). https://www.itu.int/pub/R-REP-BT.2390.

See Also
rgb2xyz | xyz2rgb | xyz2rgbwide | rgbwide2ycbcr

Introduced in R2020b

 rgbwide2xyz

1-2731

https://www.itu.int/rec/R-REC-BT.2100
https://www.itu.int/pub/R-REP-BT.2390

rgb2ycbcr
Convert RGB color values to YCbCr color space

Syntax
YCBCR = rgb2ycbcr(RGB)

Description
YCBCR = rgb2ycbcr(RGB) converts the red, green, and blue values of an RGB image to luminance
(Y) and chrominance (Cb and Cr) values of a YCbCr image.

Examples

Convert RGB to YCbCr

Convert Image from RGB to YCbCr

Read an RGB image into the workspace.

RGB = imread('board.tif');

Convert the image to YCbCr.

YCBCR = rgb2ycbcr(RGB);

Display the original image and the new image

figure
imshow(RGB);
title('Image in RGB Color Space');

1 Functions

1-2732

figure
imshow(YCBCR);
title('Image in YCbCr Color Space');

 rgb2ycbcr

1-2733

Convert Colormap from RGB to YCbCr.

Load an indexed image into the workspace. The colormap is in RGB colorspace.

[I,map] = imread('forest.tif');

1 Functions

1-2734

Convert the colormap to YCbCr.

newmap = rgb2ycbcr(map);

Display the grayscale image with the original map and with the new map.

figure
imshow(I,map)
title('Indexed Image with RGB Colormap');

figure
imshow(I,newmap)
title('Indexed Image with YCbCr Colormap');

 rgb2ycbcr

1-2735

Input Arguments
RGB — RGB color values
numeric array

RGB color values to convert, specified as a numeric array in one of these formats.

• c-by-3 colormap. Each row specifies one RGB color value.
• m-by-n-by-3 image

Data Types: single | double | uint8 | uint16

Output Arguments
YCBCR — Converted YCbCr color values
numeric array

Converted YCbCr color values, returned as a numeric array of the same size as the input.

• If the input is double or single, then Y is in the range [16/255, 235/255] and Cb and Cr are in
the range [16/255, 240/255].

• If the input is uint8, then Y is in the range [16, 235] and Cb and Cr are in the range [16, 240].
• If the input is uint16, then Y is in the range [4112, 60395] and Cb and Cr are in the range [4112,

61680].

1 Functions

1-2736

References
[1] Poynton, C. A.A Technical Introduction to Digital Video, John Wiley & Sons, Inc., 1996, p. 175.

[2] Rec. ITU-R BT.601-5, Studio Encoding Parameters of Digital Television for Standard 4:3 and Wide-
screen 16:9 Aspect Ratios, (1982-1986-1990-1992-1994-1995), Section 3.5.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• rgb2ycbcr supports the generation of C code (requires MATLAB Coder). Note that if you choose
the generic MATLAB Host Computer target platform, rgb2ycbcr generates code that uses a
precompiled, platform-specific shared library. Use of a shared library preserves performance
optimizations but limits the target platforms for which code can be generated. For more
information, see “Types of Code Generation Support in Image Processing Toolbox”.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on a GPU”.

See Also
rgb2lab | rgb2xyz | rgb2ntsc | ycbcr2rgb | rgbwide2ycbcr | ycbcr2rgbwide

Topics
“Understanding Color Spaces and Color Space Conversion”

Introduced before R2006a

 rgb2ycbcr

1-2737

rgbwide2ycbcr
Convert wide-gamut RGB color values to YCbCr color values

Syntax
ycbcr = rgbwide2ycbcr(RGB,BPS)

Description
ycbcr = rgbwide2ycbcr(RGB,BPS) converts wide-gamut RGB values in the BT.2020 or BT.2100
color spaces into the nonconstant luminance YCbCr color space. BPS specifies the number of bits
required to represent each channel of the input values.

Examples

Convert Wide-Gamut RGB to YCbCr

Convert 10-bit or 12-bit wide-gamut RGB color values in the BT.2020 or BT.2100 color space to the
YCbCr color space.

Convert 10-bit BT.2020 or BT.2100 Wide-Gamut RGB White Color Value to YCbCr

Create a 10-bit wide-gamut RGB value for the color white.

rgblist = uint16([940 940 940]);

Convert the wide-gamut white color value to a YCbCr color value.

ycbcrlist = rgbwide2ycbcr(rgblist,10)

ycbcrlist = 1x3 uint16 row vector

 940 512 512

Convert 12-bit BT.2020 or BT.2100 Wide-Gamut RGB Image to YCbCr

Simulate a wide-gamut RGB image. Read a normal RGB image into the workspace, convert the image
to the XYZ color space, then convert the resulting image to the wide-gamut RGB color space.

RGBWide = imread('peppers.png');
XYZ = rgb2xyz(RGBWide);
RGBWide = xyz2rgbwide(XYZ,12);

Convert the wide-gamut RGB image to the YCbCr color space.

1 Functions

1-2738

YCBCR = rgbwide2ycbcr(RGBWide,12);

Input Arguments
RGB — Wide-gamut RGB color values
p-by-3 numeric array | m-by-n-by-3 numeric array

Wide-gamut RGB color values, specified as one of these options:

• p-by-3 numeric matrix of color values (one color per row)
• m-by-n-by-3 numeric array representing an image

This table shows the data range for wide-gamut, integer color values for 10- and 12-bit data. The
minimum value in each range maps to black, and the maximum value in each range maps to white.
The rgbwide2ycbcr function maps only pixels with RGB values within the supported data range to
valid YCbCr values.

Data Type Full Data Range Data Range for Wide-
Gamut RGB

10-bit [0, 1023] [64, 940]
12-bit [0, 4095] [256, 3760]

Data Types: uint16

BPS — Bits per sample for each channel of input image
10 | 12

Bits per sample for each channel of the input wide-gamut RGB image, specified as 10 or 12.

Output Arguments
ycbcr — YCbCr color values
numeric array

YCbCr color values, returned as a numeric array of the same size as the input RGB color values.
Data Types: uint16

Tips
• This function does not support the full data range of 10-bit and 12-bit RGB values, [0, 1023] and

[0, 4095] respectively. The table shows the data ranges of the YCbCr values for the BT.2020 and
BT.2100 color spaces.

Component 10-bit 12-bit
Y [64, 940] [256, 3760]
Cb, Cr [64, 960] [256, 3840]

 rgbwide2ycbcr

1-2739

References
[1] Rec. ITU-R BT.2020-2 (10/2015). "Parameter values for ultra-high definition television systems for

production and international programme exchange." International Telecommunication Union;
Broadcasting service (television). https://www.itu.int/rec/R-REC-BT.2020.

[2] Rec. ITU-R BT.2100-2 (07/2018). "Image parameter values for dynamic range television for use in
production and international programme exchange." International Telecommunication Union;
Broadcasting service (television). https://www.itu.int/rec/R-REC-BT.2100.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

rgbwide2ycbcr supports the generation of C code (requires MATLAB Coder). For more information,
see “Code Generation for Image Processing”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

See Also
rgb2ycbcr | ycbcr2rgbwide | ycbcr2rgb | rgbwide2xyz

Introduced in R2020b

1 Functions

1-2740

https://www.itu.int/rec/R-REC-BT.2020
https://www.itu.int/rec/R-REC-BT.2100

rigid2d
2-D rigid geometric transformation

Description
A rigid2d object stores information about a 2-D rigid geometric transformation and enables forward
and inverse transformations.

Creation

Syntax
tform = rigid2d
tform = rigid2d(t)
tform = rigid2d(rot,trans)

Description

tform = rigid2d creates a default rigid2d object that corresponds to an identity transformation.

tform = rigid2d(t) creates a rigid2d object based on a specified forward rigid transformation
matrix, t. The t input sets the T property.

tform = rigid2d(rot,trans) creates a rigid2d object based on the rotation, rot, and
translation, trans, components of the transformation. rot sets the Rotation property. trans sets
the Translation property.

Properties
T — Forward rigid transformation
3-by-3 identity matrix (default) | 3-by-3 numeric matrix

Forward rigid transformation, specified as a 3-by-3 numeric matrix.
Data Types: single | double

Dimensionality — Dimensionality of geometric transformation
2 (default)

This property is read-only.

Dimensionality of the geometric transformation, specified as the number 2.

Rotation — Rotation component of transformation
2-by-2 identity matrix (default) | 2-by-2 numeric matrix

Rotation component of the transformation, specified as a 2-by-2 numeric matrix.
Data Types: single | double

 rigid2d

1-2741

Translation — Translation component of transformation
[0 0] (default) | 2-element numeric row vector

Translation component of the transformation, specified as a 2-element numeric row vector.
Data Types: single | double

Object Functions
invert Invert geometric transformation
isTranslation Determine if transformation is pure translation
outputLimits Find output spatial limits given input spatial limits
transformPointsForward Apply forward geometric transformation
transformPointsInverse Apply inverse geometric transformation

Examples

Create Rigid 2-D Object with Defined Translation and Rotation

Specify an angle of rotation in degrees and create a 2-by-2 rotation matrix.

theta = 30;
rot = [cosd(theta) sind(theta); ...
 -sind(theta) cosd(theta)];

Specify the amount of horizontal and vertical translation, respectively.

trans = [2 3];

Create a rigid2d object that performs the rotation and translation.

tform = rigid2d(rot,trans)

tform =
 rigid2d with properties:

 Rotation: [2x2 double]
 Translation: [2 3]

See Also
affine2d | rigid3d | projective2d | geometricTransform2d | imwarp

Topics
“2-D and 3-D Geometric Transformation Process Overview”
“Matrix Representation of Geometric Transformations”

Introduced in R2020b

1 Functions

1-2742

rigid3d
3-D rigid geometric transformation

Description
A rigid3d object stores information about a 3-D rigid geometric transformation and enables forward
and inverse transformations.

Creation

Syntax
tform = rigid3d
tform = rigid3d(t)
tform = rigid3d(rot,trans)

Description

tform = rigid3d creates a default rigid3d object that corresponds to an identity transformation.

tform = rigid3d(t) creates a rigid3d object based on a specified forward rigid transformation
matrix, t. The t input sets the T property.

tform = rigid3d(rot,trans) creates a rigid3d object based on the rotation, rot, and
translation, trans, components of the transformation. rot sets the Rotation property. trans sets
the Translation property.

Properties
T — Forward rigid transformation
4-by-4 identity matrix (default) | 4-by-4 numeric matrix

Forward rigid transformation, specified as a 4-by-4 numeric matrix. This matrix must be a
homogeneous transformation matrix that satisfies the post-multiply convention given by:

x y z 1 = u v w 1 * T

T has the form

[r11 r12 r13 0; ...
r21 r22 r23 0; ...
r31 r32 r33 0; ...
tx ty tz 1];

Data Types: single | double

 rigid3d

1-2743

Dimensionality — Dimensionality of geometric transformation
3 (default) | positive integer

This property is read-only.

Dimensionality of the geometric transformation, specified as a positive integer.

Rotation — Rotation component of transformation
3-by-3 identity matrix (default) | 3-by-3 numeric matrix

Rotation component of the transformation, specified as a 3-by-3 numeric matrix. This rotation matrix
satisfies the post-multiply convention given by

x y z = u v w * R

Data Types: single | double

Translation — Translation component of transformation
[0 0 0] (default) | 3-element numeric row vector

Translation component of the transformation, specified as a 3-element numeric row vector. This
translation vector satisfies the convention given by

x y z = u v w + t

Data Types: single | double

Object Functions
invert Invert geometric transformation
outputLimits Find output spatial limits given input spatial limits
transformPointsForward Apply forward geometric transformation
transformPointsInverse Apply inverse geometric transformation

Examples

Create Rigid 3-D Object with Defined Translation and Rotation

Specify an angle of rotation in degrees and create a 3-by-3 rotation matrix.

theta = 30;
rot = [cosd(theta) sind(theta) 0; ...
 -sind(theta) cosd(theta) 0; ...
 0 0 1];

Specify the amount of horizontal, vertical, and depthwise translation, respectively.

trans = [2 3 4];

Create a rigid3d object that performs the rotation and translation.

tform = rigid3d(rot,trans)

tform =
 rigid3d with properties:

1 Functions

1-2744

 Rotation: [3x3 double]
 Translation: [2 3 4]

See Also
rigid2d | affine3d | geometricTransform3d | imwarp

Topics
“2-D and 3-D Geometric Transformation Process Overview”
“Matrix Representation of Geometric Transformations”

Introduced in R2020a

 rigid3d

1-2745

AssistedFreehand
Assisted freehand region of interest

Description
An AssistedFreehand object specifies the shape and position of a hand-drawn region-of-interest
(ROI), where the line drawn automatically follows edges in the underlying image. You can customize
the appearance and interactive behavior of the ROI.

For more information about using this ROI, including keyboard shortcuts, see “Tips” on page 1-2757.

Creation
There are two ways to create an AssistedFreehand object. For more information, see “Create ROI
Shapes”.

• Use the drawassisted function. Use this function when you want to create the ROI and set the
appearance in a single command. You can specify the shape and position of the ROI interactively
by drawing the ROI over an image using the mouse.

• Use the images.roi.AssistedFreehand function described here. Use this function when you
want to specify the appearance and behavior of the ROI before you specify the shape and position
of the ROI. After creating the object, you can specify the shape and position interactively by using
the draw function.

Syntax
roi = images.roi.AssistedFreehand

1 Functions

1-2746

roi = images.roi.AssistedFreehand(ax)
roi = images.roi.AssistedFreehand(___ ,Name,Value)

Description

roi = images.roi.AssistedFreehand creates an AssistedFreehand object with default
properties.

roi = images.roi.AssistedFreehand(ax) creates the ROI on the axes specified by ax.

roi = images.roi.AssistedFreehand(___ ,Name,Value) sets properties on page 1-2747 of
the ROI using name-value arguments. You can specify multiple name-value arguments. Enclose each
property name in single quotes.
Example: images.roi.AssistedFreehand('Color','y') creates a yellow colored
AssistedFreehand object.

Input Arguments

ax — Parent of ROI
gca (default) | Axes object | UIAxes object

Parent of ROI, specified as an Axes object or a UIAxes object. For information about using an ROI in
a UIAxes, including important limitations, see “Using ROIs in Apps Created with App Designer”.

Properties
Closed — Close ROI
true (default) | false

Close the ROI, specified as a logical value true or false. When true, the AssistedFreehand
object closes the ROI by connecting the last point drawn to the first point drawn.

Color — ROI color
[0 0.4470 0.7410] (default) | RGB triplet | color name | short color name

ROI color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]

 AssistedFreehand

1-2747

Color Name Short Name RGB Triplet Appearance
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'Color','r'
Example: 'Color','green'
Example: 'Color',[0 0.4470 0.7410]

ContextMenu — Context menu
ContextMenu object

Context menu that displays when you right-click the ROI, specified as a ContextMenu object. You can
create a custom context menu by using the uicontextmenu function and then configuring context
menu properties.

Deletable — Context menu provides option to delete the ROI
true (default) | false

Context menu provides an option to delete the ROI, specified as true or false. When the value is
true, you can delete the ROI interactively using the context menu. When the value is false, the
context menu option to delete the ROI is disabled.

In both cases, you can delete the ROI outside of the context menu by using the delete function.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | [x,y,w,h]

Area of the axes in which you can interactively place the ROI, specified as one of the values in this
table.

Value Description
'auto' The drawing area is the current axes limits

(default).

1 Functions

1-2748

Value Description
'unlimited' The drawing area has no boundary and ROIs can

be drawn or dragged to extend beyond the axes
limits.

[x,y,w,h] The drawing area is restricted to a rectangular
region beginning at (x,y), and extending to width
w and height h.

FaceAlpha — Transparency of ROI face
0.2 (default) | number in the range [0, 1]

Transparency of the ROI face, specified as a number in the range [0, 1]. When the value is 1, the ROI
face is completely opaque. When the value is 0, the ROI face is completely transparent.

FaceSelectable — ROI face can capture clicks
true (default) | false

ROI face can capture clicks, specified as true or false. When true (default), the ROI face captures
mouse clicks. When false, the ROI face does not capture mouse clicks.

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as one of the values in
this table.

Value Description
'on' The object handle is always visible (default).
'off' The object handle is hidden at all times.
'callback' The object handle is visible from within callbacks

or functions invoked by callbacks, but not from
within functions invoked from the command line.

Image — Image on which to draw ROI
handle to Image object

Image on which to draw ROI, specified as a handle to an Image object.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'reshape' | 'translate'

Interactivity of the ROI, specified as one of the values in this table.

Value Description
'all' The ROI is fully interactable (default).
'none' The ROI is not interactable, and no drag points

are visible.
'translate' The ROI can be translated (moved) within the

drawing area but not reshaped.

 AssistedFreehand

1-2749

Value Description
'reshape' The ROI can be reshaped but not translated.

Label — ROI label
'' (default) | character vector | string scalar

ROI label, specified as a character vector or string scalar. By default, the ROI has no label ('').

LabelAlpha — Transparency of text background
1 (default) | number in the range [0, 1]

Transparency of the text background, specified as a number in the range [0, 1]. When set to 1, the
text background is completely opaque. When set to 0, the text background is completely transparent.

LabelTextColor — Label text color
'black' (default) | RGB triplet | color name | short color name

Label text color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'LabelTextColor','r'

1 Functions

1-2750

Example: 'LabelTextColor','green'
Example: 'LabelTextColor',[0 0.4470 0.7410]

LabelVisible — Label visibility
'on' (default) | 'off' | 'hover'

Label visibility, specified as one of these values.

Value Description
'on' Label is visible when the ROI is visible.
'hover' Label is visible only when the mouse is hovering

over the ROI.
'off' Label is not visible.

LineWidth — Width of ROI border
positive number

Width of the ROI border, specified as a positive number in points. The default value is three times the
number of points per screen pixel, such that the border is three pixels wide.

MarkerSize — Marker size
positive number

Marker size, specified as a positive number in points. The default value is eight times the number of
points per screen pixel, such that markers are eight pixels in size.

Parent — ROI parent
Axes object | UIAxes object

ROI parent, specified as an Axes or UIAxes object. For information about using an ROI in a UIAxes,
including important limitations, see “Using ROIs in Apps Created with App Designer”.

Position — Position of ROI
[] (default) | n-by-2 numeric matrix

Position of the ROI, specified as an n-by-2 numeric matrix where n is the number of vertices or points
defining the ROI. Each row represents the [x y] coordinates of a vertex or point. The
AssistedFreehand object generates these points as you draw the ROI shape interactively. To work
with fewer points, use the reduce function.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the logical value true or false. You can also set this property
interactively. For example, clicking on the ROI selects the ROI and sets this property to true.
Similarly, pressing the Ctrl key and clicking the ROI deselects the ROI and sets the value of this
property to false.

SelectedColor — Color of ROI when selected
'none' (default) | RGB triplet | color name | short color name

 AssistedFreehand

1-2751

Color of the ROI when selected, specified as an RGB triplet, a color name, a short color name, or
'none'. If you specify 'none', then the value of Color defines the color of the ROI for all states,
selected or not.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'SelectedColor','r'
Example: 'SelectedColor','green'
Example: 'SelectedColor',[0 0.4470 0.7410]

Smoothing — Smooth edge of ROI
1 (default) | nonnegative number

Smooth edge of ROI after interactive placement, specified as a nonnegative scalar. The
AssistedFreehand object uses the standard deviation of the Gaussian smoothing kernel to filter the
x and y coordinates of the ROI. This parameter defines the filter size as in this equation:
2*ceil(2*Smoothing) + 1. You must specify the property before drawing the ROI interactively.
You can see the smoothing effect only after completing the drawing.

StripeColor — Color of ROI stripe
'none' (default) | RGB triplet | color name | short color name

1 Functions

1-2752

Color of the ROI stripe, specified as an RGB triplet, a color name, a short color name, or 'none'. If
you specify 'none', then the ROI edge is a solid color specified by Color. Otherwise, the edge of the
ROI is striped, with colors alternating between the colors specified by Color and StripeColor.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'StripeColor','r'
Example: 'StripeColor','green'
Example: 'StripeColor',[0 0.4470 0.7410]

Tag — Tag to associate with ROI
'' (default) | character vector | string scalar

Tag to associate with the ROI, specified as a character vector or string scalar. Use the tag value to
find the ROI object in a hierarchy of objects using the findobj function.

UserData — Data to associate with ROI
any MATLAB data

 AssistedFreehand

1-2753

Data to associate with the ROI, specified as any MATLAB data. For example, you can specify a scalar,
vector, matrix, cell array, string, character array, table, or structure. The AssistedFreehand object
does not use this data.

Visible — ROI visibility
'on' (default) | 'off' | on/off logical value

ROI visibility, specified as 'on' or 'off', or as a numeric or logical 1 (true) or 0 (false). A value of
'on' is equivalent to true, and 'off' is equivalent to false. The value is stored as an on/off logical
value of type OnOffSwitchState.

Value Description
'on' Display the ROI.
'off' Hide the ROI without deleting it. You still can

access the properties of an invisible ROI.

Waypoints — Position point is waypoint
[] (default) | logical vector

Position point is waypoint, specified as a logical vector of the same length as the Position property.
Elements in Waypoints with the value true identify points in the Position matrix that are
waypoints. By default, the AssistedFreehand object generates all the points that define the ROI
and only makes points at locations of increased curvature into waypoints. You can turn all the points,
or some subset of points, into waypoints by using code similar to roi.Waypoints(1:4:end) =
true;.

Waypoints appear as circular shapes on the ROI edge. You can use waypoints to reshape the ROI by
clicking and dragging the waypoint with the mouse. Moving waypoints modifies the freehand-drawn
region between the waypoint that you clicked and the adjacent waypoints.

Object Functions
addlistener Create event listener bound to event source
beginDrawingFromPoint Begin drawing ROI from specified point
bringToFront Bring ROI to front of Axes stacking order
createMask Create binary mask image from ROI
draw Begin drawing ROI interactively
inROI Query if points are located in ROI
reduce Reduce density of points in ROI
wait Block MATLAB command line until ROI operation is finished

Examples

Create Freehand ROI Using Assisted Freehand

Read an image into the workspace and display it.

 figure
 imshow(imread('baby.jpg'))

Create an AssistedFreehand object. By default, the class creates the ROI on the current axes. Note
that the axes must contain an image.

1 Functions

1-2754

roi = images.roi.AssistedFreehand;

Call the draw function, specifying the AssistedFreehand object as an argument. The pointer
changes to a cross-hair shape when you move it over the image. You can being drawing the ROI. Note
how, as you move the pointer, the line you draw follows the edges in the underlying image. Click to
add vertices along the edge as you draw.

draw(roi);

Set Up Listeners for AssistedFreehand ROI Events

Read an image into the workspace.

I = imread('cameraman.tif');

Display the image. Use the imshow syntax that returns the image object displayed.

img = imshow(I);

Create an AssistedFreehand ROI on the image. Call the draw object function to enable interactive
drawing of the ROI shape. Note how the ROI line automatically follow edges in the underlying image.

roi = images.roi.AssistedFreehand(img);
draw(roi)

Set up listeners for ROI moving events. When you move it, the ROI sends notifications of these events
and executes the callback function you specify.

addlistener(roi,'MovingROI',@allevents);
addlistener(roi,'ROIMoved',@allevents);

 AssistedFreehand

1-2755

The allevents callback function displays at the command line the previous position and the current
position of the ROI.

function allevents(src,evt)
 evname = evt.EventName;
 switch(evname)
 case{'MovingROI'}
 disp(['ROI moving previous position: ' mat2str(evt.PreviousPosition)]);
 disp(['ROI moving current position: ' mat2str(evt.CurrentPosition)]);
 case{'ROIMoved'}
 disp(['ROI moved previous position: ' mat2str(evt.PreviousPosition)]);
 disp(['ROI moved current position: ' mat2str(evt.CurrentPosition)]);
 end
end

More About
Events

To receive notification from the ROI when certain events happen, set up listeners for these events.
You can specify a callback function that executes when one of these events occurs. When the ROI
notifies your application through the listener, it returns data specific to the event. Look at the event
class for the specific event to see what is returned.

For an example, see “Set Up Listeners for AssistedFreehand ROI Events” on page 1-2755.

Event Name Trigger Event Data Event Attributes
DeletingROI ROI is about to be

interactively deleted.
event.EventData NotifyAccess:

private

ListenAccess:
public

DrawingStarted ROI is about to be
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

DrawingFinished ROI has been
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

MovingROI ROI shape or location is
being interactively
changed.

images.roi.ROIMovi
ngEventData

NotifyAccess:
private

ListenAccess:
public

1 Functions

1-2756

Event Name Trigger Event Data Event Attributes
ROIMoved ROI shape or location

has been interactively
changed.

images.roi.ROIMovi
ngEventData

NotifyAccess:
private

ListenAccess:
public

ROIClicked ROI has been clicked. images.roi.ROIClic
kedEventData

NotifyAccess:
private

ListenAccess:
public

AddingWaypoint A waypoint is about to
be interactively added
to the ROI.

event.EventData NotifyAccess:
private

ListenAccess:
public

WaypointAdded A waypoint has been
interactively added to
the ROI.

event.EventData NotifyAccess:
private

ListenAccess:
public

RemovingWaypoint A waypoint is about to
be interactively
removed from the ROI.

event.EventData NotifyAccess:
private

ListenAccess:
public

WaypointRemoved A waypoint has been
interactively removed
from the ROI.

event.EventData NotifyAccess:
private

ListenAccess:
public

Tips
• To draw the ROI interactively using the draw or drawassisted function, position the pointer on

the image, click and release to place the first vertex (waypoint). Then move the pointer to draw a
line. As you draw, the line automatically follows the edges of objects in the image. Double-click to
finish the ROI.

• The ROI supports the following interactivity, including keyboard shortcuts.

Behavior Keyboard shortcut
Cancel drawing the ROI. Press Esc. The function returns a valid ROI

object with an empty Position property.

 AssistedFreehand

1-2757

Behavior Keyboard shortcut
Finish drawing (close) the ROI. Double-click, which adds a point at the pointer

position and draws a line connecting this point
to the first point drawn, closing the ROI.

Right-click, which draws a line connecting the
last point to the first point drawn.

Position the pointer over the first point and
click.

Press Enter, which draws a line connecting
the last point to the first point drawn.

Resize (reshape) the ROI. Position pointer over a waypoint and then
click and drag. No assistance (snapping to
edges) is available in this mode.

Add a waypoint. Position the pointer on an edge of the ROI,
right-click, and select Add Waypoint. You can
also position the pointer on an edge of the ROI
and double-click.

Remove a waypoint. Position the pointer on a waypoint, right-click,
and select Remove Waypoint.

Move the ROI. Position the pointer over the ROI. The pointer
changes to the fleur shape. Click and drag to
move the ROI.

Delete an ROI. Position the pointer on the ROI (not on a
vertex), right-click, and select Delete
Freehand from the context menu. You can
also delete the ROI programmatically using
the delete function.

• For information about using an ROI in an app created with App Designer, see “Using ROIs in Apps
Created with App Designer”.

Compatibility Considerations
UIContextMenu property is not recommended
Not recommended starting in R2020a

Starting in R2020a, using the UIContextMenu property to assign a context menu to a graphics
object or UI component is not recommended. Use the ContextMenu property instead. The property
values are the same.

There are no plans to remove support for the UIContextMenu property at this time. However, the
UIContextMenu property no longer appears in the list returned by calling the get function on a
graphics object or UI component.

See Also
drawassisted | Freehand | Polygon | Polyline

1 Functions

1-2758

Topics
“Create ROI Shapes”

Introduced in R2018b

 AssistedFreehand

1-2759

Circle
Circular region of interest

Description
A Circle object specifies the size and position of a circular region-of-interest (ROI). You can
customize the appearance and interactive behavior of the ROI.

For more information about using this ROI, including keyboard shortcuts, see “Tips” on page 1-2772.

Creation
There are two ways to create a Circle object. For more information, see “Create ROI Shapes”.

• Use the drawcircle function. Use this function when you want to create the ROI and set the
appearance in a single command. You can specify the size and position of the ROI interactively by
drawing the ROI over an image using the mouse, or programmatically by using name-value
arguments.

• Use the images.roi.Circle function described here. Use this function when you want to
specify the appearance and behavior of the ROI before you specify the size and position of the
ROI. After creating the object, you can specify the size and position interactively by using the
draw function or programmatically by modifying properties of the object.

Syntax
roi = images.roi.Circle
roi = images.roi.Circle(ax)
roi = images.roi.Circle(___ ,Name,Value)

1 Functions

1-2760

Description

roi = images.roi.Circle creates a Circle object with default properties.

roi = images.roi.Circle(ax) creates the ROI on the axes specified by ax.

roi = images.roi.Circle(___ ,Name,Value) sets properties on page 1-2761 using name-value
arguments. You can specify multiple name-value arguments. Enclose each property name in single
quotes.
Example: images.roi.Circle('Color','y') creates a yellow colored Circle object.

Input Arguments

ax — Parent of ROI
gca (default) | Axes object | UIAxes object

Parent of ROI, specified as an Axes object or a UIAxes object. For information about using an ROI in
a UIAxes, including important limitations, see “Using ROIs in Apps Created with App Designer”.

Properties
Center — Center of ROI
[] (default) | 1-by-2 numeric vector

Center of the ROI, specified as a 1-by-2 numeric vector of the form [x y]. The values x and y are the
coordinates of the center point of the ROI. The value of this property changes automatically when you
draw or move the ROI.

Color — ROI color
[0 0.4470 0.7410] (default) | RGB triplet | color name | short color name

ROI color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

 Circle

1-2761

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'Color','r'
Example: 'Color','green'
Example: 'Color',[0 0.4470 0.7410]

ContextMenu — Context menu
ContextMenu object

Context menu that displays when you right-click the ROI, specified as a ContextMenu object. You can
create a custom context menu by using the uicontextmenu function and then configuring context
menu properties.

Deletable — Context menu provides option to delete the ROI
true (default) | false

Context menu provides an option to delete the ROI, specified as true or false. When the value is
true, you can delete the ROI interactively using the context menu. When the value is false, the
context menu option to delete the ROI is disabled.

In both cases, you can delete the ROI outside of the context menu by using the delete function.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | [x,y,w,h]

Area of the axes in which you can interactively place the ROI, specified as one of the values in this
table.

Value Description
'auto' The drawing area is the current axes limits

(default).
'unlimited' The drawing area has no boundary and ROIs can

be drawn or dragged to extend beyond the axes
limits.

[x,y,w,h] The drawing area is restricted to a rectangular
region beginning at (x,y), and extending to width
w and height h.

FaceAlpha — Transparency of ROI face
0.2 (default) | number in the range [0, 1]

1 Functions

1-2762

Transparency of the ROI face, specified as a number in the range [0, 1]. When the value is 1, the ROI
face is completely opaque. When the value is 0, the ROI face is completely transparent.

FaceSelectable — ROI face can capture clicks
true (default) | false

ROI face can capture clicks, specified as true or false. When true (default), the ROI face captures
mouse clicks. When false, the ROI face does not capture mouse clicks.

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as one of the values in
this table.

Value Description
'on' The object handle is always visible (default).
'off' The object handle is hidden at all times.
'callback' The object handle is visible from within callbacks

or functions invoked by callbacks, but not from
within functions invoked from the command line.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'reshape' | 'translate'

Interactivity of the ROI, specified as one of the values in this table.

Value Description
'all' The ROI is fully interactable (default).
'none' The ROI is not interactable, and no drag points

are visible.
'translate' The ROI can be translated (moved) within the

drawing area but not reshaped.
'reshape' The ROI can be reshaped but not translated.

Label — ROI label
'' (default) | character vector | string scalar

ROI label, specified as a character vector or string scalar. By default, the ROI has no label ('').

LabelAlpha — Transparency of text background
1 (default) | number in the range [0, 1]

Transparency of the text background, specified as a number in the range [0, 1]. When set to 1, the
text background is completely opaque. When set to 0, the text background is completely transparent.

LabelTextColor — Label text color
'black' (default) | RGB triplet | color name | short color name

Label text color, specified as an RGB triplet, a color name, or a short color name.

 Circle

1-2763

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'LabelTextColor','r'
Example: 'LabelTextColor','green'
Example: 'LabelTextColor',[0 0.4470 0.7410]

LabelVisible — Label visibility
'on' (default) | 'off' | 'hover'

Label visibility, specified as one of these values.

Value Description
'on' Label is visible when the ROI is visible.
'hover' Label is visible only when the mouse is hovering

over the ROI.
'off' Label is not visible.

LineWidth — Width of ROI border
positive number

1 Functions

1-2764

Width of the ROI border, specified as a positive number in points. The default value is three times the
number of points per screen pixel, such that the border is three pixels wide.

MarkerSize — Marker size
positive number

Marker size, specified as a positive number in points. The default value is eight times the number of
points per screen pixel, such that markers are eight pixels in size.

Parent — ROI parent
Axes object | UIAxes object

ROI parent, specified as an Axes or UIAxes object. For information about using an ROI in a UIAxes,
including important limitations, see “Using ROIs in Apps Created with App Designer”.

Radius — Radius of circle
nonnegative number

Radius of the circle, specified as a nonnegative number. You can also set this property by drawing or
resizing the circle.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the logical value true or false. You can also set this property
interactively. For example, clicking on the ROI selects the ROI and sets this property to true.
Similarly, pressing the Ctrl key and clicking the ROI deselects the ROI and sets the value of this
property to false.

SelectedColor — Color of ROI when selected
'none' (default) | RGB triplet | color name | short color name

Color of the ROI when selected, specified as an RGB triplet, a color name, a short color name, or
'none'. If you specify 'none', then the value of Color defines the color of the ROI for all states,
selected or not.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]

 Circle

1-2765

Color Name Short Name RGB Triplet Appearance
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'SelectedColor','r'
Example: 'SelectedColor','green'
Example: 'SelectedColor',[0 0.4470 0.7410]

StripeColor — Color of ROI stripe
'none' (default) | RGB triplet | color name | short color name

Color of the ROI stripe, specified as an RGB triplet, a color name, a short color name, or 'none'. If
you specify 'none', then the ROI edge is a solid color specified by Color. Otherwise, the edge of the
ROI is striped, with colors alternating between the colors specified by Color and StripeColor.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

1 Functions

1-2766

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'StripeColor','r'
Example: 'StripeColor','green'
Example: 'StripeColor',[0 0.4470 0.7410]

Tag — Tag to associate with ROI
'' (default) | character vector | string scalar

Tag to associate with the ROI, specified as a character vector or string scalar. Use the tag value to
find the ROI object in a hierarchy of objects using the findobj function.

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as any MATLAB data. For example, you can specify a scalar,
vector, matrix, cell array, string, character array, table, or structure. The Circle object does not use
this data.

Vertices — Locations of points on perimeter
n-by-2 numeric matrix

This property is read-only.

Locations of points on the perimeter of the circle, returned as an n-by-2 numeric matrix, where n is
the total number of vertices.

Visible — ROI visibility
'on' (default) | 'off' | on/off logical value

ROI visibility, specified as 'on' or 'off', or as a numeric or logical 1 (true) or 0 (false). A value of
'on' is equivalent to true, and 'off' is equivalent to false. The value is stored as an on/off logical
value of type OnOffSwitchState.

Value Description
'on' Display the ROI.
'off' Hide the ROI without deleting it. You still can

access the properties of an invisible ROI.

Object Functions
addlistener Create event listener bound to event source

 Circle

1-2767

beginDrawingFromPoint Begin drawing ROI from specified point
bringToFront Bring ROI to front of Axes stacking order
createMask Create binary mask image from ROI
draw Begin drawing ROI interactively
inROI Query if points are located in ROI
wait Block MATLAB command line until ROI operation is finished

Examples

Create Circular ROI Non-interactively

Read an image into the workspace and display it.

I = imread('baby.jpg');
figure
imshow(I)

1 Functions

1-2768

Create a circular ROI on the image. Use the 'Center' property to specify the location and the
'Radius' property to specify the size. For programmatically created ROIs, if you want the ROI
drawn in a specific axes, you must specify that axes as an input argument. Otherwise, an instance of
the images.roi.Circle class is created but not displayed. In this example, specify the current axes
(gca) to draw the ROI on the image in that axes.

h = images.roi.Circle(gca,'Center',[1000 1000],'Radius',500);

 Circle

1-2769

Set Up Listeners for Circle ROI Events

Read an image into the workspace.

I = imread('cameraman.tif');

1 Functions

1-2770

Display the image.

imshow(I);

Draw a circular ROI on the image. Because this example specifies the size and location of the ROI,
you do not have to call the draw method to enable interactive drawing.

roi = images.roi.Circle(gca,'Center',[100 100],'Radius',50);

Set up listeners for ROI moving events. When you move it, the ROI sends notifications of these events
and executes the callback function you specify.

addlistener(roi,'MovingROI',@allevents);
addlistener(roi,'ROIMoved',@allevents);

The allevents callback function displays at the command line the current center and the current
radius of the Circle ROI.

function allevents(src,evt)
evname = evt.EventName;
 switch(evname)
 case{'MovingROI'}
 disp(['ROI moving Current Center: ' mat2str(evt.CurrentCenter)]);
 disp(['ROI moving Current Radius: ' mat2str(evt.CurrentRadius)]);
 case{'ROIMoved'}
 disp(['ROI moved Current Center: ' mat2str(evt.CurrentCenter)]);
 disp(['ROI moved Current Radius: ' mat2str(evt.CurrentRadius)]);
 end
end

 Circle

1-2771

More About
Events

To receive notification from the ROI when certain events happen, set up listeners for these events.
You can specify a callback function that executes when one of these events occurs. When the ROI
notifies your application through the listener, it returns data specific to the event. Look at the event
class for the specific event to see what is returned.

For an example, see “Set Up Listeners for Circle ROI Events” on page 1-2770.

Event Name Trigger Event Data Event Attributes
DeletingROI ROI is about to be

interactively deleted.
event.EventData NotifyAccess:

private

ListenAccess:
public

DrawingStarted ROI is about to be
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

DrawingFinished ROI has been
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

MovingROI ROI shape or location is
being interactively
changed.

images.roi.CircleM
ovingEventData

NotifyAccess:
private

ListenAccess:
public

ROIMoved ROI shape or location
has been interactively
changed.

images.roi.CircleM
ovingEventData

NotifyAccess:
private

ListenAccess:
public

ROIClicked ROI has been clicked. images.roi.ROIClic
kedEventData

NotifyAccess:
private

ListenAccess:
public

Tips
• To draw the ROI interactively using the draw or drawcircle function, position the cursor on the

axes and click and drag to create the shape. To finish drawing, release the pointer.
• The ROI supports the following interactivity, including keyboard shortcuts.

1 Functions

1-2772

Behavior Keyboard shortcut
Finish drawing the ROI. Release the mouse cursor.
Cancel drawing the ROI. Press Esc. The function returns a valid ROI

object with an empty Position property.
Resize (reshape) the ROI. Position pointer over a vertex and then click

and drag.
Move the ROI. Position the cursor anywhere inside the ROI,

press and hold the mouse, and move the ROI
over the image.

Delete the ROI. Position the cursor on the circle, right-click,
and select Delete Circle from the context
menu. You can also delete the ROI
programmatically using the delete function.

• For information about using an ROI in an app created with App Designer, see “Using ROIs in Apps
Created with App Designer”.

Compatibility Considerations
UIContextMenu property is not recommended
Not recommended starting in R2020a

Starting in R2020a, using the UIContextMenu property to assign a context menu to a graphics
object or UI component is not recommended. Use the ContextMenu property instead. The property
values are the same.

There are no plans to remove support for the UIContextMenu property at this time. However, the
UIContextMenu property no longer appears in the list returned by calling the get function on a
graphics object or UI component.

See Also
drawcircle | Ellipse

Topics
“Create Image Comparison Tool Using ROIs”
“Create ROI Shapes”

Introduced in R2018b

 Circle

1-2773

Crosshair
Crosshair region of interest

Description
A Crosshair object specifies the position of a crosshair region-of-interest (ROI). You can customize
the appearance and interactive behavior of the ROI.

For more information about using this ROI, including keyboard shortcuts, see “Tips” on page 1-2786.

Creation
There are two ways to create a Crosshair object. For more information, see “Create ROI Shapes”.

• Use the drawcrosshair function. Use this function when you want to create the ROI and set the
appearance in a single command. You can specify the position of the ROI interactively by drawing
the ROI over an image using the mouse, or programmatically by using name-value arguments.

• Use the images.roi.Crosshair function described here. Use this function when you want to
specify the appearance and behavior of the ROI before you specify the position of the ROI. After
creating the object, you can specify the position interactively by using the draw function or
programmatically by modifying properties of the object.

Syntax
roi = images.roi.Crosshair

1 Functions

1-2774

roi = images.roi.Crosshair(ax)
roi = images.roi.Crosshair(___ ,Name,Value)

Description

roi = images.roi.Crosshair creates a Crosshair object with default properties.

roi = images.roi.Crosshair(ax) creates the ROI in the axes specified by ax.

roi = images.roi.Crosshair(___ ,Name,Value) sets properties on page 1-2775 of the ROI
using name-value arguments. You can specify multiple name-value arguments. Enclose each property
name in single quotes.
Example: images.roi.Crosshair('Color','y') creates a yellow colored Crosshair object.

Input Arguments

ax — Parent of ROI
gca (default) | Axes object | UIAxes object

Parent of ROI, specified as an Axes object or a UIAxes object. For information about using an ROI in
a UIAxes, including important limitations, see “Using ROIs in Apps Created with App Designer”.

Properties
Color — ROI color
[0 0.4470 0.7410] (default) | RGB triplet | color name | short color name

ROI color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

 Crosshair

1-2775

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'Color','r'
Example: 'Color','green'
Example: 'Color',[0 0.4470 0.7410]

ContextMenu — Context menu
ContextMenu object

Context menu that displays when you right-click the ROI, specified as a ContextMenu object. You can
create a custom context menu by using the uicontextmenu function and then configuring context
menu properties.

Deletable — Context menu provides option to delete the ROI
true (default) | false

Context menu provides an option to delete the ROI, specified as true or false. When the value is
true, you can delete the ROI interactively using the context menu. When the value is false, the
context menu option to delete the ROI is disabled.

In both cases, you can delete the ROI outside of the context menu by using the delete function.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | [x,y,w,h]

Area of the axes in which you can interactively place the ROI, specified as one of the values in this
table.

Value Description
'auto' The drawing area is the current axes limits

(default).
'unlimited' The drawing area has no boundary and ROIs can

be drawn or dragged to extend beyond the axes
limits.

[x,y,w,h] The drawing area is restricted to a rectangular
region beginning at (x,y), and extending to width
w and height h.

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

1 Functions

1-2776

Visibility of the ROI handle in the Children property of the parent, specified as one of the values in
this table.

Value Description
'on' The object handle is always visible (default).
'off' The object handle is hidden at all times.
'callback' The object handle is visible from within callbacks

or functions invoked by callbacks, but not from
within functions invoked from the command line.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none'

Interactivity of the ROI, specified as one of the values in this table.

Value Description
'all' The ROI is fully interactable.
'none' The ROI is not interactable, and no drag points

are visible.

Label — ROI label
'' (default) | character vector | string scalar

ROI label, specified as a character vector or string scalar. By default, the ROI has no label ('').

LabelAlpha — Transparency of text background
1 (default) | number in the range [0, 1]

Transparency of the text background, specified as a number in the range [0, 1]. When set to 1, the
text background is completely opaque. When set to 0, the text background is completely transparent.

LabelTextColor — Label text color
'black' (default) | RGB triplet | color name | short color name

Label text color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]

 Crosshair

1-2777

Color Name Short Name RGB Triplet Appearance
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'LabelTextColor','r'
Example: 'LabelTextColor','green'
Example: 'LabelTextColor',[0 0.4470 0.7410]

LabelVisible — Label visibility
'on' (default) | 'off' | 'hover'

Label visibility, specified as one of these values.

Value Description
'on' Label is visible when the ROI is visible.
'hover' Label is visible only when the mouse is hovering

over the ROI.
'off' Label is not visible.

LineWidth — Width of ROI border
positive number

Width of the ROI border, specified as a positive number in points. The default value is three times the
number of points per screen pixel, such that the border is three pixels wide.

Parent — ROI parent
Axes object | UIAxes object

ROI parent, specified as an Axes or UIAxes object. For information about using an ROI in a UIAxes,
including important limitations, see “Using ROIs in Apps Created with App Designer”.

Position — Position of ROI
1-by-2 numeric vector

1 Functions

1-2778

Position of the ROI, specified as a 1-by-2 numeric vector of the form [x y]. The values x and y
specify the x- and y-coordinates of the location where the horizontal line crosses the vertical line in
the crosshair ROI. This value changes automatically when you draw or move the ROI.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the logical value true or false. You can also set this property
interactively. For example, clicking on the ROI selects the ROI and sets this property to true.
Similarly, pressing the Ctrl key and clicking the ROI deselects the ROI and sets the value of this
property to false.

SelectedColor — Color of ROI when selected
'none' (default) | RGB triplet | color name | short color name

Color of the ROI when selected, specified as an RGB triplet, a color name, a short color name, or
'none'. If you specify 'none', then the value of Color defines the color of the ROI for all states,
selected or not.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'SelectedColor','r'

 Crosshair

1-2779

Example: 'SelectedColor','green'
Example: 'SelectedColor',[0 0.4470 0.7410]

StripeColor — Color of ROI stripe
'none' (default) | RGB triplet | color name | short color name

Color of the ROI stripe, specified as an RGB triplet, a color name, a short color name, or 'none'. If
you specify 'none', then the ROI edge is a solid color specified by Color. Otherwise, the edge of the
ROI is striped, with colors alternating between the colors specified by Color and StripeColor.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'StripeColor','r'
Example: 'StripeColor','green'
Example: 'StripeColor',[0 0.4470 0.7410]

Tag — Tag to associate with ROI
'' (default) | character vector | string scalar

Tag to associate with the ROI, specified as a character vector or string scalar. Use the tag value to
find the ROI object in a hierarchy of objects using the findobj function.

1 Functions

1-2780

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as any MATLAB data. For example, you can specify a scalar,
vector, matrix, cell array, string, character array, table, or structure. The Crosshair object does not
use this data.

Visible — ROI visibility
'on' (default) | 'off' | on/off logical value

ROI visibility, specified as 'on' or 'off', or as a numeric or logical 1 (true) or 0 (false). A value of
'on' is equivalent to true, and 'off' is equivalent to false. The value is stored as an on/off logical
value of type OnOffSwitchState.

Value Description
'on' Display the ROI.
'off' Hide the ROI without deleting it. You still can

access the properties of an invisible ROI.

Object Functions
addlistener Create event listener bound to event source
beginDrawingFromPoint Begin drawing ROI from specified point
bringToFront Bring ROI to front of Axes stacking order
draw Begin drawing ROI interactively
wait Block MATLAB command line until ROI operation is finished

Examples

Create Crosshair ROI

Read an image into the workspace and display it.

I = imread('baby.jpg');
figure;
imshow(I)

 Crosshair

1-2781

Place a crosshair ROI on the image programmatically. When you specify the position of the ROI, you
must specify the axes.

h = images.roi.Crosshair(gca,'Position',[100,100]);

1 Functions

1-2782

Create Crosshair Tool to Check Pixel Values

Read an image into the workspace.

img = imread('coins.png');

Display the image in a figure.

 Crosshair

1-2783

hAx = gca;
imObj = imshow(img,'Parent',hAx);
imObj.Parent.Visible = 'on';

Create a crosshair ROI on the image.

h = images.roi.Crosshair('Parent',hAx,'Position',[50 50],'LineWidth',1,'Color','y');

1 Functions

1-2784

Set up a listener to get notification when the ROI moves over the image. Because the code displays
the value of the pixel under the crosshair, you must pass the image as an argument to the listener.

addlistener(h,'MovingROI',@(src,data)displayInfo(src,data,hAx,img));

Define the displayInfo function called by the listener when a 'MovingROI' event occurs.

function displayInfo(~,data,hAx,img)
pos = ceil(data.CurrentPosition);
title(hAx,['Pixel Value: ',num2str(img(pos(2),pos(1)))])
end

Appearance of the image with title during interactive movement of the Crosshair ROI.

More About
Events

To receive notification from the ROI when certain events happen, set up listeners for these events.
You can specify a callback function that executes when one of these events occurs. When the ROI
notifies your application through the listener, it returns data specific to the event. Look at the event
class for the specific event to see what is returned.

For an example of using event listeners, see “Create Crosshair Tool to Check Pixel Values” on page 1-
2783.

Event Name Trigger Event Data Event Attributes
DeletingROI ROI is about to be

interactively deleted.
event.EventData NotifyAccess:

private

ListenAccess:
public

 Crosshair

1-2785

Event Name Trigger Event Data Event Attributes
DrawingStarted ROI is about to be

interactively drawn.
event.EventData NotifyAccess:

private

ListenAccess:
public

DrawingFinished ROI has been
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

MovingROI ROI shape or location is
being interactively
changed.

images.roi.ROIMovi
ngEventData

NotifyAccess:
private

ListenAccess:
public

ROIMoved ROI shape or location
has been interactively
changed.

images.roi.ROIMovi
ngEventData

NotifyAccess:
private

ListenAccess:
public

ROIClicked ROI has been clicked. images.roi.ROIClic
kedEventData

NotifyAccess:
private

ListenAccess:
public

Tips
• To draw the ROI interactively using the draw or drawcrosshair function, position the cursor

over the image and click the mouse to draw the ROI.
• The ROI supports the following interactivity, including keyboard shortcuts.

Task Description
Cancel drawing operation. Press Esc. The function returns a valid ROI object

with an empty Position property.
Move the ROI. Position the cursor over the center of the crosshair

ROI (where the two lines cross) and click and drag
the crosshair. Another way to move the crosshair
ROI is to position the cursor anywhere on one of the
two lines and click. The other line in the crosshair
jumps to the new crosshair center position.

Delete the ROI. Position the cursor over the ROI, right-click, and
then choose Delete Crosshair from the context
menu. You can also delete the ROI programmatically
by using the delete function.

• For information about using an ROI in an app created with App Designer, see “Using ROIs in Apps
Created with App Designer”.

1 Functions

1-2786

Compatibility Considerations
UIContextMenu property is not recommended
Not recommended starting in R2020a

Starting in R2020a, using the UIContextMenu property to assign a context menu to a graphics
object or UI component is not recommended. Use the ContextMenu property instead. The property
values are the same.

There are no plans to remove support for the UIContextMenu property at this time. However, the
UIContextMenu property no longer appears in the list returned by calling the get function on a
graphics object or UI component.

See Also
drawcrosshair | Line | Point | Polyline

Topics
“Create ROI Shapes”

Introduced in R2019b

 Crosshair

1-2787

Cuboid
Cuboidal region of interest

Description
A Cuboid object specifies the shape and position of a 3-D cuboidal region of interest (ROI). You can
customize the appearance and interactive behavior of the ROI.

For more information about using this ROI, including keyboard shortcuts and a right-click context
menu, see “Tips” on page 1-2800.

Creation
There are two ways to create a Cuboid object. For more information, see “Create ROI Shapes”.

• Use the drawcuboid function. Use this function when you want to create the ROI and set the
appearance in a single command. You can specify the shape and position of the ROI interactively
by drawing the ROI over an image using the mouse, or programmatically by using name-value
arguments.

• Use the images.roi.Cuboid function described here. Use this function when you want to
specify the appearance and behavior of the ROI before you specify the shape and position of the
ROI. After creating the object, you can specify the shape and position interactively by using the
draw function or programmatically by modifying properties of the object.

1 Functions

1-2788

Syntax
roi = images.roi.Cuboid
roi = images.roi.Cuboid(ax)
roi = images.roi.Cuboid(___ ,Name,Value)

Description

roi = images.roi.Cuboid creates a Cuboid object with default properties.

roi = images.roi.Cuboid(ax) creates an ROI in the axes specified by ax.

roi = images.roi.Cuboid(___ ,Name,Value) sets properties on page 1-2789 using name-value
arguments. You can specify multiple name-value arguments. Enclose each property name in single
quotes.
Example: images.roi.Cuboid('Color','y') creates a yellow colored Cuboid object.

Input Arguments

ax — Parent of ROI
gca (default) | Axes object | UIAxes object

Parent of ROI, specified as an Axes object or a UIAxes object. For information about using an ROI in
a UIAxes, including important limitations, see “Using ROIs in Apps Created with App Designer”.

Properties
Color — ROI color
[0 0.4470 0.7410] (default) | RGB triplet | color name | short color name

ROI color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

 Cuboid

1-2789

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'Color','r'
Example: 'Color','green'
Example: 'Color',[0 0.4470 0.7410]

ContextMenu — Context menu
ContextMenu object

Context menu that displays when you right-click the ROI, specified as a ContextMenu object. You can
create a custom context menu by using the uicontextmenu function and then configuring context
menu properties.

Deletable — Context menu provides option to delete the ROI
true (default) | false

Context menu provides an option to delete the ROI, specified as true or false. When the value is
true, you can delete the ROI interactively using the context menu. When the value is false, the
context menu option to delete the ROI is disabled.

In both cases, you can delete the ROI outside of the context menu by using the delete function.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | 1-by-6 numeric array

Area of the axes in which you can interactively place the ROI, specified as one of the values in this
table.

Value Description
'auto' The drawing area is a superset of the current

axes limits and a bounding box that surrounds
the ROI (default).

'unlimited' The drawing area has no boundary and ROIs can
be drawn or dragged to extend beyond the axes
limits.

[x,y,z,w,h,d] The drawing area is restricted to a region
beginning at (x,y,z), with width w, height h, and
depth d.

EdgeAlpha — Transparency of ROI edge
1 (default) | number in the range [0, 1]

1 Functions

1-2790

Transparency of ROI edge, specified as a number in the range [0, 1]. When set to 1, the ROI edge is
completely opaque. When set to 0, the ROI edge is completely transparent.

FaceAlpha — Transparency of ROI faces
0.2 (default) | number in the range [0, 1]

Transparency of the ROI faces, specified as a number in the range [0, 1]. When the value is 1, the ROI
faces are completely opaque. When the value is 0, the ROI faces are completely transparent.

FaceAlphaOnHover — Transparency of ROI face directly underneath mouse pointer
0.4 (default) | number in the range [0, 1] | 'none'

Transparency of ROI face directly underneath the mouse pointer, specified as a number in the range
[0, 1] or 'none', to indicate no change to face transparency. When set to 1, the face under the mouse
pointer is completely opaque. When set to 0, the face is completely transparent.

FaceColorOnHover — Color of ROI face directly underneath mouse pointer
'none' (default) | RGB triplet | color name | short color name

Color of the ROI face directly underneath the mouse pointer, specified as an RGB triplet, a color
name, a short color name, or 'none'. If you specify 'none', then the face color does not when the
mouse hovers over the face. When you are not hovering over a face of the ROI, the value of the ROI
Color property determines the face color.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]

 Cuboid

1-2791

RGB Triplet Appearance
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'FaceColorOnHover','r'
Example: 'FaceColorOnHover','green'
Example: 'FaceColorOnHover',[0 0.4470 0.7410]

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as one of the values in
this table.

Value Description
'on' The object handle is always visible (default).
'off' The object handle is hidden at all times.
'callback' The object handle is visible from within callbacks

or functions invoked by callbacks, but not from
within functions invoked from the command line.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'translate'

Interactivity of the ROI, specified as one of the values in this table.

Value Description
'all' The ROI is fully interactable.
'none' The ROI is not interactable, and no drag points

are visible.
'translate' The ROI can be translated (moved) within the

drawing area.

Label — ROI label
'' (default) | character vector | string scalar

ROI label, specified as a character vector or string scalar. By default, the ROI has no label ('').

LabelAlpha — Transparency of text background
1 (default) | number in the range [0, 1]

Transparency of the text background, specified as a number in the range [0, 1]. When set to 1, the
text background is completely opaque. When set to 0, the text background is completely transparent.

LabelTextColor — Label text color
'black' (default) | RGB triplet | color name | short color name

Label text color, specified as an RGB triplet, a color name, or a short color name.

1 Functions

1-2792

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'LabelTextColor','r'
Example: 'LabelTextColor','green'
Example: 'LabelTextColor',[0 0.4470 0.7410]

LabelVisible — Label visibility
'on' (default) | 'off' | 'hover'

Label visibility, specified as one of these values.

Value Description
'on' Label is visible when the ROI is visible.
'hover' Label is visible only when the mouse is hovering

over the ROI.
'off' Label is not visible.

LineWidth — Width of ROI edge
1 (default) | positive number

 Cuboid

1-2793

Width of the ROI edge, specified as a positive number in points.

Parent — ROI parent
Axes object | UIAxes object

ROI parent, specified as an Axes or UIAxes object. For information about using an ROI in a UIAxes,
including important limitations, see “Using ROIs in Apps Created with App Designer”.

Position — Position of cuboid
1-by-6 numeric vector

Position of the cuboid, specified as a 1-by-6 numeric vector of the form [xmin, ymin, zmin,
width, height, depth]. This property updates automatically when you draw or move the cuboid.

Rotatable — Ability of cuboid to be rotated
'none' (default) | 'x' | 'y' | 'z' | 'all'

Ability of the cuboid to be rotated, specified as one of these values.

Value Description
'all' ROI is fully rotatable.
'x' ROI can only be rotated about the x axis.
'y' ROI can only be rotated about the y axis.
'z' ROI can only be rotated about the z axis.
'none' ROI is not rotatable.

RotationAngle — Angle of ROI rotation
[0 0 0] (default) | 1-by-3 numeric vector

Angle of ROI rotation, specified as a 1-by-3 numeric vector of rotation angles, measured in degrees.
The rotation angles array is of the form [x_angle y_angle z_angle], measured about the x-, y-,
and z-axis, respectively. Rotation is applied about the ROI centroid in order z, then y, then x.

The value of RotationAngle does not impact the values in the Position property. Position
represents the cuboid prior to any rotation. When you rotate the cuboid, use the Vertices property
to determine the location of the rotated cuboid.

ScrollWheelDuringDraw — Ability of scroll wheel to adjust size
'all' (default) | xresize | yresize | zresize | 'none'

Ability of the scroll wheel to adjust the size of the cuboid during interactive placement, specified as
one of these values.

Value Description
'allresize' Scroll wheel impacts all ROI dimensions.
'xresize' Scroll wheel impacts only the x dimension.
'yresize' Scroll wheel impacts only the y dimension.
'zresize' Scroll wheel impacts only the z dimension.
'none' Scroll wheel has no effect.

1 Functions

1-2794

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the logical value true or false. You can also set this property
interactively. For example, clicking on the ROI selects the ROI and sets this property to true.
Similarly, pressing the Ctrl key and clicking the ROI deselects the ROI and sets the value of this
property to false.

SelectedColor — Color of ROI when selected
'none' (default) | RGB triplet | color name | short color name

Color of the ROI when selected, specified as an RGB triplet, a color name, a short color name, or
'none'. If you specify 'none', then the value of Color defines the color of the ROI for all states,
selected or not.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'SelectedColor','r'
Example: 'SelectedColor','green'
Example: 'SelectedColor',[0 0.4470 0.7410]

 Cuboid

1-2795

StripeColor — Color of ROI stripe
'none' (default) | RGB triplet | color name | short color name

Color of the ROI stripe, specified as an RGB triplet, a color name, a short color name, or 'none'. If
you specify 'none', then the ROI edge is a solid color specified by Color. Otherwise, the edge of the
ROI is striped, with colors alternating between the colors specified by Color and StripeColor.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'StripeColor','r'
Example: 'StripeColor','green'
Example: 'StripeColor',[0 0.4470 0.7410]

Tag — Tag to associate with ROI
'' (default) | character vector | string scalar

Tag to associate with the ROI, specified as a character vector or string scalar. Use the tag value to
find the ROI object in a hierarchy of objects using the findobj function.

UserData — Data to associate with ROI
any MATLAB data

1 Functions

1-2796

Data to associate with the ROI, specified as any MATLAB data. For example, you can specify a scalar,
vector, matrix, cell array, string, character array, table, or structure. The Cuboid object does not use
this data.

Vertices — Locations of corners of cuboid
8-by-3 numeric matrix

This property is read-only.

Locations of the corners of the cuboid, returned as an 8-by-3 numeric matrix.

Visible — ROI visibility
'on' (default) | 'off' | on/off logical value

ROI visibility, specified as 'on' or 'off', or as a numeric or logical 1 (true) or 0 (false). A value of
'on' is equivalent to true, and 'off' is equivalent to false. The value is stored as an on/off logical
value of type OnOffSwitchState.

Value Description
'on' Display the ROI.
'off' Hide the ROI without deleting it. You still can

access the properties of an invisible ROI.

Object Functions
addlistener Create event listener bound to event source
beginDrawingFromPoint Begin drawing ROI from specified point
bringToFront Bring ROI to front of Axes stacking order
draw Begin drawing ROI interactively
inROI Query if points are located in ROI
wait Block MATLAB command line until ROI operation is finished

Examples

Create Cuboid ROI on Scatter Plot

Define vectors for 3-D scatter data.

[x,y,z] = sphere(16);
X = [x(:)*.5 x(:)*.75 x(:)];
Y = [y(:)*.5 y(:)*.75 y(:)];
Z = [z(:)*.5 z(:)*.75 z(:)];

Specify the size and color of each marker.

S = repmat([1 .75 .5]*10,numel(x),1);
C = repmat([1 2 3],numel(x),1);

Create a 3-D scatter plot and use view to the change the angle of the axes in the figure.

figure
hScatter = scatter3(X(:),Y(:),Z(:),S(:),C(:),'filled');
view(-60,60);

 Cuboid

1-2797

Begin placing a cuboid in the axes that snaps to the nearest point from the scatter plot. Adjust the
size of the cuboid during interactive placement by using the scroll wheel.

ax = gca;
h = images.roi.Cuboid(ax);
draw(h)

Set Up Listeners for Cuboid ROI Events

Define vectors for 3-D scattered data.

[x,y,z] = sphere(16);
X = [x(:)*.5 x(:)*.75 x(:)];
Y = [y(:)*.5 y(:)*.75 y(:)];
Z = [z(:)*.5 z(:)*.75 z(:)];

Specify the size and color of each marker.

S = repmat([1 .75 .5]*10,numel(x),1);
C = repmat([1 2 3],numel(x),1);

Create a 3-D scatter plot and use view to change the angle of the axes in the figure.

figure
hScatter = scatter3(X(:),Y(:),Z(:),S(:),C(:),'filled');
view(-60,60);

1 Functions

1-2798

Create a Cuboid ROI object, specifying the color. Call the draw object function to enable interactive
drawing of the cuboid shape.

roi = images.roi.Cuboid(gca,'Color','r');
draw(roi)

Set up listeners for ROI moving events. When you move it, the ROI sends notifications of these events
and executes the callback function you specify.

addlistener(roi,'MovingROI',@allevents);
addlistener(roi,'ROIMoved',@allevents);

The allevents callback function displays the previous position and the current position of the ROI.

function allevents(src,evt)
 evname = evt.EventName;
 switch(evname)
 case{'MovingROI'}
 disp(['ROI moving previous position: ' mat2str(evt.PreviousPosition)]);
 disp(['ROI moving current position: ' mat2str(evt.CurrentPosition)]);
 case{'ROIMoved'}
 disp(['ROI moved previous position: ' mat2str(evt.PreviousPosition)]);
 disp(['ROI moved current position: ' mat2str(evt.CurrentPosition)]);
 end
end

 Cuboid

1-2799

More About
Events

To receive notification from the ROI when certain events happen, set up listeners for these events.
You can specify a callback function that executes when one of these events occurs. When the ROI
notifies your application through the listener, it returns data specific to the event. Look at the event
class for the specific event to see what is returned.

For an example, see “Set Up Listeners for Cuboid ROI Events” on page 1-2798.

Event Name Trigger Event Data Event Attributes
DeletingROI ROI is about to be

interactively deleted.
event.EventData NotifyAccess:

private

ListenAccess:
public

DrawingStarted ROI is about to be
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

DrawingFinished ROI has been
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

MovingROI ROI shape or location is
being interactively
changed.

images.roi.CuboidM
ovingEventData

NotifyAccess:
private

ListenAccess:
public

ROIMoved ROI shape or location
has been interactively
changed.

images.roi.CuboidM
ovingEventData

NotifyAccess:
private

ListenAccess:
public

ROIClicked ROI has been clicked. images.roi.ROIClic
kedEventData

NotifyAccess:
private

ListenAccess:
public

Tips
• To draw the ROI interactively using the draw or drawcuboid function, position the cursor on the

ROI and click and drag to move or change the size of the shape. To finish the ROI, release the
mouse button.

• The ROI supports the following interactivity, including keyboard shortcuts.

1 Functions

1-2800

Behavior Keyboard shortcut
Cancel drawing the ROI. Press Esc. The function returns a valid ROI

object with an empty Position property.
Fine-tune size of ROI as you are drawing. As you draw the ROI, use the scroll wheel to

make small changes to its size.
Resize (reshape) the ROI. Position the pointer over a surface of the ROI

that is visible from your point of view and then
click and drag.

Move the ROI. Position the pointer over a surface of the ROI
that is visible from your point of view. Press
Shift as you click and drag to move the ROI.

Delete the ROI. Position the pointer over the ROI, right-click,
and select Delete Cuboid from the context
menu. You can also delete the ROI
programmatically using the delete function.

• For information about using an ROI in an app created with App Designer, see “Using ROIs in Apps
Created with App Designer”.

Compatibility Considerations
UIContextMenu property is not recommended
Not recommended starting in R2020a

Starting in R2020a, using the UIContextMenu property to assign a context menu to a graphics
object or UI component is not recommended. Use the ContextMenu property instead. The property
values are the same.

There are no plans to remove support for the UIContextMenu property at this time. However, the
UIContextMenu property no longer appears in the list returned by calling the get function on a
graphics object or UI component.

See Also
drawcuboid | Rectangle

Topics
“Create ROI Shapes”

Introduced in R2019a

 Cuboid

1-2801

Ellipse
Elliptical region of interest

Description
An Ellipse object specifies the shape and position of an elliptical region-of-interest (ROI). You can
customize the appearance and interactive behavior of the ROI.

For more information about using this ROI, including keyboard shortcuts, see “Tips” on page 1-2814.

Creation
There are two ways to create an Ellipse object. For more information, see “Create ROI Shapes”.

• Use the drawellipse function. Use this function when you want to create the ROI and set the
appearance in a single command. You can specify the shape and position of the ROI interactively
by drawing the ROI over an image using the mouse, or programmatically by using name-value
arguments.

• Use the images.roi.Ellipse function described here. Use this function when you want to
specify the appearance and behavior of the ROI before you specify the shape and position of the
ROI. After creating the object, you can specify the shape and position interactively by using the
draw function or programmatically by modifying properties of the object.

Syntax
roi = images.roi.Ellipse
roi = images.roi.Ellipse(ax)
roi = images.roi.Ellipse(___ ,Name,Value)

1 Functions

1-2802

Description

roi = images.roi.Ellipse creates an Ellipse object with default property values.

roi = images.roi.Ellipse(ax) creates the ROI on the axes specified by ax.

roi = images.roi.Ellipse(___ ,Name,Value) sets properties on page 1-2803 using name-
value arguments. You can specify multiple name-value arguments. Enclose each property name in
single quotes.
Example: images.roi.Ellipse('Color','y') creates a yellow colored Ellipse object.

Input Arguments

ax — Parent of ROI
gca (default) | Axes object | UIAxes object

Parent of ROI, specified as an Axes object or a UIAxes object. For information about using an ROI in
a UIAxes, including important limitations, see “Using ROIs in Apps Created with App Designer”.

Properties
AspectRatio — Aspect ratio of ellipse
positive number

Aspect ratio of the ellipse, specified as a positive number. The value of this property changes
automatically when you draw or resize the ellipse, or by setting the SemiAxes property. The
Ellipse object calculates this value as height/width. The default value is (1+sqrt(5))/2.

Center — Center of ROI
[] (default) | 1-by-2 numeric vector

Center of the ROI, specified as a 1-by-2 numeric vector of the form [x y]. The values x and y are the
coordinates of the center point of the ROI. The value of this property changes automatically when you
draw or move the ROI.

Color — ROI color
[0 0.4470 0.7410] (default) | RGB triplet | color name | short color name

ROI color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]

 Ellipse

1-2803

Color Name Short Name RGB Triplet Appearance
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'Color','r'
Example: 'Color','green'
Example: 'Color',[0 0.4470 0.7410]

ContextMenu — Context menu
ContextMenu object

Context menu that displays when you right-click the ROI, specified as a ContextMenu object. You can
create a custom context menu by using the uicontextmenu function and then configuring context
menu properties.

Deletable — Context menu provides option to delete the ROI
true (default) | false

Context menu provides an option to delete the ROI, specified as true or false. When the value is
true, you can delete the ROI interactively using the context menu. When the value is false, the
context menu option to delete the ROI is disabled.

In both cases, you can delete the ROI outside of the context menu by using the delete function.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | [x,y,w,h]

Area of the axes in which you can interactively place the ROI, specified as one of the values in this
table.

Value Description
'auto' The drawing area is the current axes limits

(default).

1 Functions

1-2804

Value Description
'unlimited' The drawing area has no boundary and ROIs can

be drawn or dragged to extend beyond the axes
limits.

[x,y,w,h] The drawing area is restricted to a rectangular
region beginning at (x,y), and extending to width
w and height h.

FaceAlpha — Transparency of ROI face
0.2 (default) | number in the range [0, 1]

Transparency of the ROI face, specified as a number in the range [0, 1]. When the value is 1, the ROI
face is completely opaque. When the value is 0, the ROI face is completely transparent.

FaceSelectable — ROI face can capture clicks
true (default) | false

ROI face can capture clicks, specified as true or false. When true (default), the ROI face captures
mouse clicks. When false, the ROI face does not capture mouse clicks.

FixedAspectRatio — Aspect ratio remains constant
false (default) | true

Aspect ratio remains constant during interaction, specified as true or false. When the value is
true, the aspect ratio remains constant when you draw or resize the ROI. When the value is false,
you can change the aspect ratio when drawing or resizing the ROI. You can change the state of this
property using the default context menu.

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as one of the values in
this table.

Value Description
'on' The object handle is always visible (default).
'off' The object handle is hidden at all times.
'callback' The object handle is visible from within callbacks

or functions invoked by callbacks, but not from
within functions invoked from the command line.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'reshape' | 'translate'

Interactivity of the ROI, specified as one of the values in this table.

Value Description
'all' The ROI is fully interactable (default).
'none' The ROI is not interactable, and no drag points

are visible.

 Ellipse

1-2805

Value Description
'translate' The ROI can be translated (moved) within the

drawing area but not reshaped.
'reshape' The ROI can be reshaped but not translated.

Label — ROI label
'' (default) | character vector | string scalar

ROI label, specified as a character vector or string scalar. By default, the ROI has no label ('').

LabelAlpha — Transparency of text background
1 (default) | number in the range [0, 1]

Transparency of the text background, specified as a number in the range [0, 1]. When set to 1, the
text background is completely opaque. When set to 0, the text background is completely transparent.

LabelTextColor — Label text color
'black' (default) | RGB triplet | color name | short color name

Label text color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]

1 Functions

1-2806

RGB Triplet Appearance
[0.6350 0.0780 0.1840]

Example: 'LabelTextColor','r'
Example: 'LabelTextColor','green'
Example: 'LabelTextColor',[0 0.4470 0.7410]

LabelVisible — Label visibility
'on' (default) | 'off' | 'hover'

Label visibility, specified as one of these values.

Value Description
'on' Label is visible when the ROI is visible.
'hover' Label is visible only when the mouse is hovering

over the ROI.
'off' Label is not visible.

LineWidth — Width of ROI border
positive number

Width of the ROI border, specified as a positive number in points. The default value is three times the
number of points per screen pixel, such that the border is three pixels wide.

MarkerSize — Marker size
positive number

Marker size, specified as a positive number in points. The default value is eight times the number of
points per screen pixel, such that markers are eight pixels in size.

Parent — ROI parent
Axes object | UIAxes object

ROI parent, specified as an Axes or UIAxes object. For information about using an ROI in a UIAxes,
including important limitations, see “Using ROIs in Apps Created with App Designer”.

RotationAngle — Angle around center of ROI
0 (default) | nonnegative numeric scalar

Angle around the center of the ROI, specified as a nonnegative numeric scalar. The angle is measured
in degrees in a clockwise direction. The value of this property changes automatically when you draw
or move the ROI.

The value of RotationAngle does not impact the value of Position. The Position property
represents the initial position of the ROI, before rotation. To determine the location of a rotated ROI,
use the Vertices property.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the logical value true or false. You can also set this property
interactively. For example, clicking on the ROI selects the ROI and sets this property to true.

 Ellipse

1-2807

Similarly, pressing the Ctrl key and clicking the ROI deselects the ROI and sets the value of this
property to false.

SelectedColor — Color of ROI when selected
'none' (default) | RGB triplet | color name | short color name

Color of the ROI when selected, specified as an RGB triplet, a color name, a short color name, or
'none'. If you specify 'none', then the value of Color defines the color of the ROI for all states,
selected or not.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'SelectedColor','r'
Example: 'SelectedColor','green'
Example: 'SelectedColor',[0 0.4470 0.7410]

SemiAxes — Lengths of semiaxes of ellipse
1-by-2 numeric vector

Lengths of the semiaxis of the ellipse, specified as a 1-by-2 numeric vector of the form [semiaxis1
semiaxis2]. The Ellipse object assigns the length of the semiaxis that is closest to the x direction

1 Functions

1-2808

to semiaxis1. Note however that the shape and orientation of the ellipse can change through
interaction. The value of this property changes automatically when you draw or reshape the ROI.

StripeColor — Color of ROI stripe
'none' (default) | RGB triplet | color name | short color name

Color of the ROI stripe, specified as an RGB triplet, a color name, a short color name, or 'none'. If
you specify 'none', then the ROI edge is a solid color specified by Color. Otherwise, the edge of the
ROI is striped, with colors alternating between the colors specified by Color and StripeColor.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'StripeColor','r'
Example: 'StripeColor','green'
Example: 'StripeColor',[0 0.4470 0.7410]

Tag — Tag to associate with ROI
'' (default) | character vector | string scalar

Tag to associate with the ROI, specified as a character vector or string scalar. Use the tag value to
find the ROI object in a hierarchy of objects using the findobj function.

 Ellipse

1-2809

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as any MATLAB data. For example, you can specify a scalar,
vector, matrix, cell array, string, character array, table, or structure. The Ellipse object does not use
this data.

Vertices — Locations of points on perimeter
n-by-2 numeric matrix

This property is read-only.

Locations of points on the perimeter of the ellipse, returned as an n-by-2 numeric matrix.

Visible — ROI visibility
'on' (default) | 'off' | on/off logical value

ROI visibility, specified as 'on' or 'off', or as a numeric or logical 1 (true) or 0 (false). A value of
'on' is equivalent to true, and 'off' is equivalent to false. The value is stored as an on/off logical
value of type OnOffSwitchState.

Value Description
'on' Display the ROI.
'off' Hide the ROI without deleting it. You still can

access the properties of an invisible ROI.

Object Functions
addlistener Create event listener bound to event source
beginDrawingFromPoint Begin drawing ROI from specified point
bringToFront Bring ROI to front of Axes stacking order
createMask Create binary mask image from ROI
draw Begin drawing ROI interactively
inROI Query if points are located in ROI
wait Block MATLAB command line until ROI operation is finished

Examples

Create Elliptical ROI Non-interactively

Read an image into the workspace and display it.

I = imread('baby.jpg');
figure
imshow(I)

1 Functions

1-2810

Create an elliptical ROI on the image, using the Center property to specify the location and the
SemiAxes property to specify its shape. For programmatically created ROIs, if you want the ROI
drawn in a specific axes, you must specify that axes as an input argument. Otherwise, an instance of
the images.roi.Ellipse class is created but not displayed. In this example, specify the current axes
(gca) to draw the ROI on the image in that axes.

h = images.roi.Ellipse(gca,'Center',[1000 1000],'Semiaxes',[350 150]);

 Ellipse

1-2811

Set Up Listeners for Ellipse ROI Events

Read an image into the workspace.

I = imread('cameraman.tif');

1 Functions

1-2812

Display the image.

imshow(I);

Draw an elliptical ROI on the image. Because this example specifies the size and location of the ROI,
you do not have to call the draw method to enable interactive drawing.

roi = images.roi.Ellipse(gca,'Center',[100 100],'Semiaxes',[50 80]);

Set up listeners for ROI moving events. When you move it, the ROI sends notifications of these events
and executes the callback function you specify.

addlistener(roi,'MovingROI',@allevents);
addlistener(roi,'ROIMoved',@allevents);

The allevents callback function displays at the command line the current center and the current
semiaxes of the Ellipse ROI.

function allevents(src,evt)
evname = evt.EventName;
 switch(evname)
 case{'MovingROI'}
 disp(['ROI moving Current Center: ' mat2str(evt.CurrentCenter)]);
 disp(['ROI moving Current SemiAxes: ' mat2str(evt.CurrentSemiAxes)]);
 case{'ROIMoved'}
 disp(['ROI moved Current Center: ' mat2str(evt.CurrentCenter)]);
 disp(['ROI moved Current SemiAxes: ' mat2str(evt.CurrentSemiAxes)]);
 end
end

 Ellipse

1-2813

More About
Events

To receive notification from the ROI when certain events happen, set up listeners for these events.
You can specify a callback function that executes when one of these events occurs. When the ROI
notifies your application through the listener, it returns data specific to the event. Look at the event
class for the specific event to see what is returned.

For an example, see “Set Up Listeners for Ellipse ROI Events” on page 1-2812.

Event Name Trigger Event Data Event Attributes
DeletingROI ROI is about to be

interactively deleted.
event.EventData NotifyAccess:

private

ListenAccess:
public

DrawingStarted ROI is about to be
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

DrawingFinished ROI has been
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

MovingROI ROI shape or location is
being interactively
changed.

images.roi.Ellipse
MovingEventData

NotifyAccess:
private

ListenAccess:
public

ROIMoved ROI shape or location
has been interactively
changed.

images.roi.Ellipse
MovingEventData

NotifyAccess:
private

ListenAccess:
public

ROIClicked ROI has been clicked. images.roi.ROIClic
kedEventData

NotifyAccess:
private

ListenAccess:
public

Tips
• To draw the ROI interactively using the draw or drawellipse function, position the cursor on the

axes and click and drag to create the shape. To finish the ROI, release the mouse button.
• The ROI supports the following interactivity, including keyboard shortcuts.

1 Functions

1-2814

Behavior Keyboard shortcut
Cancel drawing the ROI. Press Esc. The function returns a valid ROI

object with an empty Position property.
Fine-tune width of ellipse as you are drawing. As you draw the ellipse, use the scroll wheel

to make small changes to the width of the
ellipse.

Rotate the ROI. Position the pointer near a vertex. The pointer
changes to the rotate pointer. Click and rotate
the ROI on its center.

To make the rotation snap at 15 degree
angles, press Shift as you rotate.

Maintain aspect ratio while drawing. Hold the Shift key as you draw. Creates a
circular ROI.

To lock the aspect ratio, position the pointer
on the ROI, right-click, and select Fix Aspect
Ratio from the context menu

Resize (reshape) the ROI. Position pointer over a vertex and then click
and drag. To main the aspect ratio as you
resize, hold the Shift key.

Move the ROI. Position the pointer over the ROI. The pointer
changes to the fleur shape. Click and drag to
move the ROI.

Delete the ROI. Position the pointer anywhere in the ROI and
right-click. Select Delete Ellipse from the
context menu. You can also delete the ROI
programmatically using the delete function.

• For information about using an ROI in an app created with App Designer, see “Using ROIs in Apps
Created with App Designer”.

• To draw a circular ROI, use the Circle object.

Compatibility Considerations
UIContextMenu property is not recommended
Not recommended starting in R2020a

Starting in R2020a, using the UIContextMenu property to assign a context menu to a graphics
object or UI component is not recommended. Use the ContextMenu property instead. The property
values are the same.

There are no plans to remove support for the UIContextMenu property at this time. However, the
UIContextMenu property no longer appears in the list returned by calling the get function on a
graphics object or UI component.

See Also
drawellipse | Circle

 Ellipse

1-2815

Topics
“Create ROI Shapes”

Introduced in R2018b

1 Functions

1-2816

Freehand
Freehand region of interest

Description
A Freehand object specifies the shape and position of a hand-drawn region of interest (ROI). You can
customize the appearance and interactive behavior of the ROI.

For more information about using a freehand ROI, including keyboard shortcuts, see “Tips” on page
1-2830.

Creation
There are two ways to create a Freehand object. For more information, see “Create ROI Shapes”.

• Use the drawfreehand function. Use this function when you want to create the ROI and set the
appearance in a single command. You can specify the shape and position of the ROI interactively
by drawing the ROI over an image using the mouse.

• Use the images.roi.Freehand function described here. Use this function when you want to
specify the appearance and behavior of the ROI before you specify the shape and position of the
ROI. After creating the object, you can specify the shape and position interactively by using the
draw function.

Syntax
roi = images.roi.Freehand
roi = images.roi.Freehand(ax)
roi = images.roi.Freehand(___ ,Name,Value)

 Freehand

1-2817

Description

roi = images.roi.Freehand creates a Freehand object with default properties.

roi = images.roi.Freehand(ax) creates the ROI in the axes specified by ax.

roi = images.roi.Freehand(___ ,Name,Value) sets properties on page 1-2818 of the ROI
using name-value arguments. You can specify multiple name-value arguments. Enclose each property
name in single quotes.
Example: images.roi.Freehand('Color','y') creates a yellow colored Freehand object.

Input Arguments

ax — Parent of ROI
gca (default) | Axes object | UIAxes object

Parent of ROI, specified as an Axes object or a UIAxes object. For information about using an ROI in
a UIAxes, including important limitations, see “Using ROIs in Apps Created with App Designer”.

Properties
Closed — Close ROI
true (default) | false

Close the ROI, specified as a logical value true or false. When true, the Freehand object closes
the ROI by connecting the last point drawn to the first point drawn.

Color — ROI color
[0 0.4470 0.7410] (default) | RGB triplet | color name | short color name

ROI color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

1 Functions

1-2818

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'Color','r'
Example: 'Color','green'
Example: 'Color',[0 0.4470 0.7410]

ContextMenu — Context menu
ContextMenu object

Context menu that displays when you right-click the ROI, specified as a ContextMenu object. You can
create a custom context menu by using the uicontextmenu function and then configuring context
menu properties.

Deletable — Context menu provides option to delete the ROI
true (default) | false

Context menu provides an option to delete the ROI, specified as true or false. When the value is
true, you can delete the ROI interactively using the context menu. When the value is false, the
context menu option to delete the ROI is disabled.

In both cases, you can delete the ROI outside of the context menu by using the delete function.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | [x,y,w,h]

Area of the axes in which you can interactively place the ROI, specified as one of the values in this
table.

Value Description
'auto' The drawing area is the current axes limits

(default).
'unlimited' The drawing area has no boundary and ROIs can

be drawn or dragged to extend beyond the axes
limits.

[x,y,w,h] The drawing area is restricted to a rectangular
region beginning at (x,y), and extending to width
w and height h.

FaceAlpha — Transparency of ROI face
0.2 (default) | number in the range [0, 1]

 Freehand

1-2819

Transparency of the ROI face, specified as a number in the range [0, 1]. When the value is 1, the ROI
face is completely opaque. When the value is 0, the ROI face is completely transparent.

FaceSelectable — ROI face can capture clicks
true (default) | false

ROI face can capture clicks, specified as true or false. When true (default), the ROI face captures
mouse clicks. When false, the ROI face does not capture mouse clicks.

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as one of the values in
this table.

Value Description
'on' The object handle is always visible (default).
'off' The object handle is hidden at all times.
'callback' The object handle is visible from within callbacks

or functions invoked by callbacks, but not from
within functions invoked from the command line.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'reshape' | 'translate'

Interactivity of the ROI, specified as one of the values in this table.

Value Description
'all' The ROI is fully interactable (default).
'none' The ROI is not interactable, and no drag points

are visible.
'translate' The ROI can be translated (moved) within the

drawing area but not reshaped.
'reshape' The ROI can be reshaped but not translated.

Label — ROI label
'' (default) | character vector | string scalar

ROI label, specified as a character vector or string scalar. By default, the ROI has no label ('').

LabelAlpha — Transparency of text background
1 (default) | number in the range [0, 1]

Transparency of the text background, specified as a number in the range [0, 1]. When set to 1, the
text background is completely opaque. When set to 0, the text background is completely transparent.

LabelTextColor — Label text color
'black' (default) | RGB triplet | color name | short color name

Label text color, specified as an RGB triplet, a color name, or a short color name.

1 Functions

1-2820

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'LabelTextColor','r'
Example: 'LabelTextColor','green'
Example: 'LabelTextColor',[0 0.4470 0.7410]

LabelVisible — Label visibility
'on' (default) | 'off' | 'hover'

Label visibility, specified as one of these values.

Value Description
'on' Label is visible when the ROI is visible.
'hover' Label is visible only when the mouse is hovering

over the ROI.
'off' Label is not visible.

LineWidth — Width of ROI border
positive number

 Freehand

1-2821

Width of the ROI border, specified as a positive number in points. The default value is three times the
number of points per screen pixel, such that the border is three pixels wide.

MarkerSize — Marker size
positive number

Marker size, specified as a positive number in points. The default value is eight times the number of
points per screen pixel, such that markers are eight pixels in size.

Multiclick — Control freehand drawing style during interactive placement
false (default) | true

Control the freehand drawing style during interactive placement, specified as the logical value true
or false. When the value is false, a single click and drag gesture completes the freehand ROI.
When the value is true, multiple click and drag gestures can be combined with straight edges to
make a more complex freehand ROI shape.

Parent — ROI parent
Axes object | UIAxes object

ROI parent, specified as an Axes or UIAxes object. For information about using an ROI in a UIAxes,
including important limitations, see “Using ROIs in Apps Created with App Designer”.

Position — Position of ROI
[] (default) | n-by-2 numeric matrix

Position of the ROI, specified as an n-by-2 numeric matrix where n is the number of vertices or points
defining the ROI. Each row represents the [x y] coordinates of a vertex or point. The Freehand object
generates these points as you draw the ROI shape interactively. To work with fewer points, use the
reduce function.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the logical value true or false. You can also set this property
interactively. For example, clicking on the ROI selects the ROI and sets this property to true.
Similarly, pressing the Ctrl key and clicking the ROI deselects the ROI and sets the value of this
property to false.

SelectedColor — Color of ROI when selected
'none' (default) | RGB triplet | color name | short color name

Color of the ROI when selected, specified as an RGB triplet, a color name, a short color name, or
'none'. If you specify 'none', then the value of Color defines the color of the ROI for all states,
selected or not.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

1 Functions

1-2822

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'SelectedColor','r'
Example: 'SelectedColor','green'
Example: 'SelectedColor',[0 0.4470 0.7410]

Smoothing — Smooth edge of ROI
1 (default) | nonnegative number

Smooth edge of ROI after interactive placement, specified as a nonnegative scalar. The Freehand
object uses the standard deviation of the Gaussian smoothing kernel to filter the x and y coordinates
of the ROI. This parameter defines the filter size as in this equation: 2*ceil(2*Smoothing) + 1.
You must specify the property before drawing the ROI interactively. You can see the smoothing effect
only after completing the drawing.

StripeColor — Color of ROI stripe
'none' (default) | RGB triplet | color name | short color name

Color of the ROI stripe, specified as an RGB triplet, a color name, a short color name, or 'none'. If
you specify 'none', then the ROI edge is a solid color specified by Color. Otherwise, the edge of the
ROI is striped, with colors alternating between the colors specified by Color and StripeColor.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

 Freehand

1-2823

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'StripeColor','r'
Example: 'StripeColor','green'
Example: 'StripeColor',[0 0.4470 0.7410]

Tag — Tag to associate with ROI
'' (default) | character vector | string scalar

Tag to associate with the ROI, specified as a character vector or string scalar. Use the tag value to
find the ROI object in a hierarchy of objects using the findobj function.

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as any MATLAB data. For example, you can specify a scalar,
vector, matrix, cell array, string, character array, table, or structure. The Freehand object does not
use this data.

Visible — ROI visibility
'on' (default) | 'off' | on/off logical value

ROI visibility, specified as 'on' or 'off', or as a numeric or logical 1 (true) or 0 (false). A value of
'on' is equivalent to true, and 'off' is equivalent to false. The value is stored as an on/off logical
value of type OnOffSwitchState.

1 Functions

1-2824

Value Description
'on' Display the ROI.
'off' Hide the ROI without deleting it. You still can

access the properties of an invisible ROI.

Waypoints — Position point is waypoint
[] (default) | logical vector

Position point is waypoint, specified as a logical vector of the same length as the Position property.
Elements in Waypoints with the value true identify points in the Position matrix that are
waypoints. By default, the Freehand object generates all the points that define the ROI and only
makes points at locations of increased curvature into waypoints. You can turn all the points, or some
subset of points, into waypoints by using code similar to roi.Waypoints(1:4:end) = true;.

Waypoints appear as circular shapes on the ROI edge. You can use waypoints to reshape the ROI by
clicking and dragging the waypoint with the mouse. Moving waypoints modifies the freehand-drawn
region between the waypoint that you clicked and the adjacent waypoints.

Object Functions
addlistener Create event listener bound to event source
beginDrawingFromPoint Begin drawing ROI from specified point
bringToFront Bring ROI to front of Axes stacking order
createMask Create binary mask image from ROI
draw Begin drawing ROI interactively
inROI Query if points are located in ROI
reduce Reduce density of points in ROI
wait Block MATLAB command line until ROI operation is finished

Examples

Create Freehand ROI Non-interactively

Read an image into the workspace and display it.

I = imread('baby.jpg');
figure
imshow(I)

 Freehand

1-2825

Create a freehand ROI on the image, using the Position property to specify the vertices of the ROI.
For programmatically created ROIs, if you want the ROI drawn in a specific axes, you must specify
that axes as an input argument. Otherwise, an instance of the images.roi.Freehand class is
created but not displayed. In this example, specify the current axes (gca) to draw the ROI on the
image in that axes.

h = images.roi.Freehand(gca,'Position',[100 150;200 250;300 350;150 450]);

1 Functions

1-2826

Set Up Listeners for Freehand ROI Events

Read an image into the workspace.

I = imread('cameraman.tif');

 Freehand

1-2827

Display the image.

imshow(I);

Draw a freehand ROI on the image. Because this example specifies the size and location of the ROI,
you do not have to call the draw method to enable interactive drawing.

roi = images.roi.Freehand(gca,'Position',[10 15;100 50;100 150;15 145]);

Set up listeners for ROI moving events. When you move it, the ROI sends notifications of these events
and executes the callback function you specify.

addlistener(roi,'MovingROI',@allevents);
addlistener(roi,'ROIMoved',@allevents);

The allevents callback function displays at the command line the previous position and the current
position of the Freehand ROI.

function allevents(src,evt)
evname = evt.EventName;
 switch(evname)
 case{'MovingROI'}
 disp(['ROI moving Previous Position: ' mat2str(evt.PreviousPosition)]);
 disp(['ROI moving Current Position: ' mat2str(evt.CurrentPosition)]);
 case{'ROIMoved'}
 disp(['ROI moved Previous Position: ' mat2str(evt.PreviousPosition)]);
 disp(['ROI moved Current Position: ' mat2str(evt.CurrentPosition)]);
 end

end

1 Functions

1-2828

More About
Events

To receive notification from the ROI when certain events happen, set up listeners for these events.
You can specify a callback function that executes when one of these events occurs. When the ROI
notifies your application through the listener, it returns data specific to the event. Look at the event
class for the specific event to see what is returned.

For an example, see “Set Up Listeners for Freehand ROI Events” on page 1-2827.

Event Name Trigger Event Data Event Attributes
DeletingROI ROI is about to be

interactively deleted.
event.EventData NotifyAccess:

private

ListenAccess:
public

DrawingStarted ROI is about to be
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

DrawingFinished ROI has been
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

MovingROI ROI shape or location is
being interactively
changed.

images.roi.ROIMovi
ngEventData

NotifyAccess:
private

ListenAccess:
public

ROIMoved ROI shape or location
has been interactively
changed.

images.roi.ROIMovi
ngEventData

NotifyAccess:
private

ListenAccess:
public

ROIClicked ROI has been clicked. images.roi.ROIClic
kedEventData

NotifyAccess:
private

ListenAccess:
public

AddingWaypoint A waypoint is about to
be interactively added
to the ROI.

event.EventData NotifyAccess:
private

ListenAccess:
public

 Freehand

1-2829

Event Name Trigger Event Data Event Attributes
WaypointAdded A waypoint has been

interactively added to
the ROI.

event.EventData NotifyAccess:
private

ListenAccess:
public

RemovingWaypoint A waypoint is about to
be interactively
removed from the ROI.

event.EventData NotifyAccess:
private

ListenAccess:
public

WaypointRemoved A waypoint has been
interactively removed
from the ROI.

event.EventData NotifyAccess:
private

ListenAccess:
public

Tips
• To draw the ROI interactively using the draw or drawfreehand function, position the cursor on

the image and click and drag to draw the ROI shape. To finish drawing the ROI, release the mouse
button.

• The ROI supports the following interactivity, including keyboard shortcuts.

Behavior Keyboard shortcut
Cancel drawing the ROI. Press Esc. The function returns a valid ROI

object with an empty Position property.
Finish drawing (close) the ROI. Double-click, which adds a point at the pointer

position and draws a line connecting this point
to the first point drawn, closing the ROI.

Right-click, which draws a line connecting the
last point to the first point drawn.

Position the pointer over the first point and
click.

Press Enter, which draws a line connecting
the last point to the first point drawn.

Resize (reshape) the ROI. Position pointer over a waypoint and then
click and drag. No assistance (snapping to
edges) is available in this mode.

Add a waypoint. Position the pointer on an edge of the ROI,
right-click, and select Add Waypoint. You can
also position the pointer on an edge of the ROI
and double-click.

Remove a waypoint. Position the pointer on a waypoint, right-click,
and select Remove Waypoint.

1 Functions

1-2830

Behavior Keyboard shortcut
Move the ROI. Position the pointer over the ROI. The pointer

changes to the fleur shape. Click and drag to
move the ROI.

Delete an ROI. Position the pointer on the ROI (not on a
vertex), right-click, and select Delete
Freehand from the context menu. You can
also delete the ROI programmatically using
the delete function.

• For information about using an ROI in an app created with App Designer, see “Using ROIs in Apps
Created with App Designer”.

Compatibility Considerations
UIContextMenu property is not recommended
Not recommended starting in R2020a

Starting in R2020a, using the UIContextMenu property to assign a context menu to a graphics
object or UI component is not recommended. Use the ContextMenu property instead. The property
values are the same.

There are no plans to remove support for the UIContextMenu property at this time. However, the
UIContextMenu property no longer appears in the list returned by calling the get function on a
graphics object or UI component.

See Also
drawfreehand | AssistedFreehand | Polygon | Polyline

Topics
“Create ROI Shapes”

Introduced in R2018b

 Freehand

1-2831

Line
Line region of interest

Description
A Line object specifies the length and position of a linear region-of-interest (ROI). You can customize
the appearance and interactive behavior of the ROI.

For more information about using this ROI, including keyboard shortcuts, see “Tips” on page 1-2843.

Creation
There are two ways to create a Line object. For more information, see “Create ROI Shapes”.

• Use the drawline function. Use this function when you want to create the ROI and set the
appearance in a single command. You can specify the length and position of the ROI interactively
by drawing the ROI over an image using the mouse, or programmatically by using name-value
arguments.

• Use the images.roi.Line function described here. Use this function when you want to specify
the appearance and behavior of the ROI before you specify the length and position of the ROI.
After creating the object, you can specify the length and position interactively by using the draw
function or programmatically by modifying properties of the object.

Syntax
roi = images.roi.Line
roi = images.roi.Line(ax)
roi = images.roi.Line(___ ,Name,Value)

1 Functions

1-2832

Description

roi = images.roi.Line creates a Line object with default properties.

roi = images.roi.Line(ax) creates the ROI on the axes specified by ax.

roi = images.roi.Line(___ ,Name,Value) sets properties on page 1-2833 of the ROI using
name-value arguments. You can specify multiple name-value arguments. Enclose each property name
in single quotes.
Example: images.roi.Line('Color','y') creates a yellow colored Line object.

Input Arguments

ax — Parent of ROI
gca (default) | Axes object | UIAxes object

Parent of ROI, specified as an Axes object or a UIAxes object. For information about using an ROI in
a UIAxes, including important limitations, see “Using ROIs in Apps Created with App Designer”.

Properties
Color — ROI color
[0 0.4470 0.7410] (default) | RGB triplet | color name | short color name

ROI color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]

 Line

1-2833

RGB Triplet Appearance
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'Color','r'
Example: 'Color','green'
Example: 'Color',[0 0.4470 0.7410]

ContextMenu — Context menu
ContextMenu object

Context menu that displays when you right-click the ROI, specified as a ContextMenu object. You can
create a custom context menu by using the uicontextmenu function and then configuring context
menu properties.

Deletable — Context menu provides option to delete the ROI
true (default) | false

Context menu provides an option to delete the ROI, specified as true or false. When the value is
true, you can delete the ROI interactively using the context menu. When the value is false, the
context menu option to delete the ROI is disabled.

In both cases, you can delete the ROI outside of the context menu by using the delete function.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | [x,y,w,h]

Area of the axes in which you can interactively place the ROI, specified as one of the values in this
table.

Value Description
'auto' The drawing area is the current axes limits

(default).
'unlimited' The drawing area has no boundary and ROIs can

be drawn or dragged to extend beyond the axes
limits.

[x,y,w,h] The drawing area is restricted to a rectangular
region beginning at (x,y), and extending to width
w and height h.

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as one of the values in
this table.

1 Functions

1-2834

Value Description
'on' The object handle is always visible (default).
'off' The object handle is hidden at all times.
'callback' The object handle is visible from within callbacks

or functions invoked by callbacks, but not from
within functions invoked from the command line.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'reshape' | 'translate'

Interactivity of the ROI, specified as one of the values in this table.

Value Description
'all' The ROI is fully interactable (default).
'none' The ROI is not interactable, and no drag points

are visible.
'translate' The ROI can be translated (moved) within the

drawing area but not reshaped.
'reshape' The ROI can be reshaped but not translated.

Label — ROI label
'' (default) | character vector | string scalar

ROI label, specified as a character vector or string scalar. By default, the ROI has no label ('').

LabelAlpha — Transparency of text background
1 (default) | number in the range [0, 1]

Transparency of the text background, specified as a number in the range [0, 1]. When set to 1, the
text background is completely opaque. When set to 0, the text background is completely transparent.

LabelTextColor — Label text color
'black' (default) | RGB triplet | color name | short color name

Label text color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]

 Line

1-2835

Color Name Short Name RGB Triplet Appearance
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'LabelTextColor','r'
Example: 'LabelTextColor','green'
Example: 'LabelTextColor',[0 0.4470 0.7410]

LabelVisible — Label visibility
'on' (default) | 'off' | 'hover'

Label visibility, specified as one of these values.

Value Description
'on' Label is visible when the ROI is visible.
'hover' Label is visible only when the mouse is hovering

over the ROI.
'off' Label is not visible.

LineWidth — Width of ROI border
positive number

Width of the ROI border, specified as a positive number in points. The default value is three times the
number of points per screen pixel, such that the border is three pixels wide.

MarkerSize — Marker size
positive number

Marker size, specified as a positive number in points. The default value is eight times the number of
points per screen pixel, such that markers are eight pixels in size.

Parent — ROI parent
Axes object | UIAxes object

1 Functions

1-2836

ROI parent, specified as an Axes or UIAxes object. For information about using an ROI in a UIAxes,
including important limitations, see “Using ROIs in Apps Created with App Designer”.

Position — Position of ROI
[] (default) | 2-by-2 numeric matrix

Position of the ROI, specified as a 2-by-2 numeric matrix of the form [x1 y1; x2 y2]. Each row
specifies the respective end-point of the line segment. You can also set this property by drawing or
moving the line.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the logical value true or false. You can also set this property
interactively. For example, clicking on the ROI selects the ROI and sets this property to true.
Similarly, pressing the Ctrl key and clicking the ROI deselects the ROI and sets the value of this
property to false.

SelectedColor — Color of ROI when selected
'none' (default) | RGB triplet | color name | short color name

Color of the ROI when selected, specified as an RGB triplet, a color name, a short color name, or
'none'. If you specify 'none', then the value of Color defines the color of the ROI for all states,
selected or not.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]

 Line

1-2837

RGB Triplet Appearance
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'SelectedColor','r'
Example: 'SelectedColor','green'
Example: 'SelectedColor',[0 0.4470 0.7410]

StripeColor — Color of ROI stripe
'none' (default) | RGB triplet | color name | short color name

Color of the ROI stripe, specified as an RGB triplet, a color name, a short color name, or 'none'. If
you specify 'none', then the ROI edge is a solid color specified by Color. Otherwise, the edge of the
ROI is striped, with colors alternating between the colors specified by Color and StripeColor.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

1 Functions

1-2838

Example: 'StripeColor','r'
Example: 'StripeColor','green'
Example: 'StripeColor',[0 0.4470 0.7410]

Tag — Tag to associate with ROI
'' (default) | character vector | string scalar

Tag to associate with the ROI, specified as a character vector or string scalar. Use the tag value to
find the ROI object in a hierarchy of objects using the findobj function.

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as any MATLAB data. For example, you can specify a scalar,
vector, matrix, cell array, string, character array, table, or structure. The Line object does not use
this data.

Visible — ROI visibility
'on' (default) | 'off' | on/off logical value

ROI visibility, specified as 'on' or 'off', or as a numeric or logical 1 (true) or 0 (false). A value of
'on' is equivalent to true, and 'off' is equivalent to false. The value is stored as an on/off logical
value of type OnOffSwitchState.

Value Description
'on' Display the ROI.
'off' Hide the ROI without deleting it. You still can

access the properties of an invisible ROI.

Object Functions
addlistener Create event listener bound to event source
beginDrawingFromPoint Begin drawing ROI from specified point
bringToFront Bring ROI to front of Axes stacking order
createMask Create binary mask image from ROI
draw Begin drawing ROI interactively
wait Block MATLAB command line until ROI operation is finished

Examples

Create Linear ROI Non-interactively

Read an image into the workspace and display it.

I = imread('baby.jpg');
figure
imshow(I)

 Line

1-2839

Create a linear ROI on the image, using the Position property to specify the ROI location. For
programmatically created ROIs, if you want the ROI drawn in a specific axes, you must specify that
axes as an input argument. Otherwise, an instance of the images.roi.Line class is created but not
displayed. In this example, specify the current axes (gca) to draw the ROI on the image in that axes.

h = images.roi.Line(gca,'Position',[100 150;400 650]);

1 Functions

1-2840

Set Up Listeners for Line ROI Events

Read an image into the workspace.

I = imread('cameraman.tif');

 Line

1-2841

Display the image.

imshow(I);

Draw a Line ROI on the image. Because this example specifies the length and location of the ROI, you
do not have to call the draw method to enable interactive drawing.

roi = images.roi.Line(gca,'Position',[10 15; 200 15]);

Set up listeners for ROI moving events. When you move it, the ROI sends notifications of these events
and executes the callback function you specify.

addlistener(roi,'MovingROI',@allevents);
addlistener(roi,'ROIMoved',@allevents);

The allevents callback function displays at the command line the previous position and the current
position of the ROI.

function allevents(src,evt)
evname = evt.EventName;
 switch(evname)
 case{'MovingROI'}
 disp(['ROI moving Previous Position: ' mat2str(evt.PreviousPosition)]);
 disp(['ROI moving Current Position: ' mat2str(evt.CurrentPosition)]);
 case{'ROIMoved'}
 disp(['ROI moved Previous Position: ' mat2str(evt.PreviousPosition)]);
 disp(['ROI moved Current Position: ' mat2str(evt.CurrentPosition)]);
 end
end

1 Functions

1-2842

More About
Events

To receive notification from the ROI when certain events happen, set up listeners for these events.
You can specify a callback function that executes when one of these events occurs. When the ROI
notifies your application through the listener, it returns data specific to the event. Look at the event
class for the specific event to see what is returned.

For an example, see “Set Up Listeners for Line ROI Events” on page 1-2841.

Event Name Trigger Event Data Event Attributes
DeletingROI ROI is about to be

interactively deleted.
event.EventData NotifyAccess:

private

ListenAccess:
public

DrawingStarted ROI is about to be
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

DrawingFinished ROI has been
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

MovingROI ROI shape or location is
being interactively
changed.

images.roi.ROIMovi
ngEventData

NotifyAccess:
private

ListenAccess:
public

ROIMoved ROI shape or location
has been interactively
changed.

images.roi.ROIMovi
ngEventData

NotifyAccess:
private

ListenAccess:
public

ROIClicked ROI has been clicked. images.roi.ROIClic
kedEventData

NotifyAccess:
private

ListenAccess:
public

Tips
• To draw the ROI interactively using the draw or drawline function, position the cursor on the

axes and click and drag to draw the ROI shape. To finish the ROI, release the mouse button.
• The ROI supports the following interactivity, including keyboard shortcuts.

 Line

1-2843

Behavior Keyboard shortcut
Make drawn line snap to 15 degree angles. Hold the Shift key while drawing.
Cancel drawing the ROI. Press Esc. The function returns a valid ROI

object with an empty Position property.
Resize the ROI. Position pointer over either endpoint and then

click and drag to resize the ROI. Hold the
Shift key while resizing to snap the line
drawn at 15 degree angles.

Move the ROI. Position the pointer over the ROI. The pointer
changes to the fleur shape. Then click and
drag the ROI.

• For information about using an ROI in an app created with App Designer, see “Using ROIs in Apps
Created with App Designer”.

Compatibility Considerations
UIContextMenu property is not recommended
Not recommended starting in R2020a

Starting in R2020a, using the UIContextMenu property to assign a context menu to a graphics
object or UI component is not recommended. Use the ContextMenu property instead. The property
values are the same.

There are no plans to remove support for the UIContextMenu property at this time. However, the
UIContextMenu property no longer appears in the list returned by calling the get function on a
graphics object or UI component.

See Also
drawline | Crosshair | Point | Polyline

Topics
“Create ROI Shapes”

Introduced in R2018b

1 Functions

1-2844

Point
Point region of interest

Description
A Point object specifies the position of a point region-of-interest (ROI). You can customize the
appearance and interactive behavior of the ROI.

For more information about using the ROI, including keyboard shortcuts, see “Tips” on page 1-2856.

Creation
There are two ways to create a Point object. For more information, see “Create ROI Shapes”.

• Use the drawpoint function. Use this function when you want to create the ROI and set the
appearance in a single command. You can specify the position of the ROI interactively by drawing
the ROI over an image using the mouse, or programmatically by using name-value arguments.

• Use the images.roi.Point function described here. Use this function when you want to specify
the appearance and behavior of the ROI before you specify the position of the ROI. After creating
the object, you can specify the position interactively by using the draw function or
programmatically by modifying properties of the object.

Syntax
roi = images.roi.Point
roi = images.roi.Point(ax)
roi = images.roi.Point(___ ,Name,Value)

Description

roi = images.roi.Point creates a Point object with default properties.

roi = images.roi.Point(ax) creates an ROI object in the axes specified by ax.

 Point

1-2845

roi = images.roi.Point(___ ,Name,Value) sets properties on page 1-2846 of the ROI using
name-value arguments. You can specify multiple name-value arguments. Enclose each property name
in single quotes.
Example: images.roi.Point('Color','y') creates a yellow colored Point object.

Input Arguments

ax — Parent of ROI
gca (default) | Axes object | UIAxes object

Parent of ROI, specified as an Axes object or a UIAxes object. For information about using an ROI in
a UIAxes, including important limitations, see “Using ROIs in Apps Created with App Designer”.

Properties
Color — ROI color
[0 0.4470 0.7410] (default) | RGB triplet | color name | short color name

ROI color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]

1 Functions

1-2846

RGB Triplet Appearance
[0.6350 0.0780 0.1840]

Example: 'Color','r'
Example: 'Color','green'
Example: 'Color',[0 0.4470 0.7410]

ContextMenu — Context menu
ContextMenu object

Context menu that displays when you right-click the ROI, specified as a ContextMenu object. You can
create a custom context menu by using the uicontextmenu function and then configuring context
menu properties.

Deletable — Context menu provides option to delete the ROI
true (default) | false

Context menu provides an option to delete the ROI, specified as true or false. When the value is
true, you can delete the ROI interactively using the context menu. When the value is false, the
context menu option to delete the ROI is disabled.

In both cases, you can delete the ROI outside of the context menu by using the delete function.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | [x,y,w,h]

Area of the axes in which you can interactively place the ROI, specified as one of the values in this
table.

Value Description
'auto' The drawing area is the current axes limits

(default).
'unlimited' The drawing area has no boundary and ROIs can

be drawn or dragged to extend beyond the axes
limits.

[x,y,w,h] The drawing area is restricted to a rectangular
region beginning at (x,y), and extending to width
w and height h.

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as one of the values in
this table.

Value Description
'on' The object handle is always visible (default).
'off' The object handle is hidden at all times.

 Point

1-2847

Value Description
'callback' The object handle is visible from within callbacks

or functions invoked by callbacks, but not from
within functions invoked from the command line.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'translate'

Interactivity of the ROI, specified as one of the values in this table.

Value Description
'all' The ROI is fully interactable.
'none' The ROI is not interactable, and no drag points

are visible.
'translate' The ROI can be translated (moved) within the

drawing area.

Label — ROI label
'' (default) | character vector | string scalar

ROI label, specified as a character vector or string scalar. By default, the ROI has no label ('').

LabelAlpha — Transparency of text background
1 (default) | number in the range [0, 1]

Transparency of the text background, specified as a number in the range [0, 1]. When set to 1, the
text background is completely opaque. When set to 0, the text background is completely transparent.

LabelTextColor — Label text color
'black' (default) | RGB triplet | color name | short color name

Label text color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]

1 Functions

1-2848

Color Name Short Name RGB Triplet Appearance
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'LabelTextColor','r'
Example: 'LabelTextColor','green'
Example: 'LabelTextColor',[0 0.4470 0.7410]

LabelVisible — Label visibility
'on' (default) | 'off' | 'hover'

Label visibility, specified as one of these values.

Value Description
'on' Label is visible when the ROI is visible.
'hover' Label is visible only when the mouse is hovering

over the ROI.
'off' Label is not visible.

LineWidth — Width of ROI border
positive number

Width of the ROI border, specified as a positive number in points. The default value is three times the
number of points per screen pixel, such that the border is three pixels wide.

MarkerSize — Marker size
positive number

Marker size, specified as a positive number in points. The default value is eight times the number of
points per screen pixel, such that markers are eight pixels in size.

Parent — ROI parent
Axes object | UIAxes object

ROI parent, specified as an Axes or UIAxes object. For information about using an ROI in a UIAxes,
including important limitations, see “Using ROIs in Apps Created with App Designer”.

Position — Position of ROI
1-by-2 numeric vector

 Point

1-2849

Position of the ROI, specified as a 1-by-2 numeric vector that represents the [x y] coordinates of the
point. You can modify this property by drawing or moving the point.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the logical value true or false. You can also set this property
interactively. For example, clicking on the ROI selects the ROI and sets this property to true.
Similarly, pressing the Ctrl key and clicking the ROI deselects the ROI and sets the value of this
property to false.

SelectedColor — Color of ROI when selected
'none' (default) | RGB triplet | color name | short color name

Color of the ROI when selected, specified as an RGB triplet, a color name, a short color name, or
'none'. If you specify 'none', then the value of Color defines the color of the ROI for all states,
selected or not.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'SelectedColor','r'

1 Functions

1-2850

Example: 'SelectedColor','green'
Example: 'SelectedColor',[0 0.4470 0.7410]

StripeColor — Color of ROI stripe
'none' (default) | RGB triplet | color name | short color name

Color of the ROI stripe, specified as an RGB triplet, a color name, a short color name, or 'none'. If
you specify 'none', then the ROI edge is a solid color specified by Color. Otherwise, the edge of the
ROI is striped, with colors alternating between the colors specified by Color and StripeColor.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'StripeColor','r'
Example: 'StripeColor','green'
Example: 'StripeColor',[0 0.4470 0.7410]

Tag — Tag to associate with ROI
'' (default) | character vector | string scalar

Tag to associate with the ROI, specified as a character vector or string scalar. Use the tag value to
find the ROI object in a hierarchy of objects using the findobj function.

 Point

1-2851

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as any MATLAB data. For example, you can specify a scalar,
vector, matrix, cell array, string, character array, table, or structure. The Point object does not use
this data.

Visible — ROI visibility
'on' (default) | 'off' | on/off logical value

ROI visibility, specified as 'on' or 'off', or as a numeric or logical 1 (true) or 0 (false). A value of
'on' is equivalent to true, and 'off' is equivalent to false. The value is stored as an on/off logical
value of type OnOffSwitchState.

Value Description
'on' Display the ROI.
'off' Hide the ROI without deleting it. You still can

access the properties of an invisible ROI.

Object Functions
addlistener Create event listener bound to event source
beginDrawingFromPoint Begin drawing ROI from specified point
bringToFront Bring ROI to front of Axes stacking order
draw Begin drawing ROI interactively
wait Block MATLAB command line until ROI operation is finished

Examples

Create Point ROI Non-interactively

Read an image into the workspace and display it.

I = imread('baby.jpg');
figure;
imshow(I)

1 Functions

1-2852

Create a point ROI on the image, using the 'Position' property to specify the location. For
programmatically created ROIs, if you want the ROI drawn in a specific axes, you must specify that
axes as an input argument. Otherwise, an instance of the images.roi.Point class is created but
not displayed. In this example, specify the current axes (gca) to draw the ROI on the image in that
axes.

h = images.roi.Point(gca,'Position',[400 650]);

 Point

1-2853

Set Up Listeners for Point ROI Events

Read an image into the workspace.

I = imread('cameraman.tif');

1 Functions

1-2854

Display the image.

imshow(I);

Draw a Point ROI on the image. Because this example specifies the length and location of the ROI,
you do not have to call the draw method to enable interactive drawing.

roi = images.roi.Point(gca,'Position',[40 65]);

Set up listeners for ROI moving events. When you move it, the ROI sends notifications of these events
and executes the callback function you specify.

addlistener(roi,'MovingROI',@allevents);
addlistener(roi,'ROIMoved',@allevents);

The allevents callback function displays at the command line the previous position and the current
position of the ROI.

function allevents(src,evt)
evname = evt.EventName;
 switch(evname)
 case{'MovingROI'}
 disp(['ROI moving Previous Position: ' mat2str(evt.PreviousPosition)]);
 disp(['ROI moving Current Position: ' mat2str(evt.CurrentPosition)]);
 case{'ROIMoved'}
 disp(['ROI moved Previous Position: ' mat2str(evt.PreviousPosition)]);
 disp(['ROI moved Current Position: ' mat2str(evt.CurrentPosition)]);
 end
end

 Point

1-2855

More About
Events

To receive notification from the ROI when certain events happen, set up listeners for these events.
You can specify a callback function that executes when one of these events occurs. When the ROI
notifies your application through the listener, it returns data specific to the event. Look at the event
class for the specific event to see what is returned.

For an example, see “Set Up Listeners for Point ROI Events” on page 1-2854.

Event Name Trigger Event Data Event Attributes
DeletingROI ROI is about to be

interactively deleted.
event.EventData NotifyAccess:

private

ListenAccess:
public

DrawingStarted ROI is about to be
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

DrawingFinished ROI has been
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

MovingROI ROI shape or location is
being interactively
changed.

images.roi.ROIMovi
ngEventData

NotifyAccess:
private

ListenAccess:
public

ROIMoved ROI shape or location
has been interactively
changed.

images.roi.ROIMovi
ngEventData

NotifyAccess:
private

ListenAccess:
public

ROIClicked ROI has been clicked. images.roi.ROIClic
kedEventData

NotifyAccess:
private

ListenAccess:
public

Tips
• To draw the ROI interactively using the draw or drawpoint function, position the pointer on the

image and then click and release.
• The ROI supports the following interactivity, including keyboard shortcuts.

1 Functions

1-2856

Behavior Keyboard shortcut
Cancel drawing ROI. Press Esc. The function returns a valid ROI

object with an empty Position property.
Move the ROI. Position the pointer over the ROI. The pointer

changes to a circle. Click and drag to move
the ROI.

Delete the ROI. Position the pointer over the point, right-click,
and then choose Delete Point from the
context menu. You can also delete the ROI
programmatically using the delete function.

• For information about using an ROI in an app created with App Designer, see “Using ROIs in Apps
Created with App Designer”.

Compatibility Considerations
UIContextMenu property is not recommended
Not recommended starting in R2020a

Starting in R2020a, using the UIContextMenu property to assign a context menu to a graphics
object or UI component is not recommended. Use the ContextMenu property instead. The property
values are the same.

There are no plans to remove support for the UIContextMenu property at this time. However, the
UIContextMenu property no longer appears in the list returned by calling the get function on a
graphics object or UI component.

See Also
drawpoint | Circle | Crosshair

Topics
“Create ROI Shapes”

Introduced in R2018b

 Point

1-2857

Polygon
Polygonal region of interest

Description
A Polygon object specifies the shape and position of a closed polygonal region-of-interest (ROI). You
can customize the appearance and interactive behavior of the ROI.

For more information about using this ROI, including keyboard shortcuts, see Tips.

Creation
There are two ways to create a Polygon object. For more information, see “Create ROI Shapes”.

• Use the drawpolygon function. Use this function when you want to create the ROI and set the
appearance in a single command. You can specify the shape and position of the ROI interactively
by drawing the ROI over an image using the mouse, or programmatically by using name-value
arguments.

• Use the images.roi.Polygon function described here. Use this function when you want to
specify the appearance and behavior of the ROI before you specify the shape and position of the
ROI. After creating the object, you can specify the shape and position interactively by using the
draw function or programmatically by modifying properties of the object.

Syntax
roi = images.roi.Polygon

1 Functions

1-2858

roi = images.roi.Polygon(ax)
roi = images.roi.Polygon(___ ,Name,Value)

Description

roi = images.roi.Polygon creates a Polygon object with default properties.

roi = images.roi.Polygon(ax) creates the ROI in the axes specified by ax.

roi = images.roi.Polygon(___ ,Name,Value) sets properties on page 1-2859 of the ROI using
name-value arguments. You can specify multiple name-value arguments. Enclose each property name
in single quotes.
Example: images.roi.Polygon('Color','y') creates a yellow colored Polygon object.

Input Arguments

ax — Parent of ROI
gca (default) | Axes object | UIAxes object

Parent of ROI, specified as an Axes object or a UIAxes object. For information about using an ROI in
a UIAxes, including important limitations, see “Using ROIs in Apps Created with App Designer”.

Properties
Color — ROI color
[0 0.4470 0.7410] (default) | RGB triplet | color name | short color name

ROI color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

 Polygon

1-2859

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'Color','r'
Example: 'Color','green'
Example: 'Color',[0 0.4470 0.7410]

ContextMenu — Context menu
ContextMenu object

Context menu that displays when you right-click the ROI, specified as a ContextMenu object. You can
create a custom context menu by using the uicontextmenu function and then configuring context
menu properties.

Deletable — Context menu provides option to delete the ROI
true (default) | false

Context menu provides an option to delete the ROI, specified as true or false. When the value is
true, you can delete the ROI interactively using the context menu. When the value is false, the
context menu option to delete the ROI is disabled.

In both cases, you can delete the ROI outside of the context menu by using the delete function.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | [x,y,w,h]

Area of the axes in which you can interactively place the ROI, specified as one of the values in this
table.

Value Description
'auto' The drawing area is the current axes limits

(default).
'unlimited' The drawing area has no boundary and ROIs can

be drawn or dragged to extend beyond the axes
limits.

[x,y,w,h] The drawing area is restricted to a rectangular
region beginning at (x,y), and extending to width
w and height h.

FaceAlpha — Transparency of ROI face
0.2 (default) | number in the range [0, 1]

1 Functions

1-2860

Transparency of the ROI face, specified as a number in the range [0, 1]. When the value is 1, the ROI
face is completely opaque. When the value is 0, the ROI face is completely transparent.

FaceSelectable — ROI face can capture clicks
true (default) | false

ROI face can capture clicks, specified as true or false. When true (default), the ROI face captures
mouse clicks. When false, the ROI face does not capture mouse clicks.

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as one of the values in
this table.

Value Description
'on' The object handle is always visible (default).
'off' The object handle is hidden at all times.
'callback' The object handle is visible from within callbacks

or functions invoked by callbacks, but not from
within functions invoked from the command line.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'reshape' | 'translate'

Interactivity of the ROI, specified as one of the values in this table.

Value Description
'all' The ROI is fully interactable (default).
'none' The ROI is not interactable, and no drag points

are visible.
'translate' The ROI can be translated (moved) within the

drawing area but not reshaped.
'reshape' The ROI can be reshaped but not translated.

Label — ROI label
'' (default) | character vector | string scalar

ROI label, specified as a character vector or string scalar. By default, the ROI has no label ('').

LabelAlpha — Transparency of text background
1 (default) | number in the range [0, 1]

Transparency of the text background, specified as a number in the range [0, 1]. When set to 1, the
text background is completely opaque. When set to 0, the text background is completely transparent.

LabelTextColor — Label text color
'black' (default) | RGB triplet | color name | short color name

Label text color, specified as an RGB triplet, a color name, or a short color name.

 Polygon

1-2861

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'LabelTextColor','r'
Example: 'LabelTextColor','green'
Example: 'LabelTextColor',[0 0.4470 0.7410]

LabelVisible — Label visibility
'on' (default) | 'off' | 'hover'

Label visibility, specified as one of these values.

Value Description
'on' Label is visible when the ROI is visible.
'hover' Label is visible only when the mouse is hovering

over the ROI.
'off' Label is not visible.

LineWidth — Width of ROI border
positive number

1 Functions

1-2862

Width of the ROI border, specified as a positive number in points. The default value is three times the
number of points per screen pixel, such that the border is three pixels wide.

MarkerSize — Marker size
positive number

Marker size, specified as a positive number in points. The default value is eight times the number of
points per screen pixel, such that markers are eight pixels in size.

Parent — ROI parent
Axes object | UIAxes object

ROI parent, specified as an Axes or UIAxes object. For information about using an ROI in a UIAxes,
including important limitations, see “Using ROIs in Apps Created with App Designer”.

Position — Position of ROI
[] (default) | n-by-2 numeric matrix

Position of the ROI, specified as an n-by-2 numeric matrix where n is the number of vertices or points
defining the ROI. Each row represents the [x y] coordinates of a vertex or point. The Polygon object
generates these points as you draw the ROI shape interactively. To work with fewer points, use the
reduce function.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the logical value true or false. You can also set this property
interactively. For example, clicking on the ROI selects the ROI and sets this property to true.
Similarly, pressing the Ctrl key and clicking the ROI deselects the ROI and sets the value of this
property to false.

SelectedColor — Color of ROI when selected
'none' (default) | RGB triplet | color name | short color name

Color of the ROI when selected, specified as an RGB triplet, a color name, a short color name, or
'none'. If you specify 'none', then the value of Color defines the color of the ROI for all states,
selected or not.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]

 Polygon

1-2863

Color Name Short Name RGB Triplet Appearance
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'SelectedColor','r'
Example: 'SelectedColor','green'
Example: 'SelectedColor',[0 0.4470 0.7410]

StripeColor — Color of ROI stripe
'none' (default) | RGB triplet | color name | short color name

Color of the ROI stripe, specified as an RGB triplet, a color name, a short color name, or 'none'. If
you specify 'none', then the ROI edge is a solid color specified by Color. Otherwise, the edge of the
ROI is striped, with colors alternating between the colors specified by Color and StripeColor.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

1 Functions

1-2864

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'StripeColor','r'
Example: 'StripeColor','green'
Example: 'StripeColor',[0 0.4470 0.7410]

Tag — Tag to associate with ROI
'' (default) | character vector | string scalar

Tag to associate with the ROI, specified as a character vector or string scalar. Use the tag value to
find the ROI object in a hierarchy of objects using the findobj function.

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as any MATLAB data. For example, you can specify a scalar,
vector, matrix, cell array, string, character array, table, or structure. The Polygon object does not use
this data.

Visible — ROI visibility
'on' (default) | 'off' | on/off logical value

ROI visibility, specified as 'on' or 'off', or as a numeric or logical 1 (true) or 0 (false). A value of
'on' is equivalent to true, and 'off' is equivalent to false. The value is stored as an on/off logical
value of type OnOffSwitchState.

Value Description
'on' Display the ROI.
'off' Hide the ROI without deleting it. You still can

access the properties of an invisible ROI.

Object Functions
addlistener Create event listener bound to event source
beginDrawingFromPoint Begin drawing ROI from specified point
bringToFront Bring ROI to front of Axes stacking order
createMask Create binary mask image from ROI
draw Begin drawing ROI interactively
inROI Query if points are located in ROI
reduce Reduce density of points in ROI
wait Block MATLAB command line until ROI operation is finished

 Polygon

1-2865

Examples

Create Polygonal ROI Non-interactively

Read an image into the workspace and display it.

I = imread('baby.jpg');
figure;
imshow(I)

1 Functions

1-2866

Create a polygonal ROI on the image, using the Position property to specify the vertices of the ROI.
Note that you must specify the axes where you want to draw the ROI as the first argument.

h = images.roi.Polygon(gca,'Position',[100 150; 200 250; 300 350; 150 450]);

 Polygon

1-2867

Set Up Listeners for Polygon ROI Events

Read an image into the workspace.

I = imread('cameraman.tif');

1 Functions

1-2868

Display the image.

imshow(I);

Draw a Point ROI on the image. Because this example specifies the length and location of the ROI,
you do not have to call the draw method to enable interactive drawing.

roi = images.roi.Polygon(gca,'Position',[115 30; 80 45; 80 80; 115 90; 145 65]);

Set up listeners for ROI moving events. When you move it, the ROI sends notifications of these events
and executes the callback function you specify.

addlistener(roi,'MovingROI',@allevents);
addlistener(roi,'ROIMoved',@allevents);

The allevents callback function displays at the command line the previous position and the current
position of the ROI.

function allevents(src,evt)
evname = evt.EventName;
 switch(evname)
 case{'MovingROI'}
 disp(['ROI moving Previous Position: ' mat2str(evt.PreviousPosition)]);
 disp(['ROI moving Current Position: ' mat2str(evt.CurrentPosition)]);
 case{'ROIMoved'}
 disp(['ROI moved Previous Position: ' mat2str(evt.PreviousPosition)]);
 disp(['ROI moved Current Position: ' mat2str(evt.CurrentPosition)]);
 end
end

 Polygon

1-2869

More About
Events

To receive notification from the ROI when certain events happen, set up listeners for these events.
You can specify a callback function that executes when one of these events occurs. When the ROI
notifies your application through the listener, it returns data specific to the event. Look at the event
class for the specific event to see what is returned.

For an example, see “Set Up Listeners for Polygon ROI Events” on page 1-2868.

Event Name Trigger Event Data Event Attributes
DeletingROI ROI is about to be

interactively deleted.
event.EventData NotifyAccess:

private

ListenAccess:
public

DrawingStarted ROI is about to be
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

DrawingFinished ROI has been
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

MovingROI ROI shape or location is
being interactively
changed.

images.roi.ROIMovi
ngEventData

NotifyAccess:
private

ListenAccess:
public

ROIMoved ROI shape or location
has been interactively
changed.

images.roi.ROIMovi
ngEventData

NotifyAccess:
private

ListenAccess:
public

ROIClicked ROI has been clicked. images.roi.ROIClic
kedEventData

NotifyAccess:
private

ListenAccess:
public

AddingVertex A vertex is about to be
interactively added to
the ROI.

event.EventData NotifyAccess:
private

ListenAccess:
public

1 Functions

1-2870

Event Name Trigger Event Data Event Attributes
VertexAdded A vertex has been

interactively added to
the ROI.

event.EventData NotifyAccess:
private

ListenAccess:
public

DeletingVertex A vertex is about to be
interactively removed
from the ROI.

event.EventData NotifyAccess:
private

ListenAccess:
public

VertexDeleted A vertex has been
interactively removed
from the ROI.

event.EventData NotifyAccess:
private

ListenAccess:
public

Tips
• To draw the ROI interactively using the draw or drawpolygon function, position the cursor on the

axes, click and drag the pointer to create the shape. As you draw the line, click to create a vertex.
Double-click to finish drawing and close the polygon.

• The ROI supports the following interactivity, including keyboard shortcuts.

Behavior Keyboard shortcut
Make drawn line snap at 15 degree angles. Hold the Shift key while drawing.
Finish drawing (close) the ROI. Double-click, which adds a new vertex at the

pointer position and draws a line to the first
vertex to close the polygon.

Press Enter, which adds a new vertex at the
pointer position and draws a line to the first
vertex to close the polygon.

Right-click, which does not add a new vertex
but closes the polygon from the previous
vertex.

Position pointer over the first vertex and click.
Cancel drawing the ROI. Press Esc. The function returns a valid ROI

object with an empty Position field.
Add a new vertex to the ROI. Position the pointer over the edge of the ROI

and double-click.

Position the pointer over the edge of the ROI,
right-click, and select Add Vertex from the
context menu.

 Polygon

1-2871

Behavior Keyboard shortcut
Remove the most recently added vertex but
keep drawing.

Press Backspace. The function redraws the
line from the previous vertex to the current
position of the pointer. You can only back up to
the first vertex you drew.

Resize (reshape) the ROI Position pointer over a vertex and then click
and drag.

Add a new vertex to the polygon and then
click and drag.

Remove a vertex. The ROI redraws the line
connecting the two neighboring vertices.

Move the ROI. Position the pointer over the ROI. Hover over
the edge of the polygon (not on a vertex). The
pointer changes to the fleur shape. Click and
drag to move the ROI.

Delete the ROI. Position the pointer on the ROI, right-click,
and choose Delete Polygon from the context
menu. You can also delete the ROI
programmatically using the delete object
method.

• For information about using an ROI in an app created with App Designer, see “Using ROIs in Apps
Created with App Designer”.

• To draw an open polygon ROI, use the Polyline object.

Compatibility Considerations
UIContextMenu property is not recommended
Not recommended starting in R2020a

Starting in R2020a, using the UIContextMenu property to assign a context menu to a graphics
object or UI component is not recommended. Use the ContextMenu property instead. The property
values are the same.

There are no plans to remove support for the UIContextMenu property at this time. However, the
UIContextMenu property no longer appears in the list returned by calling the get function on a
graphics object or UI component.

See Also
drawpolygon | AssistedFreehand | Freehand | Polyline | Rectangle

Topics
“Create ROI Shapes”

Introduced in R2018b

1 Functions

1-2872

Polyline
Polyline region of interest

Description
A Polyline object specifies the shape and position of a polyline region-of-interest (ROI). You can
customize the appearance and interactive behavior of the ROI.

For more information about using this ROI, including keyboard shortcuts, see “Tips” on page 1-2885.

Creation
There are two ways to create a Polyline object. For more information, see “Create ROI Shapes”.

• Use the drawpolyline function. Use this function when you want to create the ROI and set the
appearance in a single command. You can specify the shape and position of the ROI interactively
by drawing the ROI over an image using the mouse, or programmatically by using name-value
arguments.

• Use the images.roi.Polyline function described here. Use this function when you want to
specify the appearance and behavior of the ROI before you specify the shape and position of the
ROI. After creating the object, you can specify the shape and position interactively by using the
draw function or programmatically by modifying properties of the object.

Syntax
roi = images.roi.Polyline
roi = images.roi.Polyline(ax, ___)
roi = images.roi.Polyline(___ ,Name,Value)

 Polyline

1-2873

Description

roi = images.roi.Polyline creates a Polyline object with default properties.

roi = images.roi.Polyline(ax, ___) creates the ROI in the axes specified by ax.

roi = images.roi.Polyline(___ ,Name,Value) sets properties on page 1-2874 of the ROI
using name-value arguments. You can specify multiple name-value arguments. Enclose each property
name in single quotes.
Example: images.roi.Polyline('Color','y') creates a yellow colored Polyline object.

Input Arguments

ax — Parent of ROI
gca (default) | Axes object | UIAxes object

Parent of ROI, specified as an Axes object or a UIAxes object. For information about using an ROI in
a UIAxes, including important limitations, see “Using ROIs in Apps Created with App Designer”.

Properties
Color — ROI color
[0 0.4470 0.7410] (default) | RGB triplet | color name | short color name

ROI color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]

1 Functions

1-2874

RGB Triplet Appearance
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'Color','r'
Example: 'Color','green'
Example: 'Color',[0 0.4470 0.7410]

ContextMenu — Context menu
ContextMenu object

Context menu that displays when you right-click the ROI, specified as a ContextMenu object. You can
create a custom context menu by using the uicontextmenu function and then configuring context
menu properties.

Deletable — Context menu provides option to delete the ROI
true (default) | false

Context menu provides an option to delete the ROI, specified as true or false. When the value is
true, you can delete the ROI interactively using the context menu. When the value is false, the
context menu option to delete the ROI is disabled.

In both cases, you can delete the ROI outside of the context menu by using the delete function.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | [x,y,w,h]

Area of the axes in which you can interactively place the ROI, specified as one of the values in this
table.

Value Description
'auto' The drawing area is the current axes limits

(default).
'unlimited' The drawing area has no boundary and ROIs can

be drawn or dragged to extend beyond the axes
limits.

[x,y,w,h] The drawing area is restricted to a rectangular
region beginning at (x,y), and extending to width
w and height h.

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as one of the values in
this table.

 Polyline

1-2875

Value Description
'on' The object handle is always visible (default).
'off' The object handle is hidden at all times.
'callback' The object handle is visible from within callbacks

or functions invoked by callbacks, but not from
within functions invoked from the command line.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'reshape' | 'translate'

Interactivity of the ROI, specified as one of the values in this table.

Value Description
'all' The ROI is fully interactable (default).
'none' The ROI is not interactable, and no drag points

are visible.
'translate' The ROI can be translated (moved) within the

drawing area but not reshaped.
'reshape' The ROI can be reshaped but not translated.

Label — ROI label
'' (default) | character vector | string scalar

ROI label, specified as a character vector or string scalar. By default, the ROI has no label ('').

LabelAlpha — Transparency of text background
1 (default) | number in the range [0, 1]

Transparency of the text background, specified as a number in the range [0, 1]. When set to 1, the
text background is completely opaque. When set to 0, the text background is completely transparent.

LabelTextColor — Label text color
'black' (default) | RGB triplet | color name | short color name

Label text color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]

1 Functions

1-2876

Color Name Short Name RGB Triplet Appearance
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'LabelTextColor','r'
Example: 'LabelTextColor','green'
Example: 'LabelTextColor',[0 0.4470 0.7410]

LabelVisible — Label visibility
'on' (default) | 'off' | 'hover'

Label visibility, specified as one of these values.

Value Description
'on' Label is visible when the ROI is visible.
'hover' Label is visible only when the mouse is hovering

over the ROI.
'off' Label is not visible.

LineWidth — Width of ROI border
positive number

Width of the ROI border, specified as a positive number in points. The default value is three times the
number of points per screen pixel, such that the border is three pixels wide.

MarkerSize — Marker size
positive number

Marker size, specified as a positive number in points. The default value is eight times the number of
points per screen pixel, such that markers are eight pixels in size.

Parent — ROI parent
Axes object | UIAxes object

 Polyline

1-2877

ROI parent, specified as an Axes or UIAxes object. For information about using an ROI in a UIAxes,
including important limitations, see “Using ROIs in Apps Created with App Designer”.

Position — Position of ROI
[] (default) | n-by-2 numeric matrix

Position of the ROI, specified as an n-by-2 numeric matrix where n is the number of vertices or points
defining the ROI. Each row represents the [x y] coordinates of a vertex or point. The Polyline object
generates these points as you draw the ROI shape interactively. To work with fewer points, use the
reduce function.

Selected — Selection state of ROI
false (default) | true

Selection state of the ROI, specified as the logical value true or false. You can also set this property
interactively. For example, clicking on the ROI selects the ROI and sets this property to true.
Similarly, pressing the Ctrl key and clicking the ROI deselects the ROI and sets the value of this
property to false.

SelectedColor — Color of ROI when selected
'none' (default) | RGB triplet | color name | short color name

Color of the ROI when selected, specified as an RGB triplet, a color name, a short color name, or
'none'. If you specify 'none', then the value of Color defines the color of the ROI for all states,
selected or not.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]

1 Functions

1-2878

RGB Triplet Appearance
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'SelectedColor','r'
Example: 'SelectedColor','green'
Example: 'SelectedColor',[0 0.4470 0.7410]

StripeColor — Color of ROI stripe
'none' (default) | RGB triplet | color name | short color name

Color of the ROI stripe, specified as an RGB triplet, a color name, a short color name, or 'none'. If
you specify 'none', then the ROI edge is a solid color specified by Color. Otherwise, the edge of the
ROI is striped, with colors alternating between the colors specified by Color and StripeColor.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

 Polyline

1-2879

Example: 'StripeColor','r'
Example: 'StripeColor','green'
Example: 'StripeColor',[0 0.4470 0.7410]

Tag — Tag to associate with ROI
'' (default) | character vector | string scalar

Tag to associate with the ROI, specified as a character vector or string scalar. Use the tag value to
find the ROI object in a hierarchy of objects using the findobj function.

UserData — Data to associate with ROI
any MATLAB data

Data to associate with the ROI, specified as any MATLAB data. For example, you can specify a scalar,
vector, matrix, cell array, string, character array, table, or structure. The Polyline object does not
use this data.

Visible — ROI visibility
'on' (default) | 'off' | on/off logical value

ROI visibility, specified as 'on' or 'off', or as a numeric or logical 1 (true) or 0 (false). A value of
'on' is equivalent to true, and 'off' is equivalent to false. The value is stored as an on/off logical
value of type OnOffSwitchState.

Value Description
'on' Display the ROI.
'off' Hide the ROI without deleting it. You still can

access the properties of an invisible ROI.

Object Functions
addlistener Create event listener bound to event source
beginDrawingFromPoint Begin drawing ROI from specified point
bringToFront Bring ROI to front of Axes stacking order
createMask Create binary mask image from ROI
draw Begin drawing ROI interactively
reduce Reduce density of points in ROI
wait Block MATLAB command line until ROI operation is finished

Examples

Create Polyline ROI Non-interactively

Read an image into the workspace and display it.

I = imread('baby.jpg');
figure;
imshow(I)

1 Functions

1-2880

Create a polyline ROI on the image, using properties to specify the location of vertices. For
programmatically created ROIs, if you want the ROI drawn in a specific axes, you must specify that
axes as an input argument. Otherwise, an instance of the images.roi.Polyline class is created
but not displayed. In this example, specify the current axes (gca) to draw the ROI on the image in
that axes.

h = images.roi.Polyline(gca,'Position',[100 150; 200 250; 300 350; 150 450]);

 Polyline

1-2881

Set Up Listeners for Polyline ROI Events

Read an image into the workspace.

I = imread('cameraman.tif');

1 Functions

1-2882

Display the image.

imshow(I);

Draw a Polyline ROI on the image. Because this example specifies the length and location of the ROI,
you do not have to call the draw method to enable interactive drawing.

roi = images.roi.Polyline(gca,'Position',[115 30; 80 45; 80 80; 115 90; 145 65]);

Set up listeners for ROI moving events. When you move it, the ROI sends notifications of these events
and executes the callback function you specify.

addlistener(roi,'MovingROI',@allevents);
addlistener(roi,'ROIMoved',@allevents);

The allevents callback function displays at the command line the previous position and the current
position of the ROI.

function allevents(src,evt)
evname = evt.EventName;
 switch(evname)
 case{'MovingROI'}
 disp(['ROI moving Previous Position: ' mat2str(evt.PreviousPosition)]);
 disp(['ROI moving Current Position: ' mat2str(evt.CurrentPosition)]);
 case{'ROIMoved'}
 disp(['ROI moved Previous Position: ' mat2str(evt.PreviousPosition)]);
 disp(['ROI moved Current Position: ' mat2str(evt.CurrentPosition)]);
 end
end

 Polyline

1-2883

More About
Events

To receive notification from the ROI when certain events happen, set up listeners for these events.
You can specify a callback function that executes when one of these events occurs. When the ROI
notifies your application through the listener, it returns data specific to the event. Look at the event
class for the specific event to see what is returned.

For an example, see “Set Up Listeners for Polyline ROI Events” on page 1-2882.

Event Name Trigger Event Data Event Attributes
DeletingROI ROI is about to be

interactively deleted.
event.EventData NotifyAccess:

private

ListenAccess:
public

DrawingStarted ROI is about to be
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

DrawingFinished ROI has been
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

MovingROI ROI shape or location is
being interactively
changed.

images.roi.ROIMovi
ngEventData

NotifyAccess:
private

ListenAccess:
public

ROIMoved ROI shape or location
has been interactively
changed.

images.roi.ROIMovi
ngEventData

NotifyAccess:
private

ListenAccess:
public

ROIClicked ROI has been clicked. images.roi.ROIClic
kedEventData

NotifyAccess:
private

ListenAccess:
public

AddingVertex A vertex is about to be
interactively added to
the ROI.

event.EventData NotifyAccess:
private

ListenAccess:
public

1 Functions

1-2884

Event Name Trigger Event Data Event Attributes
VertexAdded A vertex has been

interactively added to
the ROI.

event.EventData NotifyAccess:
private

ListenAccess:
public

DeletingVertex A vertex is about to be
interactively deleted
from the ROI.

event.EventData NotifyAccess:
private

ListenAccess:
public

VertexDeleted A vertex has been
interactively deleted
from the ROI.

event.EventData NotifyAccess:
private

ListenAccess:
public

Tips
• To draw the ROI interactively using the draw or drawpolyline function, position the cursor on

the axes and click and drag to create the shape. As you draw, click to place vertices along the line.
Double-click to finish drawing the polyline.

• The ROI supports the following interactivity, including keyboard shortcuts.

Behavior Keyboard shortcut
Make drawn line snap at 15 degree angles. Hold the Shift key while drawing.
Finish drawing the ROI. Double-click, which adds a final new vertex at

the pointer position.

Right-click, which adds a final new vertex at
the pointer position.

Press Enter, which adds a final new vertex at
the pointer position..

Cancel drawing the ROI. Press Esc. The function returns a valid ROI
object with an empty Position property.

Add a new vertex to the ROI. Position the pointer over the polygon and
double-click. You can also position the pointer
over the ROI, right-click, and choose Add
Vertex.

Remove a vertex from the ROI. Position the pointer over the ROI, right-click,
and choose Delete Vertex.

Remove the most recently added vertex but
keep drawing.

Press Backspace. The function redraws the
line from the previous vertex to the current
position of the pointer. You can only back up to
the first vertex you drew.

 Polyline

1-2885

Behavior Keyboard shortcut
Resize (reshape) the ROI. Position pointer over a vertex and then click

and drag.

Add a new vertex and then click and drag.

Remove a vertex and the shape of the ROI
adjusts.

Move the ROI. Position the pointer over the line, not on a
vertex. The pointer changes to the fleur shape.
Click and drag the polygon.

Delete the ROI. Position the pointer over the line, right-click,
and select Delete Polyline from the context
menu. You can also delete the ROI
programmatically using the delete function.

• For information about using an ROI in an app created with App Designer, see “Using ROIs in Apps
Created with App Designer”.

Compatibility Considerations
UIContextMenu property is not recommended
Not recommended starting in R2020a

Starting in R2020a, using the UIContextMenu property to assign a context menu to a graphics
object or UI component is not recommended. Use the ContextMenu property instead. The property
values are the same.

There are no plans to remove support for the UIContextMenu property at this time. However, the
UIContextMenu property no longer appears in the list returned by calling the get function on a
graphics object or UI component.

See Also
drawpolyline | Crosshair | Line | Polygon

Topics
“Use Polyline to Create Angle Measurement Tool”
“Create ROI Shapes”

Introduced in R2018b

1 Functions

1-2886

Rectangle
Rectangular region of interest

Description
A Rectangle object specifies the shape and position of a rectangular region-of-interest (ROI). You
can customize the appearance and interactive behavior of the ROI.

For more information about using this ROI, including keyboard shortcuts, see “Tips” on page 1-2899.

Creation
There are two ways to create a Rectangle object. For more information, see “Create ROI Shapes”.

• Use the drawrectangle function. Use this function when you want to create the ROI and set the
appearance in a single command. You can specify the shape and position of the ROI interactively
by drawing the ROI over an image using the mouse, or programmatically by using name-value
arguments.

• Use the images.roi.Rectangle function described here. Use this function when you want to
specify the appearance and behavior of the ROI before you specify the shape and position of the
ROI. After creating the object, you can specify the shape and position interactively by using the
draw function or programmatically by modifying properties of the object.

Syntax
roi = images.roi.Rectangle
roi = images.roi.Rectangle(ax)
roi = images.roi.Rectangle(___ ,Name,Value)

Description

roi = images.roi.Rectangle creates a Rectangle object with default properties.

 Rectangle

1-2887

roi = images.roi.Rectangle(ax) creates an ROI in the axes specified by ax.

roi = images.roi.Rectangle(___ ,Name,Value) sets properties on page 1-2888 using name-
value arguments. You can specify multiple name-value arguments. Enclose each property name in
single quotes.
Example: images.roi.Rectangle('Color','y') creates a yellow colored Rectangle object.

Input Arguments

ax — Parent of ROI
gca (default) | Axes object | UIAxes object

Parent of ROI, specified as an Axes object or a UIAxes object. For information about using an ROI in
a UIAxes, including important limitations, see “Using ROIs in Apps Created with App Designer”.

Properties
AspectRatio — Aspect ratio of rectangle
1 (default) | positive number

Aspect ratio of the rectangle, specified as a positive number. The value of this property changes
automatically when you draw or resize the rectangle. The Rectangle object calculates this value as
height/width.

Color — ROI color
[0 0.4470 0.7410] (default) | RGB triplet | color name | short color name

ROI color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

1 Functions

1-2888

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'Color','r'
Example: 'Color','green'
Example: 'Color',[0 0.4470 0.7410]

ContextMenu — Context menu
ContextMenu object

Context menu that displays when you right-click the ROI, specified as a ContextMenu object. You can
create a custom context menu by using the uicontextmenu function and then configuring context
menu properties.

Deletable — Context menu provides option to delete the ROI
true (default) | false

Context menu provides an option to delete the ROI, specified as true or false. When the value is
true, you can delete the ROI interactively using the context menu. When the value is false, the
context menu option to delete the ROI is disabled.

In both cases, you can delete the ROI outside of the context menu by using the delete function.

DrawingArea — Area of axes in which you can interactively place ROI
'auto' (default) | 'unlimited' | [x,y,w,h]

Area of the axes in which you can interactively place the ROI, specified as one of the values in this
table.

Value Description
'auto' The drawing area is the current axes limits

(default).
'unlimited' The drawing area has no boundary and ROIs can

be drawn or dragged to extend beyond the axes
limits.

[x,y,w,h] The drawing area is restricted to a rectangular
region beginning at (x,y), and extending to width
w and height h.

FaceAlpha — Transparency of ROI face
0.2 (default) | number in the range [0, 1]

 Rectangle

1-2889

Transparency of the ROI face, specified as a number in the range [0, 1]. When the value is 1, the ROI
face is completely opaque. When the value is 0, the ROI face is completely transparent.

FaceSelectable — ROI face can capture clicks
true (default) | false

ROI face can capture clicks, specified as true or false. When true (default), the ROI face captures
mouse clicks. When false, the ROI face does not capture mouse clicks.

FixedAspectRatio — Aspect ratio remains constant
false (default) | true

Aspect ratio remains constant during interaction, specified as true or false. When the value is
true, the aspect ratio remains constant when you draw or resize the ROI. When the value is false,
you can change the aspect ratio when drawing or resizing the ROI. You can change the state of this
property using the default context menu.

HandleVisibility — Visibility of ROI handle in Children property of parent
'on' (default) | 'off' | 'callback'

Visibility of the ROI handle in the Children property of the parent, specified as one of the values in
this table.

Value Description
'on' The object handle is always visible (default).
'off' The object handle is hidden at all times.
'callback' The object handle is visible from within callbacks

or functions invoked by callbacks, but not from
within functions invoked from the command line.

InteractionsAllowed — Interactivity of ROI
'all' (default) | 'none' | 'translate'

Interactivity of the ROI, specified as one of the values in this table.

Value Description
'all' The ROI is fully interactable.
'none' The ROI is not interactable, and no drag points

are visible.
'translate' The ROI can be translated (moved) within the

drawing area.

Label — ROI label
'' (default) | character vector | string scalar

ROI label, specified as a character vector or string scalar. By default, the ROI has no label ('').

LabelAlpha — Transparency of text background
1 (default) | number in the range [0, 1]

Transparency of the text background, specified as a number in the range [0, 1]. When set to 1, the
text background is completely opaque. When set to 0, the text background is completely transparent.

1 Functions

1-2890

LabelTextColor — Label text color
'black' (default) | RGB triplet | color name | short color name

Label text color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'LabelTextColor','r'
Example: 'LabelTextColor','green'
Example: 'LabelTextColor',[0 0.4470 0.7410]

LabelVisible — Visibility of ROI label
'on' (default) | 'off' | 'hover' | 'inside'

Visibility of the ROI label, specified as one of these values:

Value Description
'on' Label is visible when the ROI is visible and the

Label property is nonempty (default).

 Rectangle

1-2891

Value Description
'hover' Label is visible only when the mouse hovers over

the ROI.
'inside' Label is visible only when there is adequate space

inside the ROI to display it.
'off' Label is not visible.

LineWidth — Width of ROI border
positive number

Width of the ROI border, specified as a positive number in points. The default value is three times the
number of points per screen pixel, such that the border is three pixels wide.

MarkerSize — Marker size
positive number

Marker size, specified as a positive number in points. The default value is eight times the number of
points per screen pixel, such that markers are eight pixels in size.

Parent — ROI parent
Axes object | UIAxes object

ROI parent, specified as an Axes or UIAxes object. For information about using an ROI in a UIAxes,
including important limitations, see “Using ROIs in Apps Created with App Designer”.

Position — Position of ROI
1-by-4 numeric vector

Position of the ROI, specified as a 1-by-4 numeric vector of the form [xmin, ymin, width,
height]. xmin and ymin specify the location of the upper left corner of the rectangle. width and
height specify the extent to the rectangle in two dimensions.

Rotatable — Rectangle can be rotated
false (default) | true

Rectangle can be rotated, specified as true or false. When the value is false (default), the
rectangle cannot be rotated. When the value is true, you can rotate the rectangle by clicking near
the markers at the corners.

RotationAngle — Angle around center of rectangle
0 (default) | numeric scalar

Angle around the center of the rectangle, specified as a numeric scalar. The angle is measured in
degrees in a clockwise direction. The value of this property changes automatically when you draw or
move the ROI.

The value of RotationAngle does not impact the values in Position. The Position property
represents the initial position of the ROI, before rotation. To determine the location of a rotated ROI,
use the Vertices property.

Selected — Selection state of ROI
false (default) | true

1 Functions

1-2892

Selection state of the ROI, specified as the logical value true or false. You can also set this property
interactively. For example, clicking on the ROI selects the ROI and sets this property to true.
Similarly, pressing the Ctrl key and clicking the ROI deselects the ROI and sets the value of this
property to false.

SelectedColor — Color of ROI when selected
'none' (default) | RGB triplet | color name | short color name

Color of the ROI when selected, specified as an RGB triplet, a color name, a short color name, or
'none'. If you specify 'none', then the value of Color defines the color of the ROI for all states,
selected or not.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'SelectedColor','r'
Example: 'SelectedColor','green'
Example: 'SelectedColor',[0 0.4470 0.7410]

StripeColor — Color of ROI stripe
'none' (default) | RGB triplet | color name | short color name

 Rectangle

1-2893

Color of the ROI stripe, specified as an RGB triplet, a color name, a short color name, or 'none'. If
you specify 'none', then the ROI edge is a solid color specified by Color. Otherwise, the edge of the
ROI is striped, with colors alternating between the colors specified by Color and StripeColor.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'StripeColor','r'
Example: 'StripeColor','green'
Example: 'StripeColor',[0 0.4470 0.7410]

Tag — Tag to associate with ROI
'' (default) | character vector | string scalar

Tag to associate with the ROI, specified as a character vector or string scalar. Use the tag value to
find the ROI object in a hierarchy of objects using the findobj function.

UserData — Data to associate with ROI
any MATLAB data

1 Functions

1-2894

Data to associate with the ROI, specified as any MATLAB data. For example, you can specify a scalar,
vector, matrix, cell array, string, character array, table, or structure. The Rectangle object does not
use this data.

Vertices — Locations of points on edge of rectangle
4-by-2 numeric matrix

This property is read-only.

Locations of points on the corners of the ROI, returned as a 4-by-2 numeric matrix.

Visible — ROI visibility
'on' (default) | 'off' | on/off logical value

ROI visibility, specified as 'on' or 'off', or as a numeric or logical 1 (true) or 0 (false). A value of
'on' is equivalent to true, and 'off' is equivalent to false. The value is stored as an on/off logical
value of type OnOffSwitchState.

Value Description
'on' Display the ROI.
'off' Hide the ROI without deleting it. You still can

access the properties of an invisible ROI.

Object Functions
addlistener Create event listener bound to event source
beginDrawingFromPoint Begin drawing ROI from specified point
bringToFront Bring ROI to front of Axes stacking order
createMask Create binary mask image from ROI
draw Begin drawing ROI interactively
inROI Query if points are located in ROI
wait Block MATLAB command line until ROI operation is finished

Examples

Create Rectangular ROI Non-interactively

Read image into the workspace and display it.

I = imread('baby.jpg');
figure
imshow(I)

 Rectangle

1-2895

Create a rectangular ROI on the image, using the Position parameter to specify its location and
size. The example also specifies that the edge of the rectangle is a striped line. For programmatically
created ROIs, if you want the ROI drawn in a specific axes, you must specify that axes as an input
argument. Otherwise, an instance of the images.roi.Rectangle class is created but not displayed.
In this example, specify the current axes (gca) to draw the ROI on the image in that axes.

h = images.roi.Rectangle(gca,'Position',[500,500,1000,1000],'StripeColor','r');

1 Functions

1-2896

Set Up Listeners for Rectangle ROI Events

Read an image into the workspace.

I = imread('cameraman.tif');

 Rectangle

1-2897

Display the image.

imshow(I);

Draw a Rectangle ROI on the image. Because this example specifies the length and location of the
ROI, you do not have to call the draw method to enable interactive drawing.

roi = images.roi.Rectangle(gca,'Position',[80,45,80,100]);

Set up listeners for ROI moving events. When you move it, the ROI sends notifications of these events
and executes the callback function you specify.

addlistener(roi,'MovingROI',@allevents);
addlistener(roi,'ROIMoved',@allevents);

The allevents callback function displays at the command line the previous position and the current
position of the ROI.

function allevents(src,evt)
evname = evt.EventName;
 switch(evname)
 case{'MovingROI'}
 disp(['ROI moving Previous Position: ' mat2str(evt.PreviousPosition)]);
 disp(['ROI moving Current Position: ' mat2str(evt.CurrentPosition)]);
 case{'ROIMoved'}
 disp(['ROI moved Previous Position: ' mat2str(evt.PreviousPosition)]);
 disp(['ROI moved Current Position: ' mat2str(evt.CurrentPosition)]);
 end
end

1 Functions

1-2898

More About
Events

To receive notification from the ROI when certain events happen, set up listeners for these events.
You can specify a callback function that executes when one of these events occurs. When the ROI
notifies your application through the listener, it returns data specific to the event. Look at the event
class for the specific event to see what is returned.

For an example, see “Set Up Listeners for Rectangle ROI Events” on page 1-2897.

Event Name Trigger Event Data Event Attributes
DeletingROI ROI is about to be

interactively deleted.
event.EventData NotifyAccess:

private

ListenAccess:
public

DrawingStarted ROI is about to be
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

DrawingFinished ROI has been
interactively drawn.

event.EventData NotifyAccess:
private

ListenAccess:
public

MovingROI ROI shape or location is
being interactively
changed.

images.roi.Rectang
leMovingEventData

NotifyAccess:
private

ListenAccess:
public

ROIMoved ROI shape or location
has been interactively
changed.

images.roi.Rectang
leMovingEventData

NotifyAccess:
private

ListenAccess:
public

ROIClicked ROI has been clicked. images.roi.ROIClic
kedEventData

NotifyAccess:
private

ListenAccess:
public

Tips
• To draw the ROI interactively using the draw or drawrectangle function, position the cursor on

the axes and click and drag to create the shape. To finish the ROI, release the mouse button.
• The ROI supports the following interactivity, including keyboard shortcuts.

 Rectangle

1-2899

Behavior Keyboard shortcut
Cancel drawing the ROI. Press Esc. The function returns a valid ROI

object with an empty Position property.
Resize (reshape) the ROI. Position the cursor over a vertex and then

click and drag. The rectangle has vertices at
each corner and at the midpoint of each side.
To preserve the aspect ratio while resizing,
press the Shift key. To lock the aspect ratio,
use the Fix Aspect Ratio in the right-click
context menu.

Move the ROI. Position the cursor over the ROI. The cursor
changes to the fleur shape. Click and drag the
ROI.

Delete the ROI. Position the pointer on the rectangle, right-
click, and choose Delete Rectangle from the
context menu. You can also delete the ROI
programmatically using the delete function.

• For information about using an ROI in an app created with App Designer, see “Using ROIs in Apps
Created with App Designer”.

Compatibility Considerations
UIContextMenu property is not recommended
Not recommended starting in R2020a

Starting in R2020a, using the UIContextMenu property to assign a context menu to a graphics
object or UI component is not recommended. Use the ContextMenu property instead. The property
values are the same.

There are no plans to remove support for the UIContextMenu property at this time. However, the
UIContextMenu property no longer appears in the list returned by calling the get function on a
graphics object or UI component.

See Also
drawrectangle | Cuboid | Polygon

Topics
“Rotate Image Interactively Using Rectangle ROI”
“Create ROI Shapes”

Introduced in R2018b

1 Functions

1-2900

beginDrawingFromPoint
Package: images.roi

Begin drawing ROI from specified point

Syntax
beginDrawingFromPoint(ROI,[x y])
beginDrawingFromPoint(ROI,[x y z])
beginDrawingFromPoint(ROI,[x y z],s)
beginDrawingFromPoint(ROI,[x y z],pos)

Description
beginDrawingFromPoint(ROI,[x y]) enters interactive mode to draw the shape for object ROI.
The drawing starts at location (x,y) in the axes. This method is intended to be used within the
ButtonDownFcn callback of an Image or Axes object.

beginDrawingFromPoint(ROI,[x y z]) enters interactive mode to draw a cuboidal ROI
(images.roi.Cuboid). The drawing starts at location (x,y,z) in the axes.

beginDrawingFromPoint(ROI,[x y z],s) enters interactive mode to draw a cuboidal ROI
(images.roi.Cuboid). The drawing starts at location (x,y,z) in the axes, snapping to the nearest
location to the mouse from the Scatter object s.

beginDrawingFromPoint(ROI,[x y z],pos) enters interactive mode to draw a cuboidal ROI
(images.roi.Cuboid). The drawing starts at location (x,y,z) in the axes, snapping to the nearest
location to the mouse from the position specified by pos.

Examples

Draw Line ROI When Button Pressed

Create a new script called sampleDrawLine.m. Inside the script, copy and paste this code, then save
the file.

hIm = imshow(imread('coins.png'));
hIm.ButtonDownFcn = @(~,~) buttonPressedCallback(hIm.Parent);

function buttonPressedCallback(hAx)
 cp = hAx.CurrentPoint;
 cp = [cp(1,1) cp(1,2)];
 obj = images.roi.Line('Parent',hAx,'Color',rand([1,3]));
 beginDrawingFromPoint(obj,cp);
end

Return to the MATLAB command window. Run the script by entering the command:

sampleDrawLine

 beginDrawingFromPoint

1-2901

The code opens a figure window containing an image of coins. Each time you click the mouse over the
figure, the script executes the callback function, buttonPressedCallback. The callback function
begins drawing a new ROI starting from the pixel you clicked.

Draw Cuboid ROI When Button Pressed

In the editor, open a file called cuboidExample.m. Copy and paste this code into the file and then
save it.

function cuboidExample
 [x,y,z] = sphere(16);
 X = [x(:)*.5 x(:)*.75 x(:)];
 Y = [y(:)*.5 y(:)*.75 y(:)];
 Z = [z(:)*.5 z(:)*.75 z(:)];

 % Specify the size and color of each marker.
 S = repmat([1 .75 .5]*10,numel(x),1);
 C = repmat([1 2 3],numel(x),1);

 % Create a 3-D scatter plot
 figure
 hScatter = scatter3(X(:),Y(:),Z(:),S(:),C(:),'filled');
 view(-60,60);

 % Begin drawing cuboids when a scatter
 % point is clicked
 hScatter.ButtonDownFcn = @(~,~) buttonPressedCallback(hScatter.Parent);

 function buttonPressedCallback(hAx)
 cp = hAx.CurrentPoint;
 cp = cp(1,1:3);
 obj = images.roi.Cuboid('Parent',hAx,'Color',rand([1,3]));
 obj.beginDrawingFromPoint(cp);
 end
 end

Return to the MATLAB command window and run the function by entering the command:

cuboidExample

The code opens a figure window containing a scatter plot. Each time you click the mouse over the
scatter plot, the function executes the callback function, buttonPressedCallback, and draws a
new cuboidal ROI at the pixel you clicked.

1 Functions

1-2902

Input Arguments
ROI — Region of interest
ROI object

Region of interest, specified as an ROI object of one of the following types:

AssistedFreehand Line
Circle Point
Crosshair Polygon
Cuboid Polyline
Ellipse Rectangle
Freehand

[x y] — Starting point in axes
numeric array

Starting point in the axes, specified as a numeric array.

[x y z] — Starting point in 3-D axes
numeric array

Starting point in 3-D axes, specified as a numeric array.

 beginDrawingFromPoint

1-2903

s — Scatter plot
Scatter object

Scatter plot, specified as a matlab.graphics.chart.primitive.Scatter object.

pos — Starting point in 3-D axes
N-by-3 numeric array

Starting point in 3-D axes, specified as an N-by-3 numeric array. Each row in pos represents a 3-D
spatial location of a potential placement position.

See Also
draw | drawassisted | drawcircle | drawcuboid | drawellipse | drawfreehand | drawline |
drawpoint | drawpolygon | drawpolyline | drawrectangle

Introduced in R2018b

1 Functions

1-2904

bringToFront
Package: images.roi

Bring ROI to front of Axes stacking order

Syntax
bringToFront(ROI)

Description
bringToFront(ROI) moves the specified ROI to the front of the front-to-back visual stacking order
of Axes children.

Use the bringToFront function when you want to bring a single ROI to the front of the visual
stacking order. For other restacking behaviors, use the uistack function.

Examples

Change Stacking Order of ROIs

Read an image into the workspace and display it.

I = imread('coins.png');
imshow(I)

 bringToFront

1-2905

Create a circular ROI on the image, specifying where you want to place the circle and how wide to
make the circle. To make it easy to see the changes to the stacking order, make the ROI opaque and
specify the color black.

roi = images.roi.Circle(gca,'Center',[166 123],'Radius',50);
roi.FaceAlpha = 1.0;
roi.Color = 'black';

Create another circular ROI, specifying the same center point but make this ROI bigger. Again, to
make the stacking order easy to see, make the ROI opaque and specify a different color, in this case,
blue. This new ROI completely covers the first ROI.

roi2 = images.roi.Circle(gca,'Center',[166 123],'Radius',100);
roi2.FaceAlpha = 1.0;
roi2.Color = 'blue';

1 Functions

1-2906

Bring the original ROI to the front by using the bringToFront function.

bringToFront(roi)

 bringToFront

1-2907

Input Arguments
ROI — Region of interest
ROI object

Region of interest, specified as an ROI object of one of these types:

AssistedFreehand Line
Circle Point
Cuboid Polygon
Ellipse Polyline
Freehand Rectangle

See Also
draw | drawassisted | drawcircle | drawellipse | drawfreehand | drawline | drawpoint |
drawpolygon | drawpolyline | drawrectangle | uistack

Topics
“Create ROI Shapes”

Introduced in R2019a

1 Functions

1-2908

createMask
Package: images.roi

Create binary mask image from ROI

Syntax
bw = createMask(ROI)
bw = createMask(ROI,m,n)
bw = createMask(ROI,I)

Description
bw = createMask(ROI) returns a binary mask image with pixels inside the ROI set to true and
pixels outside the ROI set to false.

bw = createMask(ROI,m,n) returns a binary mask image that is size [m,n].

bw = createMask(ROI,I) returns a binary mask image that is the size of the image I.

Examples

Create Mask From Ellipse ROI

Read image into the workspace and display it.

I = imread('pears.png');
imshow(I)

 createMask

1-2909

Draw an elliptical ROI on the image, using the Center parameter to specify the location of the ellipse
and theSemiAxes parameter to specify the shape of the ellipse. The example also specifies that the
edge of the ellipse is a striped line.

h = drawellipse('Center',[447 204],'SemiAxes',[78 72], ...
 'RotationAngle',287,'StripeColor','m');

1 Functions

1-2910

Get a binary mask from the ROI. Pixels inside the ROI are true and pixels outside the ROI are
false. Display the mask.

mask = createMask(h);
imshow(mask)

 createMask

1-2911

Input Arguments
ROI — Region of interest
ROI object

Region of interest, specified as an ROI object of one of the following types:

AssistedFreehand Freehand Polyline
Circle Line Rectangle
Ellipse Polygon

m — Row dimension of mask image
positive integer

Row dimension of the mask image, specified as a positive integer.

n — Column dimension of mask image
positive integer

Column dimension of the mask image, specified as a positive integer.

I — Input image
numeric array

1 Functions

1-2912

Input image, specified as a numeric array.

Output Arguments
bw — Binary mask image
logical array

Binary mask image, returned as a logical array.
Data Types: logical

Tips
• If you specify a mask size that does not match the size of the image associated with the ROI

object, then createMask crops or zero-pads the mask to the specified size. The image associated
with the ROI object is ROI.Parent.Children(2,1).CData.

See Also
drawassisted | drawcircle | drawellipse | drawfreehand | drawline | drawpolygon |
drawpolyline | drawrectangle | inROI

Introduced in R2018b

 createMask

1-2913

draw
Package: images.roi

Begin drawing ROI interactively

Syntax
draw(ROI)
draw(ROI,s)
draw(ROI,pos)

Description
draw(ROI) enters interactive mode to draw the shape for object ROI in the current axes (gca).

draw(ROI,s) enters interactive mode to draw the shape for an Cuboid object, snapping the ROI to
the nearest location to the mouse from the Scatter object s.

draw(ROI,pos) enters interactive mode to draw the shape for the Cuboid object, snapping to the
nearest location to the mouse from the position specified by pos. Specify pos as an N-by-3 numeric
array where each row represents the (x,y,z) location of a potential placement position.

Examples
Draw ROI Interactively

Read an image into the workspace and display it.

I = imread('wagon.jpg');
figure
imshow(I);

1 Functions

1-2914

Draw a triangular ROI on the image interactively. To improve the visibility of the ROI edge, specify a
thick line width and bright cyan color of the ROI edge.

p = drawpolygon('LineWidth',7,'Color','cyan');

 draw

1-2915

Get the coordinates of the vertices.

p.Position

ans =

 284.7500 725.5000
 331.2500 871.0000
 359.7500 707.5000

1 Functions

1-2916

The spokes of the wheels define many other triangles. Suppose you want to get the vertices of a
second triangle. You can use the draw function to start over and begin drawing a new polygonal ROI
interactively. The line width and color parameters of the ROI are preserved.

draw(p)

p.Position

ans =

 draw

1-2917

 398.7500 710.5000
 377.7500 865.0000
 461.7500 734.5000

Input Arguments
ROI — Region of interest
ROI object

Region of interest, specified as an ROI object of one of the following types:

AssistedFreehand Line
Circle Point
Crosshair Polygon
Cuboid Polyline
Ellipse Rectangle
Freehand

s — Scatter plot
Scatter object

Scatter plot, specified as a matlab.graphics.chart.primitive.Scatter object.

pos — Position of ROI
N-by-3 numeric array

Position of ROI, specified as an N-by-3 numeric array where each row represents the (x,y,z) location
of a potential placement position.

See Also
beginDrawingFromPoint | drawassisted | drawcircle | drawcuboid | drawellipse |
drawfreehand | drawline | drawpoint | drawpolygon | drawpolyline | drawrectangle

Introduced in R2018b

1 Functions

1-2918

inROI
Package: images.roi

Query if points are located in ROI

Syntax
tf = inROI(ROI,x,y)
tf = inROI(ROI,x,y,z)

Description
tf = inROI(ROI,x,y) returns a logical array, tf, that indicates whether points with coordinates
(x,y) are inside or outside the ROI.

tf = inROI(ROI,x,y,z) returns a logical array, tf, that indicates whether points with coordinates
(x,y,z) are inside or outside the Cuboid ROI.

Examples

Query Points Inside Rectangular ROI

Read an image into the workspace and display it.

I = imread('trailer.jpg');
figure
imshow(I)

Draw a rectangular ROI on the image, using the Position argument to specify the position of the
rectangle as [xmin,ymin,width,height].

h = drawrectangle('Position',[190 308 682 276],'StripeColor','r');

 inROI

1-2919

Specify the x- and y-coordinates of three points. The last point is the upper left corner of the
rectangular ROI.

xcoords = [335 335 190];
ycoords = [200 400 308];

Query if the three points are inside the ROI.

tf = inROI(h,xcoords,ycoords)

tf = 3x1 logical array

 0
 1
 1

Input Arguments
ROI — Region of interest
ROI object

Region of interest, specified as an ROI object of one of the following types:

1 Functions

1-2920

AssistedFreehand Freehand
Circle Polygon
Cuboid Rectangle
Ellipse

x — X-coordinates of query points
numeric scalar or vector

X-coordinates of the query points, specified as a numeric scalar or vector.

y — Y-coordinates of query points
numeric scalar or vector

Y-coordinates of the query points, specified as a numeric scalar or vector.

z — Z-coordinates of query points
numeric scalar or vector

Y-coordinates of the query points, specified as a numeric scalar or vector.

Output Arguments
tf — Status of query points
logical array

Status of query points, returned as a logical array. The array is the same length as the input arrays x,
y, and z. Elements of the logical array set to true indicate that the corresponding query point is
inside the ROI. Elements that are false indicate the point is not inside the ROI.

See Also
createMask | drawassisted | drawcircle | drawcuboid | drawellipse | drawfreehand |
drawpolygon | drawrectangle

Introduced in R2018b

 inROI

1-2921

reduce
Package: images.roi

Reduce density of points in ROI

Syntax
reduce(ROI)
reduce(ROI,tolerance)

Description
reduce(ROI) reduces the number of points that define the region-of-interest ROI. The ROI object
stores the point array in the Position property. reduce replaces the original value of the Position
property with the reduced value.

The reduce method calls the reducepoly function which uses the Ramer–Douglas–Peucker line
simplification algorithm. This algorithm removes points along a straight line and leaves only
knickpoints (points where the line curves).

reduce(ROI,tolerance) reduces the number of points that define the ROI, where tolerance
specifies the sensitivity of the reduction. Specify the tolerance value in the range [0,1].

Examples

Reduce Number of Points Used to Define Freehand ROI

Read an image into the workspace.

I = imread('cameraman.tif');

Display the image.

imshow(I);

Draw a Freehand ROI on the image.

roi = drawfreehand;

View the number of points in the Position property after completing the shape.

disp(['Original Size of Position property: ' mat2str(size(roi.Position))]);

Original Size of Position property: [272 2]

Use the reduce object function to reduce the number of points required to define the shape.

reduce(roi)

1 Functions

1-2922

View the reduced number of points in the Position property.

disp(['Reduced Size of Position property: ' mat2str(size(roi.Position))]);

Reduced Size of Position property: [100 2]

Use Tolerance Parameter to Improve Results

Read an image into the workspace.

I = imread('cameraman.tif');

Display the image.

imshow(I);

Draw a Polyline ROI on the image.

roi = drawpolyline;

View the number of points in the Position property after completing the shape.

disp(['Original Size of Position property: ' mat2str(size(roi.Position))]);

Original Size of Position property: [12 2]

Use the reduce object function to reduce the number of points required to define the shape.

reduce(roi)

View the reduced number of points in the Position property.

 reduce

1-2923

disp(['First try at reducing the number of points: ' mat2str(size(roi.Position))]);

First try at reducing the number of points: [12 2]

Note that the number of points is not changed. To improve the result, change the Tolerance
parameter. By default, tolerance is set to .01. Increase the value and try it again.

reduce(roi,0.3)

View the size of the Position property again. Changing the tolerance resulted in a reduction.

disp(['Reduction after resetting tolerance parameter: ' mat2str(size(roi.Position))]);

Reduction after resetting tolerance parameter: [4 2]

Input Arguments
ROI — ROI
AssistedFreehand object | Freehand object | Polygon object | Polyline object

ROI object, specified as one of the following ROI objects: AssistedFreehand, Freehand, Polygon,
and Polyline.

tolerance — Sensitivity of reduction
0.001 (default) | number in the range [0, 1]

Sensitivity of reduction, specified as a number in the range [0, 1]. Increasing the tolerance increases
the number of points removed. A tolerance value of 0 reduces a minimum number of points. A
tolerance value of 1 results in the maximum reduction in points, leaving only the end points of the
line.

1 Functions

1-2924

Algorithms
The Ramer–Douglas–Peucker line simplification algorithm recursively subdivides a shape looking to
replace a run of points with a straight line. The algorithm checks that no point in the run deviates
from the straight line by more than the value specified by tolerance.

See Also
reducepoly | drawassisted | drawfreehand | drawpolygon | drawpolyline

Topics
“Create ROI Shapes”

Introduced in R2019b

 reduce

1-2925

wait
Package: images.roi

Block MATLAB command line until ROI operation is finished

Syntax
wait(ROI)

Description
wait(ROI) blocks execution of the MATLAB command line until the operation on the ROI object ROI
completes. Indicate completion by double-clicking the ROI object.

Examples

Use wait to Pause the Command Line

Read an image into the workspace.

I = imread('pout.tif');

Display the image.

imshow(I)

Create an ROI on the axes. Click and drag the mouse to create the rectangular ROI.

roi = drawrectangle;

1 Functions

1-2926

At the command line, view the value of the Position property of the ROI.

roi.Position

ans = 1×4

 57.0000 146.0000 141.0000 87.0000

Call the wait method of the ROI. This blocks the command line until an operation on the ROI
completes. For example, you can move the ROI, reshape it, or rotate it (if you have enabled rotation).
For this example, position the cursor inside the ROI, click and drag the ROI over the image to a new
location. To indicate completeness, double-click the ROI.

wait(roi)

 wait

1-2927

Back at the command line, check the value of the ROI's Position property. You can see that the
values have changed to represent the new position.

roi.Position

ans = 1×4

 15.0000 20.0000 141.0000 87.0000

Input Arguments
ROI — Region of interest
ROI object

Region of interest, specified as an ROI object of one of the types listed in this table.

AssistedFreehand Line
Circle Point
Crosshair Polygon
Cuboid Polyline
Ellipse Rectangle
Freehand

1 Functions

1-2928

See Also
beginDrawingFromPoint | draw | inROI | createMask | bringToFront

Topics
“Create ROI Shapes”
“Use Wait Function After Drawing ROI”

Introduced in R2019b

 wait

1-2929

roicolor
Select region of interest (ROI) based on color

Syntax
BW = roicolor(I,low,high)
BW = roicolor(I,v)

Description
BW = roicolor(I,low,high) returns an ROI selected as those pixels in image I that lie within the
range [low high]. The returned value, BW, is a binary image with 0s outside the region of interest
and 1s inside.

BW = roicolor(I,v) returns an ROI selected as those pixels in image I that match values in
vector v.

Examples

Select Region of Interest Based on Color

Load an indexed image X with colormap map. The colormap has 128 colors. Display the indexed
image.

load trees
imshow(X,map)

1 Functions

1-2930

Create a binary mask image based on color. The mask is true for pixels with index in the range [10,
20]. The mask is false for pixels with index outside this range.

BW = roicolor(X,10,20);

Display the binary mask.

imshow(BW)

Input Arguments
I — Indexed or grayscale image
m-by-n numeric matrix

Indexed or grayscale image, specified as an m-by-n numeric matrix.

low — Minimum value
numeric scalar

Minimum value to include in the ROI, specified as a numeric scalar.

high — Maximum value
numeric scalar

Minimum value to include in the ROI, specified as a numeric scalar.

v — Set of values
numeric vector

Set of values to include in the ROI, specified as a numeric vector.

 roicolor

1-2931

Output Arguments
BW — Binary image
m-by-n logical matrix

Binary image, returned as an m-by-n logical matrix.
Data Types: logical

Tips
• You can use the returned image as a mask for masked filtering using roifilt2.
• If you specify a colormap range, [low high], then

BW = (I >= low) & (I <= high)
• If you specify a set of colormap values, v, then the mask generated by roicolor is equivalent to:

BW = ismember(I,v)

See Also
roifilt2 | roipoly | ismember

Introduced before R2006a

1 Functions

1-2932

roifill
(Not recommended) Fill in specified region of interest (ROI) polygon in grayscale image

Note roifill is not recommended. Use regionfill instead. If you want to define the polygon
interactively with regionfill, then use regionfill either with roipoly or with drawpolygon
followed by createMask.

Syntax
J = roifill
J = roifill(I)

J = roifill(I,mask)
J = roifill(I,xi,yi)
J = roifill(x,y,I,xi,yi)

[J,BW] = roifill(___)
[x2,y2,J,BW,xi2,yi2] = roifill(___)
roifill(___)

Description
Use the roifill function to fill in a specified region of interest (ROI) polygon in a grayscale image.
roifill smoothly interpolates inward from the pixel values on the boundary of the polygon by
solving Laplace's equation. The boundary pixels are not modified. roifill can be used, for example,
to erase objects in an image.

J = roifill creates an interactive polygon selection tool associated with the image displayed in
the current figure. With this syntax and the other interactive syntaxes, the polygon selection tool
blocks the MATLAB command line until you complete the operation. roifill fills the selected
polygon and returns the filled image, J.

For more information about using the polygon selection tool to define and fill ROIs, see “Interactive
Behavior” on page 1-2935.

J = roifill(I) displays the image I in a figure window and creates an interactive polygon tool
associated with the image.

J = roifill(I,mask) fills regions in I corresponding to the nonzero pixels in the mask. If there
are multiple regions, then roifill performs the interpolation on each region independently.

J = roifill(I,xi,yi) fills in the polygon with vertices defined by X-Y coordinates xi and yi in
the default spatial coordinate system.

J = roifill(x,y,I,xi,yi) defines a nondefault spatial coordinate system using the vectors x
and y. The polygon vertices have coordinates xi and yi in this coordinate system.

[J,BW] = roifill(___) returns the binary image BW with 1s for pixels corresponding to the
interpolated region of I and 0s elsewhere.

 roifill

1-2933

[x2,y2,J,BW,xi2,yi2] = roifill(___) also returns the image XData and YData in x2 and y2
and the polygon coordinates in xi2 and yi2.

roifill(___) without an output argument displays the filled image in a new figure window.

Examples
Fill Region Using roifill

This example uses roifill to fill a region in the input image, I. For more examples, especially of the
interactive syntaxes, see “Fill Region of Interest in an Image”.

I = imread('eight.tif');
c = [222 272 300 270 221 194];
r = [21 21 75 121 121 75];
J = roifill(I,c,r);
imshow(I)
figure
imshow(J)

Input Arguments
I — Grayscale image
numeric matrix

Grayscale image, specified as a numeric matrix.
Data Types: single | double | int16 | uint8 | uint16

mask — Mask
numeric matrix | logical matrix

Mask, specified as a numeric or logical matrix of the same size as the input image, I.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

xi, yi — x- or y-coordinate of vertices
numeric vector

x- or y-coordinate of polygon vertices, specified as numeric vectors of equal length. If you specify a
nondefault coordinate system using the x and y arguments, then xi and yi specify coordinates in
this coordinate system. Otherwise, xi and yi specify coordinates in the default coordinate system.

1 Functions

1-2934

x, y — Image extent in world coordinates
2-element numeric vector

Image extent in world X-Y coordinates, specified as a 2-element numeric vector of the form [min
max]. The two elements of x give the x-coordinates (horizontal) of the first and last columns of image
I, respectively. The two elements of y give the y-coordinates (vertical) of the first and last rows of I.

Output Arguments
J — Filled image
numeric matrix

Filled image, returned as a numeric matrix.
Data Types: single | double | int16 | uint8 | uint16

BW — Binary image
logical matrix

Binary image, returned as a logical matrix of the same size as the input image, I.
Data Types: logical

xi2, yi2 — x- or y-coordinate of vertices
numeric vector

x- or y-coordinate of polygon vertices, specified as numeric vectors. xi and yi are empty if you
specify the polygon ROI using the mask argument.

x2, y2 — Image extent in world coordinates
2-element numeric vector

Image extent in world X-Y coordinates,, returned as 2-element numeric vectors of the form [min
max]. If you specify image limits x and y, then x2 and y2 are equal to these values. Otherwise, x2
and y2 are equal to the original image XData and YData.

More About
Interactive Behavior

When you call roifill with an interactive syntax, a polygon selection tool opens that enables you to
select and adjust polygon vertices interactively using the mouse.

When the polygon tool is active, the pointer changes to cross hairs when you move the pointer
over the image in the figure. Using the mouse, specify the region by selecting vertices of the polygon.
You can move or resize the polygon using the mouse. When you are finished positioning and sizing the
polygon, fill the polygon by double-clicking, or by right-clicking inside the region and selecting Fill
Area from the context menu.

The figure illustrates a polygon defined by multiple vertices.

 roifill

1-2935

Interactive Behavior Description
Closing the polygon.
(Completing the region-of-
interest.)

Use any of the following mechanisms:

• Move the pointer over the initial vertex of the polygon that you
selected. The shape changes to a circle . Click either mouse
button.

• Double-click the left mouse button. This action creates a vertex
at the point under the mouse and draws a straight line
connecting this vertex with the initial vertex.

• Click the right mouse button. This action draws a line
connecting the last vertex selected with the initial vertex; it does
not create a new vertex.

Deleting the polygon Press Backspace, Escape or Delete, or right-click inside the
region and select Cancel from the context menu.

Note: If you delete the ROI, the function returns empty values.
Moving the polygon Move the pointer inside the region. The pointer changes to a fleur

. Click and drag the mouse to move the polygon.
Changing the color of the
polygon

Move the pointer inside the region. Right-click and select Set color
from the context menu.

Adding a new vertex. Move the pointer over an edge of the polygon and press the A key.
The shape of the pointer changes . Click the left mouse button to
create a new vertex at that position on the line.

Moving a vertex. (Reshaping the
region-of-interest.) Move the pointer over a vertex. The pointer changes to a circle .

Click and drag the vertex to its new position.
Deleting a vertex. Move the pointer over a vertex. The pointer changes to a circle .

Right-click and select Delete Vertex from the context menu. This
action deletes the vertex and adjusts the shape of the polygon,
drawing a new straight line between the two vertices that were
neighbors of the deleted vertex.

1 Functions

1-2936

Interactive Behavior Description
Retrieving the coordinates of
the vertices

Move the pointer inside the region. Right-click and select Copy
position from the context menu to copy the current position to the
Clipboard. Position is an n-by-2 array containing the x- and y-
coordinates of each vertex, where n is the number of vertices you
selected.

See Also
drawpolygon | Polygon | roifilt2 | roipoly | regionfill | inpaintCoherent

Introduced before R2006a

 roifill

1-2937

roifilt2
Filter region of interest (ROI) in image

Syntax
J = roifilt2(h,I,BW)
J = roifilt2(I,BW,fun)

Description
J = roifilt2(h,I,BW) filters regions of interest (ROIs) in the 2-D image I using the 2-D linear
filter h. BW is a binary mask, the same size as I, that defines the ROIs in I. roifilt2 returns an
image that consists of filtered values for pixels in locations where BW contains 1s, and unfiltered
values for pixels in locations where BW contains 0s.

J = roifilt2(I,BW,fun) processes the data in ROIs of I using the function fun. The value fun
must be a function handle.

Examples

Filter Image Using Polygonal Mask

Read an image into the workspace.

I = imread('eight.tif');

Define the vertices of the mask polygon.

c = [222 272 300 270 221 194];
r = [21 21 75 121 121 75];

Create the binary mask image.

BW = roipoly(I,c,r);

Filter the region of the image I specified by the mask BW.

H = fspecial('unsharp');
J = roifilt2(H,I,BW);

Display the original image and the filtered image.

imshow(I)

1 Functions

1-2938

figure
imshow(J)

Input Arguments
h — Linear filter
2-D numeric matrix

 roifilt2

1-2939

Linear filter, specified as a 2-D numeric matrix.
Data Types: double

I — Image
2-D numeric matrix

Image, specified as a 2-D numeric matrix.

• If you specify a filter, h, then I can be any of the listed data types.
• If you specify a function handle, fun, then I can be any class supported by fun.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

BW — Mask
2-D logical matrix | 2-D numeric matrix

Mask, specified as a 2-D logical matrix or a 2-D numeric matrix, the same size as I, containing 0s and
1s.
Data Types: logical

fun — Function handle
handle

Function handle, specified as a handle. For more information about function handles, see “Create
Function Handle”.

Output Arguments
J — Filtered image
2-D matrix

Filtered image, returned as a 2-D matrix.

• If you specify a filter, h, then J has the same class as the input image, I.
• If you specify a function handle, fun, then the class of J is determined by fun.

Algorithms
If you specify a filter, h, then roifilt2 calls filter2 to implement the filter.

See Also
filter2 | imfilter | roipoly

Introduced before R2006a

1 Functions

1-2940

roipoly
Specify polygonal region of interest (ROI)

Syntax
BW = roipoly
BW = roipoly(I)

BW = roipoly(I,xi,yi)
BW = roipoly(xref,yref,I,xi,yi)

[BW,xi2,yi2] = roipoly(___)
[xrefout,yrefout,BW,xi2,yi2] = roipoly(___)
roipoly(___)

Description
Create Polygon Interactively

BW = roipoly creates an interactive polygon tool associated with the image displayed in the
current figure. roipoly returns the mask as a binary image, setting pixels inside the ROI to 1 and
pixels outside the ROI to 0.

With this syntax and the other interactive syntaxes, the polygon selection tool blocks the MATLAB
command line until you complete the operation. For more information about using the polygon
selection tool, see “Interactive Behavior” on page 1-2944.

BW = roipoly(I) displays the grayscale or RGB image I in a figure window and creates an
interactive polygon selection tool associated with the image.

Create Polygon by Specifying Vertices

BW = roipoly(I,xi,yi) specifies the (x, y) coordinates of polygon vertices as (xi, yi).

BW = roipoly(xref,yref,I,xi,yi) specifies the coordinates of polygon vertices in the world
coordinate system defined by xref and yref. The polygon vertices have (x, y) coordinates xi and yi
in this coordinate system.

Specify Additional Output Options

[BW,xi2,yi2] = roipoly(___) also returns the coordinates of the vertices of the closed
polygon, xi2 and yi2. You can use the input arguments of any other syntax.

[xrefout,yrefout,BW,xi2,yi2] = roipoly(___) also returns the image limits in xrefout
and yrefout.

roipoly(___) without output arguments displays the resulting mask image in a new figure
window.

Examples

 roipoly

1-2941

Create Polygonal Mask

Read an image into the workspace.

I = imread('eight.tif');

Define the vertices of the mask polygon.

c = [222 272 300 270 221 194];
r = [21 21 75 121 121 75];

Create the binary mask image.

BW = roipoly(I,c,r);

Display the original image and the polygonal mask.

imshow(I)

figure
imshow(BW)

1 Functions

1-2942

Input Arguments
I — Grayscale or RGB image
m-by-n numeric matrix | m-by-n-by-3 numeric array

Grayscale or RGB image, specified as an m-by-n numeric matrix or an m-by-n-by-3 numeric array,
respectively.

xi — x-coordinate of polygon vertices
numeric vector

x-coordinate of polygon vertices, specified as a numeric vector of the same length as yi. If you
specify image limits in a world coordinate system using xref, then xi is in this coordinate system.
Otherwise, xi is in the default coordinate system.

yi — y-coordinate of polygon vertices
numeric vector

y-coordinate of polygon vertices, specified as a numeric vector of the same length as xi. If you
specify image limits in a world coordinate system using yref, then yi is in this coordinate system.
Otherwise, yi is in the default coordinate system.

xref — Image limits in world coordinates along x-dimension
2-element numeric vector

Image limits in world coordinates along the x-dimension, specified as a 2-element numeric vector of
the form [xmin xmax]. The value of xref sets the image XData.

yref — Image limits in world coordinates along y-dimension
2-element numeric vector

 roipoly

1-2943

Image limits in world coordinates along the y-dimension, specified as a 2-element numeric vector of
the form [ymin ymax]. The value of yref sets the image YData.

Output Arguments
BW — Binary image
m-by-n logical matrix

Binary image, returned as an m-by-n logical matrix.
Data Types: logical

xi2 — x-coordinate of vertices
numeric vector

x-coordinate of vertices of the closed polygon, returned as a numeric vector of the same length as
yi2. The first and last element in the vector are identical, so that the polygon is closed. If you specify
image limits in a world coordinate system using xref, then xi2 is in this coordinate system.
Otherwise, xi2 is in the default coordinate system.

yi2 — y-coordinate of vertices
numeric vector

y-coordinate of vertices of the closed polygon, returned as a numeric vector of the same length as
xi2. The first and last element in the vector are identical, so that the polygon is closed. If you specify
image limits in a world coordinate system using yref, then yi2 is in this coordinate system.
Otherwise, yi2 is in the default coordinate system.

xrefout — Image limits in world coordinates along x-dimension
2-element numeric vector

Image limits in world coordinates along the x-dimension, returned as a 2-element numeric vector of
the form [xmin xmax]. If you specify image limits in a world coordinate system using xref, then
xrefout is equal to xref. Otherwise, xrefout is equal to the original image XData.

yrefout — Image limits in world coordinates along y-dimension
2-element numeric vector

Image limits in world coordinates along the y-dimension, returned as a 2-element numeric vector of
the form [ymin ymax]. If you specify image limits in a world coordinate system using yref, then
yrefout is equal to yref. Otherwise, yrefout is equal to the original image YData.

More About
Interactive Behavior

The polygon selection tool enables you to select and adjust polygon vertices interactively using the
mouse.

When the polygon tool is active, the pointer changes to cross hairs when you move the pointer
over the image in the figure. Using the mouse, you specify the region by selecting vertices of the
polygon. You can move or resize the polygon using the mouse. When you are finished positioning and

1 Functions

1-2944

sizing the polygon, create the mask by double-clicking, or by right-clicking inside the region and
selecting Create mask from the context menu.

The figure illustrates a polygon defined by multiple vertices. The following table describes all the
interactive behavior of the polygon tool.

Interactive Behavior Description
Closing the polygon.
(Completing the region-of-
interest.)

Use any of the following mechanisms:

• Move the pointer over the initial vertex of the polygon that you
selected. The pointer changes to a circle . Click either mouse
button.

• Double-click the left mouse button. This action creates a vertex
at the point under the mouse pointer and draws a straight line
connecting this vertex with the initial vertex.

• Right-click the mouse. This draws a line connecting the last
vertex selected with the initial vertex; it does not create a new
vertex at the point under the mouse.

Moving the entire polygon Move the pointer inside the region. The pointer changes to a fleur

shape . Click and drag the polygon over the image.
Deleting the polygon Press Backspace, Escape or Delete, or right-click inside the

region and select Cancel from the context menu.

Note: If you delete the ROI, the function returns empty values.
Moving a vertex. (Reshaping the
region-of-interest.) Move the pointer over a vertex. The pointer changes to a circle .

Click and drag the vertex to its new position.
Adding a new vertex. Move the pointer over an edge of the polygon and press the A key.

The pointer changes shape to . Click the left mouse button to
create a new vertex at that point on the edge.

 roipoly

1-2945

Interactive Behavior Description
Deleting a vertex. (Reshaping
the region-of-interest.)

Move the pointer over the vertex. The pointer changes to a circle
. Right-click and select Delete vertex from the context menu.

roipoly draws a new straight line between the two vertices that
were neighbors of the deleted vertex.

Changing the color of the
polygon

Move the pointer anywhere inside the boundary of the region and
click the right mouse button. Select Set color from the context
menu.

Retrieving the coordinates of
the vertices

Move the pointer inside the region. Right-click and select Copy
position from the context menu to copy the current position to the
Clipboard. The position is an n-by-2 array containing the x- and y-
coordinates of each vertex, where n is the number of vertices.

Tips
• roipoly always produces a closed polygon. If you specify input vertex positions of a closed

polygon (such that the last pair of coordinates is identical to the first pair), then the length of the
output coordinate vectors is equal to the number of points specified. If the points specified do not
describe a closed polygon, then roipoly adds a final point having the same coordinates as the
first point. In this case the length of the output coordinate vectors is one greater than the number
of points specified.

• For any of the roipoly syntaxes, you can replace the input image I with two arguments, m and n,
that specify the row and column dimensions of an arbitrary image. For example, these commands
create a 100-by-200 binary mask.

c = [112 112 79 79];
r = [37 66 66 37];
BW = roipoly(100,200,c,r);

If you specify m and n with an interactive form of roipoly, an m-by-n black image is displayed.
Use the mouse to specify a polygon within this image.

See Also
drawpolygon | poly2mask | roifilt2 | roicolor | regionfill

Topics
“Image Types in the Toolbox”
“Define World Coordinate System of Image”

Introduced before R2006a

1 Functions

1-2946

rsetwrite
Create R-Set file from image file

Syntax
rsetfile = rsetwrite(filename)
rsetfile = rsetwrite(filename,rsetfilename)
rsetfile = rsetwrite(adapter,rsetfilename)

Description
rsetfile = rsetwrite(filename) creates a reduced resolution dataset (R-Set) file from the
specified input. The input file must be a TIFF or NITF image file. The function writes the generated R-
Set file to the current working folder and has same file name as the input but with an rset extension.

rsetfile = rsetwrite(filename,rsetfilename) specifies the name of R-Set file using
rsetfilename.

rsetfile = rsetwrite(adapter,rsetfilename) creates an R-Set file named rsetfilename
from an ImageAdapter object, adapter. Use this syntax when creating an R-Set file from a type of
image file that is not TIFF or NITF.

Examples

Create R-Set From Large TIFF Image File

Load a TIFF image file into the workspace.

filename = 'mandi.tif';

Create an R-Set file from the image file. The function creates the R-Set in the current working folder.

rsetfile = rsetwrite(filename);

Display the R-Set file by using the Image Viewer function.

imtool(rsetfile)

 rsetwrite

1-2947

Zoom in on the R-Set by 65% to view the spatial tiles.

imtool(rsetfile,'InitialMagnification',65);

1 Functions

1-2948

Create R-Set from ImageAdapter Object

Load a file containing an ImageAdapter object into the workspace.

load('MandiImageAdapter.mat')

Specify a name for the R-Set file to be created.

rsetfilename = 'MandiRSet';

Create an R-Set file from the ImageAdapter object. The function creates the R-Set in the current
working folder.

rsetfile = rsetwrite(adapter,rsetfilename)

rsetfile =
'MandiRSet'

Display the R-Set file using the Image Viewer function.

 rsetwrite

1-2949

imtool(rsetfile)

Zoom in on the R-Set by 53% to view the spatial tiles.

imtool(rsetfile,'InitialMagnification',53)

1 Functions

1-2950

Input Arguments
filename — Name of TIFF or NITF image file
character vector | string scalar

Name of a TIFF or NITF image file, specified as a character vector or string scalar.
Data Types: char | string

rsetfilename — Name for output R-Set file
character vector | string scalar

Name for the output R-Set file, specified as a character vector or string scalar. If rsetfilename is
not specified, filename sets the name of R-Set file, rsetfile.
Data Types: char | string

adapter — Image adapter object
ImageAdapter object

 rsetwrite

1-2951

Image adapter object, specified as an ImageAdapter object. An ImageAdapter is a user-defined
object that provides rsetwrite function with a common API to read a particular image file format.

Output Arguments
rsetfile — Name of R-Set file
string scalar

Name of the R-Set file, returned as a string scalar. This value specifies the name of the file to which
the R-Set is stored.

Tips
• rsetwrite creates an R-Set by dividing an image into spatial tiles and resampling the image at
different resolution levels. The R-Set file contains a compressed copy of the full-resolution image
data. You can use the Image Viewer app to open the R-Set file and zoom in to view the tiles at a
higher resolution. When you zoom out, the function displays tiles at a lower resolution. In this way,
an R-Set file balances clarity of the image and memory usage for optimal performance.

• When creating an R-Set, a progress bar shows the status of the completion. If you cancel the
creation process before it is complete, the function does not create an R-Set and returns an empty
rsetfile.

• rsetwrite supports NITF image files that are uncompressed and Version 2.0 or higher. This
function does not support NITF files with more than three data bands or with floating-point data.
Images with more than one data band are accepted if they contain unsigned integer data.

• You can create an R-Set from an image whose dimensions are smaller than the size of a single R-
Set tile. However, the resulting R-Set file might be larger and take longer to load than the original
file. The current size of a tile in an R-Set is 512-by-512 pixels.

See Also
Image Viewer | imread | isrset | openrset

Introduced in R2009a

1 Functions

1-2952

sizesMatch
Determine if object and image are size-compatible

Syntax
TF = sizesMatch(R,A)

Description
TF = sizesMatch(R,A) returns True if the size of image A is consistent with the ImageSize
property of spatial referencing object R.

Examples

Check If 2-D Grayscale Image and 2-D Spatial Referencing Object Are Size-Compatible

Read a 2-D grayscale image into the workspace. View the size of the image.

I = imread('cameraman.tif');
size(I)

ans = 1×2

 256 256

Create an imref2d spatial referencing object with the same dimensions as the image.

R = imref2d(size(I))

R =
 imref2d with properties:

 XWorldLimits: [0.5000 256.5000]
 YWorldLimits: [0.5000 256.5000]
 ImageSize: [256 256]
 PixelExtentInWorldX: 1
 PixelExtentInWorldY: 1
 ImageExtentInWorldX: 256
 ImageExtentInWorldY: 256
 XIntrinsicLimits: [0.5000 256.5000]
 YIntrinsicLimits: [0.5000 256.5000]

Confirm that the size of the image matches the ImageSize property of the object.

res = sizesMatch(R,I)

res = logical
 1

 sizesMatch

1-2953

Read another 2-D grayscale image that has a different size. View the size of this image.

I2 = imread('coins.png');
size(I2)

ans = 1×2

 246 300

Check if the size of this image matches the size of the original spatial referencing object.

res2 = sizesMatch(R,I2)

res2 = logical
 0

The result is false, as expected.

Check If 2-D RGB Image and 2-D Spatial Referencing Object Are Size-Compatible

Read an RGB image into the workspace. View the size of the image.

I = imread('peppers.png');
size(I)

ans = 1×3

 384 512 3

Create an imref2d spatial referencing object with the same dimensions as the image. The object
does not retain information about the third dimension of the image array.

R = imref2d(size(I))

R =
 imref2d with properties:

 XWorldLimits: [0.5000 512.5000]
 YWorldLimits: [0.5000 384.5000]
 ImageSize: [384 512]
 PixelExtentInWorldX: 1
 PixelExtentInWorldY: 1
 ImageExtentInWorldX: 512
 ImageExtentInWorldY: 384
 XIntrinsicLimits: [0.5000 512.5000]
 YIntrinsicLimits: [0.5000 384.5000]

Check if the size of the image is compatible with the ImageSize property of the object.

res = sizesMatch(R,I)

res = logical
 1

1 Functions

1-2954

Check If 3-D Image Array and 3-D Spatial Referencing Object Are Size-Compatible

Read a 3-D volume into the workspace. This image consists of 27 frames of 128-by-128 pixel
grayscale images.

load mri;
D = squeeze(D);
D = ind2gray(D,map);
size(D)

ans = 1×3

 128 128 27

Create an imref3d spatial referencing object associated with the volume.

R = imref3d(size(D))

R =
 imref3d with properties:

 XWorldLimits: [0.5000 128.5000]
 YWorldLimits: [0.5000 128.5000]
 ZWorldLimits: [0.5000 27.5000]
 ImageSize: [128 128 27]
 PixelExtentInWorldX: 1
 PixelExtentInWorldY: 1
 PixelExtentInWorldZ: 1
 ImageExtentInWorldX: 128
 ImageExtentInWorldY: 128
 ImageExtentInWorldZ: 27
 XIntrinsicLimits: [0.5000 128.5000]
 YIntrinsicLimits: [0.5000 128.5000]
 ZIntrinsicLimits: [0.5000 27.5000]

Confirm that the size of the volume matches the ImageSize property of the object.

res = sizesMatch(R,D)

res = logical
 1

The sizes match, as expected.

Read another image that has a different size. This image a 3-D array representing an RGB image.

I = imread('peppers.png');
size(I)

ans = 1×3

 384 512 3

Check if the size of this image matches the size of the original spatial referencing object.

 sizesMatch

1-2955

res2 = sizesMatch(R,I)

res2 = logical
 0

The result is false, as expected.

Input Arguments
R — Spatial referencing object
imref2d or imref3d object

Spatial referencing object, specified as an imref2d or imref3d object.

A — Input image
numeric m-by-n or m-by-n-by-p array

Input image, specified as a numeric m-by-n or m-by-n-by-p array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Output Arguments
TF — Flag indicating size compatibility
logical scalar

Flag indicating size compatibility, returned as a logical scalar. TF is True if the size of the image A is
consistent with the referencing object R. When R is:

• An imref2d spatial referencing object, TF returns true when R.ImageSize == [size(A,1)
size(A,2)].

Note The dimensionality of A does not need to match the dimensionality of an imref2d spatial
referencing object. For example, an RGB image can be consistent with an imref2d object. In this
case, sizesMatch ignores the third image dimension.

• An imref3d spatial referencing object, TF returns true when R.ImageSize == size(A). A
must be a 3-D array.

Data Types: logical

See Also

Introduced in R2013a

1 Functions

1-2956

sliceViewer
Browse image slices

Description
A sliceViewer object displays individual slices of grayscale and RGB volumes. You can control
which slice to display by using a slider.

When it opens, the sliceViewer object displays the middle image in the stack in the direction
specified by sliceDirection. Use the slider to navigate through the volume and view individual
slices.

The sliceViewer object supports properties, object functions, and events that you can use to
customize its appearance and functioning. The sliceViewer object can send notifications when
certain events occur, such as the slider moving. For more information, see “Events” on page 1-2962.

Note By default, clicking and dragging the mouse in the slice displayed interactively changes their
brightness and contrast, a technique called window/level. Dragging the mouse horizontally from left
to right changes the contrast. Dragging the mouse vertically up and down changes the brightness.
Holding down the Ctrl key when clicking and dragging the mouse accelerates changes. Holding down
the Shift key while clicking and dragging the mouse slows the rate of change. Press these keys

 sliceViewer

1-2957

before clicking and dragging. To control this behavior, use the “DisplayRangeInteraction” on page 1-
0 property.

Creation
Description

sliceViewer(V) displays the grayscale or RGB volume V in a figure. The figure includes a slider
that you can use to view individual slices of the volume.

sliceViewer(___ ,Name,Value) sets properties on page 1-2958 using name-value pair
arguments. You can specify multiple name-value pairs. Enclose each property name in single quotes.
Example: sliceViewer(V,'Colormap',cmap) creates a sliceViewer object and specifies the
colormap used to display the volume.

sv = sliceViewer(___) returns a sliceViewer object, sv, with properties that can be used to
control visualization of the volume. Use input arguments from any of the previous syntaxes.

Input Arguments

V — Input volume
m-by-n-by-p-by-c numeric array

Input volume, specified as an m-by-n-by-p-by-c numeric array. For grayscale volumes, c is 1. For RGB
volumes, c is 3. RGB volumes can only be of class uint8, uint16, single, and double.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Properties
Colormap — Colormap of image stack
gray(256) (default) | m-by-3 numeric array

Colormap of the image stack, specified as an m-by-3 numeric array with values in the range [0 1].
The Colormap property has no effect when V is an RGB image stack.

DisplayRange — Display range of image stack
[min(V(:)) max(V(:))] (default) | two-element vector

Display range of image stack, specified as a two-element vector of the form [low high]. The value
low (and any value less than low) displays as black. The value high (and any value greater than
high) displays as white. Values in between are displayed as intermediate shades of gray, using the
default number of gray levels. If you specify an empty matrix ([]), sliceViewer uses the default
value. DisplayRange has no effect when you specify a stack of RGB images.

DisplayRangeInteraction — Enable interactive control of display range
'on' | 'off'

Enable interactive control of display range, specified as one of these values. To learn more about
interactive behavior, see Events on page 1-2962.

1 Functions

1-2958

Value Description
'on' (default for grayscale intensity
volumes)

Control the display range of a grayscale image stack by
left-clicking the mouse and dragging it on the axes.

'off' (default for logical and RGB
volumes)

No display range interactivity.

Parent — Parent of sliceViewer object
gcf (default) | uipanel | figure

Parent of the sliceViewer object, specified as a handle to a uipanel or a figure created with the
figure or uifigure commands. If you do not specify a parent, the parent of the sliceViewer
object is gcf.

ScaleFactors — Scale factors used to rescale the volume
[1 1 1] (default) | 1-by-3 positive numeric vector

Scale factors used to rescale the volume, specified as a 1-by-3 positive numeric vector. The values in
the array correspond to the scale factor applied in the x, y, and z directions.

SliceDirection — Direction in which to browse image stack
[0 0 1] (default) | 1-by-3 logical vector | 'X' | 'Y' | 'Z'

Direction in which to browse image stack, specified as 1-by-3 logical vector or one of the character
vectors in this table.

Character Vector Logical Vector Description
'X' [1 0 0] Browse in X direction
'Y' [0 1 0] Browse in Y direction
'Z' (default) [0 0 1] Browse in Z direction

SliceNumber — Index of slice to be displayed
center slice | positive numeric scalar

Index of the slice to be displayed from the volume, specified as a positive numeric scalar.

Object Functions
addlistener Create event listener bound to event source
getAxesHandle Get handle to axes in Slice Viewer

Examples

View MRI Data in Slice Viewer

Load MRI data into the workspace.

load mristack

View the data in the slice viewer, specifying a custom colormap for viewing the slices. The slice
viewer opens the stack of images and displays the one in the middle. Use the slider to view a different
slice.

 sliceViewer

1-2959

cmap = parula(256);
s = sliceViewer(mristack,'Colormap',cmap);

Create GIF of Slices Using the Slice Viewer

Load MRI data into the workspace.

load mristack

View the data in the slice viewer.

s = sliceViewer(mristack);

Get the handle of the axes containing the displayed slice.

hAx = getAxesHandle(s);

Specify the name of the GIF file you want to create.

filename = 'animatedSlice.gif';

Create an array of slice numbers.

sliceNums = 1:21;

Loop through the slice numbers and create an image of each displayed slice. Write the images to a
GIF file.

for idx = sliceNums
 % Update slice number

1 Functions

1-2960

 s.SliceNumber = idx;
 % Use getframe to capture image
 I = getframe(hAx);
 [indI,cm] = rgb2ind(I.cdata,256);
 % Write frame to the GIF file
 if idx == 1
 imwrite(indI,cm,filename,'gif','Loopcount',inf,'DelayTime', 0.05);
 else
 imwrite(indI,cm,filename,'gif','WriteMode','append','DelayTime', 0.05);
 end
end

Set Up Listener for Slice Viewer Slider Events

Load a stack of images into the workspace.

load mristack

View the data in the slice viewer, specifying a custom colormap for viewing the slices. The slice
viewer opens the stack of images and displays the one in the middle. Use the slider to view a different
slice.

cmap = parula(256);
s = sliceViewer(mristack,'Colormap',cmap);

Set up listeners for the two sliceViewer object slider events: when the slider is moving and when
the slider has been moved. When you move the slider, the slice viewer sends notifications of these
events and executes the specified callback function.

 sliceViewer

1-2961

addlistener(s,'SliderValueChanging',@allevents);
addlistener(s,'SliderValueChanged',@allevents);

Use this allevents callback function to display the name of each event and the current position of
the slider.

function allevents(src,evt)
 evname = evt.EventName;
 switch(evname)
 case{'SliderValueChanging'}
 disp(['Slider value changing event: ' mat2str(evt.CurrentValue)]);
 case{'SliderValueChanged'}
 disp(['Slider value changed event: ' mat2str(evt.CurrentValue)]);
 end
end

More About
Events

The sliceViewer object can send notifications when the slider moves. To receive these notifications,
use the addListener object function to set up a listener. To set up a listener, specify the name of the
event, for example, 'SliderValueChanging', and the function you want executed when the event
occurs. The following table lists events supported by the sliceViewer object. For an example, see
“Set Up Listener for Slice Viewer Slider Events” on page 1-2961.

Event Name Trigger Event Data Event Attributes
SliderValueChangin
g

The slider in the
sliceViewer object is
moving.

images.stack.brows
er.SliderMovingEve
ntData

NotifyAccess:
private

ListenAccess:
public

SliderValueChanged The slider in the
sliceViewer object
has been moved.

images.stack.brows
er.SliderMovingEve
ntData

NotifyAccess:
private

ListenAccess:
public

See Also
orthosliceViewer | Volume Viewer | volshow | slice | obliqueslice

Introduced in R2019b

1 Functions

1-2962

getAxesHandle
Get handle to axes in Slice Viewer

Syntax
hAx = getAxesHandle(s)

Description
hAx = getAxesHandle(s) returns the axes in the Slice Viewer s.

Examples

Get Handle to Axes in Slice Viewer

Load MRI data into the workspace.

load mristack

Create a display panel used to display the slices and the slider.

ViewPnl = uipanel(figure,'Title','Z-Direction Slices of MRI');

View the data in the slice viewer, specifying a custom colormap for viewing the slices. The slice
viewer opens the stack of images and displays the one in the middle. Use the slider to view a different
slice.

cmap = parula(256);
s = sliceViewer(mristack,'Colormap',cmap,'Parent',ViewPnl);

 getAxesHandle

1-2963

Get the handle to the axes that contains the image slices in the slice viewer.

hAx = getAxesHandle(s)

hAx =
 Axes with properties:

 XLim: [0.5000 256.5000]
 YLim: [0.5000 256.5000]
 XScale: 'linear'
 YScale: 'linear'
 GridLineStyle: '-'
 Position: [120 57.5000 320 320]
 Units: 'pixels'

 Show all properties

Input Arguments
s — Slice Viewer
sliceViewer object

Slice Viewer, specified as a sliceViewer object.

1 Functions

1-2964

Output Arguments
hAx — Axes in Slice Viewer
Axes object

Axes in Slice Viewer, returned as an Axes object.

See Also
sliceViewer

Introduced in R2019b

 getAxesHandle

1-2965

selectBlockLocations
Select blocks from blocked images

Syntax
blset = selectBlockLocations(bims)
blset = selectBlockLocations(bims,Name,Value)

Description
blset = selectBlockLocations(bims) selects a set of nonoverlapping unique blocks from one
or more blockedImage objects bims at the finest resolution available in each image. Returns
blset, a blockLocationsSet object.

blset = selectBlockLocations(bims,Name,Value) specifies additional options about the
blocks to select, such as the overlap and spacing between blocks, using one or more name-value pair
arguments.

Examples

Create blockedImageDatastore Using Non-overlapping Blocks

Create a blocked image.

bim = blockedImage('tumor_091R.tif');

Create a block location set excluding incomplete blocks.

 bls = selectBlockLocations(bim,'ExcludeIncompleteBlocks',true);

Create a blockedImageDatastore from this set of blocks.

bimds = blockedImageDatastore(bim,'BlockLocationSet', bls);

Visualize the blocked locations.

bigimageshow(bim)

Block size is in row-col (height-width) order.

blockedWH = fliplr(bls.BlockSize(1,1:2));
for ind = 1:size(bls.BlockOrigin,1)
 % BlockOrigin is already in x,y order.
 drawrectangle('Position', [bls.BlockOrigin(ind,1:2),blockedWH]);
end

1 Functions

1-2966

Create blockedImageDatastore with Overlapping Blocks

Create a blocked image.

bim = blockedImage('tumor_091R.tif');

Create a blockLocationSet object.

blockSize = [2048 3072];
overlapPct = 0.5;
blockOffsets = round(blockSize.*overlapPct);
bls = selectBlockLocations(bim,...
 'BlockSize', blockSize,...
 'BlockOffSets', blockOffsets,...
 'ExcludeIncompleteBlocks', true);

Create a blockedImageDatastore from this set of blocks.

bimds = blockedImageDatastore(bim, 'BlockLocationSet', bls);

Visualize the blocked locations.

bigimageshow(bim)

Block size is in row-col (height-width) order.

 selectBlockLocations

1-2967

blockedWH = fliplr(bls.BlockSize(1,1:2));
colors = prism(size(bls.BlockOrigin,1));
for ind = 1:size(bls.BlockOrigin,1)
 blockedColor = colors(ind,:);
 % BlockOrigin is already in x-y order
 drawrectangle('Position', [bls.BlockOrigin(ind,1:2), blockedWH],'Color', blockedColor);
end

Create blockedImageDatastore with Sparse Blocks

Create a blocked image.

bim = blockedImage('tumor_091R.tif');

Create a blockLocationSet object.

blockedSize = [1024 512];
spacePct = 0.5;
blockedOffsets = blockedSize + blockedSize.*spacePct;
bls = selectBlockLocations(bim,...
 'BlockSize', blockedSize,...
 'BlockOffSets', blockedOffsets,...
 'ExcludeIncompleteBlocks', true);

Create a blockedImageDatastore object from this set of blocks.

1 Functions

1-2968

bimds = blockedImageDatastore(bim, 'BlockLocationSet', bls);

Visualize the block locations.

bigimageshow(bim)
% Block size is in row-col (height-width) order
blockedWH = fliplr(bls.BlockSize(1,1:2));
for ind = 1:size(bls.BlockOrigin,1)
 % BlockOrigin is already in x-y order
 drawrectangle('Position', [bls.BlockOrigin(ind,1:2), blockedWH]);
end

Create blockedImageDatastore Using Coarse Level Mask

Create a blocked image.

bim = blockedImage("tumor_091R.tif");

Display the blocked image.

h = bigimageshow(bim);

 selectBlockLocations

1-2969

Create a mask at the coarsest level.

clevel = bim.NumLevels;
bmask = apply(bim,@(b)~imbinarize(im2gray(b.Data)),"Level",clevel);

Use showMask to estimate an InclusionThreshold value.

showmask(h,bmask,"BlockSize",[256 256],"InclusionThreshold",0.9)

1 Functions

1-2970

Create a blockedImagedatastore for blocks in which at least 90% of pixels are true in the
stained region as defined by the mask.

mbls = selectBlockLocations(bim, ...
 "Levels",1, ...
 "Masks",bmask,"InclusionThreshold",0.90, ...
 "BlockSize",[256 256]);

Create a blockedImageDatastore from this set of blocks.

bimds = blockedImageDatastore(bim,"BlockLocationSet",mbls);

Verify.

bimds.ReadSize = 10;
blocks = read(bimds);
figure
montage(blocks,"BorderSize",5,"BackgroundColor","b");

 selectBlockLocations

1-2971

Input Arguments
bims — Blocked images
blockedImage object | b-element vector of blockedImage objects

Blocked images, specified as a blockedImage object or b-element vector of blockedImage objects.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'BlockSize',[224 224] sets the block size to 224-by-224.

BlockOffsets — Offset of adjacent blocks
2-element row vector of positive integers

Offset of adjacent blocks, specified as a 2-element row vector of positive integers of the form [rows
columns].

The default value is equal to BlockSize, resulting in non-overlapping blocks. To overlap blocks,
specify a smaller value. To add a gap between blocks, specify a larger value.

1 Functions

1-2972

BlockSize — Block size
2-element row vector of positive integers

Block size, specified as a 2-element row vector of positive integers of the form [rows columns]. The
default value is equal to the BlockSize property at the finest resolution level of the first blocked
image in bims.

ExcludeIncompleteBlocks — Exclude incomplete blocks
false or 0 (default) | true or 1

Exclude incomplete blocks that are smaller than 'BlockSize', specified as a numeric or logical 0
(false) or 1 (true).

InclusionThreshold — Inclusion threshold for mask blocks
0.5 (default) | numeric scalar | b-element numeric vector

Inclusion threshold for mask blocks, specified as a numeric scalar or a b-element numeric vector with
values in the range [0, 1]. The InclusionThreshold argument must have the same number of
elements as the Masks argument. The selectBlockLocations function selects blocks that overlap
the foreground of the corresponding mask block by a percentage greater than or equal to the value
specified by 'InclusionThreshold'.

• When the inclusion threshold is 0, the selectBlockLocations function selects a block when at
least one pixel in the corresponding mask block is nonzero.

• When the inclusion threshold is 1, the selectBlockLocations function selects a block only
when all pixels in the mask block are nonzero.

Levels — Resolution level
positive integer | b-element vector of positive integers

Resolution level of blocks from each blocked image in bims, specified as a scalar positive integer or
an array of the same size as bims. If you specify a scalar value, the selectBlockLocations
function selects blocks from all blocked images at the same resolution level. Default value is the
finest level of each image in the array of blocked images, bims.
Data Types: double

Masks — Mask images
blockedImage object | array of blockedImage objects

Mask images, specified as an array the same size as bims. The underlying data type of the mask
images is logical. The selectBlockLocations function selects blocks that overlap the
foreground of the corresponding mask block by an amount specified by InclusionThreshold.
Masks are expected to be in the same world coordinate system as the corresponding blockedImage
in the bims array.

UseParallel — Use parallel processing
false or 0 (default) | true or 1

Use parallel processing to evaluate mask blocks, specified as a numeric or logical 0 (false) or 1
(true). Parallel evaluation of masks is beneficial when the masks do not fit in memory.

Use of parallel processing requires Parallel Computing Toolbox. The selectBlockLocations
function uses an existing parallel pool of workers, or opens a new pool when no parallel pool is active.

 selectBlockLocations

1-2973

The Source property of each blocked image in bims must be a valid path on all of the parallel
workers.

Output Arguments
blset — Block locations
blockLocationSet object

Block locations, returned as a blockLocationSet object.

References
[1] Bejnordi, Babak Ehteshami, Mitko Veta, Paul Johannes van Diest, Bram van Ginneken, Nico

Karssemeijer, Geert Litjens, Jeroen A. W. M. van der Laak, et al. “Diagnostic Assessment of
Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast
Cancer.” JAMA 318, no. 22 (December 12, 2017): 2199–2210. https://doi.org/10.1001/
jama.2017.14585.

See Also
blockLocationSet | blockedImage | blockedImageDatastore

External Websites
https://camelyon17.grand-challenge.org/Data/

Introduced in R2020b

1 Functions

1-2974

https://camelyon17.grand-challenge.org/Data/

spaceToDepth
Rearrange spatial blocks of dlarray data along depth dimension

Syntax
Y = spaceToDepth(X,blockSize)
Y = spaceToDepth(X,blockSize,'DataFormat',dataFormat)

Description
Y = spaceToDepth(X,blockSize) rearranges spatial blocks of the formatted dlarray object, X,
along the depth dimension. The blocks of data have size blockSize.

Given an input feature map of size [H W C] and blocks of size [height width], the output feature map
size is [floor(H/height) floor(W/width) C*height*width].

This function requires Deep Learning Toolbox.

Y = spaceToDepth(X,blockSize,'DataFormat',dataFormat) rearranges spatial blocks of the
unformatted dlarray object, X, along the depth dimension. dataFormat specifies the dimension
labels.

Examples

Rearrange Formatted dlarray Data from Spatial to Depth Dimension

Create a numeric array with three channels that simulates a 4-by-4 RGB image.

X = reshape(1:48,4,4,3);

Create a dlarray object that contains the numeric data, specifying the format of the data as 'SSC'
(spatial, spatial, channel).

X = dlarray(X,'SSC')

X =
 4(S) x 4(S) x 3(C) dlarray

(:,:,1) =

 1 5 9 13
 2 6 10 14
 3 7 11 15
 4 8 12 16

(:,:,2) =

 17 21 25 29
 18 22 26 30

 spaceToDepth

1-2975

 19 23 27 31
 20 24 28 32

(:,:,3) =

 33 37 41 45
 34 38 42 46
 35 39 43 47
 36 40 44 48

Specify a 2-by-2 block size for reordering input activations.

blockSize = 2;

Rearrange blocks of data from the spatial dimension to the depth dimension.

Z = spaceToDepth(X,blockSize)

Z =
 2(S) x 2(S) x 12(C) dlarray

(:,:,1) =

 1 9
 3 11

(:,:,2) =

 17 25
 19 27

(:,:,3) =

 33 41
 35 43

(:,:,4) =

 5 13
 7 15

(:,:,5) =

 21 29
 23 31

(:,:,6) =

 37 45
 39 47

1 Functions

1-2976

(:,:,7) =

 2 10
 4 12

(:,:,8) =

 18 26
 20 28

(:,:,9) =

 34 42
 36 44

(:,:,10) =

 6 14
 8 16

(:,:,11) =

 22 30
 24 32

(:,:,12) =

 38 46
 40 48

 2(S) x 2(S) x 12(C) dlarray

Rearrange Unformatted Data from Spatial to Depth Dimension

Create a numeric array with three channels that simulates a 4-by-4 RGB image.

X = reshape(1:48,4,4,3);

Create an unformatted dlarray object that contains the numeric data.

dlX = dlarray(X);

Specify a 2-by-2 block size for reordering input activations.

blockSize = 2;

Rearrange blocks of data from the spatial dimension to the depth dimension. Specify the format of the
input data as "SSC".

 spaceToDepth

1-2977

dlZ = spaceToDepth(dlX,blockSize,"DataFormat","SSC");

Compare the dimensions of the original and rearranged data.

whos dlX dlZ

 Name Size Bytes Class Attributes

 dlX 4x4x3 384 dlarray
 dlZ 2x2x12 384 dlarray

Input Arguments
X — Deep learning data to rearrange
dlarray object

Deep learning data to rearrange, specified as a dlarray object.

blockSize — Block size to reorder input activation
positive integer | vector of two positive integers

Block size to reorder the input activation, specified as a positive integer or vector of two positive
integers of the form [h w], where h is the height and w is the width. When you specify blockSize
as a scalar, the function uses the same value for both dimensions.
Example: [2 4] specifies blocks of height 2 and width 4.
Example: 32 specifies blocks of height and width 32.

dataFormat — Dimension labels
string scalar | character vector

Dimension labels when the input deep learning data X is unlabeled, specified as a string scalar or
character vector. The number of labels must match the number of dimensions of the input data, X.
Each character in dataFormat must be one of these labels:

• S — Spatial
• C — Channel
• B — Batch observations

The "T" (time or sequence) and "U" (unspecified) labels are not supported. Do not specify the
dataFormat argument when the input deep learning data is a formatted dlarray object.
Example: 'SSC' indicates the array has two spatial dimensions and one channel dimension,
appropriate for 2-D RGB image data.
Data Types: char | string

Output Arguments
Y — Rearranged deep learning data
dlarray object

Rearranged deep learning data, returned as a dlarray object.

1 Functions

1-2978

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on a GPU”.

See Also
depthToSpace | dlresize

Topics
“List of Functions with dlarray Support” (Deep Learning Toolbox)

Introduced in R2021a

 spaceToDepth

1-2979

Cuboid
Spatial extents of 3-D cuboidal region

Description
A Cuboid object stores the spatial extents of a 3-D volumetric image.

Creation
You can create a Cuboid object in several ways.

• centerCropWindow3d— Create a Cuboid of a specified size whose position is centered on an
image.

• randomCropWindow3d— Create a Cuboid of a specified size whose position is selected randomly
from inside an image.

• Running the command

c = images.spatialref.Cuboid(XLimits,YLimits,ZLimits);

creates a Cuboid object and sets the XLimits, YLimits, and ZLimits properties.

Properties
XLimits — Minimum and maximum limits of x-axis
2-element numeric vector

Minimum and maximum limits of the cropping window along thex-axis, specified as a 2-element
numeric vector of the form [min max], where max is greater than min.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32

YLimits — Minimum and maximum limits of y-axis
2-element numeric vector

Minimum and maximum limits of the cropping window along they-axis, specified as a 2-element
numeric vector of the form [min max], where max is greater than min.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32

ZLimits — Minimum and maximum limits of z-axis
2-element numeric vector

Minimum and maximum limits of the cropping window along thez-axis, specified as a 2-element
numeric vector of the form [min max], where max is greater than min.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32

Examples

1 Functions

1-2980

Center Crop 3-D Image to Target Size

Load a 3-D MRI image. Use the squeeze function to remove any singleton dimensions.

load mri;
D = squeeze(D);

Display the image.

fullViewPnl = uipanel(figure,'Title','Original Volume');
volshow(D,'Parent',fullViewPnl);

Specify the target size of the cropping window.

targetSize = [64 64 10];

Create a center cropping window that crops the specified image from its center.

win = centerCropWindow3d(size(D),targetSize);

Crop the image using the center cropping window.

Dcrop = imcrop3(D,win);

Display the cropped image in a display panel.

fullViewPnl = uipanel(figure,'Title','Cropped Volume');
volshow(Dcrop,'Parent',fullViewPnl);

 Cuboid

1-2981

Crop 3-D Image Volume Using Fixed Off-Center Spatial Extent

Load a 3-D MRI image. Use the squeeze function to remove any singleton dimensions.

S = load('mri.mat','D');
volumeData = squeeze(S.D);

Display the image.

fullViewPnl = uipanel(figure,'Title','Original Volume');
volshow(volumeData,'Parent',fullViewPnl);

1 Functions

1-2982

Create a Cuboid object and specify the cropping window size in all three dimensions.

c = images.spatialref.Cuboid([30,90],[30,90],[1,20]);

Crop the image based on the Cuboid dimensions.

croppedVolume = imcrop3(volumeData,c);

Display the cropped image.

fullViewPnl = uipanel(figure,'Title','Cropped Volume');
volshow(croppedVolume,'Parent',fullViewPnl);

 Cuboid

1-2983

See Also
imcrop3 | centerCropWindow3d | randomCropWindow3d | Rectangle

Topics
“Augment Images for Deep Learning Workflows Using Image Processing Toolbox” (Deep Learning
Toolbox)

Introduced in R2019b

1 Functions

1-2984

Rectangle
Spatial extents of 2-D rectangular region

Description
A Rectangle object stores the spatial extents of a 2-D rectangular region.

Creation
You can create a Rectangle object in these ways.

• centerCropWindow2d — Create a Rectangle of a specified size whose position is centered on
an image of different size.

• randomWindow2d — Create a Rectangle whose position is selected randomly from within an
image of different size. You can specify the size of the rectangle or a range of valid aspect ratios
and relative areas of the rectangle.

• Running the command

r = images.spatialref.Rectangle(XLimits,YLimits)

creates a Rectangle object and sets the XLimits and YLimits properties.

Properties
XLimits — Minimum and maximum limits of x-axis
2-element numeric vector

Minimum and maximum limits of the x-axis, specified as a 2-element numeric vector of the form [min
max], where max is greater than min.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

YLimits — Minimum and maximum limits of y-axis
2-element numeric vector

Minimum and maximum limits of the y-axis, specified as a 2-element numeric vector of the form [min
max], where max is greater than min.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Examples

Center Crop Image Using Spatial Referencing Rectangle

Read and display an image.

I = imread('parkavenue.jpg');
imshow(I)

 Rectangle

1-2985

Specify a target window size as a two-element vector of the form [width, height].

targetSize = [300 600];

Create a Rectangle object that specifies the spatial extent of the crop window.

r = centerCropWindow2d(size(I),targetSize);

Crop the image to the spatial extents. Display the cropped region.

J = imcrop(I,r);
imshow(J)

1 Functions

1-2986

Crop Image Using Fixed Off-Center Spatial Extent

Read and display an image.

I = imread('board.tif');
imshow(I)

 Rectangle

1-2987

Create a Rectangle object by specifying the horizontal and vertical spatial extents of the cropping
window.

r = images.spatialref.Rectangle([200 300],[50 200])

1 Functions

1-2988

r =
 Rectangle with properties:

 XLimits: [200 300]
 YLimits: [50 200]

Crop the image to the spatial extents. Display the cropped region.

J = imcrop(I,r);
imshow(J)

See Also
Cuboid | centerCropWindow2d | randomWindow2d | imcrop

Topics
“Augment Images for Deep Learning Workflows Using Image Processing Toolbox” (Deep Learning
Toolbox)

Introduced in R2019b

 Rectangle

1-2989

ssim
Structural similarity (SSIM) index for measuring image quality

Syntax
ssimval = ssim(A,ref)
ssimval = ssim(A,ref,Name,Value)
[ssimval,ssimmap] = ssim(___)

Description
ssimval = ssim(A,ref) calculates the structural similarity (SSIM) index for grayscale image or
volume A using ref as the reference image or volume.

ssimval = ssim(A,ref,Name,Value) calculates the SSIM, using name-value pairs to control
aspects of the computation.

[ssimval,ssimmap] = ssim(___) also returns the local SSIM value for each pixel or voxel in A.

Examples

Calculate Structural Similarity Index (SSIM)

Read an image into the workspace. Create another version of the image, applying a blurring filter.

ref = imread("pout.tif");
H = fspecial("Gaussian",[11 11],1.5);
A = imfilter(ref,H,"replicate");

Display both images as a montage. The images differ most along sharp high-contrast regions, such as
the edges of the trellis.

montage({ref,A})
title("Reference Image (Left) vs. Blurred Image (Right)")

1 Functions

1-2990

Calculate the global SSIM value for the image and local SSIM values for each pixel.

[ssimval,ssimmap] = ssim(A,ref);

Display the local SSIM map. Include the global SSIM value in the figure title. Small values of local
SSIM appear as dark pixels in the local SSIM map. Regions with small local SSIM value correspond to
areas where the blurred image noticeably differs from the reference image. Large values of local
SSIM value appear as bright pixels. Regions with large local SSIM correspond to uniform regions of
the reference image, where blurring has less of an impact on the image.

imshow(ssimmap,[])
title("Local SSIM Map with Global SSIM Value: "+num2str(ssimval))

 ssim

1-2991

Calculate SSIM for dlarray Input

Read an image into the workspace. Create another version of the image, applying a blurring filter.

ref = imread("pout.tif");
A = imgaussfilt(ref,1.5,"FilterSize",11,"Padding","replicate");

Display both images as a montage.

montage({ref A})
title("Reference Image (Left) vs. Blurred Image (Right)")

1 Functions

1-2992

Simulate batches of images by replicating the reference image and the blurred image 16 times along
the 4th dimension.

A = repmat(A,[1 1 1 16]);
ref = repmat(ref,[1 1 1 16]);

Create formatted dlarray objects for the reference image batch and the blurred image batch. The
format is "SSCB", for spatial-spatial-channel-batch.

A = dlarray(single(A),"SSCB");
ref = dlarray(single(ref),"SSCB");

Calculate the global SSIM value for the image and local SSIM values for each pixel. ssimVal returns
a scalar SSIM value for each image in the batch. ssimMap returns a map of SSIM values, the same
size as the image, for each image in the batch.

[ssimVal,ssimMap] = ssim(A,ref);
size(ssimVal)

ans = 1×4

 1 1 1 16

size(ssimMap)

ans = 1×4

 ssim

1-2993

 291 240 1 16

Input Arguments
A — Image for quality measurement
numeric array | dlarray object

Image for quality measurement, specified as a numeric array or a dlarray object. If A is not a 2-D
grayscale image or 3-D grayscale volume, such as an RGB image or stack of grayscale images, specify
the DataFormat name-value argument. Do not specify the DataFormat name-value argument if A is
a formatted dlarray object.
Data Types: single | double | int16 | uint8 | uint16

ref — Reference image
numeric array | dlarray object

Reference image against which to measure quality, specified as a numeric array or a dlarray object
of the same size and data type as A. If ref is not a 2-D grayscale image or 3-D grayscale volume, such
as an RGB image or stack of grayscale images, specify the DataFormat name-value argument. Do
not specify the DataFormat name-value argument if ref is a formatted dlarray object.
Data Types: single | double | int16 | uint8 | uint16

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: ssim(A,ref,"DynamicRange",100)

DataFormat — Dimension labels
string scalar | character vector

Dimension labels of the input images A and ref, specified as a string scalar or character vector. Each
character in DataFormat must be one of these labels:

• S — Spatial
• C — Channel
• B — Batch observations

The format cannot include more than one channel label or batch label. Do not specify the
DataFormat name-value argument when the input images are formatted dlarray objects.
Example: "SSC" indicates that the array has two spatial dimensions and one channel dimension,
appropriate for 2-D RGB image data.
Example: "SSCB" indicates that the array has two spatial dimensions, one channel dimension, and
one batch dimension, appropriate for a sequence of 2-D RGB image data.
Data Types: char | string

DynamicRange — Dynamic range of the input image
diff(getrangefromclass(A)) (default) | positive scalar

1 Functions

1-2994

Dynamic range of the input image, specified as a positive scalar. The default value of
"DynamicRange" depends on the data type of image A, and is calculated as
diff(getrangefromclass(A)). For example, the default dynamic range is 255 for images of data
type uint8, and the default is 1 for images of data type double or single with pixel values in the
range [0, 1].
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Exponents — Exponents for luminance, contrast, and structural terms
[1 1 1] (default) | 3-element vector of nonnegative numbers

Exponents for the luminance, contrast, and structural terms, specified as a 3-element vector of
nonnegative numbers of the form [alpha beta gamma].
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Radius — Standard deviation of isotropic Gaussian function
1.5 (default) | positive number

Standard deviation of isotropic Gaussian function, specified as a positive number. This value is used
for weighting the neighborhood pixels around a pixel for estimating local statistics. This weighting is
used to avoid blocking artifacts in estimating local statistics.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

RegularizationConstants — Regularization constants for luminance, contrast, and
structural terms
3-element vector of nonnegative numbers

Regularization constants for the luminance, contrast, and structural terms, specified as a 3-element
vector of nonnegative numbers of the form [c1 c2 c3]. The ssim function uses these regularization
constants to avoid instability for image regions where the local mean or standard deviation is close to
zero. Therefore, small non-zero values should be used for these constants.

By default,

• C1 = (0.01*L).^2, where L is the specified DynamicRange value.
• C2 = (0.03*L).^2, where L is the specified DynamicRange value.
• C3 = C2/2

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Output Arguments
ssimval — SSIM index
numeric scalar | numeric array | dlarray object

SSIM index, returned as one of these values.

Input Image Type SSIM Value
• Unformatted numeric arrays
• Formatted numeric arrays with neither a

channel ("C") nor batch ("B") dimension

Numeric scalar with a single SSIM measurement.

 ssim

1-2995

Input Image Type SSIM Value
• Unformatted dlarray objects Scalar dlarray object with a single SSIM

measurement.
• Numeric arrays with a channel or batch

dimension specified using the DataFormat
name-value argument

Numeric array of the same dimensionality as the
input images. The spatial dimensions of ssimval
are singleton dimensions. There is one SSIM
measurement for each element along any channel
or batch dimension.

• Formatted dlarray objects with a channel or
batch dimension

• Unformatted dlarray objects with a channel
or batch dimension specified using the
DataFormat name-value argument

dlarray object of the same dimensionality as the
input images. The spatial dimensions of ssimval
are singleton dimensions. There is one SSIM
measurement for each element along any channel
or batch dimension.

ssimval is of data type double except when A is of data type single, in which case ssimval is of
data type single.

The value of ssimval is typically in the range [0, 1]. The value 1 indicates the highest quality and
occurs when A and ref are equivalent. Smaller values correspond to poorer quality. For some
combinations of inputs and name-value pair arguments, ssimval can be negative.

ssimmap — Local values of SSIM index
numeric array | dlarray object

Local values of the SSIM index, returned as one of these values.

Input Image Type SSIM Value
• Unformatted numeric arrays
• Formatted numeric arrays with neither a

channel ("C") nor batch ("B") dimension

Numeric array the same size as the input images.
There is one SSIM measurement for each
element in the input image.

• Unformatted dlarray objects dlarray object the same size as the input
images. There is one SSIM measurement for each
element in the input image.

• Numeric arrays with a channel or batch
dimension specified using the DataFormat
name-value argument

Numeric array the same size as the input images.
Each spatial element in the input image has an
SSIM measurement along any channel or batch
dimension.

• Formatted dlarray objects with a channel or
batch dimension

• Unformatted dlarray objects with a channel
or batch dimension specified using the
DataFormat name-value argument

dlarray object the same size as the input
images. Each spatial element in the input image
has an SSIM measurement along any channel or
batch dimension.

ssimmap is of data type double except when A is of data type single, in which case ssimmap is of
data type single.

1 Functions

1-2996

More About
Structural Similarity Index

An image quality metric that assesses the visual impact of three characteristics of an image:
luminance, contrast and structure.

Tips
• If A and ref specify RGB image data, use the "DataFormat" name-value argument to label the

channel dimension, "C". You can then apply the mean function along the channel dimension of
ssimval and ssimmap to approximate the SSIM index for the overall image.

Algorithms
The SSIM Index quality assessment index is based on the computation of three terms, namely the
luminance term, the contrast term and the structural term. The overall index is a multiplicative
combination of the three terms.

SSIM(x, y) = [l(x, y)]α ⋅ [c(x, y)]β ⋅ [s(x, y)]γ

where

l(x, y) =
2μxμy + C1

μx
2 + μy

2 + C1
,

c(x, y) =
2σxσy + C2

σx
2 + σy

2 + C2
,

s(x, y) =
σxy + C3

σxσy + C3

where μx, μy, σx,σy, and σxy are the local means, standard deviations, and cross-covariance for images
x, y. If α = β = γ = 1 (the default for Exponents), and C3 = C2/2 (default selection of C3) the index
simplifies to:

SSIM(x, y) =
(2μxμy + C1)(2σxy + C2)

(μx
2 + μy

2 + C1)(σx
2 + σy

2 + C2)

When you specify a noninteger value for "Exponents", the ssim function prevents complex valued
outputs by clamping the intermediate luminance, contrast, and structural terms to the range [0, inf].

References
[1] Zhou, W., A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. "Image Quality Assessment: From Error

Visibility to Structural Similarity." IEEE Transactions on Image Processing. Vol. 13, Issue 4,
April 2004, pp. 600–612.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

 ssim

1-2997

This function fully supports GPU arrays. For more information, see “Image Processing on a GPU”.

See Also
psnr | immse | multissim | multissim3

Topics
“Compare Image Quality at Various Compression Levels”
“List of Functions with dlarray Support” (Deep Learning Toolbox)
“Define Custom Training Loops, Loss Functions, and Networks” (Deep Learning Toolbox)

Introduced in R2014a

1 Functions

1-2998

std2
Standard deviation of matrix elements

Syntax
B = std2(A)

Description
B = std2(A) computes the standard deviation of all values in array A.

Examples

Compute 2-D Standard Deviation

Read a grayscale image into the workspace, then calculate the standard deviation of the pixel
intensity values.

I = imread('liftingbody.png');
val = std2(I)

val = 31.6897

Input Arguments
A — Input data
numeric array | logical array

Input data, specified as a numeric or logical array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Output Arguments
B — Standard deviation
numeric scalar

Standard deviation of input data, returned as a numeric scalar. If the data type of A is single, then
the data type of B is also single. Otherwise, the data type of B is double.
Data Types: single | double

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

 std2

1-2999

This function fully supports GPU arrays. For more information, see “Image Processing on a GPU”.

See Also
corr2 | mean | mean2 | std

Introduced before R2006a

1 Functions

1-3000

stdfilt
Local standard deviation of image

Syntax
J = stdfilt(I)
J = stdfilt(I,nhood)

Description
J = stdfilt(I) performs standard deviation filtering of image I and returns the filtered image J.
The value of each output pixel is the standard deviation of the 3-by-3 neighborhood around the
corresponding input pixel. For pixels on the borders of I, stdfilt uses symmetric padding. In
symmetric padding, the values of padding pixels are a mirror reflection of the border pixels in I.

J = stdfilt(I,nhood) specifies the neighborhood, nhood, used to compute the standard
deviation.

Examples

Perform Standard Deviation Filtering

This example shows how to perform standard deviation filtering using stdfilt. Brighter pixels in
the filtered image correspond to neighborhoods in the original image with larger standard deviations.

Read an image into the workspace.

I = imread('circuit.tif');

Perform standard deviation filtering using stdfilt.

J = stdfilt(I);

Show the original image and the processed image.

imshow(I)
title('Original Image')

 stdfilt

1-3001

figure
imshow(J,[])
title('Result of Standard Deviation Filtering')

1 Functions

1-3002

Input Arguments
I — Image to be filtered
numeric array | logical array

Image to be filtered, specified as a numeric array or logical array of any dimension.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

nhood — Neighborhood
true(3) (default) | numeric array | logical array

Neighborhood, specified as a numeric or logical array containing 0s and 1s. The size of nhood must
be odd in each dimension.

By default, stdfilt uses the neighborhood true(3). stdfilt determines the center element of the
neighborhood by floor((size(nhood) + 1)/2).

To specify neighborhoods of various shapes, such as a disk, use the strel function to create a
structuring element object of the desired shape. Then extract the neighborhood from the
neighborhood property of the structuring element.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Output Arguments
J — Filtered image
numeric array

Filtered image, returned as a numeric array of the same size as the input image I. The class of J is
double.

Algorithms
If the image contains Infs or NaNs, then the behavior of stdfilt is undefined. Propagation of Infs
or NaNs might not be localized to the neighborhood around the Inf or NaN pixel.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The filtering neighborhood must be two-dimensional.

For more information, see “Image Processing on a GPU”.

 stdfilt

1-3003

See Also
Functions
entropyfilt | getnhood | rangefilt | std2

Objects
strel | offsetstrel

Topics
“What Is Image Filtering in the Spatial Domain?”

Introduced before R2006a

1 Functions

1-3004

strel
Morphological structuring element

Description
A strel object represents a flat morphological structuring element, which is an essential part of
morphological dilation and erosion operations.

A flat structuring element is a binary valued neighborhood, either 2-D or multidimensional, in which
the true pixels are included in the morphological computation, and the false pixels are not. The
center pixel of the structuring element, called the origin, identifies the pixel in the image being
processed. Use the strel function (described below) to create a flat structuring element. You can
use flat structuring elements with both binary and grayscale images. The following figure illustrates a
flat structuring element.

To create a nonflat structuring element, use offsetstrel.

Creation

Syntax
SE = strel(nhood)
SE = strel('arbitrary',nhood)

SE = strel('diamond',r)
SE = strel('disk',r,n)
SE = strel('octagon',r)
SE = strel('line',len,deg)
SE = strel('rectangle',[m n])
SE = strel('square',w)

SE = strel('cube',w)
SE = strel('cuboid',[m n p])
SE = strel('sphere',r)

Description

SE = strel(nhood) creates a flat structuring element with specified neighborhood nhood.

 strel

1-3005

You can also use the syntax SE = strel('arbitrary',nhood) to create a flat structuring element
with a specified neighborhood.

SE = strel('diamond',r) creates a diamond-shaped structuring element, where r specifies the
distance from the structuring element origin to the points of the diamond.

SE = strel('disk',r,n) creates a disk-shaped structuring element, where r specifies the radius
and n specifies the number of line structuring elements used to approximate the disk shape.
Morphological operations using disk approximations run much faster when the structuring element
uses approximations.

SE = strel('octagon',r) creates a octagonal structuring element, where r specifies the
distance from the structuring element origin to the sides of the octagon, as measured along the
horizontal and vertical axes. r must be a nonnegative multiple of 3.

SE = strel('line',len,deg) creates a linear structuring element that is symmetric with respect
to the neighborhood center, with approximate length len and angle deg.

SE = strel('rectangle',[m n]) creates a rectangular structuring element of size [m n].

SE = strel('square',w) creates a square structuring element whose width is w pixels.

SE = strel('cube',w) creates a 3-D cubic structuring element whose width is w pixels.

SE = strel('cuboid',[m n p]) creates a 3-D cuboidal structuring element of size [m n p].

SE = strel('sphere',r) creates a 3-D spherical structuring element whose radius is r pixels.

Compatibility

The following syntaxes still work, but offsetstrel is the preferred way to create these nonflat
structuring element shapes:

• SE = strel('arbitrary',nhood,h)
• SE = strel('ball',r,h,n)

The following syntaxes still work, but are not recommended for use:

• SE = strel('pair',offset)
• SE = strel('periodicline',p,v)

Input Arguments

nhood — Neighborhood
numeric array

Neighborhood, specified as numeric array of any dimension. All nonzero pixels of nhoodbelong to the
neighborhood for the morphological operation. The center (or origin) of nhood is its center element,
given by floor((size(nhood) + 1)/2).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

r — Radius of the structuring element in the x-y plane
positive integer

1 Functions

1-3006

Radius of the structuring element in the x-y plane, specified as a positive integer.

• For the disk shape, r is the distance from the origin to the edge of the disk.
• For the diamond shape, r is the distance from the structuring element origin to the points of the

diamond.
• For the octagon shape, r is the distance from the structuring element origin to the sides of the

octagon, as measured along the horizontal and vertical axes. r must be a multiple of 3.

Data Types: double

n — Number of periodic line structuring elements used to approximate shape
4 (default) | 0 | 6 | 8

Number of periodic line structuring elements used to approximate shape, specified as 0, 4, 6, or 8.
When n is greater than 0, the disk-shaped structuring element is approximated by a sequence of n
periodic-line structuring elements. When n is 0, strel does no approximation, and the structuring
element members comprise all pixels whose centers are no greater than r away from the origin.
Morphological operations using disk approximations run much faster when the structuring element
uses approximations (n > 0). Sometimes it is necessary for strel to use two extra line structuring
elements in the approximation, in which case the number of decomposed structuring elements used is
n+2.

Value of n Behavior
n > 0 strel uses a sequence of n (or sometimes n+2) periodic line-shaped

structuring elements to approximate the shape.
n = 0 strel does not use any approximation. The structuring element

members comprise all pixels whose centers are no greater than r away
from the origin and the corresponding height values are determined
from the formula of the ellipsoid specified by r and h.

Data Types: double

len — Length of linear structuring element
positive number

Length of linear structuring element, specified as a positive number. len is approximately the
distance between the centers of the structuring element members at opposite ends of the line.
Data Types: double

deg — Angle of linear structuring element
numeric scalar

Angle of linear structuring element, in degrees, specified as numeric scalar. The angle is measured in
a counterclockwise direction from the horizontal axis.
Data Types: double

[m n] — Size of rectangular structuring element
2-element vector of positive integers

Size of rectangular structuring element, specified as a 2-element vector of positive integers. The
structuring element has m rows and n columns.

 strel

1-3007

Data Types: double

w — Width of square or cubic structuring element
positive integer

Width of square or cubic structuring element, specified as a positive integer.
Data Types: double

[m n p] — Size of cuboidal structuring element
3-element vector of positive integers

Size of cuboidal structuring element, specified as a 3-element vector of positive integers. The
structuring element has m rows, n columns, and p planes.
Data Types: double

Properties
Neighborhood — Structuring element neighborhood
logical array

Structuring element neighborhood, specified as a logical array.
Data Types: logical

Dimensionality — Dimensions of structuring element
nonnegative scalar

Dimensions of structuring element, specified as a nonnegative scalar.
Data Types: double

Object Functions
imdilate Dilate image
imerode Erode image
imclose Morphologically close image
imopen Morphologically open image
imbothat Bottom-hat filtering
imtophat Top-hat filtering
bwhitmiss Binary hit-miss operation
decompose Return sequence of decomposed structuring elements
reflect Reflect structuring element
translate Translate structuring element

Examples

Create Square Structuring Element

Create an 11-by-11 square structuring element.

SE = strel('square', 11)

SE =
strel is a square shaped structuring element with properties:

1 Functions

1-3008

 Neighborhood: [11x11 logical]
 Dimensionality: 2

Create Line-Shaped Structuring Element

Create a line-shaped structuring element with a length of 10 at an angle of 45 degrees.

SE = strel('line', 10, 45)

SE =
strel is a line shaped structuring element with properties:

 Neighborhood: [7x7 logical]
 Dimensionality: 2

View the structuring element.

SE.Neighborhood

ans = 7x7 logical array

 0 0 0 0 0 0 1
 0 0 0 0 0 1 0
 0 0 0 0 1 0 0
 0 0 0 1 0 0 0
 0 0 1 0 0 0 0
 0 1 0 0 0 0 0
 1 0 0 0 0 0 0

Create Disk-Shaped Structuring Element

Create a disk-shaped structuring element with a radius of 15.

SE3 = strel('disk', 15)

SE3 =
strel is a disk shaped structuring element with properties:

 Neighborhood: [29x29 logical]
 Dimensionality: 2

Display the disk-shaped structuring element.

figure
imshow(SE3.Neighborhood)

 strel

1-3009

Create 3-D Sphere-shaped Structuring Element

Create a 3-D sphere-shaped structuring element with a radius of 15.

SE = strel('sphere', 15)

SE =
strel is a sphere shaped structuring element with properties:

 Neighborhood: [31x31x31 logical]
 Dimensionality: 3

Display the structuring element.

figure
isosurface(SE.Neighborhood)

1 Functions

1-3010

Tips
• Structuring elements that do not use approximations (n = 0) are not suitable for computing

granulometries.

Algorithms
For all shapes except 'arbitrary', structuring elements are constructed using a family of
techniques known collectively as structuring element decomposition. The principle is that dilation by
some large structuring elements can be computed faster by dilation with a sequence of smaller
structuring elements. For example, dilation by an 11-by-11 square structuring element can be
accomplished by dilating first with a 1-by-11 structuring element and then with an 11-by-1
structuring element. This results in a theoretical performance improvement of a factor of 5.5,
although in practice the actual performance improvement is somewhat less. Structuring element
decompositions used for the 'disk' shape is an approximations—all other decompositions are exact.

Compatibility Considerations
Linear Structuring Elements Use Angle in Range [0, 180]
Behavior changed in R2017b

 strel

1-3011

Starting in R2017b, strel constrains linear structuring elements to have an angle in the range [0,
180]. If you specify a value of deg outside this range, then strel computes the angle as
mod(deg,180).

Prior to R2017b, in some situations, strel would create different linear structuring elements for
angles that differ by a factor of 180 degrees.

References
[1] van den Boomgard, R, and R. van Balen, "Methods for Fast Morphological Image Transforms

Using Bitmapped Images," Computer Vision, Graphics, and Image Processing: Graphical
Models and Image Processing, Vol. 54, Number 3, pp. 252–254, May 1992.

[2] Adams, R., "Radial Decomposition of Discs and Spheres," Computer Vision, Graphics, and Image
Processing: Graphical Models and Image Processing, Vol. 55, Number 5, pp. 325–332,
September 1993.

[3] Jones, R., and P. Soille, "Periodic lines: Definition, cascades, and application to granulometrie,"
Pattern Recognition Letters, Vol. 17, pp. 1057–1063, 1996.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• strel supports the generation of C code (requires MATLAB Coder). For more information, see
“Code Generation for Image Processing”.

• All input arguments of type char must be compile-time constants.
• The methods associated with strel objects are not supported in code generation.
• Arrays of strel objects are not supported.

See Also
offsetstrel

Topics
“Structuring Elements”

Introduced before R2006a

1 Functions

1-3012

stretchlim
Find limits to contrast stretch image

Syntax
lowhigh = stretchlim(I)
lowhigh = stretchlim(I,Tol)

Description
lowhigh = stretchlim(I) computes the lower and upper limits that can be used for contrast
stretching grayscale or RGB image I. The limits are returned in lowhigh. By default, the limits
specify the bottom 1% and the top 1% of all pixel values.

lowhigh = stretchlim(I,Tol) specifies the fraction, Tol, of the image to saturate at low and
high pixel values.

Examples

Find Limits to Stretch Contrast in Grayscale Image

Read grayscale image into the workspace and display it.

I = imread('pout.tif');
figure
imshow(I)

 stretchlim

1-3013

Adjust the contrast in the image using stretchlim to set the limits, and display the result. The
example uses the default limits [0.01 0.99], saturating the upper 1% and the lower 1%.

J = imadjust(I,stretchlim(I),[]);
figure
imshow(J)

1 Functions

1-3014

Input Arguments
I — Image to be contrast stretched
2-D grayscale image | 2-D RGB image

Image to be contrast stretched, specified as a 2-D grayscale image or 2-D RGB image.
Data Types: single | double | int16 | uint8 | uint16

Tol — Fraction of image to saturate
[0.01 0.99] (default) | numeric scalar | 2-element numeric vector

Fraction of the image to saturate, specified as a numeric scalar or 2-element vector [Low_Fract
High_Fract] in the range [0, 1].

Value Description
Scalar If Tol is a scalar, then Low_Fract = Tol, and High_Fract = 1 - Low_Fract,

which saturates equal fractions at low and high pixel values.
0 If Tol = 0, then lowhigh = [min(I(:)); max(I(:))].
Default If you omit the Tol argument, then [Low_Fract High_Fract] defaults to [0.01

0.99], saturating 2%.
Too big If Tol is too big, such that no pixels would be left after saturating low and high

pixel values, then stretchlim returns [0 1].

Example: [.02 .80]

 stretchlim

1-3015

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
lowhigh — Lower and upper limits for contrast stretching
2-element numeric vector | 2-by-3 numeric matrix

Lower and upper limits for contrast stretching, returned as one of the following.

• A 2-element numeric vector when I is a grayscale image.
• A 2-by-3 numeric matrix when I is an RGB image. The columns indicate the lower and upper limit

for each of the three color channels.

Data Types: double

Tips
• Use the imadjust function to adjust the contrast of image I using the limits, lowhigh.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• stretchlim supports the generation of C code (requires MATLAB Coder). Note that if you choose
the generic MATLAB Host Computer target platform, stretchlim generates code that uses a
precompiled, platform-specific shared library. Use of a shared library preserves performance
optimizations but limits the target platforms for which code can be generated. For more
information, see “Types of Code Generation Support in Image Processing Toolbox”.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on a GPU”.

See Also
brighten | decorrstretch | histeq | imadjust

Introduced before R2006a

1 Functions

1-3016

subimage
Display multiple images in single figure

Note subimage is not recommended. Use imshow with tiledlayout to display multiple images in
the same figure window. For more information, see “Compatibility Considerations”.

Syntax
subimage(I)
subimage(X,map)
subimage(x,y, ___)
h = subimage(___)

Description
subimage(I) displays the RGB (truecolor), grayscale, or binary image I in the current axes.

You can use subimage in conjunction with subplot to create figures with multiple images, even if
the images have different colormaps. subimage converts images to RGB for display purposes, thus
avoiding colormap conflicts.

subimage(X,map) displays the indexed image X with colormap map in the current axes.

subimage(x,y, ___) displays an image using a nondefault spatial coordinate system, where x and
y specify the image limits in the world coordinate system.

h = subimage(___) returns a handle to an image object.

Examples
Display Two Indexed Images in Same Figure

load trees
[X2,map2] = imread('forest.tif');
subplot(1,2,1), subimage(X,map)
subplot(1,2,2), subimage(X2,map2)

Input Arguments
I — Image to display
RGB image | grayscale image | binary image

Image to display, specified as an RGB (truecolor), grayscale, or binary image.
Data Types: double | uint8 | uint16 | logical

X — Indexed image to display
m-by-n matrix of integers

 subimage

1-3017

Indexed image, specified as an m-by-n matrix of integers.

• If you specify X as an array of integer data type, then the value 0 corresponds to the first color in
the colormap map. For a colormap containing c colors, values of image X are clipped to the range
[0, c-1].

• If you specify X as an array of data type double, then the value 1 corresponds to the first color in
the colormap. For a colormap containing c colors, values of image X are clipped to the range [1, c].

Data Types: double | uint8 | uint16 | logical

map — Colormap
c-by-3 matrix

Colormap associated with indexed image X, specified as a c-by-3 matrix with values in the range [0,
1]. Each row of map is a three-element RGB triplet that specifies the red, green, and blue components
of a single color of the colormap.
Data Types: double

x — Image limits in x direction
2-element numeric vector

Image limits in the x direction in world coordinates, specified as a 2-element numeric vector of the
form [xmin xmax]. The value of x sets the image XData.

y — Image limits in y direction
2-element numeric vector

Image limits in the y direction in world coordinates, specified as a 2-element numeric vector of the
form [ymin ymax]. The value of y sets the image YData.

Output Arguments
h — Handle to image object
handle

Handle to an image graphics object, specified as a handle.

Compatibility Considerations
subimage is not recommended
Not recommended starting in R2016b

Before R2016b, imshow set the colormap of a figure window, and all axes within the figure would
have an identical colormap. subimage was introduced in R2006a as a workaround to display multiple
images with different colormaps in the same figure. However, subimage does not provide all of the
syntaxes and options that imshow provides, such as the ability to specify the display range.

In R2016b, imshow was enhanced so that images displayed within a figure could have different
colormaps. This enhancement renders the subimage function irrelevant. There are no plans to
remove subimage at this time.

To update your code, replace instances of subimage with imshow. You do not need to change the
input arguments.

1 Functions

1-3018

See Also
imshow | subplot | montage

Introduced before R2006a

 subimage

1-3019

superpixels
2-D superpixel oversegmentation of images

Syntax
[L,NumLabels] = superpixels(A,N)
[L,NumLabels] = superpixels(A,N,Name,Value)

Description
[L,NumLabels] = superpixels(A,N) computes superpixels of the 2-D grayscale or RGB image A.
N specifies the number of superpixels you want to create. The function returns L, a label matrix of
type double, and NumLabels, the actual number of superpixels that were computed.

The superpixels function uses the simple linear iterative clustering (SLIC) algorithm [1]. This
algorithm groups pixels into regions with similar values. Using these regions in image processing
operations, such as segmentation, can reduce the complexity of these operations.

[L,NumLabels] = superpixels(A,N,Name,Value) computes superpixels of image A using
name-value pair arguments used to control aspects of the segmentation.

Examples

Compute Superpixels of Input RGB Image

Read image into the workspace.

A = imread('kobi.png');

Calculate superpixels of the image.

[L,N] = superpixels(A,500);

Display the superpixel boundaries overlaid on the original image.

figure
BW = boundarymask(L);
imshow(imoverlay(A,BW,'cyan'),'InitialMagnification',67)

1 Functions

1-3020

Set the color of each pixel in the output image to the mean RGB color of the superpixel region.

outputImage = zeros(size(A),'like',A);
idx = label2idx(L);
numRows = size(A,1);
numCols = size(A,2);
for labelVal = 1:N
 redIdx = idx{labelVal};
 greenIdx = idx{labelVal}+numRows*numCols;
 blueIdx = idx{labelVal}+2*numRows*numCols;
 outputImage(redIdx) = mean(A(redIdx));
 outputImage(greenIdx) = mean(A(greenIdx));
 outputImage(blueIdx) = mean(A(blueIdx));
end

figure
imshow(outputImage,'InitialMagnification',67)

 superpixels

1-3021

Input Arguments
A — Image to segment
2-D grayscale image | 2-D truecolor image

Image to segment, specified as a 2-D grayscale image or 2-D truecolor image. For int16 data, A must
be a grayscale image. When the parameter isInputLab is true, the input image must be data type
single or double.
Data Types: single | double | int16 | uint8 | uint16

N — Desired number of superpixels
positive integer

Desired number of superpixels, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

1 Functions

1-3022

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: B = superpixels(A,100,'NumIterations', 20);

Compactness — Shape of superpixels
10 (default) | numeric scalar

Shape of superpixels, specified as a numeric scalar. The compactness parameter of the SLIC
algorithm controls the shape of superpixels. A higher value makes superpixels more regularly shaped,
that is, a square. A lower value makes superpixels adhere to boundaries better, making them
irregularly shaped. The allowed range is (0 Inf). Typical values for compactness are in the range
[1,20].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

IsInputLab — Input image data is in L*a*b* color space
false (default) | true

Input image data is in the L*a*b* color space, specified as true or false.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Method — Algorithm used to compute superpixels
'slic0' (default) | 'slic'

Algorithm used to compute superpixels, specified as one of the following values. The superpixels
function uses two variations of the simple linear iterative clustering (SLIC) algorithm.

Value Meaning
'slic0' superpixels uses the SLIC0 algorithm to refine 'Compactness' adaptively after

the first iteration. This is the default.
'slic' 'Compactness' is constant during clustering.

Data Types: char | string

NumIterations — Number of iterations
10 (default) | positive integer

Number of iterations used in the clustering phase of the algorithm, specified as a positive integer. For
most problems, it is not necessary to adjust this parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
L — Label matrix
array of positive integers

Label matrix, returned as an array of positive integers. The value 1 indicates the first region, 2 the
second region, and so on for each superpixel region in the image.

 superpixels

1-3023

Data Types: double

NumLabels — Number of superpixels computed
positive integer

Number of superpixels computed, returned as a positive integer.
Data Types: double

References
[1] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine

Susstrunk, SLIC Superpixels Compared to State-of-the-art Superpixel Methods. IEEE
Transactions on Pattern Analysis and Machine Intelligence, Volume 34, Issue 11, pp.
2274-2282, May 2012

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• superpixels supports the generation of C code (requires MATLAB Coder). For more
information, see “Code Generation for Image Processing”.

• All character vector inputs must be compile-time constants.
• The value of 'IsInputLab' (true or false) must be a compile-time constant.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• All character vector inputs must be compile-time constants.
• The value of 'IsInputLab' (true or false) must be a compile-time constant.

See Also
superpixels3 | boundarymask | imoverlay | label2idx | label2rgb

Topics
“Plot Land Classification with Color Features and Superpixels”

Introduced in R2016a

1 Functions

1-3024

superpixels3
3-D superpixel oversegmentation of 3-D image

Syntax
[L,NumLabels] = superpixels3(A,N)
[L,NumLabels] = superpixels3(___ ,Name,Value)

Description
[L,NumLabels] = superpixels3(A,N) computes 3-D superpixels of the 3-D image A. N specifies
the number of superpixels you want to create. The function returns L, a 3-D label matrix, and
NumLabels, the actual number of superpixels returned.

[L,NumLabels] = superpixels3(___ ,Name,Value) computes superpixels of image A using
name-value pairs to control aspects of the segmentation.

Examples

Compute 3-D Superpixels of Input Volumetric Intensity Image

Load 3-D MRI data, remove any singleton dimensions, and convert the data into a grayscale intensity
image.

load mri;
D = squeeze(D);
A = ind2gray(D,map);

Calculate the 3-D superpixels. Form an output image where each pixel is set to the mean color of its
corresponding superpixel region.

[L,N] = superpixels3(A,34);

Show all xy-planes progressively with superpixel boundaries.

imSize = size(A);

Create a stack of RGB images to display the boundaries in color.

imPlusBoundaries = zeros(imSize(1),imSize(2),3,imSize(3),'uint8');
for plane = 1:imSize(3)
 BW = boundarymask(L(:, :, plane));
 % Create an RGB representation of this plane with boundary shown
 % in cyan.
 imPlusBoundaries(:, :, :, plane) = imoverlay(A(:, :, plane), BW, 'cyan');
end

implay(imPlusBoundaries,5)

 superpixels3

1-3025

Set the color of each pixel in output image to the mean intensity of the superpixel region. Show the
mean image next to the original. If you run this code, you can use implay to view each slice of the
MRI data.

pixelIdxList = label2idx(L);
meanA = zeros(size(A),'like',D);
for superpixel = 1:N
 memberPixelIdx = pixelIdxList{superpixel};
 meanA(memberPixelIdx) = mean(A(memberPixelIdx));
end
implay([A meanA],5);

1 Functions

1-3026

Input Arguments
A — Volume to segment
3-D numeric array

Volume to segment, specified as a 3-D numeric array.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

N — Desired number of superpixels
positive integer

Desired number of superpixels, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: B = superpixels3(A,100,'NumIterations', 20);

Compactness — Shape of superpixels
0.001 if method is slic0 and 0.05 if method is slic (default) | numeric scalar

 superpixels3

1-3027

Shape of superpixels, specified as a numeric scalar. The compactness parameter of the SLIC
algorithm controls the shape of the superpixels. A higher value makes the superpixels more regularly
shaped, that is, a square. A lower value makes the superpixels adhere to boundaries better, making
them irregularly shaped. You can specify any value in the range [0 Inf) but typical values are in the
range [0.01,0.1].

Note If you specify the 'slic0' method, you typically do not need to adjust the 'Compactness'
parameter. With the 'slic0' method, superpixel3 adaptively refines the 'Compactness'
parameter automatically, thus eliminating the need to determine a good value.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Method — Algorithm used to compute superpixels
'slic0' (default) | 'slic'

Algorithm used to compute the superpixels, specified as one of the following values. For more
information, see “Algorithms” on page 1-3029.

Value Meaning
'slic0' superpixels3 uses the SLIC0 algorithm to refine 'Compactness' adaptively

after the first iteration. This is the default.
'slic' 'Compactness' is constant during clustering.

Data Types: char | string

NumIterations — Number of iterations
10 (default) | positive integer

Number of iterations used in the clustering phase of the algorithm, specified as a positive integer. For
most problems, it is not necessary to adjust this parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
L — Label matrix
3-D array of positive integers

Label matrix, returned as a 3-D array of positive integers. The value 1 indicates the first region, 2 the
second region, and so on for each superpixel region in the image.
Data Types: double

NumLabels — Number of superpixels computed
positive number

Number of superpixels computed, returned as a positive number.
Data Types: double

1 Functions

1-3028

Algorithms
The algorithm used in superpixels3 is a modified version of the Simple Linear Iterative Clustering
(SLIC) algorithm used by superpixels. At a high level, it creates cluster centers and then iteratively
alternates between assigning pixels to the closest cluster center and updating the locations of the
cluster centers. superpixels3 uses a distance metric to determine the closest cluster center for
each pixel. This distance metric combines intensity distance and spatial distance.

The function's Compactness argument comes from the mathematical form of the distance metric.
The compactness parameter of the algorithm is a scalar value that controls the shape of the
superpixels. The distance between two pixels i and j, where m is the compactness value, is:

dintensity = li− l j
2

dspatial = (xi− x j)2 + (yi− y j)2 + (zi− z j)2

D = (
dintensity

m)
2

+ (
dspatial

S)
2

Compactness has the same meaning as in the 2-D superpixels function: It determines the relative
importance of the intensity distance and the spatial distance in the overall distance metric. A lower
value makes the superpixels adhere to boundaries better, making them irregularly shaped. A higher
value makes the superpixels more regularly shaped. The allowable range for compactness is (0
Inf), as in the 2-D function. The typical range has been found through experimentation to be [0.01
0.1]. The dynamic range of input images is normalized within the algorithm to be from 0 to 1. This
enables a consistent meaning of compactness values across images.

See Also
superpixels | boundarymask | imoverlay | label2idx | label2rgb

Introduced in R2016b

 superpixels3

1-3029

tformarray
Apply spatial transformation to N-D array

Note The tformarray function is not recommended for 2-D and 3-D spatial transformations. Use
the imwarp function instead. For more information, see “Compatibility Considerations”.

Syntax
B = tformarray(A,T,R,tdims_A,tdims_B,tsize_B,tmap_B,F)

Description
B = tformarray(A,T,R,tdims_A,tdims_B,tsize_B,tmap_B,F) applies a spatial
transformation T to array A to produce array B.

Examples

Transform Checkerboard Image

Create a 2-by-2 square checkerboard image where each square is 20 pixels wide. Display the image.

I = checkerboard(20,1,1);
figure
imshow(I)

Transform the checkerboard with a projective transformation. First create a spatial transformation
structure.

T = maketform('projective',[1 1; 41 1; 41 41; 1 41],...
 [5 5; 40 5; 35 30; -10 30]);

Create a resampler. Use the pad method 'circular' when creating the resampler, so that the
output appears to be a perspective view of an infinite checkerboard.

R = makeresampler('cubic','circular');

Perform the transformation, specifying the transformation structure and the resampler. For this
example, swap the output dimensions, and specify a 100-by-100 output image. Leave argument

1 Functions

1-3030

tmap_B empty since you specify argument tsize_B. Leave argument F empty since the fill value is
not needed.

J = tformarray(I,T,R,[1 2],[2 1],[100 100],[],[]);
figure
imshow(J)

Transform Checkerboard Image, with Nonuniform Mapping from Input to Output Space

Create a 2-by-2 square checkerboard image where each square is 20 pixels wide. Display the image.

I = checkerboard(20,1,1);
figure
imshow(I)

Transform the checkerboard with a projective transformation. First create a spatial transformation
structure.

T = maketform('projective',[1 1; 41 1; 41 41; 1 41],...
 [5 5; 40 5; 35 30; -10 30]);

Create a resampler. Use the pad method 'circular' when creating the resampler, so that the
output appears to be a perspective view of an infinite checkerboard.

R = makeresampler('cubic','circular');

Create arrays that specify the mapping of points from input space to output space. This example uses
anisotropic sampling, where the distance between samples is larger in one direction than the other.

samp_x = 1:1.5:150;
samp_y = 1:100;
[x,y] = meshgrid(samp_x,samp_y);

 tformarray

1-3031

tmap = cat(3,x,y);
size(tmap)

ans = 1×3

 100 100 2

Note the size of tmap. The output image will have dimensions 100-by-100.

Perform the transformation, specifying the transformation structure and the resampler. Specify the
output map as tmap. Leave argument tsize_B empty, since you specify argument tmap_B. The fill
value does not matter since the resampler is circular.

J = tformarray(I,T,R,[1 2],[1 2],[],tmap,[]);
figure
imshow(J)

The length of checkerboard squares is larger in the y-direction than in the x-direction, which agrees
with the larger sampling distance between points in the vector samp_x. Compared to the result using
isotopic point mapping (see example “Transform Checkerboard Image” on page 1-3030), three
additional columns of the checkerboard appear at the right of the transformed image, and no new
rows are added to the transformed image.

Input Arguments
A — Input image
numeric array

Input image, specified as a numeric array. A can be real or complex.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

T — Spatial transformation
TFORM spatial transformation structure

Spatial transformation, specified as a TFORM spatial transformation structure. You typically use the
maketform function to create a TFORM structure.

tformarray uses T and the function tforminv to compute the corresponding location in the input
transform subscript space for each location in the output transform subscript space. tformarray

1 Functions

1-3032

defines the input transform space by tdims_B and tsize_B and the output transform subscript
space by tdims_A and size(A).

If T is empty, then tformarray operates as a direct resampling function. Further, if tmap_B is:

• Not empty, then tformarray applies the resampler defined in R to compute values at each
transform space location defined in tmap_B

• Empty, then tformarray applies the resampler at each location in the output transform subscript
grid

Data Types: struct

R — Resampler
structure

Resampler, specified as a structure. A resampler structure defines how to interpolate values of the
input array at specified locations. R is created with makeresampler, which allows fine control over
how to interpolate along each dimension. makeresampler also controls what input array values to
use when interpolating close to the edge of the array.
Data Types: struct

tdims_A — Input transform dimensions
row vector of finite, positive integers

Input transform dimensions, specified as a row vector of finite, positive integers.

tdims_A and tdims_B indicate which dimensions of the input and output arrays are involved in the
spatial transformation. Each element must be unique. The entries need not be listed in increasing
order, but the order matters. The order specifies the precise correspondence between dimensions of
arrays A and B and the input and output spaces of the transformation T.

length(tdims_A) must equal T.ndims_in, and length(tdims_B) must equal T.ndims_out.

For example, if T is a 2-D transformation, tdims_A = [2 1], and tdims_B = [1 2], then the row
and column dimensions of A correspond to the second and first transformation input-space
dimensions, respectively. The row and column dimensions of B correspond to the first and second
output-space dimensions, respectively.
Data Types: double

tdims_B — Output transform dimensions
row vector of finite, positive integers

Output transform dimensions, specified as a row vector of finite, positive integers. For more
information, see tdims_A.
Data Types: double

tsize_B — Size of output array in the transform dimensions
row vector of finite, positive integers

Size of the output array transform dimensions, specified as a row vector of finite, positive integers.
The size of B along nontransform dimensions is taken directly from the size of A along those
dimensions.

 tformarray

1-3033

For example, if T is a 2-D transformation, size(A) = [480 640 3 10], tdims_B is [2 1], and
tsize_B is [300 200], then size(B) is [200 300 3 10].
Data Types: double

tmap_B — Point locations in output space
finite, real-valued array | []

Point locations in output space, specified as a finite real-valued array. tmap_B is an optional argument
that provides an alternative way of specifying the correspondence between the position of elements
of B and the location in output transform space. tmap_B can be used, for example, to compute the
result of an image warp at a set of arbitrary locations in output space.

If tmap_B is not empty, then the size of tmap_B is

 [D1 D2 D3 ... DN L]

where N equals length(tdims_B). tsize_B should be [].

The value of L depends on whether T is empty. If T is:

• Not empty, then L is T.ndims_out, and each L-dimension point in tmap_B is transformed to an
input-space location using T

• Empty, then L is length(tdims_A), and each L-dimensional point in tmap_B is used directly as a
location in input space.

Data Types: double

F — Fill values
numeric scalar | numeric array | []

Fill values, specified as a numeric scalar, numeric array, or empty ([]). The fill values in F can be
used in three situations:

• When a separable resampler is created with makeresampler and its padmethod is set to either
'fill' or 'bound'.

• When a custom resampler is used that supports the 'fill' or 'bound' pad methods (with
behavior that is specific to the customization).

• When the map from the transform dimensions of B to the transform dimensions of A is deliberately
undefined for some points. Such points are encoded in the input transform space by NaNs in either
tmap_B or in the output of tforminv.

In the first two cases, fill values are used to compute values for output locations that map outside or
near the edges of the input array. Fill values are copied into B when output locations map well outside
the input array. See makeresampler for more information about 'fill' and 'bound'.

When F is:

• A scalar (including NaN), its value is replicated across all the nontransform dimensions.
• Nonscalar, its size depends on size(A) in the nontransform dimensions. Specifically, if K is the

Jth nontransform dimension of A, then size(F,J) must be either size(A,K) or 1. As a
convenience, tformarray replicates F across any dimensions with unit size such that after the
replication size(F,J) equals size(A,K).

1 Functions

1-3034

• Empty ([]), the tformarray function uses a fill value of 0.

For example, suppose A represents 10 RGB images and has size 200-by-200-by-3-by-10, T is a 2-D
transformation, and tdims_A and tdims_B are both [1 2]. In other words, tformarray applies the
same 2-D transform to each color plane of each of the 10 RGB images. In this situation you have
several options for F:

• F can be a scalar, in which case the same fill value is used for each color plane of all 10 images.
• F can be a 3-by-1 vector, [R G B]'. tformarray uses the RGB value as the fill value for the

corresponding color planes of each of the 10 images.
• F can be a 1-by-10 vector. tformarray uses a different fill value for each of 10 images, with that
fill value being used for all three color planes.

• F can be a 3-by-10 matrix. tformarray uses a different RGB fill color for each of the 10 images.

Data Types: double

Output Arguments
B — Transformed image
numeric array

Transformed image, returned as a numeric array.

Compatibility Considerations
tformarray is not recommended for 2-D and 3-D geometric transformations
Not recommended starting in R2018b

The tformarray function is intended for transformations involving higher-dimensioned arrays,
mixed input/output dimensionality, or requiring greater user control or customization.

For many common tasks involving 2-D and 3-D images, the imwarp function is easier to use. For
example, the imwarp function enables you to specify the type of interpolation using a name-value
argument. The imwarp function also supports categorical images.

The tformarray function is not recommended for 2-D and 3-D geometric transformations. Instead,
create a 2-D or 3-D geometric transformation object, then use the imwarp function. To perform a
transformation that pads the output using the 'replicate', 'circular', or 'symmetric'
padding method, you can pad the input image using the padarray function before calling imwarp.
For more information about geometric transformation objects, see “2-D and 3-D Geometric
Transformation Process Overview”.

This table shows a syntax of tformarray with recommended replacement code.

 tformarray

1-3035

Discouraged Usage Recommended Replacement
This example performs a 2-D affine
transformation of image I using cubic resampling
and a fill value of 0.

A = [0.5 0 0; 0.5 2 0; 0 0 1];
T = maketform("affine",A);
I = checkerboard(20,1,1);
R = makeresampler("cubic","bound");
J = tformarray(I,T,R,[1 2],[2 1],[40 80],[],[]);

Create an affine2d object then perform the
transformation of image I using the imwarp
function.

A = [0.5 0 0; 0.5 2 0; 0 0 1];
T = affine2d(A);
I = checkerboard(20,1,1);
J = imwarp(I,T,"cubic")

Extended Capabilities
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
findbounds | makeresampler | maketform | imwarp

Topics
“N-Dimensional Spatial Transformations”

Introduced before R2006a

1 Functions

1-3036

tformfwd
Apply forward N-D spatial transformation

Note The tformfwd function is not recommended for 2-D and 3-D geometric transformations. Use
the transformPointsForward function instead. For more information, see “Compatibility
Considerations”.

Syntax
[X1,X2,...,X_ndims_out] = tformfwd(T,U1,U2,...,U_ndims_in)
X = tformfwd(T,U)
[X1,X2,...,X_ndims_out] = tformfwd(T,U)
X = tformfwd(T,U1,U2,...,U_ndims_in)

Description
[X1,X2,...,X_ndims_out] = tformfwd(T,U1,U2,...,U_ndims_in) applies the ndims_in-
to-ndims_out spatial transformation defined in T to the coordinate arrays U1,U2,...,U_ndims_in.
The transformation maps the point [U1(k) U2(k) ...U_ndims_in(k)] to the point [X1(k)
X2(k) ... X_ndims_out(k)].

The number of input coordinate arrays, ndims_in, must equal T.ndims_in. The number of output
coordinate arrays, ndims_out, must equal T.ndims_out. The arrays U1,U2,...,U_ndims_in can
have any dimensionality, but must be the same size. The output arrays X1,X2,...,X_ndims_out
must be this size also.

X = tformfwd(T,U) applies the spatial transformation defined in T to coordinate array U.

• When U is a 2-D matrix with dimensions m-by-ndims_in, X is a 2-D matrix with dimensions m-by-
ndims_out. tformfwd applies the ndims_in-to-ndims_out transformation to each row of U.
tformfwd maps the point U(k, :) to the point X(k, :).

• When U is an (N+1)-dimensional array, tformfwd maps the point U(k1, k2, … ,kN, :) to the point
X(k1, k2, … ,kN, :).

size(U,N+1) must equal ndims_in. X is an (N+1)-dimensional array, with size(X,I) equal to
size(U,I) for I = 1, … ,N, and size(X,N+1) equal to ndims_out.

The syntax X = tformfwd(U,T) is an older form of this syntax that remains supported for backward
compatibility.

[X1,X2,...,X_ndims_out] = tformfwd(T,U) maps one (N+1)-dimensional array to ndims_out
equally sized N-dimensional arrays.

X = tformfwd(T,U1,U2,...,U_ndims_in) maps ndims_in N-dimensional arrays to one (N+1)-
dimensional array.

Examples

 tformfwd

1-3037

Create Affine Transformation and Validate It with Forward Mapping

Create an affine transformation that maps the triangle with vertices (0,0), (6,3), (-2,5) to the triangle
with vertices (-1,-1), (0,-10), (4,4).

u = [0 6 -2]';
v = [0 3 5]';
x = [-1 0 4]';
y = [-1 -10 4]';
tform = maketform('affine',[u v],[x y]);

Validate the mapping by applying tformfwd. The results should equal x and y.

[xm,ym] = tformfwd(tform,u,v)

xm = 3×1

 -1
 0
 4

ym = 3×1

 -1
 -10
 4

Input Arguments
T — Spatial transformation
TFORM structure

Spatial transformation, specified as a TFORM structure. Create T using the maketform function.
Data Types: struct

U — Input coordinate points
numeric array

Input coordinate points, specified as a numeric array. The size and dimensionality of U can have
additional limitations depending on the syntax used.
Data Types: double

U1,U2,...,U_ndims_in — Input coordinate points
multiple numeric arrays

Input coordinate points, specified as multiple numeric arrays. The size and dimensionality of
U1,U2,...,U_ndims_in can have additional limitations depending on the syntax used.
Data Types: double

1 Functions

1-3038

Output Arguments
X — Coordinate array of output points
numeric array

Coordinate array of output points, returned as a numeric array. The size and dimensionality of X can
have additional limitations depending on the syntax used.

X1,X2,...,X_ndims_out — Coordinates of output points
multiple numeric arrays

Coordinates of output points, returned as multiple numeric arrays. The size and dimensionality of
X1,X2,...,X_ndims_out can have additional limitations depending on the syntax used.

Compatibility Considerations
tformfwd is not recommended for 2-D and 3-D geometric transformations
Not recommended starting in R2018b

The tformfwd function is not recommended for 2-D and 3-D geometric transformations. Instead,
create a 2-D or 3-D geometric transformation object, then use the transformPointsForward
function. For more information about geometric transformation objects, see “2-D and 3-D Geometric
Transformation Process Overview”.

This table shows a syntax of tformfwd with the recommended replacement code.

Discouraged Usage Recommended Replacement
Apply a forward 2-D affine transformation defined
in TFORM struct T to coordinate arrays U and V,
mapping the point [U(k) V(k)] to the point
[X(k) Y(k)].

[X,Y] = tformfwd(T,U,V);

Apply a forward 2-D affine transformation using
the affine2d object T and the
transformPointsForward function.

[X,Y] = transformPointsForward(T,U,V);

Extended Capabilities
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
maketform | fliptform | tforminv

Topics
“N-Dimensional Spatial Transformations”

Introduced before R2006a

 tformfwd

1-3039

tforminv
Apply inverse N-D spatial transformation

Note The tforminv function is not recommended for 2-D and 3-D geometric transformations. Use
the transformPointsInverse function instead. For more information, see “Compatibility
Considerations”.

Syntax
[U1,U2,...,U_ndims_in] = tforminv(T,X1,X2,...,X_ndims_out)
U = tforminv(T,X)
[U1,U2,...,U_ndims_in] = tforminv(T,X)
U = tforminv(T,X1,X2,...,X_ndims_out)

Description
[U1,U2,...,U_ndims_in] = tforminv(T,X1,X2,...,X_ndims_out) applies the ndims_out-
to-ndims_in inverse transformation defined in T to the coordinate arrays
X1,X2,...,X_ndims_out. The transformation maps the point [X1(k) X2(k) ...
X_ndims_out(k)] to the point [U1(k) U2(k) ... U_ndims_in(k)].

The number of input coordinate arrays, ndims_out, must equal T.ndims_out. The number of
output coordinate arrays, ndims_in, must equal T.ndims_in. The arrays
X1,X2,...,X_ndims_out can have any dimensionality, but must be the same size. The output
arrays U1,U2,...,U_ndims_in must be this size also.

U = tforminv(T,X) applies the ndims_out-to-ndims_in inverse transformation defined in T to
array X.

• When X is a 2-D matrix with dimensions m-by-ndims_out matrix, U is a 2-D matrix with
dimensions m-by-ndims_in. tforminv applies the transformation to each row of X. tforminv
maps the point X(k, :) to the point U(k, :).

• When X is an (N+1)-dimensional array, tforminv maps the point X(k1, k2, … ,kN, :) to the point
U(k1, k2, … ,kN, :).

size(X,N+1) must equal ndims_out. U is an (N+1)-dimensional array, with size(U,I) equal to
size(X,I) for I = 1, … ,N, and size(U,N+1) equal to ndims_in.

The syntax U = tforminv(X,T) is an older form of this syntax that remains supported for backward
compatibility.

[U1,U2,...,U_ndims_in] = tforminv(T,X) maps one (N+1)-dimensional array to ndims_in
equally sized N-dimensional arrays.

U = tforminv(T,X1,X2,...,X_ndims_out) maps ndims_out N-dimensional arrays to one (N
+1)-dimensional array.

1 Functions

1-3040

Examples

Create Affine Transformation and Validate It with Inverse Mapping

Create an affine transformation that maps the triangle with vertices (0,0), (6,3), (-2,5) to the triangle
with vertices (-1,-1), (0,-10), (4,4).

u = [0 6 -2]';
v = [0 3 5]';
x = [-1 0 4]';
y = [-1 -10 4]';
tform = maketform('affine',[u v],[x y]);

Validate the mapping by applying tforminv. The results should equal u and v.

[um, vm] = tforminv(tform, x, y)

um = 3×1

 0
 6.0000
 -2.0000

vm = 3×1

 0
 3.0000
 5.0000

Input Arguments
T — Spatial transformation
TFORM spatial transformation structure

Spatial transformation, specified as a TFORM spatial transformation structure. Create T using the
maketform function.
Data Types: struct

X — Input coordinate points
numeric array

Input coordinate points, specified as a numeric array. The size and dimensionality of X can have
additional limitations depending on the syntax used.
Data Types: double

X1,X2,...,X_ndims_out — Input coordinate points
multiple numeric arrays

Input coordinate points, specified as multiple numeric arrays. The size and dimensionality of
X1,X2,...,X_ndims_out can have additional limitations depending on the syntax used.
Data Types: double

 tforminv

1-3041

Output Arguments
U — Coordinate array of output points
numeric array

Coordinate array of output points, returned as a numeric array. The size and dimensionality of U can
have additional limitations depending on the syntax used.

U1,U2,...,U_ndims_in — Coordinates of output points
multiple numeric arrays

Coordinates of output points, returned as multiple arrays. The size and dimensionality of
U1,U2,...,U_ndims_in can have additional limitations depending on the syntax used.

Compatibility Considerations
tforminv is not recommended for 2-D and 3-D geometric transformations
Not recommended starting in R2018b

The tforminv function is not recommended for 2-D and 3-D geometric transformations. Instead,
create a 2-D or 3-D geometric transformation object, then use the transformPointsInverse
function. For more information about geometric transformation objects, see “2-D and 3-D Geometric
Transformation Process Overview”.

This table shows a syntax of tforminv with the recommended replacement code.

Discouraged Usage Recommended Replacement
Apply an inverse 2-D affine transformation
defined in TFORM struct T to coordinate arrays X
and Y, mapping the point [X(k) Y(k)] to the
point [U(k) V(k)].

[U,V] = tforminv(T,X,Y);

Apply an inverse 2-D affine transformation using
the affine2d object T and the
transformPointsInverse function.

[U,V] = transformPointsInverse(T,X,Y);

Extended Capabilities
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
maketform | fliptform | tformfwd

Topics
“N-Dimensional Spatial Transformations”

Introduced before R2006a

1 Functions

1-3042

tiffreadVolume
Read volume from TIFF file

Syntax
V = tiffreadVolume(filename)
V = tiffreadVolume(filename,'PixelRegion',{rows,columns,slices})

Description
V = tiffreadVolume(filename) loads all of the volumetric data in the TIFF file named
filename into V. All of the spatial dimensions in V are first, and color (if present) is in the final
dimension.

V = tiffreadVolume(filename,'PixelRegion',{rows,columns,slices}) reads a subset of
the volume V. {rows,columns,slices} is a cell array that specifies the subsampling along each
dimension.

Examples

Read Volume from TIFF File

This example shows how to read volumetric data stored in a TIFF file.

Read Entire Volume from File

Read a volume from a TIFF file into the workspace. In this example, the volume is a stack of 27 MRI
images. Each image is 128-by-128 pixels in size.

V1 = tiffreadVolume('mri.tif');
whos V1

 Name Size Bytes Class Attributes

 V1 128x128x27 442368 uint8

Read Subsection of Volume from File

Read a subsection of a volume from a TIFF file into the workspace. The example uses the
'PixelRegion' parameter to specify which part of the volume to read. You specify the subsection in
a cell array of the form: {rows, columns, slices}. The example specifies to start reading at the
first pixel and reads every other pixel in the row and column dimensions. The example reads slices 10
through 15.

V2 = tiffreadVolume('mri.tif',...
 'PixelRegion', {[1 2 inf], [1 2 inf], [10 15]});
whos V2

 tiffreadVolume

1-3043

 Name Size Bytes Class Attributes

 V2 64x64x6 24576 uint8

Input Arguments
filename — Name of TIFF File
string

Name of TIFF file, specified as a string.
Example: 'mri.tif'
Data Types: char | string

{rows,columns,slices} — Subsampling instructions
cell array

Subsampling instructions, specified as a cell array containing three elements:
{row,column,slice}. Specifying slice is optional. If you do not specify it, tiffreadVolume
reads all the slices in the volume.

Each of the elements in the cell array is a numeric vector of the form [start stop] or [start
stride stop]. start specifies where to start reading on a particular dimension. stop specifies
where to stop reading on a particular dimension. To read to the end of the dimension, specify the
value inf for stop. The start and stop values are inclusive. stride specifies whether to read
every pixel along a particular dimension or subsample the dimension by skipping over pixels.

For example, to start reading at the first pixel, read every other pixel, and continue reading until the
end of the dimension, specify [1 2 inf].
Data Types: cell | double | single

Output Arguments
V — Volume
numeric array

Volume, returned as a numeric array.

Tips
This function supports the following kinds of TIFF volumes:

• Volumetric data stored in the file as individual Image File Directories (IFDs) of the same size and
kind.

• Volumetric data stored in the file as one image using the TIFF ImageDepth tag .
• Volumetric data stored as large, non-BigTIFF volumes, greater than 4GB, created by ImageJ.

See Also
dicomread | dicomreadVolume | imread | nitfread

1 Functions

1-3044

Introduced in R2020b

 tiffreadVolume

1-3045

tonemap
Render high dynamic range image for viewing

Syntax
RGB = tonemap(HDR)
RGB = tonemap(HDR,Name,Value)

Description
RGB = tonemap(HDR) converts the high dynamic range image HDR to a lower dynamic range image,
RGB, suitable for display, using a process called tone mapping. Tone mapping is a technique used to
approximate the appearance of high dynamic range images on a display with a more limited dynamic
range.

RGB = tonemap(HDR,Name,Value) uses name-value pairs to control various aspects of the tone
mapping.

Examples

Display High Dynamic Range Image

This example shows how to display a high dynamic range (HDR) image. To view an HDR image, you
must first convert the data to a dynamic range that can be displayed correctly on a computer.

Read a high dynamic range (HDR) image, using hdrread. If you try to display the HDR image, notice
that it does not display correctly.

hdr_image = hdrread('office.hdr');
imshow(hdr_image)

1 Functions

1-3046

Convert the HDR image to a dynamic range that can be viewed on a computer, using the tonemap
function. This function converts the HDR image into an RGB image of class uint8 .

rgb = tonemap(hdr_image);
whos

 Name Size Bytes Class Attributes

 hdr_image 665x1000x3 7980000 single
 rgb 665x1000x3 1995000 uint8

Display the RGB image.

imshow(rgb)

 tonemap

1-3047

Input Arguments
HDR — High dynamic range image
m-by-n-by-3 array

High dynamic range image, specified as an m-by-n-by-3 array.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: RGB = tonemap(HDR,'AdjustLightness',[0.05 0.95]);

AdjustLightness — Overall lightness of the rendered image
2-element vector

Overall lightness of the rendered image, specified as a two-element vector. The vector takes the form
[low high], where low and high are luminance values of the low dynamic range image, in the
range (0, 1]. These values are passed to imadjust.
Data Types: double

1 Functions

1-3048

AdjustSaturation — Saturation of colors in the rendered image
1 (default) | positive scalar

Saturation of colors in the rendered image, specified as a positive scalar. When the value is greater
than 1, the colors are more saturated. When the value is in the range (0, 1], colors are less saturated.
Data Types: double

NumberOfTiles — Number of tiles used during adaptive histogram equalization
[4 4] (default) | 2-element vector of positive integers

Number of tiles used during the adaptive histogram equalization part of the tone mapping operation,
specified as a 2-element vector of positive integers. The vector takes the form [rows cols], where
rows and cols specify the number of rows and columns of tiles. Both rows and cols must be at
least 2. The total number of image tiles is equal to rows*cols. A larger number of tiles results in an
image with greater local contrast.
Data Types: double

Output Arguments
RGB — Low dynamic range image
m-by-n-by-3 array

Low dynamic range image, specified as an m-by-n-by-3 array.
Data Types: uint8

See Also
adapthisteq | hdrread | stretchlim | tonemapfarbman | makehdr

Introduced in R2007b

 tonemap

1-3049

tonemapfarbman
Convert HDR image to LDR using edge-preserving multiscale decompositions

Syntax
LDR = tonemapfarbman(HDR)
LDR = tonemapfarbman(HDR,Name,Value)

Description
LDR = tonemapfarbman(HDR) converts the high dynamic range (HDR) image to a low dynamic
range (LDR) image, suitable for display, using a process called edge-preserving decompositions for
multiscale tone and detail manipulation.

LDR = tonemapfarbman(HDR,Name,Value) uses one or more name-value pairs to control various
aspects of the tone mapping.

Examples

Compress Dynamic Range of HDR Image Using Edge-Preserving Multiscale Decompositions

Load a high dynamic range (HDR) image into the workspace.

HDR = hdrread('office.hdr');

Convert the HDR image to a low dynamic range (LDR) image using the basic tone mapping function
tonemap. Display the result. The LDR image has an acceptable dynamic range but colors are muted.

LDR = tonemap(HDR);
imshow(LDR)

1 Functions

1-3050

Repeat the conversion using the tonemapfarbman function with default argument values. Display
the result. Colors appear more saturated than in the LDR image created using the tonemap function.
However, the image is bright and has poor contrast, such as in the shadow of the tree. The brightness
and poor contrast indicate that the default value of 'Exposure' is too large.

RGB = tonemapfarbman(HDR);
imshow(RGB)

 tonemapfarbman

1-3051

Repeat the conversion using the tonemapfarbman function with a lower value of 'Exposure' to
darken the image. Display the result. The image contrast is improved. The image also shows a
decrease in the clipping of pixel values in bright regions, such as the sky, road, and monitor.

RGB2 = tonemapfarbman(HDR,'Exposure',1.5);
imshow(RGB2)

1 Functions

1-3052

Input Arguments
HDR — High dynamic range image
m-by-n matrix | m-by-n-by-3 array

High dynamic range image, specified as an m-by-n matrix or an m-by-n-by-3 array.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: LDR = tonemapFarbman(HDR,'Saturation',2.1);

RangeCompression — Range compression
0.3 (default) | number in the range [0, 1]

Range compression, specified as the comma-separated pair consisting of 'RangeCompression' and
a number in the range [0, 1]. A value of 1 represents maximum compression and a value of 0
represents minimum compression.

 tonemapfarbman

1-3053

Saturation — Saturation
1.6 (default) | nonnegative number

Saturation, specified as the comma-separated pair consisting of 'Saturation' and a nonnegative
number. The recommended range for 'Saturation' is [0, 5]. As the saturation value increases,
colors become more rich and intense. As the saturation value decreases, colors fade away to gray.
The 'Saturation' argument does not affect grayscale HDR images.

Exposure — Exposure
3 (default) | positive number

Exposure, specified as the comma-separated pair consisting of 'Exposure' and a positive number.
The recommended range for 'Exposure' is (0, 5]. As this value decreases, the exposure length
decreases, so the image darkens. As this value increases, the exposure length increases, so the image
brightens.

NumberOfScales — Number of scales
3 (default) | positive integer

Number of scales, specified as the comma-separated pair consisting of 'NumberOfScales' and a
positive integer. The recommended range for 'NumberOfScales' is [1, 5]. The default number of
scales is length(Weights) when you specify 'Weights'. Otherwise, the default number of scales
is 3.

Weights — Weights of detail layers
[1.5 1.5 1.5] (default) | n-element vector of positive numbers

Weights of detail layers, specified as the comma-separated pair consisting of 'Weights' and an n-
element vector of positive numbers, where n is the number of scales specified by
'NumberOfScales'. The recommended range of each element in Weights is (0, 3]. The default
value of 'Weights' is an n-element numeric vector with all elements set to 1.5. For Weights <1,
the amount of detail in the output image decreases and Weights >1, the amount of detail in the
output image increases.

Output Arguments
LDR — Low dynamic range image
numeric array

Low dynamic range image, specified as a numeric array of the same size as HDR.
Data Types: uint8

Tips
• This function uses an anisotropic diffusion filter, imdiffusefilt, for the approximation of the

weighted least squares filter, as proposed by Farbman et al. [1]

References
[1] Farbman, Z., R. Fattal, D. Lischinski, and R. Szeliski. "Edge-Preserving Decompositions for Multi-

Scale Tone and Detail Manipulation." ACM Transactions on Graphics. Vol. 27, Number 3,
August 2008, pp. 1–10.

1 Functions

1-3054

See Also
tonemap | hdrread | makehdr | localtonemap | locallapfilt | imdiffusefilt

Introduced in R2018b

 tonemapfarbman

1-3055

transformPointsForward
Apply forward geometric transformation

Syntax
[x,y] = transformPointsForward(tform,u,v)
[x,y,z] = transformPointsForward(tform,u,v,w)
X = transformPointsForward(tform,U)

Description
[x,y] = transformPointsForward(tform,u,v) applies the forward transformation of 2-D
geometric transformation tform to the points specified by coordinates u and v.

[x,y,z] = transformPointsForward(tform,u,v,w) applies the forward transformation of 3-D
geometric transformation tform to the points specified by coordinates u, v, and w.

X = transformPointsForward(tform,U) applies the forward transformation of tform to the
input coordinate matrix U and returns the coordinate matrix X. transformPointsForward maps the
kth point U(k,:) to the point X(k,:).

Examples

Apply Forward Transformation of 2-D Geometric Transformation

Create an affine2d object that defines the transformation.

theta = 10;

tform = affine2d([cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0; 0 0 1])

tform =

 affine2d with properties:

 T: [3x3 double]
 Dimensionality: 2

Apply forward geometric transformation to an input (u,v) point.

[X,Y] = transformPointsForward(tform,5,10)

X =

 6.6605

Y =

1 Functions

1-3056

 8.9798

Transform Coordinate Arrays Using Custom 2-D Transformation

Specify the x- and y-coordinates vectors of five points to transform.

x = [10 11 15 2 2];
y = [15 32 34 7 10];

Define the inverse and forward mapping functions. Both functions accept and return points in packed
(x,y) format.

inversefn = @(c) [c(:,1).^2,sqrt(c(:,2))];
forwardfn = @(c) [sqrt(c(:,1)),c(:,2).^2];

Create a 2-D geometric transform object, tform, that stores the inverse mapping function and the
optional forward mapping function.

tform = geometricTransform2d(inversefn,forwardfn)

tform =
 geometricTransform2d with properties:

 InverseFcn: @(c)[c(:,1).^2,sqrt(c(:,2))]
 ForwardFcn: @(c)[sqrt(c(:,1)),c(:,2).^2]
 Dimensionality: 2

Apply the inverse geometric transform to the input points.

[u,v] = transformPointsInverse(tform,x,y)

u = 1×5

 100 121 225 4 4

v = 1×5

 3.8730 5.6569 5.8310 2.6458 3.1623

Apply the forward geometric transform to the transformed points u and v.

[x,y] = transformPointsForward(tform,u,v)

x = 1×5

 10 11 15 2 2

y = 1×5

 15.0000 32.0000 34.0000 7.0000 10.0000

 transformPointsForward

1-3057

Apply Forward Transformation of 3-D Geometric Transformation

Create an affine3d object that defines the transformation.

tform = affine3d([3 1 2 0;4 5 8 0;6 2 1 0;0 0 0 1])

tform =

 affine3d with properties:

 T: [4×4 double]
 Dimensionality: 3

Apply forward transformation of 3-D geometric transformation to an input (u,v,w) point.

[X,Y,Z] = transformPointsForward(tform,2,3,5)

X =

 48

Y =

 27

Z =

 33

Transform Coordinate Arrays Using Custom 3-D Transformation

Specify the x-, y- and the z-coordinate vectors of five points to transform.

x = [3 5 7 9 11];
y = [2 4 6 8 10];
z = [5 9 13 17 21];

Define the inverse and forward mapping functions that accept and return points in packed (x,y,z)
format.

inverseFcn = @(c)[c(:,1).^2,c(:,2).^2,c(:,3).^2];
forwardFcn = @(c)[sqrt(c(:,1)),sqrt(c(:,2)),sqrt(c(:,3))];

Create a 3-D geometric transformation object, tform, that stores these inverse and forward mapping
functions.

tform = geometricTransform3d(inverseFcn,forwardFcn)

tform =
 geometricTransform3d with properties:

 InverseFcn: @(c)[c(:,1).^2,c(:,2).^2,c(:,3).^2]
 ForwardFcn: @(c)[sqrt(c(:,1)),sqrt(c(:,2)),sqrt(c(:,3))]

1 Functions

1-3058

 Dimensionality: 3

Apply the inverse transformation of this 3-D geometric transformation to the input points.

[u,v,w] = transformPointsInverse(tform,x,y,z)

u = 1×5

 9 25 49 81 121

v = 1×5

 4 16 36 64 100

w = 1×5

 25 81 169 289 441

Apply the forward geometric transform to the transformed points u, v, and w.

[x,y,z] = transformPointsForward(tform,u,v,w)

x = 1×5

 3 5 7 9 11

y = 1×5

 2 4 6 8 10

z = 1×5

 5 9 13 17 21

Input Arguments
tform — Geometric transformation
geometric transformation object

Geometric transformation, specified as a geometric transformation object.

For 2-D geometric transformations, tform can be a rigid2d, affine2d, projective2d, or
geometricTransform2d geometric transformation object.

For 3-D geometric transformations, tform can be an affine3d, rigid3d, or
geometricTransform3d geometric transformation object.

u — x-coordinates of points to be transformed
m-by-n or m-by-n-by-p numeric array

 transformPointsForward

1-3059

x-coordinates of points to be transformed, specified as an m-by-n or m-by-n-by-p numeric array. The
number of dimensions of u matches the dimensionality of tform.
Data Types: single | double

v — y-coordinates of points to be transformed
m-by-n or m-by-n-by-p numeric array

y-coordinates of points to be transformed, specified as an m-by-n or m-by-n-by-p numeric array. The
size of v must match the size of u.
Data Types: single | double

w — z-coordinates of points to be transformed
m-by-n-by-p numeric array

z-coordinates of points to be transformed, specified as an m-by-n-by-p numeric array. w is used only
when tform is a 3-D geometric transformation. The size of w must match the size of u.
Data Types: single | double

U — Coordinates of points to be transformed
l-by-2 or l-by-3 numeric array

Coordinates of points to be transformed, specified as an l-by-2 or l-by-3 numeric array. The number of
columns of U matches the dimensionality of tform.

The first column lists the x-coordinate of each point to transform, and the second column lists the y-
coordinate. If tform represents a 3-D geometric transformation, U has size l-by-3 and the third
column lists the z-coordinate of the points to transform.
Data Types: single | double

Output Arguments
x — x-coordinates of points after transformation
m-by-n or m-by-n-by-p numeric array

x-coordinates of points after transformation, returned as an m-by-n or m-by-n-by-p numeric array. The
number of dimensions of x matches the dimensionality of tform.
Data Types: single | double

y — y-coordinates of points after transformation
m-by-n or m-by-n-by-p numeric array

y-coordinates of points after transformation, returned as an m-by-n or m-by-n-by-p numeric array. The
size of y matches the size of x.
Data Types: single | double

z — z-coordinates of points after transformation
m-by-n-by-p numeric array

z-coordinates of points after transformation, returned as an m-by-n-by-p numeric array. The size of z
matches the size of x.
Data Types: single | double

1 Functions

1-3060

X — Coordinates of points after transformation
numeric array

Coordinates of points after transformation, returned as a numeric array. The size of X matches the
size of U.

The first column lists the x-coordinate of each point after transformation, and the second column lists
the y-coordinate. If tform represents a 3-D geometric transformation, the third column lists the z-
coordinate of the points after transformation.
Data Types: single | double

See Also
transformPointsInverse | imwarp

Introduced in R2013a

 transformPointsForward

1-3061

transformPointsInverse
Package:

Apply inverse geometric transformation

Syntax
[u,v] = transformPointsInverse(tform,x,y)
[u,v,w] = transformPointsInverse(tform,x,y,z)
U = transformPointsInverse(tform,X)

Description
[u,v] = transformPointsInverse(tform,x,y) applies the inverse transformation of 2-D
geometric transformation tform to the points specified by coordinates x and y.

[u,v,w] = transformPointsInverse(tform,x,y,z) applies the inverse transformation of 3-D
geometric transformation tform to the points specified by coordinates x, y, and z.

U = transformPointsInverse(tform,X) applies the inverse transformation of tform to the
input coordinate matrix X and returns the coordinate matrix U. transformPointsInverse maps the
kth point X(k,:) to the point U(k,:).

Examples

Apply Inverse Transformation of 2-D Geometric Transformation

Create an affine2d object that defines the transformation.

theta = 10;

tform = affine2d([cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0; 0 0 1])

tform =

 affine2d with properties:

 T: [3x3 double]
 Dimensionality: 2

Apply forward transformation of 2-D geometric transformation to an input point.

[X,Y] = transformPointsForward(tform,5,10)

X =

 6.6605

Y =

1 Functions

1-3062

 8.9798

Apply inverse transformation of 2-D geometric transformation to output point from the previous step
to recover the original coordinates.

[U,V] = transformPointsInverse(tform,X,Y)

U =

 5.0000

V =

 10

Transform Packed Coordinates Using Custom 2-D Transformation

Specify the packed (x,y) coordinates of five input points. The packed coordinates are stored in a 5-
by-2 matrix, where the x-coordinate of each point is in the first column, and the y-coordinate of each
point is in the second column.

XY = [10 15;11 32;15 34;2 7;2 10];

Define the inverse mapping function. The function accepts and returns points in packed (x,y) format.

inversefn = @(c) [c(:,1)+c(:,2),c(:,1)-c(:,2)]

inversefn = function_handle with value:
 @(c)[c(:,1)+c(:,2),c(:,1)-c(:,2)]

Create a 2-D geometric transform object, tform, that stores the inverse mapping function.

tform = geometricTransform2d(inversefn)

tform =
 geometricTransform2d with properties:

 InverseFcn: @(c)[c(:,1)+c(:,2),c(:,1)-c(:,2)]
 ForwardFcn: []
 Dimensionality: 2

Apply the inverse geometric transform to the input points.

UV = transformPointsInverse(tform,XY)

UV = 5×2

 25 -5
 43 -21
 49 -19
 9 -5
 12 -8

 transformPointsInverse

1-3063

Apply Inverse Transformation of 3-D Geometric Transformation

Create an affine3d object that defines the transformation.

tform = affine3d([3 1 2 0;4 5 8 0;6 2 1 0;0 0 0 1])

tform =

 affine3d with properties:

 T: [4×4 double]
 Dimensionality: 3

Apply forward transformation of 3-D geometric transformation to an input point.

[X,Y,Z] = transformPointsForward(tform,2,3,5)

X =

 48

Y =

 27

Z =

 33

Apply inverse transformation of 3-D geometric transformation to output point from the previous step
to recover the original coordinates.

[U,V,W] = transformPointsInverse(tform,X,Y,Z)

U =

 2.0000

V =

 3

W =

 5.0000

1 Functions

1-3064

Transform Packed Coordinates Using Custom 3-D Transformation

Specify the packed (x,y,z) coordinates of five input points. The packed coordinates are stored as a 5-
by-3 matrix, where the first, second, and third columns contain the x-, y-, and z-
coordinates,respectively.

XYZ = [5 25 20;10 5 25;15 10 5;20 15 10;25 20 15];

Define an inverse mapping function that accepts and returns points in packed (x,y,z) format.

inverseFcn = @(c) [c(:,1)+c(:,2),c(:,1)-c(:,2),c(:,3).^2];

Create a 3-D geometric transformation object, tform, that stores this inverse mapping function.

tform = geometricTransform3d(inverseFcn)

tform =
 geometricTransform3d with properties:

 InverseFcn: @(c)[c(:,1)+c(:,2),c(:,1)-c(:,2),c(:,3).^2]
 ForwardFcn: []
 Dimensionality: 3

Apply the inverse transformation of this 3-D geometric transformation to the input points.

UVW = transformPointsInverse(tform,XYZ)

UVW = 5×3

 30 -20 400
 15 5 625
 25 5 25
 35 5 100
 45 5 225

Input Arguments
tform — Geometric transformation
geometric transformation object

Geometric transformation, specified as a geometric transformation object.

For 2-D geometric transformations, tform can be a rigid2d, affine2d, projective2d,
geometricTransform2d, LocalWeightedMeanTransformation2D,
PiecewiseLinearTransformation2D, or PolynomialTransformation2D geometric
transformation object.

For 3-D geometric transformations, tform can be an affine3d, rigid3d, or
geometricTransform3d geometric transformation object.

x — x-coordinates of points to be transformed
m-by-n or m-by-n-by-p numeric array

 transformPointsInverse

1-3065

x-coordinates of points to be transformed, specified as an m-by-n or m-by-n-by-p numeric array. The
number of dimensions of x matches the dimensionality of tform.
Data Types: single | double

y — y-coordinates of points to be transformed
m-by-n or m-by-n-by-p numeric array

y-coordinates of points to be transformed, specified as an m-by-n or m-by-n-by-p numeric array. The
size of y must match the size of x.
Data Types: single | double

z — z-coordinates of points to be transformed
m-by-n-by-p numeric array

z-coordinates of points to be transformed, specified as an m-by-n-by-p numeric array. z is used only
when tform is a 3-D geometric transformation. The size of z must match the size of x.
Data Types: single | double

X — Coordinates of points to be transformed
l-by-2 or l-by-3 numeric array

Coordinates of points to be transformed, specified as an l-by-2 or l-by-3 numeric array. The number of
columns of X matches the dimensionality of tform.

The first column lists the x-coordinate of each point to transform, and the second column lists the y-
coordinate. If tform represents a 3-D geometric transformation, X has size l-by-3 and the third
column lists the z-coordinate of the points to transform.
Data Types: single | double

Output Arguments
u — x-coordinates of points after transformation
m-by-n or m-by-n-by-p numeric array

x-coordinates of points after transformation, returned as an m-by-n or m-by-n-by-p numeric array. The
number of dimensions of u matches the dimensionality of tform.
Data Types: single | double

v — y-coordinates of points after transformation
m-by-n or m-by-n-by-p numeric array

y-coordinates of points after transformation, returned as an m-by-n or m-by-n-by-p numeric array. The
size of v matches the size of u.
Data Types: single | double

w — z-coordinates of points after transformation
m-by-n-by-p numeric array

z-coordinates of points after transformation, returned as an m-by-n-by-p numeric array. The size of w
matches the size of u.
Data Types: single | double

1 Functions

1-3066

U — Coordinates of points after transformation
numeric array

Coordinates of points after transformation, returned as a numeric array. The size of U matches the
size of X.

The first column lists the x-coordinate of each point after transformation, and the second column lists
the y-coordinate. If tform represents a 3-D geometric transformation, the third column lists the z-
coordinate of the points after transformation.
Data Types: single | double

See Also
transformPointsForward | imwarp

Introduced in R2013a

 transformPointsInverse

1-3067

translate
Translate structuring element

Syntax
SE2 = translate(SE,v)

Description
SE2 = translate(SE,v) translates the structuring element SE in N-D space. v is an N-element
vector containing the offsets of the desired translation in each dimension.

Examples

Translate Structuring Element

Read an image into the workspace.

I = imread('cameraman.tif');

Create a structuring element and translate it down and to the right by 25 pixels.

se = translate(strel(1), [25 25]);

Dilate the image using the translated structuring element.

J = imdilate(I,se);

Display the original image and the translated image.

figure
imshow(I), title('Original')

1 Functions

1-3068

figure
imshow(J), title('Translated');

 translate

1-3069

Translate Offset Structuring Element

Create an offset structuring element.

SE = offsetstrel('ball', 5, 6.5)

SE =
offsetstrel is a ball shaped offset structuring element with properties:

 Offset: [11x11 double]
 Dimensionality: 2

SE.Offset

ans = 11×11

 -Inf -Inf 0 0.8123 1.6246 2.4369 1.6246 0.8123 0 -Inf -Inf
 -Inf 0.8123 1.6246 2.4369 3.2492 3.2492 3.2492 2.4369 1.6246 0.8123 -Inf
 0 1.6246 2.4369 3.2492 4.0615 4.0615 4.0615 3.2492 2.4369 1.6246 0
 0.8123 2.4369 3.2492 4.0615 4.8738 4.8738 4.8738 4.0615 3.2492 2.4369 0.8123
 1.6246 3.2492 4.0615 4.8738 5.6861 5.6861 5.6861 4.8738 4.0615 3.2492 1.6246
 2.4369 3.2492 4.0615 4.8738 5.6861 6.4984 5.6861 4.8738 4.0615 3.2492 2.4369
 1.6246 3.2492 4.0615 4.8738 5.6861 5.6861 5.6861 4.8738 4.0615 3.2492 1.6246
 0.8123 2.4369 3.2492 4.0615 4.8738 4.8738 4.8738 4.0615 3.2492 2.4369 0.8123
 0 1.6246 2.4369 3.2492 4.0615 4.0615 4.0615 3.2492 2.4369 1.6246 0
 -Inf 0.8123 1.6246 2.4369 3.2492 3.2492 3.2492 2.4369 1.6246 0.8123 -Inf
 ⋮

Translate the structuring element.

V = [2 2];
SE2 = translate(SE,V)

SE2 =
offsetstrel is a ball shaped offset structuring element with properties:

 Offset: [15x15 double]
 Dimensionality: 2

SE2.Offset

ans = 15×15

 -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf
 -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf
 -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf
 -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf
 -Inf -Inf -Inf -Inf -Inf -Inf 0 0.8123 1.6246 2.4369 1.6246 0.8123 0 -Inf -Inf
 -Inf -Inf -Inf -Inf -Inf 0.8123 1.6246 2.4369 3.2492 3.2492 3.2492 2.4369 1.6246 0.8123 -Inf
 -Inf -Inf -Inf -Inf 0 1.6246 2.4369 3.2492 4.0615 4.0615 4.0615 3.2492 2.4369 1.6246 0
 -Inf -Inf -Inf -Inf 0.8123 2.4369 3.2492 4.0615 4.8738 4.8738 4.8738 4.0615 3.2492 2.4369 0.8123
 -Inf -Inf -Inf -Inf 1.6246 3.2492 4.0615 4.8738 5.6861 5.6861 5.6861 4.8738 4.0615 3.2492 1.6246
 -Inf -Inf -Inf -Inf 2.4369 3.2492 4.0615 4.8738 5.6861 6.4984 5.6861 4.8738 4.0615 3.2492 2.4369
 ⋮

1 Functions

1-3070

Input Arguments
SE — Structuring element
strel or offsetstrel object

Structuring element, specified as a strel or offsetstrel object.

v — Translation offsets
numeric vector

Translation offsets, specified as a numeric vector. Each element specifies the amount of desired
translation in the corresponding dimension.

Output Arguments
SE2 — Translated structuring element
strel or offsetstrel object

Translated structuring elements, returned as a strel or offsetstrel object.

See Also
reflect

Topics
“Structuring Elements”

Introduced before R2006a

 translate

1-3071

truesize
Adjust display size of image

Syntax
truesize(fig,[mrows ncols])
truesize(fig)

Description
truesize(fig,[mrows ncols]) adjusts the display size of an image in a figure, fig, to the
dimensions [mrows ncols], in pixels.

truesize(fig) adjusts the display size such that each image pixel covers one screen pixel.

If you do not specify a figure, truesize adjusts the display size of the current figure.

Examples

Adjust Display Size of Image

Create a default checkerboard image, which has size 80-by-80 pixels. Display the checkerboard image
to fill the full size of the figure window. The image is magnified to fill the window.

c = checkerboard;
imshow(c,'InitialMagnification','fit')

1 Functions

1-3072

Display the checkerboard image so that each image pixel covers one screen pixel.

truesize

You can adjust the size of the figure window to arbitrary dimension. The image scales to fit within the
figure window.

truesize([300 200]);

 truesize

1-3073

Input Arguments
fig — Figure
gcf (default) | figure handle

Figure containing a single image or a single image with a color bar, specified as a figure handle. By
default, truesize uses the current figure, with handle gcf.

[mrows ncols] — Screen dimensions
2-element numeric row vector

Screen dimensions (in pixels) that the image should occupy, specified as a 2-element numeric row
vector. By default, [mrows ncols] is equal to the image size, so each image pixel covers one screen
pixel.

See Also
imshow | iptsetpref | iptgetpref

Introduced before R2006a

1 Functions

1-3074

unitGenerator
Create unsupervised image-to-image translation (UNIT) generator network

Syntax
net = unitGenerator(inputSizeSource)
net = unitGenerator(inputSizeSource,Name,Value)

Description
net = unitGenerator(inputSizeSource) creates a UNIT generator network, net, for input of
size inputSizeSource. For more information about the network architecture, see “UNIT Generator
Network” on page 1-3080. The network has two inputs and four outputs:

• The two network inputs are images in the source and target domains. By default, the target image
size is same as source image size. You can change the number of channels in the target image by
specifying the 'NumTargetInputChannels' name-value argument.

• Two of the network outputs are self-reconstructed outputs, in other words, source-to-source and
target-to-target translated images. The other two network outputs are the source-to-target and
target-to-source translated images.

This function requires Deep Learning Toolbox.

net = unitGenerator(inputSizeSource,Name,Value) modifies aspects of the UNIT generator
network using name-value arguments.

Examples

Create UNIT Generator

Specify the network input size for RGB images of size 128-by-128.

inputSize = [128 128 3];

Create a UNIT generator that generates RGB images of the input size.

net = unitGenerator(inputSize)

net =
 dlnetwork with properties:

 Layers: [9x1 nnet.cnn.layer.Layer]
 Connections: [8x2 table]
 Learnables: [168x3 table]
 State: [0x3 table]
 InputNames: {'inputSource' 'inputTarget'}
 OutputNames: {1x4 cell}
 Initialized: 1

 unitGenerator

1-3075

Display the network.

analyzeNetwork(net)

Create UNIT Generator with Five Residual Blocks

Specify the network input size for RGB images of size 128-by-128.

inputSize = [128 128 3];

Create a UNIT generator with five residual blocks, three of which are shared between the encoder
and decoder modules.

net = unitGenerator(inputSize,"NumResidualBlocks",5, ...
 "NumSharedBlocks",3)

net =
 dlnetwork with properties:

 Layers: [9x1 nnet.cnn.layer.Layer]
 Connections: [8x2 table]
 Learnables: [152x3 table]
 State: [0x3 table]
 InputNames: {'inputSource' 'inputTarget'}
 OutputNames: {1x4 cell}
 Initialized: 1

Display the network.

analyzeNetwork(net)

Input Arguments
inputSizeSource — Input size of source image
3-element vector of positive integers

Input size of the source image, specified as a 3-element vector of positive integers.
inputSizeSource has the form [H W C], where H is the height, W is the width, and C is the number
of channels. The length of each dimension must be evenly divisible by 2^NumDownsamplingBlocks.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'NumDownsamplingBlocks',3 creates a network with 3 downsampling blocks

NumDownsamplingBlocks — Number of downsampling blocks
2 (default) | positive integer

Number of downsampling blocks in the source encoder and target encoder subnetworks, specified as
a positive integer. In total, the encoder module downsamples the source and target input by a factor

1 Functions

1-3076

of 2^NumDownsamplingBlocks. The source decoder and target decoder subnetworks have the same
number of upsampling blocks.

NumResidualBlocks — Number of residual blocks
5 (default) | positive integer

Number of residual blocks in the encoder module, specified as a positive integer. The decoder module
has the same number of residual blocks.

NumSharedBlocks — Number of shared residual blocks
2 (default) | positive integer

Number of residual blocks in the shared encoder subnetwork, specified as a positive integer. The
shared decoder subnetwork has the same number of residual blocks. The network should contain at
least one shared residual block.

NumTargetChannels — Number of channels in target image
positive integer

Number of channels in the target image, specified as a positive integer. By default,
'NumTargetChannels' is the same as the number of channels in the source image,
inputSizeSource.

NumFiltersInFirstBlock — Number of filters in first convolution layer
64 (default) | positive even integer

Number of filters in the first convolution layer, specified as a positive even integer.

FilterSizeInFirstAndLastBlocks — Filter size in first and last convolution layers
7 (default) | positive odd integer | 2-element vector of positive odd integers

Filter size in the first and last convolution layers of the network, specified as a positive odd integer or
2-element vector of positive odd integers of the form [height width]. When you specify the filter size
as a scalar, the filter has equal height and width.

FilterSizeInIntermediateBlocks — Filter size in intermediate convolution layers
3 (default) | 2-element vector of positive odd integers | positive odd integer

Filter size in intermediate convolution layers, specified as a positive odd integer or 2-element vector
of positive odd integers of the form [height width]. The intermediate convolution layers are the
convolution layers excluding the first and last convolution layer. When you specify the filter size as a
scalar, the filter has identical height and width.

ConvolutionPaddingValue — Style of padding
"symmetric-exclude-edge" (default) | "symmetric-include-edge" | "replicate" | numeric
scalar

Style of padding used in the network, specified as one of these values.

 unitGenerator

1-3077

PaddingValue Description Example
Numeric scalar Pad with the specified numeric

value
3 1 4
1 5 9
2 6 5

2 2 2 2 2 2 2
2 2 2 2 2 2 2
2 2 3 1 4 2 2
2 2 1 5 9 2 2
2 2 2 6 5 2 2
2 2 2 2 2 2 2
2 2 2 2 2 2 2

'symmetric-include-edge' Pad using mirrored values of the
input, including the edge values

3 1 4
1 5 9
2 6 5

5 1 1 5 9 9 5
1 3 3 1 4 4 1
1 3 3 1 4 4 1
5 1 1 5 9 9 5
6 2 2 6 5 5 6
6 2 2 6 5 5 6
5 1 1 5 9 9 5

'symmetric-exclude-edge' Pad using mirrored values of the
input, excluding the edge values

3 1 4
1 5 9
2 6 5

5 6 2 6 5 6 2
9 5 1 5 9 5 1
4 1 3 1 4 1 3
9 5 1 5 9 5 1
5 6 2 6 5 6 2
9 5 1 5 9 5 1
4 1 3 1 4 1 3

'replicate' Pad using repeated border
elements of the input

3 1 4
1 5 9
2 6 5

3 3 3 1 4 4 4
3 3 3 1 4 4 4
3 3 3 1 4 4 4
1 1 1 5 9 9 9
2 2 2 6 5 5 5
2 2 2 6 5 5 5
2 2 2 6 5 5 5

UpsampleMethod — Method used to upsample activations
"transposedConv" (default) | "bilinearResize" | "pixelShuffle"

Method used to upsample activations, specified as one of these values:

• "transposedConv" — Use a transposedConv2dLayer with a stride of [2 2].
• "bilinearResize" — Use a convolution2dLayer with a stride of [1 1] followed by a

resize2dLayer with a scale of [2 2].
• "pixelShuffle" — Use a convolution2dLayer with a stride of [1 1] followed by a

depthToSpace2dLayer with a block size of [2 2].

Data Types: char | string

ConvolutionWeightsInitializer — Weight initialization used in convolution layers
"he" (default) | "glorot" | "narrow-normal" | function

1 Functions

1-3078

Weight initialization used in convolution layers, specified as "glorot", "he", "narrow-normal", or
a function handle. For more information, see “Specify Custom Weight Initialization Function” (Deep
Learning Toolbox).

ActivationLayer — Activation function
"relu" (default) | "leakyRelu" | "elu" | layer object

Activation function to use in the network except after the first and final convolution layers, specified
as one of these values. The unitGenerator function automatically adds a leaky ReLU layer after the
first convolution layer. For more information and a list of available layers, see “Activation Layers”
(Deep Learning Toolbox).

• "relu" — Use a reluLayer
• "leakyRelu" — Use a leakyReluLayer with a scale factor of 0.2
• "elu" — Use an eluLayer
• A layer object

SourceFinalActivationLayer — Activation function after final convolution in source
decoder
"tanh" (default) | "sigmoid" | "softmax" | "none" | layer object

Activation function after the final convolution layer in the source decoder, specified as one of these
values. For more information and a list of available layers, see “Output Layers” (Deep Learning
Toolbox).

• "tanh" — Use a tanhLayer
• "sigmoid" — Use a sigmoidLayer
• "softmax" — Use a softmaxLayer
• "none" — Do not use a final activation layer
• A layer object

TargetFinalActivationLayer — Activation function after final convolution in target
decoder
"tanh" (default) | "sigmoid" | "softmax" | "none" | layer object

Activation function after the final convolution layer in the target decoder, specified as one of these
values. For more information and a list of available layers, see “Output Layers” (Deep Learning
Toolbox).

• "tanh" — Use a tanhLayer
• "sigmoid" — Use a sigmoidLayer
• "softmax" — Use a softmaxLayer
• "none" — Do not use a final activation layer
• A layer object

Output Arguments
net — UNIT generator network
dlnetwork object

 unitGenerator

1-3079

UNIT generator network, returned as a dlnetwork object.

More About
UNIT Generator Network

A UNIT generator network consists of three subnetworks in an encoder module followed by three
subnetworks in a decoder module. The default network follows the architecture proposed by Liu,
Breuel, and Kautz [1].

The encoder module downsamples the input by a factor of 2^NumDownsamplingBlocks. The
encoder module consists of three subnetworks.

• The source encoder subnetwork, called 'encoderSourceBlock', has an initial block of layers that
accepts data in the source domain, XS. The subnetwork then has NumDownsamplingBlocks
downsampling blocks that downsample the data and NumResidualBlocks–NumSharedBlocks
residual blocks.

• The target encoder subnetwork, called 'encoderTargetBlock', has an initial block of layers that
accepts data in the target domain, XS. The subnetwork then has NumDownsamplingBlocks
downsampling blocks that downsample the data, and NumResidualBlocks–NumSharedBlocks
residual blocks.

• The output of the source encoder and target encoder are combined by a concatenationLayer
• The shared residual encoder subnetwork, called 'encoderSharedBlock', accepts the concatenated

data and has NumSharedBlocks residual blocks.

The decoder module consists of three subnetworks that perform a total of NumDownsamplingBlocks
upsampling operations on the data.

• The shared residual decoder subnetwork, called 'decoderSharedBlock', accepts data from the
encoder and has NumSharedBlocks residual blocks.

• The source decoder subnetwork, called 'decoderSourceBlock', has NumResidualBlocks–
NumSharedBlocks residual blocks, NumDownsamplingBlocks downsampling blocks that
downsample the data, and a final block of layers that returns the output. This subnetwork returns
two outputs in the source domain: XTS and XSS. The output XTS is an image translated from the
target domain to the source domain. The output XSS is a self-reconstructed image from the source
domain to the source domain.

• The target decoder subnetwork, called 'decoderTargetBlock', has NumResidualBlocks–
NumSharedBlocks residual blocks, NumDownsamplingBlocks downsampling blocks that
downsample the data, and a final block of layers that returns the output. This subnetwork returns
two outputs in the target domain: XST and XTT. The output XTS is an image translated from the

1 Functions

1-3080

source domain to the target domain. The output XTT is a self-reconstructed image from the target
domain to the target domain.

The table describes the blocks of layers that comprise the subnetworks.

Block Type Layers Diagram of Default Block
Initial block • An imageInputLayer.

• A convolution2dLayer with a
stride of [1 1] and a filter size of
FilterSizeInFirstAndLastBlo
cks.

• A leakyReluLayer with a scale
factor of 0.2.

Downsampling
block

• A convolution2dLayer with a
stride of [2 2] to perform
downsampling. The convolution
layer has a filter size of
FilterSizeInIntermediateBlo
cks.

• An
instanceNormalizationLayer.

• An activation layer specified by the
ActivationLayer name-value
argument.

Residual block • A convolution2dLayer with a
stride of [1 1] and a filter size of
FilterSizeInIntermediateBlo
cks.

• An
instanceNormalizationLayer.

• An activation layer specified by the
ActivationLayer name-value
argument.

• A second convolution2dLayer.
• A second

instanceNormalizationLayer.
• An additionLayer that provides a

skip connection between every
block.

 unitGenerator

1-3081

Block Type Layers Diagram of Default Block
Upsampling block • An upsampling layer that upsamples

by a factor of 2 according to the
UpsampleMethod name-value
argument. The convolution layer
has a filter size of
FilterSizeInIntermediateBlo
cks.

• An
instanceNormalizationLayer.

• An activation layer specified by the
ActivationLayer name-value
argument.

Final block • A convolution2dLayer with a
stride of [1 1] and a filter size of
FilterSizeInFirstAndLastBlo
cks.

• An optional activation layer
specified by the
SourceFinalActivationLayer
and
TargetFinalActivationLayer
name-value arguments.

Tips
• You can create the discriminator network for UNIT by using the patchGANDiscriminator

function.
• Train the UNIT GAN network using a custom training loop.
• To perform domain translation of source image to target image and vice versa, use the

unitPredict function.
• For shared latent feature encoding, the arguments 'NumSharedBlocks' and

'NumResidualBlocks' must be greater than 0.

References
[1] Liu, Ming-Yu, Thomas Breuel, and Jan Kautz. "Unsupervised Image-to-Image Translation

Networks." Advances in Neural Information Processing Systems 30 (NIPS 2017). Long Beach,
CA: 2017. https://arxiv.org/abs/1703.00848.

See Also
unitPredict | patchGANDiscriminator | cycleGANGenerator | pix2pixHDGlobalGenerator

Topics
“Unsupervised Day-to-Dusk Image Translation Using UNIT”
“Get Started with GANs for Image-to-Image Translation”
“Create Modular Neural Networks”
“List of Deep Learning Layers” (Deep Learning Toolbox)

1 Functions

1-3082

https://arxiv.org/abs/1703.00848

Introduced in R2021a

 unitGenerator

1-3083

unitPredict
Perform inference using unsupervised image-to-image translation (UNIT) network

Syntax
translatedImage = unitPredict(net,inputImage)
translatedImage = unitPredict(net,inputImage,"OutputType",outputType)

Description
translatedImage = unitPredict(net,inputImage) performs unsupervised image-to-image
translation of image inputImage using the UNIT network net.

This function requires Deep Learning Toolbox.

translatedImage = unitPredict(net,inputImage,"OutputType",outputType) specifies
the direction of image-to-image translation for inference using the outputType argument. The
direction can be source-to-target or target-to-source.

Examples

Perform Source-to-Target Image Translation

Download a pretrained UNIT generator network that translates images between daytime and dusk
lighting conditions using the helper function downloadTrainedDayDuskGeneratorNet. The source
domain is daytime lighting and the target domain is dusk lighting.

trainedUNIT_url = 'https://ssd.mathworks.com/supportfiles/vision/data/trainedDayDuskUNITGeneratorNet.zip';
trainedUNIT_filename = 'trainedDayDuskUNITGeneratorNet.mat';
downloadTrainedDayDuskGeneratorNet(trainedUNIT_url,pwd);
load(trainedUNIT_filename);

Read and display a test image acquired in daytime conditions.

input = imread("car1.jpg");
imshow(input)

1 Functions

1-3084

Preprocess the image so that it is compatible with the network. Convert the data to data type single
in the range [-1, 1]. Decrease the size of the image, and store the data in a dlarray object.

input = (im2single(input) - 0.5)/0.5;
input = imresize(input,0.25);
dlInput = dlarray(input,"SSCB");

Translate the source image to the target domain using the UNIT generator network.

dlOutput = unitPredict(gen,dlInput);

Extract the translated image data from the dlarray object and rescale the data to the range [0, 1].
Display the translated image. The translated image resembles images acquired in dusk conditions.

output = rescale(extractdata(dlOutput));
imshow(output)

 unitPredict

1-3085

Perform Target-to-Source Image Translation

Download a pretrained UNIT generator network that translates images between daytime and dusk
lighting conditions using the helper function downloadTrainedDayDuskGeneratorNet. The source
domain is daytime lighting and the target domain is dusk lighting.

trainedUNIT_url = 'https://ssd.mathworks.com/supportfiles/vision/data/trainedDayDuskUNITGeneratorNet.zip';
trainedUNIT_filename = 'trainedDayDuskUNITGeneratorNet.mat';
downloadTrainedDayDuskGeneratorNet(trainedUNIT_url,pwd);
load(trainedUNIT_filename);

Read and display a test image acquired in dusk conditions.

input = imread("office_2.jpg");
imshow(input)

1 Functions

1-3086

Preprocess the image so that it is compatible with the network. Convert the data to data type single
in the range [-1, 1]. Store the data in a dlarray object.

input = (im2single(input) - 0.5)/0.5;
dlInput = dlarray(input,"SSCB");

Translate the target image to the source domain using the pretrained UNIT generator network, gen.

dlOutput = unitPredict(gen,dlInput,"OutputType","TargetToSource");

Extract the translated image data from the dlarray object and rescale the data to the range [0, 1].
Display the translated image. The translated image resembles images acquired in daytime lighting
conditions.

output = rescale(extractdata(dlOutput));
imshow(output)

 unitPredict

1-3087

Input Arguments
net — UNIT generator network
dlnetwork object

UNIT generator network, specified as a dlnetwork object. You can create a UNIT generator network
using the unitGenerator function.

inputImage — Input image
formatted dlarray object

Input image for image-to-image translation, specified as a formatted dlarray object.

outputType — Direction of image-to-image translation
"SourceToTarget" (default) | "TargetToSource"

Direction of image-to-image translation for inference, specified as one of these values.

• "SourceToTarget" – translate from the source domain to the target domain
• "TargetToSource" – translate from the target domain to the source domain

Data Types: char | string

1 Functions

1-3088

Output Arguments
translatedImage — Inferred image
dlarray object

Inferred image after image-to-image translation, returned as a dlarray object.

See Also
unitGenerator

Topics
“Unsupervised Day-to-Dusk Image Translation Using UNIT”

Introduced in R2021a

 unitPredict

1-3089

visboundaries
Plot region boundaries

Syntax
visboundaries(BW)
visboundaries(B)
visboundaries(ax, ___)
visboundaries(___ ,Name,Value)
h = visboundaries(___)

Description
visboundaries(BW) draws boundaries of regions in the binary image BW on the current axes. BW is
a 2-D binary image where pixels that are logical true belong to the foreground region and pixels that
are logical false constitute the background. visboundaries uses bwboundaries to find the
boundary pixel locations in the image.

visboundaries(B) draws region boundaries specified by B, where B is a cell array containing the
boundary pixel locations of the regions, similar in structure to the first output from bwboundaries.

visboundaries(ax, ___) draws region boundaries on the axes specified by ax. Specify ax as the
first input argument followed by any of the input argument combinations in the previous syntaxes.

visboundaries(___ ,Name,Value) uses name-value arguments to specify additional properties of
the boundaries.

h = visboundaries(___) returns a handle h, for the boundaries.

Examples

Compute Boundaries and Plot on Image

Read image.

BW = imread('blobs.png');

Compute boundaries.

B = bwboundaries(BW);

Display image and plot boundaries on image.

imshow(BW)
hold on
visboundaries(B)

1 Functions

1-3090

Visualize Segmentation Result

Read image and display it.

I = imread('toyobjects.png');
imshow(I)
hold on

Segment the image using the active contours (snakes) algorithm. First, specify the initial contour
location close to the object that is to be segmented.

mask = false(size(I));
mask(50:150,40:170) = true;

Display the initial contour on the original image in blue.

visboundaries(mask,'Color','b');

 visboundaries

1-3091

Segment the image using the 'edge' method using 200 iterations.

bw = activecontour(I,mask,200,'edge');

Display the final contour on the original image in red.

visboundaries(bw,'Color','r');
title('Blue - Initial Contour, Red - Final Contour');

1 Functions

1-3092

Input Arguments
BW — Binary image
logical array

Binary image, specified as a logical array.
Data Types: logical

B — Boundary pixel locations
cell array of Q-by-2 matrices

Boundary pixel locations, specified as a cell array. Each cell contains a Q-by-2 matrix, where Q is the
number of boundary pixels for the corresponding region. Each row of these Q-by-2 matrices contains
the row and column coordinates of a boundary pixel.
Data Types: cell

ax — Image on which to draw boundaries
current axes (default) | axes object

Image on which to draw boundaries, specified as an axes object.

 visboundaries

1-3093

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: visboundaries(bw,'Color','b');

Color — Color of boundary
'red' (default) | RGB triplet | hexadecimal color code | color name | short color name

Color of the boundary, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
color name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'

1 Functions

1-3094

RGB Triplet Hexadecimal Color Code Appearance
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'Color','r'
Example: 'Color','green'
Example: 'Color',[0 0 1]
Example: 'Color','#FF8800'

LineStyle — Style of boundary line
'-' (default) | '--' | ':' | '-.' | 'none'

Line style of boundary edge, specified as the comma-separated pair consisting of 'LineStyle' and
any line specifier in the table below.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

Example: 'LineStyle','-.'

LineWidth — Width of the line used for the boundary
2 (default) | positive number

Width of the line used for the boundary, specified as a positive number. Specify this value in points,
where one point = 1/72 inch.
Example: 'LineWidth',4
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

EnhanceVisibility — Augment drawn boundary with contrasting features
true or 1 (default) | false or 0

Augment the drawn boundary with contrasting features to improve visibility on a varying
background, specified as a numeric or logical 1 (true) or 0 (false).
Example: 'EnhanceVisibility',true
Data Types: logical

 visboundaries

1-3095

Output Arguments
h — Boundary lines
hggroup object

Boundary line, returned as an hggroup object. h is the child of the axes ax if specified, otherwise h is
the child of the current axes.

See Also
bwboundaries | bwperim | bwtraceboundary | viscircles

Introduced in R2015a

1 Functions

1-3096

viscircles
Create circle

Syntax
viscircles(centers,radii)
viscircles(ax,centers,radii)
viscircles(___ ,Name,Value)
h = viscircles(___)

Description
viscircles(centers,radii) draws circles with specified centers and radii onto the current
axes.

viscircles(ax,centers,radii) draws circles onto the axes specified by ax.

viscircles(___ ,Name,Value) uses name-value pair arguments to specify additional properties
of the circles.

h = viscircles(___) returns a handle, h, to the drawn circles.

Examples

Draw Lines Around Bright and Dark Circles in Image

Read the image into the workspace and display it.

A = imread('circlesBrightDark.png');
imshow(A)

 viscircles

1-3097

Define the radius range.

Rmin = 30;
Rmax = 65;

Find all the bright circles in the image within the radius range.

[centersBright, radiiBright] = imfindcircles(A,[Rmin Rmax],'ObjectPolarity','bright');

Find all the dark circles in the image within the radius range.

[centersDark, radiiDark] = imfindcircles(A,[Rmin Rmax],'ObjectPolarity','dark');

Draw blue lines around the edges of the bright circles.

viscircles(centersBright, radiiBright,'Color','b');

1 Functions

1-3098

Draw red dashed lines around the edges of the dark circles.

viscircles(centersDark, radiiDark,'LineStyle','--');

 viscircles

1-3099

Clear Axes Before Plotting Circles

The viscircles function does not clear the target axes before plotting circles. To remove circles
that have been previously plotted in an axes, use the cla function. To illustrate, this example creates
a new figure and then loops, drawing a set of circles with each iteration, clearing the axes each time.

figure
colors = {'b','r','g','y','k'};

for k = 1:5
 % Create 5 random circles to display,
 X = rand(5,1);

1 Functions

1-3100

 Y = rand(5,1);
 centers = [X Y];
 radii = 0.1*rand(5,1);

 % Clear the axes.
 cla

 % Fix the axis limits.
 xlim([-0.1 1.1])
 ylim([-0.1 1.1])

 % Set the axis aspect ratio to 1:1.
 axis square

 % Set a title.
 title(['k = ' num2str(k)])

 % Display the circles.
 viscircles(centers,radii,'Color',colors{k});

 % Pause for 1 second.
 pause(1)
end

 viscircles

1-3101

Input Arguments
centers — Coordinates of circle centers
two-column matrix

Coordinates of circle centers, specified as a P-by-2 matrix, such as that obtained from
imfindcircles. The x-coordinates of the circle centers are in the first column and the y-coordinates
are in the second column. The coordinates can be integers (of any numeric type) or floating-point
values (of type double or single).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

radii — Circle radii
column vector

Circle radii, specified as a column vector such as that returned by imfindcircles. The radius value
at radii(j) corresponds to the circle with center coordinates centers(j,:). The values of radii
can be nonnegative integers (of any numeric type) or floating-point values (of type double or
single).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ax — Axes in which to draw circles
handle

Axes in which to draw circles, specified as a handle object returned by gca or axes.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: viscircles(centers,radii,'Color','b') specifies blue circle edges, using the short
color name for blue.

EnhanceVisibility — Augment drawn circles with contrasting features to improve
visibility
true (default) | false

Augment drawn circles with contrasting features to improve visibility, specified as a logical value
true or false. If you set the value to true, then viscircles draws a contrasting circle below the
colored circle.
Data Types: logical

Color — Color of boundary
'red' (default) | RGB triplet | hexadecimal color code | color name | short color name

Color of the boundary, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
color name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

1 Functions

1-3102

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: viscircles(centers,radii,'Color','r');
Example: viscircles(centers,radii,'Color','green');
Example: viscircles(centers,radii,'Color',[0 0 1]);
Example: viscircles(centers,radii,'Color','#FF8800');

LineStyle — Line style of circle edge
'-' (default) | '--' | ':' | '-.' | 'none'

Line style of circle edge, specified as the comma-separated pair consisting of 'LineStyle' and any
line specifier in the table below.

 viscircles

1-3103

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Width of circle edge
2 (default) | positive number

Width of circle edge, specified a positive number. Line width is expressed in points, where each point
equals 1/72 of an inch.
Data Types: double

Output Arguments
h — Circles drawn
hggroup object

Circles drawn, returned as an hggroup object. h is the child of the axes ax if specified, otherwise h is
the child of the current axes.

See Also
Image Viewer | visboundaries | imfindcircles | imdistline

Introduced in R2012a

1 Functions

1-3104

volshow
Display volume

Description
A volshow object displays volume and enables you to modify the appearance of the display.

Creation

Syntax
volshow(V)
volshow(V,config)
volshow(V,Name,Value)
vs = volshow(___)

Description

volshow(V) displays 3-D grayscale volume V in a figure. You can rotate and zoom in and out on the
display interactively using the mouse.

volshow(V,config) displays the 3-D grayscale volume V. config is a struct exported from the
Volume Viewer app. The config struct controls visualization of the volume, containing values for
volshow object properties.

volshow(V,Name,Value) displays the volume, using one or more name-value pairs to set
properties that control the visualization of the volume. For a list of name-value pairs, see “Properties”
on page 1-3106. Enclose each property name in quotes.
Example: volshow(V,'BackgroundColor','w') displays 3-D grayscale volume V in a figure with
a white background color.

vs = volshow(___) returns a volshow object with properties that can be used to control
visualization of the volume.

Input Arguments

V — 3-D grayscale volume
numeric array

3-D grayscale volume, specified as a numeric array.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

config — Rendering information exported by Volume Viewer
struct

Rendering information exported by Volume Viewer, specified as a struct.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

 volshow

1-3105

Properties
Alphamap — Transparency map for volume content
256-by-1 numeric vector

Transparency map for the volume content, specified as a 256-by-1 numeric array, with values in the
range [0, 1]. The default transparency map is the vector linspace(0,1,256)'.

BackgroundColor — Background color
[0.3 0.75 0.93] (default) | RGB triplet | color name | short color name

Background color, specified as an RGB triplet, a color name, or a short color name.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'BackgroundColor','r'
Example: 'BackgroundColor','green'
Example: 'BackgroundColor',[0 0.4470 0.7410]

CameraPosition — Location of camera
[4 4 2.5] (default) | 3-element vector

1 Functions

1-3106

Location of camera, or the viewpoint, specified as a 3-element vector of the form [x y z]. This
vector defines the axes coordinates of the camera location, which is the point from which you view
the axes. The camera is oriented along the view axis, which is a straight line that connects the
camera position and the camera target. Changing the CameraPosition property changes the point
from which you view the volume. For an illustration, see “Camera Graphics Terminology”.
Interactively rotating the volume modifies the value of this property.

CameraTarget — Point used as camera target
[0 0 0] (default) | 3-element vector

Point used as camera target, specified as a 3-element vector of the form [x y z]. The camera is
oriented along the view axis, which is a straight line that connects the camera position and the
camera target. For an illustration, see “Camera Graphics Terminology”.

CameraUpVector — Vector defining upwards direction
[0 0 1] (default) | 3-element vector

Vector defining upwards direction, specified as a 3-element direction vector of the form [x y z]. By
default, volshow defines the z-axis as the up direction ([0 0 1]). For an illustration, see “Camera
Graphics Terminology”. Interactively rotating the volume modifies the value of this property.

CameraViewAngle — Field of view
15 (default) | numeric scalar

Field of view, specified as a scalar angle in the range [0, 180). The larger the angle, the larger the
field of view. Also, as the angle increases, objects appear smaller in the scene. For an illustration, see
“Camera Graphics Terminology”.

Colormap — Colormap of volume content
gray(256) (default) | 256-by-3 numeric array

Colormap of the volume content, specified as a 256-by-3 numeric array with values in the range [0,
1].

InteractionsEnabled — Interactivity of volume
true (default) | false

Interactivity of the volume, specified as true or false. When true, you can zoom using the mouse
scroll wheel, and rotate by clicking and dragging on the volume. Rotation and zoom are performed
about the value specified by the CameraTarget property. When false, you cannot interact with the
volume.

IsosurfaceColor — Isosurface color
RGB triplet | color name | short color name

Isosurface color, specified as an RGB triplet, a color name, or a short color name. This property
specifies the volume color when the Renderer property is set to 'Isosurface'.

You can specify any color using an RGB triplet. An RGB triplet is a 3-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1].

You can specify some common colors by name as a string scalar or character vector. This table lists
the named color options and the equivalent RGB triplets.

 volshow

1-3107

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Here are the RGB triplets for the default colors that MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

Example: 'IsosurfaceColor','r'
Example: 'IsosurfaceColor','green'
Example: 'IsosurfaceColor',[0 0.4470 0.7410]

Isovalue — Value that defines volume surface
0.49 (default) | nonnegative number

Value that defines the volume surface drawn when the Renderer property is set to 'Isosurface',
specified as a nonnegative number in the range [0, 1].

Lighting — Include light source in rendering
true (default) | false

Include light source in rendering, specified as a logical scalar.

Parent — Parent of volshow object
gcf (default) | uipanel | figure

Parent of the volshow object, specified as a handle to a uipanel or figure. If you do not specify a
parent, then the parent of the volshow object is gcf.

Renderer — Rendering style
'VolumeRendering' | 'MaximumIntensityProjection' | 'Isosurface'

Rendering style, specified as one of the values in this table. When the volume is logical, the default
rendering style is 'Isosurface', otherwise the default rendering style is 'VolumeRendering'.

1 Functions

1-3108

Value Description
'VolumeRendering' View the volume based on the specified color and

transparency for each voxel.
'MaximumIntensityProjection' View the voxel with the highest intensity value for

each ray projected through the data.
'Isosurface' View an isosurface of the volume specified by the

value in Isovalue.

ScaleFactors — Scale factors used to rescale volume
[1 1 1] (default) | 1-by-3 positive numeric array

Scale factors used to rescale volume, specified as a 1-by-3 positive numeric array. The values in the
array correspond to the scale factor applied in the x, y, and z direction.

Object Functions
setVolume Set new volume

Examples

Create Animated GIF of Spiral Volume

Load and view the volume.

load('spiralVol.mat');
h = volshow(spiralVol);

 volshow

1-3109

Specify the name of the GIF file.

filename = 'animatedSpiral.gif';

Create an array of camera positions around the unit circle.

vec = linspace(0,2*pi(),120)';
myPosition = [cos(vec) sin(vec) ones(size(vec))];

Loop through and create an image at each camera position.

for idx = 1:120
 % Update current view.
 h.CameraPosition = myPosition(idx,:);
 % Use getframe to capture image.
 I = getframe(gcf);
 [indI,cm] = rgb2ind(I.cdata,256);
 % Write frame to the GIF File.
 if idx == 1
 imwrite(indI, cm, filename, 'gif', 'Loopcount', inf, 'DelayTime', 0.05);
 else
 imwrite(indI, cm, filename, 'gif', 'WriteMode', 'append', 'DelayTime', 0.05);
 end
end

1 Functions

1-3110

Visualize Volume of MRI Data

Load MRI data and remove the singleton dimension.

load mri
V = squeeze(D);

Generate a colormap and transparency (alpha) map suited for MRI images.

intensity = [0 20 40 120 220 1024];
alpha = [0 0 0.15 0.3 0.38 0.5];
color = ([0 0 0; 43 0 0; 103 37 20; 199 155 97; 216 213 201; 255 255 255]) ./ 255;
queryPoints = linspace(min(intensity),max(intensity),256);
alphamap = interp1(intensity,alpha,queryPoints)';
colormap = interp1(intensity,color,queryPoints);

View the volume with the custom colormap and transparency map. Click and drag the mouse to
rotate the volume. Use the scroll wheel to zoom in and out of the volume.

vol = volshow(V,'Colormap',colormap,'Alphamap',alphamap);

 volshow

1-3111

Visualize CT Volumetric Data

Load data.

load mri
V = squeeze(D);

Generate a colormap and an alphamap that are ideal for visualizing CT images.

intensity = [-3024,-16.45,641.38,3071];
alpha = [0, 0, 0.72, 0.72];
color = ([0 0 0; 186 65 77; 231 208 141; 255 255 255]) ./ 255;
queryPoints = linspace(min(intensity),max(intensity),256);
alphamap = interp1(intensity,alpha,queryPoints)';
colormap = interp1(intensity,color,queryPoints);

View the volume with custom colormap and alphamap

volshow(V,'Colormap',colormap,'Alphamap',alphamap);

1 Functions

1-3112

Tips
• The volshow function creates a uipanel object in the specified parent figure. Panels are

containers that group UI components together. volshow displays volumetric data in the uipanel.
In contrast, imshow displays images in an Axes. If you call imshow to display an image in a figure
in which volshow has displayed a volume, then imshow does not overwrite the volume displayed
by volshow. The Axes created by imshow displays behind the uipanel.

See Also
Volume Viewer | labelvolshow | isosurface | slice | obliqueslice

Introduced in R2018b

 volshow

1-3113

setVolume
Set new volume

Syntax
setVolume(hVol,V)

Description
setVolume(hVol,V) updates the volshow object hVol with a new volume V. setVolume preserves
the current viewpoint and other visualization settings remain unchanged.

Examples

Change the Volume in volshow Object

Load two volumes.

load mri
V = squeeze(D);

load spiralVol

Display one of the volumes, using volshow.

intensity = [0 20 40 120 220 1024];
alpha = [0 0 0.15 0.3 0.38 0.5];
color = ([0 0 0; 43 0 0; 103 37 20; 199 155 97; 216 213 201; 255 255 255]) ./ 255;
queryPoints = linspace(min(intensity),max(intensity),256);
alphamap = interp1(intensity,alpha,queryPoints)';
colormap = interp1(intensity,color,queryPoints);
vol = volshow(V,'Colormap',colormap,'Alphamap',alphamap);

1 Functions

1-3114

Change rendering settings.

newColormap = hot(256);
vol.Colormap = newColormap;
vol.BackgroundColor = 'magenta';

 setVolume

1-3115

Change the volume in the volshow object. Note that, when changing the volume, the volshow object
preserves your rendering settings.

setVolume(vol,spiralVol)

1 Functions

1-3116

Input Arguments
hVol — Volume visualization
volshow object

Volume visualization, specified as a volshow object.

V — Volumetric data
3-D grayscale volume

Volumetric data, specified as a 3-D grayscale volume.

See Also
volshow

Introduced in R2019a

 setVolume

1-3117

warp
Display image as texture-mapped surface

Syntax
warp(X,map)
warp(I,n)
warp(BW)
warp(RGB)
warp(Z, ___)
warp(X,Y,Z, ___)
h = warp(___)

Description
warp(X,map) displays the indexed image X with colormap map as a texture map on a simple
rectangular surface.

warp(I,n) displays the intensity image I with n levels as a texture map on a simple rectangular
surface.

warp(BW) displays the binary image BW as a texture map on a simple rectangular surface.

warp(RGB) displays the truecolor image RGB as a texture map on a simple rectangular surface.

warp(Z, ___) displays the image on the surface Z.

warp(X,Y,Z, ___) displays the image on the surface (X,Y,Z).

h = warp(___) returns a handle to the texture-mapped surface.

Examples

Warp Indexed Image over Curved Surface

This example shows how to warp an indexed image over a nonuniform surface. This example uses a
curved surface centered at the origin.

Read an indexed image into the workspace.

[I,map] = imread('forest.tif');

Create the surface. First, define the x- and y-coordinates of the surface. This example uses arbitrary
coordinates that are unrelated to the indexed image. Note that the size of the coordinate matrices X
and Y do not need to match the size of the image.

[X,Y] = meshgrid(-100:100,-80:80);

Define the height Z of the surface at the coordinates given by (X,Y).

1 Functions

1-3118

Z = -(X.^2 + Y.^2);

Warp the image over the surface defined by the coordinates (X,Y,Z).

figure
warp(X,Y,Z,I,map);

Explore the warped image interactively using the rotate and data cursor tools.

Warp Grayscale Image Based on Intensity

Read a grayscale image into the workspace.

I = imread('coins.png');

Warp the image over the surface whose height is equal to the intensity of the image I. Specify the
number of graylevels.

figure
warp(I,I,128);

 warp

1-3119

Note that the x- and y-coordinates of the surface were not specified in the call to warp and thus
default to the image pixel indices. Explore the warped image interactively using the rotate and data
cursor tools.

Input Arguments
X — Indexed image
2-D array of real numeric values

Indexed image, specified as a 2-D array of real numeric values. The values in X are an index into map,
an n-by-3 array of RGB values.
Data Types: single | double | uint8 | uint16 | int16 | logical

map — Colormap
n-by-3 array of real numeric values

Colormap, specified as an n-by-3 array of real numeric values. Each row specifies an RGB color value.
When map is type single or double, values must be in the range [0, 1].
Data Types: single | double | uint8

I — Intensity image
2-D array of real numeric values

Intensity image, specified as a 2-D array of real numeric values.

1 Functions

1-3120

Data Types: single | double | uint8 | uint16 | int16 | logical

n — Number of grayscale levels
positive integer

Number of grayscale levels, specified as a positive integer.
Data Types: double | uint8 | uint16 | logical

BW — Binary image
2-D array of logical values

Binary image, specified as a 2-D array of logical values.
Data Types: single | double | uint8 | uint16 | int16 | logical

RGB — Truecolor image
m-by-n-by-3 array of real numeric values

Truecolor image, specified as an m-by-n-by-3 array of real numeric values.
Data Types: single | double | uint8 | uint16 | int16 | logical

Z — Height of surface
2-D array of real numeric values

Height of surface, specified as a 2-D array of logical values. When Z is not specified, the surface is flat
with a uniform height of 0.
Data Types: single | double | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64 |
logical

X — x-coordinates of surface
2-D array of real numeric values

x-coordinates of surface, specified as a 2-D array of real numeric values.
Data Types: single | double | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64 |
logical

Y — y-coordinates of surface
2-D array of real numeric values

y-coordinates of surface, specified as a 2-D array of real numeric values.
Data Types: single | double | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64 |
logical

Output Arguments
h — Texture-mapped surface object created by warp
texture-mapped surface object

Texture-mapped surface object created by warp, specified as a texture-mapped surface object.

 warp

1-3121

Tips
• Texture-mapped surfaces are generally rendered more slowly than images.

See Also
imshow | image | imagesc | surf

Introduced before R2006a

1 Functions

1-3122

Warper
Apply same geometric transformation to many images efficiently

Description
A Warper object applies an affine2d or projective2d geometric transformation to images with a
specific size.

Creation

Syntax
w = images.geotrans.Warper(tform,inputSize)
w = images.geotrans.Warper(tform,inputRef)
w = images.geotrans.Warper(tform,inputRef,outputRef)
w = images.geotrans.Warper(sourceX,sourceY)
w = images.geotrans.Warper(___ ,Name,Value)

Description

w = images.geotrans.Warper(tform,inputSize) creates an image warper from the geometric
transformation object tform and sets the InputSize property.

w = images.geotrans.Warper(tform,inputRef) specifies the coordinate system of the input
images, inputRef.

w = images.geotrans.Warper(tform,inputRef,outputRef) specifies the coordinate system
of the output image, outputRef. This syntax can be used to improve performance by limiting the
application of the geometric transformation to a specific output region of interest.

w = images.geotrans.Warper(sourceX,sourceY) specifies the input image coordinates,
sourceX and sourceY, required to perform the geometric transformation.

w = images.geotrans.Warper(___ ,Name,Value) sets the Interpolation and FillValue
properties using one or more name-value pair arguments. Enclose each property name in single
quotes.

For example, warper = images.geotrans.Warper(tform,size(im),'FillValue',1)
specifies a fill value of 1 for pixels outside the original image.

Input Arguments

tform — Geometric transformation
affine2d object | projective2d object

Geometric transformation, specified as an affine2d or projective2d geometric transformation
object.

 Warper

1-3123

inputRef — Referencing object associated with input image
imref2d object

Referencing object associated with the input image, specified as an imref2d spatial referencing
object.

outputRef — Referencing object associated with output image
imref2d object

Referencing object associated with the output image, specified as an imref2d spatial referencing
object.

sourceX, sourceY — Input image coordinates
2-D matrix

Input image coordinates, specified as a 2-D matrix the same size as the required output image. Each
(x, y) index in sourceX and sourceY specifies the location in the input image for the corresponding
output pixel.
Data Types: single

Properties
InputSize — Size of the input images
2-element vector of positive integers | 3-element vector of positive integers

Size of the input images, specified as a 2- or 3-element vector of positive integers.

OutputSize — Size of the first two dimensions of the output image
2-element vector of positive integers

Size of the first two dimensions of the output image, specified as a 2-element vector of positive
integers.

Interpolation — Interpolation method
'linear' (default) | 'nearest' | 'cubic'

Interpolation method, specified as 'linear', 'nearest', or 'cubic'.
Data Types: char | string

FillValue — Value used for output pixels outside the input image boundaries
0 (default) | numeric scalar

Value used for output pixels outside the input image boundaries, specified as a numeric scalar.
Warper casts the fill value to the data type of the input image.

Object Functions
warp Apply geometric transformation

Examples

1 Functions

1-3124

Apply Shear to Multiple Images

Pick a set of images of the same size. The example uses a set of images that show cells.

imds = imageDatastore(fullfile(matlabroot,'toolbox','images','imdata','AT*'));

Create a geometric transform to rotate each image by 45 degrees and to shrink each image.

tform = affine2d([0.5*cos(pi/4) sin(pi/4) 0;
 -sin(pi/4) 0.5*cos(pi/4) 0;
 0 0 1]);

Create a Warper object, specifying the geometric transformation object, tform, and the size of the
input images.

im = readimage(imds,1);
warper = images.geotrans.Warper(tform,size(im));

Determine the number of images to be processed and preallocate the output array.

numFiles = numel(imds.Files);
imr = zeros([warper.OutputSize 1 numFiles],'like',im);

Apply the geometric transformation to each of the input images by calling the warp function of the
Warper object.

for ind = 1:numFiles
 im = read(imds);
 imr(:,:,1,ind) = warp(warper,im);
end

Visualize the output images. (Turn off the warning message about the images being scaled for
display.)

warning('off','images:initSize:adjustingMag')
montage(imr);

 Warper

1-3125

Tips
• If the input images are RGB images or 3-D grayscale images of size m-by-n-by-p, then warp

applies the transformation to each color channel or plane p independently.

Algorithms
Warper is optimized to apply the same geometric transformation across a batch of same size images.
Warper achieves this optimization by splitting the warping process into two steps: computation of the
transformed coordinates (done once) and interpolation on the image (done for each image).
Compared to imwarp, this approach speeds up the whole process significantly for small to medium-
sized images, with diminishing returns for larger images.

1 Functions

1-3126

See Also
Functions
warp | imtranslate | imwarp | imrotate

Objects
affine2d | projective2d | imref2d

Introduced in R2017b

 Warper

1-3127

warp
Package: images.geotrans

Apply geometric transformation

Syntax
B = warp(w,A)

Description
B = warp(w,A) performs the geometrical transformation defined in w on input image A and returns
the warped image in B.

Input Arguments
w — Image warper
Warper object

Image warper, specified as a Warper object.

A — Input image
numeric matrix

Input image, specified as a numeric matrix, with size m-by-n or m-by-n-by-p. The size of A must match
w.InputSize.
Data Types: single | int16 | uint8

Output Arguments
B — Transformed image
numeric matrix

Transformed image, returned as a numeric matrix. B has the same type as A and its first two
dimensions are w.OutputSize. If A has p planes, B will also have p planes.

See Also
Warper

Introduced in R2017b

1 Functions

1-3128

watershed
Watershed transform

Syntax
L = watershed(A)
L = watershed(A,conn)

Description
The watershed transform finds "catchment basins" or "watershed ridge lines" in an image by treating
it as a surface where light pixels represent high elevations and dark pixels represent low elevations.
The watershed transform can be used to segment contiguous regions of interest into distinct objects.

L = watershed(A) returns a label matrix L that identifies the watershed regions of the input matrix
A.

L = watershed(A,conn) specifies the connectivity to be used in the watershed computation.

Examples

Compute Watershed Transform and Display Resulting Label Matrix

Create a binary image containing two overlapping circular objects. Display the image.

center1 = -40;
center2 = -center1;
dist = sqrt(2*(2*center1)^2);
radius = dist/2 * 1.4;
lims = [floor(center1-1.2*radius) ceil(center2+1.2*radius)];
[x,y] = meshgrid(lims(1):lims(2));
bw1 = sqrt((x-center1).^2 + (y-center1).^2) <= radius;
bw2 = sqrt((x-center2).^2 + (y-center2).^2) <= radius;
bw = bw1 | bw2;
imshow(bw)
title('Binary Image with Overlapping Objects')

 watershed

1-3129

Calculate the distance transform of the complement of the binary image. The value of each pixel in
the output image is the distance between that pixel and the nearest nonzero pixel of bw.

D = bwdist(~bw);
imshow(D,[])
title('Distance Transform of Binary Image')

1 Functions

1-3130

Take the complement of the distance transformed image so that light pixels represent high elevations
and dark pixels represent low elevations for the watershed transform.

D = -D;
imshow(D,[])
title('Complement of Distance Transform')

 watershed

1-3131

Calculate the watershed transform. Set pixels that are outside the ROI to 0.

L = watershed(D);
L(~bw) = 0;

Display the resulting label matrix as an RGB image.

rgb = label2rgb(L,'jet',[.5 .5 .5]);
imshow(rgb)
title('Watershed Transform')

1 Functions

1-3132

Compute Watershed Transform of 3-D Binary Image

Make a 3-D binary image containing two overlapping spheres.

center1 = -10;
center2 = -center1;
dist = sqrt(3*(2*center1)^2);
radius = dist/2 * 1.4;
lims = [floor(center1-1.2*radius) ceil(center2+1.2*radius)];
[x,y,z] = meshgrid(lims(1):lims(2));
bw1 = sqrt((x-center1).^2 + (y-center1).^2 + ...
 (z-center1).^2) <= radius;
bw2 = sqrt((x-center2).^2 + (y-center2).^2 + ...
 (z-center2).^2) <= radius;
bw = bw1 | bw2;
figure, isosurface(x,y,z,bw,0.5), axis equal, title('BW')
xlabel x, ylabel y, zlabel z
xlim(lims), ylim(lims), zlim(lims)
view(3), camlight, lighting gouraud

 watershed

1-3133

Compute the distance transform.

D = bwdist(~bw);
figure, isosurface(x,y,z,D,radius/2), axis equal
title('Isosurface of distance transform')
xlabel x, ylabel y, zlabel z
xlim(lims), ylim(lims), zlim(lims)
view(3), camlight, lighting gouraud

1 Functions

1-3134

Complement the distance transform, force nonobject pixels to be Inf, and then compute the
watershed transform.

D = -D;
D(~bw) = Inf;
L = watershed(D);
L(~bw) = 0;
figure
isosurface(x,y,z,L==1,0.5)
isosurface(x,y,z,L==2,0.5)
axis equal
title('Segmented objects')
xlabel x, ylabel y, zlabel z
xlim(lims), ylim(lims), zlim(lims)
view(3), camlight, lighting gouraud

 watershed

1-3135

Input Arguments
A — Input image
numeric array | logical array

Input image, specified as a numeric or logical array of any dimension.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

conn — Pixel connectivity
4 | 8 | 6 | 18 | 26 | 3-by-3-by- ... -by-3 matrix of 0s and 1s

Pixel connectivity, specified as one of the values in this table. The default connectivity is 8 for 2-D
images, and 26 for 3-D images.

Value Meaning
Two-Dimensional Connectivities
4-connected Pixels are connected if their edges touch. The

neighborhood of a pixel are the adjacent pixels
in the horizontal or vertical direction.

1 Functions

1-3136

Value Meaning
8-connected Pixels are connected if their edges or corners

touch. The neighborhood of a pixel are the
adjacent pixels in the horizontal, vertical, or
diagonal direction.

Three-Dimensional Connectivities
6-connected Pixels are connected if their faces touch. The

neighborhood of a pixel are the adjacent pixels
in:

• One of these directions: in, out, left, right,
up, and down

18-connected Pixels are connected if their faces or edges
touch. The neighborhood of a pixel are the
adjacent pixels in:

• One of these directions: in, out, left, right,
up, and down

• A combination of two directions, such as
right-down or in-up

26-connected Pixels are connected if their faces, edges, or
corners touch. The neighborhood of a pixel are
the adjacent pixels in:

• One of these directions: in, out, left, right,
up, and down

• A combination of two directions, such as
right-down or in-up

• A combination of three directions, such as
in-right-up or in-left-down

For higher dimensions, watershed uses the default value conndef(ndims(A),'maximal').

Connectivity can also be defined in a more general way for any dimension by specifying a 3-by-3-
by- ... -by-3 matrix of 0s and 1s. The 1-valued elements define neighborhood locations relative to the
center element of conn. Note that conn must be symmetric about its center element. See “Specifying
Custom Connectivities” for more information.

Note If you specify a nondefault connectivity, pixels on the edge of the image might not be
considered to be border pixels. For example, if conn = [0 0 0; 1 1 1; 0 0 0], elements on the
first and last row are not considered to be border pixels because, according to that connectivity
definition, they are not connected to the region outside the image.

Data Types: double | logical

 watershed

1-3137

Output Arguments
L — Label matrix
numeric array of nonnegative integers

Label matrix, specified as a numeric array of nonnegative integers. The elements labeled 0 do not
belong to a unique watershed region. The elements labeled 1 belong to the first watershed region,
the elements labeled 2 belong to the second watershed region, and so on.

Tips
• The watershed transform algorithm used by this function changed in version 5.4 (R2007a) of the

Image Processing Toolbox software. The previous algorithm occasionally produced labeled
watershed basins that were not contiguous. If you need to obtain the same results as the previous
algorithm, use the function watershed_old.

• To prevent oversegmentation, remove shallow minima from the image by using the imhmin
function before you use the watershed function.

Algorithms
watershed uses the Fernand Meyer algorithm [1].

References
[1] Meyer, Fernand, "Topographic distance and watershed lines,” Signal Processing , Vol. 38, July

1994, pp. 113-125.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• watershed supports the generation of C code (requires MATLAB Coder). Note that if you choose
the generic MATLAB Host Computer target platform, watershed generates code that uses a
precompiled, platform-specific shared library. Use of a shared library preserves performance
optimizations but limits the target platforms for which code can be generated. For more
information, see “Types of Code Generation Support in Image Processing Toolbox”.

• Supports only 2-D images
• Supports only 4 or 8 connectivity
• Supports images containing up to 65,535 regions
• Output type is always uint16

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

1 Functions

1-3138

• Supports only 2-D images
• Supports only 4 or 8 connectivity
• Supports images containing up to 65,535 regions
• Output type is always uint16

See Also
bwlabel | bwlabeln | bwdist | regionprops | imhmin

Introduced before R2006a

 watershed

1-3139

whitepoint
XYZ color values of standard illuminants

Syntax
xyz = whitepoint
xyz = whitepoint(illuminant)

Description
xyz = whitepoint returns the XYZ value corresponding to the default ICC white reference
illuminant, scaled so that Y = 1.

xyz = whitepoint(illuminant) returns the XYZ value corresponding to the white reference
illuminant, illuminant, scaled so that Y = 1.

Examples
Get XYZ Value of ICC Illuminant

Return the XYZ color space representation of the default white reference illuminant, 'icc'.

wp_icc = whitepoint

wp_icc =

 0.9642 1.0000 0.8249

Note that the second element, corresponding to the Y value, is 1.

Get XYZ Value of d65 Illuminant

Return the XYZ color space representation of the 'd65' white reference illuminant.

wp_d65 = whitepoint('d65')

wp_d65 =

 0.9504 1.0000 1.0888

Input Arguments
illuminant — White reference illuminant
'icc' (default) | 'a' | 'c' | 'e' | 'd50' | 'd55' | 'd65'

White reference illuminant, specified as one of these values.

Value White Point
'a' CIE standard illuminant A, [1.0985, 1.0000, 0.3558]. Simulates typical,

domestic, tungsten-filament lighting with correlated color temperature of 2856 K.

1 Functions

1-3140

Value White Point
'c' CIE standard illuminant C, [0.9807, 1.0000, 1.1822]. Simulates average or

north sky daylight with correlated color temperature of 6774 K. Deprecated by
CIE.

'e' Equal-energy radiator, [1.000, 1.000, 1.000]. Useful as a theoretical
reference.

'd50' CIE standard illuminant D50, [0.9642, 1.0000, 0.8251]. Simulates warm
daylight at sunrise or sunset with correlated color temperature of 5003 K. Also
known as horizon light.

'd55' CIE standard illuminant D55, [0.9568, 1.0000, 0.9214]. Simulates mid-
morning or mid-afternoon daylight with correlated color temperature of 5500 K.

'd65' CIE standard illuminant D65, [0.9504, 1.0000, 1.0888]. Simulates noon
daylight with correlated color temperature of 6504 K.

'icc' Profile Connection Space (PCS) illuminant used in ICC profiles. Approximation of
[0.9642, 1.000, 0.8249] using fixed-point, signed, 32-bit numbers with 16
fractional bits. Actual value: [31595,32768, 27030]/32768.

Data Types: char | string

Output Arguments
xyz — XYZ values
3-element numeric row vector

XYZ values corresponding to the illuminant, returned as a 3-element numeric row vector. The values
are scaled so that Y = 1.
Data Types: double

See Also
applycform | makecform | xyz2double | xyz2uint16 | xyz2lab | xyz2rgb

Introduced before R2006a

 whitepoint

1-3141

wiener2
2-D adaptive noise-removal filtering

Note The syntax wiener2(I,[m n],[mblock nblock],noise) has been removed. Use the
wiener2(I,[m n],noise) syntax instead.

Syntax
J = wiener2(I,[m n],noise)
[J,noise_out] = wiener2(I,[m n])

Description
J = wiener2(I,[m n],noise) filters the grayscale image I using a pixel-wise adaptive low-pass
Wiener filter. [m n] specifies the size (m-by-n) of the neighborhood used to estimate the local image
mean and standard deviation. The additive noise (Gaussian white noise) power is assumed to be
noise.

The input image has been degraded by constant power additive noise. wiener2 uses a pixelwise
adaptive Wiener method based on statistics estimated from a local neighborhood of each pixel.

[J,noise_out] = wiener2(I,[m n]) returns the estimates of the additive noise power wiener2
calculates before doing the filtering.

Examples

Remove Noise By Adaptive Filtering

This example shows how to use the wiener2 function to apply a Wiener filter (a type of linear filter)
to an image adaptively. The Wiener filter tailors itself to the local image variance. Where the variance
is large, wiener2 performs little smoothing. Where the variance is small, wiener2 performs more
smoothing.

This approach often produces better results than linear filtering. The adaptive filter is more selective
than a comparable linear filter, preserving edges and other high-frequency parts of an image. In
addition, there are no design tasks; the wiener2 function handles all preliminary computations and
implements the filter for an input image. wiener2, however, does require more computation time
than linear filtering.

wiener2 works best when the noise is constant-power ("white") additive noise, such as Gaussian
noise. The example below applies wiener2 to an image of Saturn with added Gaussian noise.

Read the image into the workspace.

RGB = imread('saturn.png');

Convert the image from truecolor to grayscale.

1 Functions

1-3142

I = im2gray(RGB);

Add Gaussian noise to the image

J = imnoise(I,'gaussian',0,0.025);

Display the noisy image. Because the image is quite large, display only a portion of the image.

imshow(J(600:1000,1:600));
title('Portion of the Image with Added Gaussian Noise');

Remove the noise using the wiener2 function.

K = wiener2(J,[5 5]);

Display the processed image. Because the image is quite large, display only a portion of the image.

figure
imshow(K(600:1000,1:600));
title('Portion of the Image with Noise Removed by Wiener Filter');

 wiener2

1-3143

Input Arguments
I — Input image
2-D numeric array

Input image, specified as a 2-D numeric array.
Data Types: single | double | int16 | uint8 | uint16

[m n] — Neighborhood size
[3 3] (default) | 2-element numeric vector of the form [m n]

Neighborhood size, specified as a 2-element vector [m n] where m is the number of rows and n is the
number of columns.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

noise — Additive noise
mean2(localVar) (default) | numeric array

Additive noise, specified as a numeric array. If you do not specify noise, then wiener2 calculates the
mean of the local variance, mean2(localVar).
Data Types: single | double

1 Functions

1-3144

Output Arguments
J — Filtered image
numeric array

Filtered image, returned as a numeric array the same size and class as the input image I.

noise_out — Estimate of additive noise power
numeric array

Estimate of additive noise power, returned as a numeric array.

Algorithms
wiener2 estimates the local mean and variance around each pixel.

μ = 1
NM ∑

n1, n2 ∈ η
a(n1, n2)

and

σ2 = 1
NM ∑

n1, n2 ∈ η
a2(n1, n2)− μ2,

where η is the N-by-M local neighborhood of each pixel in the image A. wiener2 then creates a
pixelwise Wiener filter using these estimates,

b(n1, n2) = μ + σ2− ν2

σ2 (a(n1, n2)− μ),

where ν2 is the noise variance. If the noise variance is not given, wiener2 uses the average of all the
local estimated variances.

References
[1] Lim, Jae S. Two-Dimensional Signal and Image Processing, Englewood Cliffs, NJ, Prentice Hall,

1990, p. 548, equations 9.44, 9.45, and 9.46.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on a GPU”.

See Also
filter2 | medfilt2

Topics
“Remove Noise By Adaptive Filtering”

 wiener2

1-3145

Introduced before R2006a

1 Functions

1-3146

worldToIntrinsic
Convert from world to intrinsic coordinates

Syntax
[xIntrinsic, yIntrinsic] = worldToIntrinsic(R,xWorld,yWorld)
[xIntrinsic,yIntrinsic,zIntrinsic] = worldToIntrinsic(R,xWorld,yWorld,zWorld)

Description
[xIntrinsic, yIntrinsic] = worldToIntrinsic(R,xWorld,yWorld) maps points from the
2-D world system (xWorld,yWorld) to the 2-D intrinsic system (xIntrinsic,yIntrinsic) based on
the relationship defined by 2-D spatial referencing object R.

If the kth input coordinates (xWorld(k),yWorld(k)) fall outside the image bounds in the world
coordinate system, worldToIntrinsic extrapolates xIntrinsic(k) and yIntrinsic(k) outside
the image bounds in the intrinsic coordinate system.

[xIntrinsic,yIntrinsic,zIntrinsic] = worldToIntrinsic(R,xWorld,yWorld,zWorld)
maps points from the world coordinate system to the intrinsic coordinate system using 3-D spatial
referencing object R.

Examples

Convert 2-D World Coordinates to Intrinsic Coordinates

Read a 2-D grayscale image of a knee into the workspace.

m = dicominfo('knee1.dcm');
A = dicomread(m);

Create an imref2d object, specifying the size and the resolution of the pixels. The DICOM file
contains a metadata field PixelSpacing that specifies the image resolution in each dimension in
millimeters per pixel.

RA = imref2d(size(A),m.PixelSpacing(2),m.PixelSpacing(1))

RA =
 imref2d with properties:

 XWorldLimits: [0.1562 160.1562]
 YWorldLimits: [0.1562 160.1562]
 ImageSize: [512 512]
 PixelExtentInWorldX: 0.3125
 PixelExtentInWorldY: 0.3125
 ImageExtentInWorldX: 160
 ImageExtentInWorldY: 160
 XIntrinsicLimits: [0.5000 512.5000]
 YIntrinsicLimits: [0.5000 512.5000]

 worldToIntrinsic

1-3147

Display the image, including the spatial referencing object. The axes coordinates reflect the world
coordinates. Notice that the coordinate (0,0) is in the upper left corner.

figure
imshow(A,RA,'DisplayRange',[0 512])

Select sample points, and store their world x- and y- coordinates in vectors. For example, the first
point has world coordinates (38.44,68.75), the second point is 1 mm to the right of it, and the third
point is 7 mm below it. The last point is outside the image boundary.

xW = [38.44 39.44 38.44 -0.2];
yW = [68.75 68.75 75.75 -1];

Convert the world coordinates to intrinsic coordinates using worldToIntrinsic.

1 Functions

1-3148

[xI, yI] = worldToIntrinsic(RA,xW,yW)

xI = 1×4

 123.0080 126.2080 123.0080 -0.6400

yI = 1×4

 220.0000 220.0000 242.4000 -3.2000

The resulting vectors are the intrinsic x- and y- coordinates in units of pixels. Note that the intrinsic
coordinate system is continuous, and some returned intrinsic coordinates have noninteger values.
Also, worldToIntrinsic extrapolates the intrinsic coordinates of the point outside the image
boundary.

Convert 3-D World Coordinates to Intrinsic Coordinates

Read a 3-D volume into the workspace. This image consists of 27 frames of 128-by-128 pixel images.

load mri;
D = squeeze(D);
D = ind2gray(D,map);

Create an imref3d spatial referencing object associated with the volume. For illustrative purposes,
provide a pixel resolution in each dimension. The resolution is in millimeters per pixel.

R = imref3d(size(D),2,2,4)

R =
 imref3d with properties:

 XWorldLimits: [1 257]
 YWorldLimits: [1 257]
 ZWorldLimits: [2 110]
 ImageSize: [128 128 27]
 PixelExtentInWorldX: 2
 PixelExtentInWorldY: 2
 PixelExtentInWorldZ: 4
 ImageExtentInWorldX: 256
 ImageExtentInWorldY: 256
 ImageExtentInWorldZ: 108
 XIntrinsicLimits: [0.5000 128.5000]
 YIntrinsicLimits: [0.5000 128.5000]
 ZIntrinsicLimits: [0.5000 27.5000]

Select sample points, and store their world x-, y-, and z-coordinates in vectors. For example, the first
point has world coordinates (108,92,52), the second point is 3 mm above it in the +z-direction, and
the third point is 0.2 mm to the right of it in the +x-direction. The last point is outside the image
boundary.

xW = [108 108 108.2 2];
yW = [92 92 92 -1];
zW = [52 55 52 0.33];

 worldToIntrinsic

1-3149

Convert the world coordinates to intrinsic coordinates using worldToIntrinsic.

[xI, yI, zI] = worldToIntrinsic(R,xW,yW,zW)

xI = 1×4

 54.0000 54.0000 54.1000 1.0000

yI = 1×4

 46.0000 46.0000 46.0000 -0.5000

zI = 1×4

 13.0000 13.7500 13.0000 0.0825

The resulting vectors are the intrinsic x-, y-, and z-coordinates in units of pixels. Note that the
intrinsic coordinate system is continuous, and some returned intrinsic coordinates have noninteger
values. Also, worldToIntrinsic extrapolates the intrinsic coordinates of the point outside the
image boundary.

Input Arguments
R — Spatial referencing object
imref2d or imref3d object

Spatial referencing object, specified as an imref2d or imref3d object.

xWorld — Coordinates along the x-dimension in the world coordinate system
numeric scalar or vector

Coordinates along the x-dimension in the world coordinate system, returned as a numeric scalar or
vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

yWorld — Coordinates along the y-dimension in the world coordinate system
numeric scalar or vector

Coordinates along the y-dimension in the world coordinate system, returned as a numeric scalar or
vector. yWorld is the same length as xWorld.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

zWorld — Coordinates along the z-dimension in the world coordinate system
numeric scalar or vector

Coordinates along the z-dimension in the world coordinate system, returned as a numeric scalar or
vector. zWorld is the same length as xWorld.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

1 Functions

1-3150

Output Arguments
xIntrinsic — Coordinates along the x-dimension in the intrinsic coordinate system
numeric scalar or vector

Coordinates along the x-dimension in the intrinsic coordinate system, specified as a numeric scalar or
vector. xIntrinsic is the same length as xWorld.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

yIntrinsic — Coordinates along the y-dimension in the intrinsic coordinate system
numeric scalar or vector

Coordinates along the y-dimension in the intrinsic coordinate system, specified as a numeric scalar or
vector. yIntrinsic is the same length as xWorld.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

zIntrinsic — Coordinates along the z-dimension in the intrinsic coordinate system
numeric scalar or vector

Coordinates along the z-dimension in the intrinsic coordinate system, specified as a numeric scalar or
vector. zIntrinsic is the same length as xWorld and yWorld.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

See Also
imref2d | imref3d | intrinsicToWorld | worldToSubscript

Introduced in R2013a

 worldToIntrinsic

1-3151

worldToSubscript
Convert world coordinates to row and column subscripts

Syntax
[I, J] = worldToSubscript(R,xWorld,yWorld)
[I, J, K] = worldToSubscript(R,xWorld,yWorld,zWorld)

Description
[I, J] = worldToSubscript(R,xWorld,yWorld) maps points from the 2-D world system
(xWorld,yWorld) to subscript arrays I and J based on the relationship defined by 2-D spatial
referencing object R.

If the kth input coordinates (xWorld(k),yWorld(k)) fall outside the image bounds in the world
coordinate system, worldToSubscript sets the corresponding subscripts I(k) and J(k) to NaN.

[I, J, K] = worldToSubscript(R,xWorld,yWorld,zWorld) maps points from the 3-D world
system to subscript arrays I, J, and K, using 3-D spatial referencing object R.

Examples

Convert 2-D World Coordinates to Row and Column Subscripts

Read a 2-D grayscale image of a knee into the workspace.

m = dicominfo('knee1.dcm');
A = dicomread(m);

Create an imref2d object, specifying the size and the resolution of the pixels. The DICOM file
contains a metadata field PixelSpacing that specifies the image resolution in each dimension in
millimeters per pixel.

RA = imref2d(size(A),m.PixelSpacing(2),m.PixelSpacing(1))

RA =
 imref2d with properties:

 XWorldLimits: [0.1562 160.1562]
 YWorldLimits: [0.1562 160.1562]
 ImageSize: [512 512]
 PixelExtentInWorldX: 0.3125
 PixelExtentInWorldY: 0.3125
 ImageExtentInWorldX: 160
 ImageExtentInWorldY: 160
 XIntrinsicLimits: [0.5000 512.5000]
 YIntrinsicLimits: [0.5000 512.5000]

Display the image, including the spatial referencing object. The axes coordinates reflect the world
coordinates. Notice that the coordinate (0,0) is in the upper left corner.

1 Functions

1-3152

figure
imshow(A,RA,'DisplayRange',[0 512])

Select sample points, and store their world x- and y- coordinates in vectors. For example, the first
point has world coordinates (38.44,68.75), the second point is 1 mm to the right of it, and the third
point is 7 mm below it. The last point is outside the image boundary.

xW = [38.44 39.44 38.44 -0.2];
yW = [68.75 68.75 75.75 1];

Convert the world coordinates to row and column subscripts using worldToSubscript.

[rS, cS] = worldToSubscript(RA,xW,yW)

rS = 1×4

 worldToSubscript

1-3153

 220 220 242 NaN

cS = 1×4

 123 126 123 NaN

The resulting vectors contain the row and column indices that are closest to the point. Note that the
indices are discrete, and that points outside the image boundary have NaN for both row and column
indices.

Also, the order of the input and output coordinates is reversed. The world x-coordinate vector, xW,
corresponds to the second output vector, cS. The world y-coordinate vector, yW, corresponds to the
first output vector, rS.

Convert 3-D World Coordinates to Row, Column, and Plane Subscripts

Read a 3-D volume into the workspace. This image consists of 27 frames of 128-by-128 pixel images.

load mri;
D = squeeze(D);
D = ind2gray(D,map);

Create an imref3d spatial referencing object associated with the volume. For illustrative purposes,
provide a pixel resolution in each dimension. The resolution is in millimeters per pixel.

R = imref3d(size(D),2,2,4)

R =
 imref3d with properties:

 XWorldLimits: [1 257]
 YWorldLimits: [1 257]
 ZWorldLimits: [2 110]
 ImageSize: [128 128 27]
 PixelExtentInWorldX: 2
 PixelExtentInWorldY: 2
 PixelExtentInWorldZ: 4
 ImageExtentInWorldX: 256
 ImageExtentInWorldY: 256
 ImageExtentInWorldZ: 108
 XIntrinsicLimits: [0.5000 128.5000]
 YIntrinsicLimits: [0.5000 128.5000]
 ZIntrinsicLimits: [0.5000 27.5000]

Select sample points, and store their world x-, y-, and z-coordinates in vectors. For example, the first
point has world coordinates (108,92,52), the second point is 3 mm above it in the +z-direction, and
the third point is 5.2 mm to the right of it in the +x-direction. The last point is outside the image
boundary.

xW = [108 108 113.2 2];
yW = [92 92 92 -1];
zW = [52 55 52 0.33];

1 Functions

1-3154

Convert the world coordinates to row, column, and plane subscripts using worldToSubscript.

[rS, cS, pS] = worldToSubscript(R,xW,yW,zW)

rS = 1×4

 46 46 46 NaN

cS = 1×4

 54 54 57 NaN

pS = 1×4

 13 14 13 NaN

The resulting vectors contain the column, row, and plane indices that are closest to the point. Note
that the indices are discrete, and that points outside the image boundary have index values of NaN.

Also, the order of the input and output coordinates is reversed. The world x-coordinate vector, xW,
corresponds to the second output vector, cS. The world y-coordinate vector, yW, corresponds to the
first output vector, rS.

Input Arguments
R — Spatial referencing object
imref2d or imref3d object

Spatial referencing object, specified as an imref2d or imref3d object.

xWorld — Coordinates along the x-dimension in the world coordinate system
numeric scalar or vector

Coordinates along the x-dimension in the world coordinate system, specified as a numeric scalar or
vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

yWorld — Coordinates along the y-dimension in the world coordinate system
numeric scalar or vector

Coordinates along the y-dimension in the world coordinate system, specified as a numeric scalar or
vector. yWorld is the same length as xWorld.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

zWorld — Coordinates along the z-dimension in the world coordinate system
numeric scalar or vector

Coordinates along the z-dimension in the world coordinate system, specified as a numeric scalar or
vector. zWorld is the same length as xWorld.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

 worldToSubscript

1-3155

Output Arguments
I — Row indices
positive integer scalar or vector

Row indices, returned as a positive integer scalar or vector. I is the same length as yWorld. For an
m-by-n or m-by-n-by-p image, 1 ≤ I ≤ m.
Data Types: double

J — Column indices
positive integer scalar or vector

Column indices, returned as a positive integer scalar or vector. J is the same length as xWorld. For
an m-by-n or m-by-n-by-p image, 1 ≤ J ≤ n.
Data Types: double

K — Plane indices
positive integer scalar or vector

Plane indices, returned as a positive integer scalar or vector. K is the same length as zWorld. For an
m-by-n-by-p image, 1 ≤ K ≤ p.
Data Types: double

See Also
imref2d | imref3d | worldToIntrinsic

Introduced in R2013a

1 Functions

1-3156

xyz2double
Convert XYZ color values to double

Syntax
xyzD = xyz2double(xyz)

Description
xyzD = xyz2double(xyz) converts XYZ color values to type double.

Examples

Convert XYZ Color Values to double

This example shows how to convert uint16-encoded XYZ values to double.

Create a uint16 vector specifying a color in XYZ colorspace.

c = uint16([100 32768 65535]);

Convert the XYZ color value to double.

xyz2double(c)

ans = 1×3

 0.0031 1.0000 2.0000

Input Arguments
xyz — Color values to convert
m-by-3 numeric matrix | m-by-n-by-3 numeric array

Color values to convert, specified as a m-by-3 numeric matrix of color values (one color per row), or
an m-by-n-by-3 numeric array.
Data Types: uint16

Output Arguments
xyzD — Converted color values
numeric array

Converted color values, returned as a numeric array of same size as the input.
Data Types: double

 xyz2double

1-3157

Algorithms
The Image Processing Toolbox software follows the convention that double-precision XYZ arrays
contain 1931 CIE XYZ values (2° observer). The XYZ arrays that are uint16 follow the convention in
the ICC profile specification (ICC.1:2001-4, www.color.org) for representing XYZ values as
unsigned 16-bit integers. There is no standard representation of XYZ values as unsigned 8-bit
integers. The ICC encoding convention is illustrated by this table.

Value (X, Y, or Z) uint16 Value
0.0 0
1.0 32768
1.0 + (32767/32768) 65535

See Also
applycform | lab2double | lab2uint16 | lab2uint8 | makecform | whitepoint | xyz2uint16

Introduced before R2006a

1 Functions

1-3158

xyz2rgb
Convert CIE 1931 XYZ to RGB

Syntax
RGB = xyz2rgb(XYZ)
rgb = xyz2rgb(XYZ,Name,Value)

Description
RGB = xyz2rgb(XYZ) converts CIE 1931 XYZ values (2° observer) to sRGB values.

rgb = xyz2rgb(XYZ,Name,Value) specifies additional conversion options, such as the color space
of the RGB image, using one or more name-value pair arguments.

Examples

Convert XYZ color to sRGB

Convert a color value in the XYZ color space to the sRGB color space.

xyz2rgb([0.25 0.40 0.10])

ans = 1×3

 0.4174 0.7434 0.2152

Convert XYZ Color to Adobe RGB

Convert the color value in XYZ color space to the Adobe RGB (1998) color space.

xyz2rgb([0.25 0.40 0.10],'ColorSpace','adobe-rgb-1998')

ans = 1×3

 0.5323 0.7377 0.2730

Convert XYZ color to sRGB Specifying Whitepoint

Convert an XYZ color value to sRGB specifying the D50 whitepoint.

xyz2rgb([0.25 0.40 0.10],'WhitePoint','d50')

ans = 1×3

 xyz2rgb

1-3159

 0.3276 0.7517 0.2869

Convert XYZ color to 8-bit-encoded RGB Color

Convert an XYZ color value to an 8-bit encoded RGB color value.

xyz2rgb([0.25 0.40 0.10],'OutputType','uint8')

ans = 1x3 uint8 row vector

 106 190 55

Input Arguments
XYZ — XYZ color values
numeric array

XYZ color values to convert, specified as a numeric array in one of the following formats.

• c-by-3 colormap. Each row specifies one XYZ color value.
• m-by-n-by-3 image.
• m-by-n-by-3-by-p stack of images.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: xyz2rgb([0.25 0.40 0.10],'ColorSpace','adobe-rgb-1998')

ColorSpace — Color space of the output RGB values
'srgb' (default) | 'adobe-rgb-1998' | 'linear-rgb'

Color space of the output RGB values, specified as the comma-separated pair consisting of
'ColorSpace' and 'srgb', 'adobe-rgb-1998', or 'linear-rgb'. If you specify 'linear-
rgb', then xyz2rgb returns linearized sRGB values.
Data Types: char

WhitePoint — Reference white point
'd65' (default) | 'a' | 'c' | 'e' | 'd50' | 'd55' | 'icc' | 1-by-3 vector

Reference white point, specified as the comma-separated pair consisting of 'WhitePoint' and a 1-
by-3 vector or one of the CIE standard illuminants listed in the table.

1 Functions

1-3160

Value White Point
'a' CIE standard illuminant A, [1.0985, 1.0000, 0.3558]. Simulates typical,

domestic, tungsten-filament lighting with correlated color temperature of 2856 K.
'c' CIE standard illuminant C, [0.9807, 1.0000, 1.1822]. Simulates average or

north sky daylight with correlated color temperature of 6774 K. Deprecated by
CIE.

'e' Equal-energy radiator, [1.000, 1.000, 1.000]. Useful as a theoretical
reference.

'd50' CIE standard illuminant D50, [0.9642, 1.0000, 0.8251]. Simulates warm
daylight at sunrise or sunset with correlated color temperature of 5003 K. Also
known as horizon light.

'd55' CIE standard illuminant D55, [0.9568, 1.0000, 0.9214]. Simulates mid-
morning or mid-afternoon daylight with correlated color temperature of 5500 K.

'd65' CIE standard illuminant D65, [0.9504, 1.0000, 1.0888]. Simulates noon
daylight with correlated color temperature of 6504 K.

'icc' Profile Connection Space (PCS) illuminant used in ICC profiles. Approximation of
[0.9642, 1.000, 0.8249] using fixed-point, signed, 32-bit numbers with 16
fractional bits. Actual value: [31595,32768, 27030]/32768.

Data Types: single | double | char

OutputType — Data type of returned RGB values
'double' | 'single' | 'uint8' | 'uint16'

Data type of returned RGB values, specified as one of the following values: 'double', 'single',
'uint8', or 'uint16'. If you do not specify OutputType, the output type is the same type as the
input.
Data Types: char

Output Arguments
RGB — Converted RGB color values
numeric array

Converted RGB color values, returned as a numeric array of the same size as the input. The output
type is the same as the input type unless you specify the OutputType parameter.

Tips
• If you specify the output RGB color space as 'linear-rgb', then the output values are linearized

sRGB values. If instead you want the output color space to be linearized Adobe RGB (1998), then
you can use the rgb2lin function.

For example, to convert CIE 1931 XYZ image XYZ to linearized Adobe RGB (1998) color space,
perform the conversion in two steps:

RGBadobe = xyz2rgb(XYZ,'ColorSpace','adobe-rgb-1998');
RGBlinadobe = rgb2lin(RGBadobe,'ColorSpace','adobe-rgb-1998');

 xyz2rgb

1-3161

See Also
rgb2xyz | xyz2lab | lab2rgb | rgb2lin | xyz2rgbwide | rgbwide2xyz

Topics
“Understanding Color Spaces and Color Space Conversion”
“Device-Independent Color Spaces”

Introduced in R2014b

1 Functions

1-3162

xyz2rgbwide
Convert CIE 1931 XYZ color values to wide-gamut RGB color values

Syntax
RGB = xyz2rgbwide(XYZ,BPS)
RGB = xyz2rgbwide(XYZ,BPS,Name,Value)

Description
RGB = xyz2rgbwide(XYZ,BPS) converts the specified CIE 1931 XYZ color values to wide-gamut
RGB values in the BT.2020 or BT.2100 color space. BPS specifies the number of bits required to
represent each channel of the output RGB values.

RGB = xyz2rgbwide(XYZ,BPS,Name,Value) specifies options using one or more name-value pair
arguments.

Examples

Convert CIE 1931 XYZ Values into Wide-Gamut RGB

Convert XYZ color values into 10-bit or 12-bit wide-gamut RGB values in the BT.2020/BT.2100 color
space.

Convert XYZ Color into 10-bit BT.2020 RGB Value

Create an XYZ value.

xyzvalue = [0.25 0.40 0.10];

Convert the XYZ value to a 10-bit BT.2020 RGB value.

rgbvalue = xyz2rgbwide(xyzvalue,10)

rgbvalue = 1x3 uint16 row vector

 504 670 289

Convert XYZ Color into 12-bit BT.2100 RGB Value

Create an XYZ value.

xyzvalue = [0.25 0.40 0.10];

Convert the XYZ value to a 12-bit BT.2100 RGB value.

rgbvalue = xyz2rgbwide(xyzvalue,12,'Colorspace','BT.2100')

rgbvalue = 1x3 uint16 row vector

 xyz2rgbwide

1-3163

 2015 2681 1155

Convert XYZ Color into 10-bit BT.2100 RGB Value Using HLG

Create an XYZ value.

xyzvalue = [0.25 0.40 0.10];

Convert the XYZ value to a 10-bit BT.2100 RGB value using the Hybrid Log Gamma (HLG) transfer
function.

rgbvalue = xyz2rgbwide(xyzvalue,12,'Colorspace','BT.2100','LinearizationFcn','HLG')

rgbvalue = 1x3 uint16 row vector

 2875 3285 1989

Input Arguments
XYZ — Color values in CIE 1931 XYZ color space
p-by-3 numeric matrix | m-by-n-by-3 numeric array | m-by-n-by-3-by-f numeric array

Color values in the CIE 1931 XYZ color space, specified as one of the following:

• p-by-3 numeric matrix of color values (one color per row)
• m-by-n-by-3 numeric array representing an image
• m-by-n-by-3-by-f numeric array representing a stack of images

Data Types: single | double

BPS — Bits per sample for each channel of output RGB image
10 | 12

Bits per sample for each channel of the output wide-gamut RGB image, specified as 10 or 12.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: rgb = xyz2rgbwide([0.25 0.40 0.10],12,'ColorSpace','BT.2100')

ColorSpace — Color space of output RGB values
'BT.2020' (default) | 'BT.2100'

Color space of the output RGB values, specified as the comma-separated pair consisting of
'ColorSpace' and the value 'BT.2020' or 'BT.2100'.
Data Types: char | string

WhitePoint — Reference white point
'd65' (default) | 'a' | 'c' | 'd50' | 'd55' | 'icc' | 'e' | 1-by-3 vector

1 Functions

1-3164

Reference white point, specified as the comma-separated pair consisting of 'WhitePoint' and a 1-
by-3 vector or one of the CIE standard illuminants, listed in the table.

Value White Point
'a' CIE standard illuminant A, [1.0985, 1.0000, 0.3558]. Simulates typical,

domestic, tungsten-filament lighting with correlated color temperature of 2856 K.
'c' CIE standard illuminant C, [0.9807, 1.0000, 1.1822]. Simulates average or

north sky daylight with correlated color temperature of 6774 K. Deprecated by
CIE.

'e' Equal-energy radiator, [1.000, 1.000, 1.000]. Useful as a theoretical
reference.

'd50' CIE standard illuminant D50, [0.9642, 1.0000, 0.8251]. Simulates warm
daylight at sunrise or sunset with correlated color temperature of 5003 K. Also
known as horizon light.

'd55' CIE standard illuminant D55, [0.9568, 1.0000, 0.9214]. Simulates mid-
morning or mid-afternoon daylight with correlated color temperature of 5500 K.

'd65' CIE standard illuminant D65, [0.9504, 1.0000, 1.0888]. Simulates noon
daylight with correlated color temperature of 6504 K.

'icc' Profile Connection Space (PCS) illuminant used in ICC profiles. Approximation of
[0.9642, 1.000, 0.8249] using fixed-point, signed, 32-bit numbers with 16
fractional bits. Actual value: [31595,32768, 27030]/32768.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

LinearizationFcn — Transfer function for transformation
'PQ' (default) | 'HLG'

Transfer function for transformation, specified as the text string 'LinearizationFcn' and either of
the following values:

Value Description
'PQ' Perceptual Quantization
'HLG' Hybrid Log Gamma

Data Types: char | string

Output Arguments
RGB — Output RGB color values
numeric array

Output RGB color values, returned as a numeric array of the same size as the XYZ input value. The
table shows the data range for the wide-gamut color values for 10- and 12-bit data. The minimum
value in each range maps to black, and the maximum value in each range maps to white.

 xyz2rgbwide

1-3165

Data Type Full Data Range Data Range for Wide-
Gamut RGB

10-bit [0, 1023] [64, 940]
12-bit [0, 4095] [256, 3760]

Data Types: uint16

References
[1] Rec. ITU-R BT.2020-2 (10/2015). "Parameter values for ultra-high definition television systems for

production and international programme exchange." International Telecommunication Union;
Broadcasting service (television). https://www.itu.int/rec/R-REC-BT.2020.

[2] Rec. ITU-R BT.2100-2 (07/2018). "Image parameter values for dynamic range television for use in
production and international programme exchange." International Telecommunication Union;
Broadcasting service (television). https://www.itu.int/rec/R-REC-BT.2100.

[3] Rec. ITU-R BT.2390-7 (07/2019). "High dynamic range television for production and international
programme exchange." International Telecommunication Union; Broadcasting service
(television). https://www.itu.int/pub/R-REP-BT.2390.

See Also
rgb2xyz | xyz2rgb | rgbwide2xyz

Introduced in R2020b

1 Functions

1-3166

https://www.itu.int/rec/R-REC-BT.2020
https://www.itu.int/rec/R-REC-BT.2100
https://www.itu.int/pub/R-REP-BT.2390

xyz2lab
Convert CIE 1931 XYZ to CIE 1976 L*a*b*

Syntax
lab = xyz2lab(xyz)
lab = xyz2lab(xyz,'WhitePoint',whitePoint)

Description
lab = xyz2lab(xyz) converts CIE 1931 XYZ values (2° observer) to CIE 1976 L*a*b* values.

lab = xyz2lab(xyz,'WhitePoint',whitePoint) specifies the reference white point of the
illuminant.

Examples

Convert XYZ Color to L*a*b*

Convert an XYZ color value to L*a*b* using the default reference white point, D65.

xyz2lab([0.25 0.40 0.10])

ans = 1×3

 69.4695 -48.0439 57.1259

Convert XYZ Color to L*a*b* Specifying Whitepoint

Convert an XYZ color value to L*a*b* specifying the D50 whitepoint.

xyz2lab([0.25 0.40 0.10],'WhitePoint','d50')

ans = 1×3

 69.4695 -49.5717 48.3864

Input Arguments
xyz — XYZ color values
numeric array

XYZ color values to convert, specified as a numeric array in one of these formats.

 xyz2lab

1-3167

• c-by-3 colormap. Each row specifies one XYZ color value.
• m-by-n-by-3 image
• m-by-n-by-3-by-p stack of images

Data Types: single | double

whitePoint — Reference white point
'd65' (default) | 'a' | 'c' | 'e' | 'd50' | 'd55' | 'icc' | 1-by-3 vector

Reference white point, specified as a 1-by-3 vector or one of the CIE standard illuminants, listed in
the table.

Value White Point
'a' CIE standard illuminant A, [1.0985, 1.0000, 0.3558]. Simulates typical,

domestic, tungsten-filament lighting with correlated color temperature of 2856 K.
'c' CIE standard illuminant C, [0.9807, 1.0000, 1.1822]. Simulates average or

north sky daylight with correlated color temperature of 6774 K. Deprecated by
CIE.

'e' Equal-energy radiator, [1.000, 1.000, 1.000]. Useful as a theoretical
reference.

'd50' CIE standard illuminant D50, [0.9642, 1.0000, 0.8251]. Simulates warm
daylight at sunrise or sunset with correlated color temperature of 5003 K. Also
known as horizon light.

'd55' CIE standard illuminant D55, [0.9568, 1.0000, 0.9214]. Simulates mid-
morning or mid-afternoon daylight with correlated color temperature of 5500 K.

'd65' CIE standard illuminant D65, [0.9504, 1.0000, 1.0888]. Simulates noon
daylight with correlated color temperature of 6504 K.

'icc' Profile Connection Space (PCS) illuminant used in ICC profiles. Approximation of
[0.9642, 1.000, 0.8249] using fixed-point, signed, 32-bit numbers with 16
fractional bits. Actual value: [31595,32768, 27030]/32768.

Data Types: single | double | char

Output Arguments
lab — Converted L*a*b* color values
numeric array

Converted L*a*b* color values, returned as a numeric array of the same size and data type as the
input.

Attribute Description
L* Luminance or brightness of the image. Values are in the range [0, 100],

where 0 specifies black and 100 specifies white. As L* increases, colors
become brighter.

1 Functions

1-3168

Attribute Description
a* Amount of red or green tones in the image. A large positive a* value

corresponds to red/magenta. A large negative a* value corresponds to
green. Although there is no single range for a*, values commonly fall in the
range [-100, 100] or [-128, 127).

b* Amount of yellow or blue tones in the image. A large positive b* value
corresponds to yellow. A large negative b* value corresponds to blue.
Although there is no single range for b*, values commonly fall in the range
[-100, 100] or [-128, 127).

Data Types: single | double

See Also
rgb2lab | xyz2rgb | lab2xyz

Introduced in R2014b

 xyz2lab

1-3169

xyz2uint16
Convert XYZ color values to uint16

Syntax
xyz16 = xyz2uint16(xyz)

Description
xyz16 = xyz2uint16(xyz) converts XYZ color values to type uint16.

Examples

Convert XYZ Color Values to uint16

This example shows how to convert XYZ color values from double to uint16.

Create a double vector specifying a color in XYZ colorspace.

c = [0.1 0.5 1.0];

Convert the XYZ color value to uint16.

xyz2uint16(c)

ans = 1x3 uint16 row vector

 3277 16384 32768

Input Arguments
xyz — Color values to convert
m-by-3 numeric matrix | m-by-n-by-3 numeric array

Color values to convert, specified as a m-by-3 numeric matrix of color values (one color per row), or
an m-by-n-by-3 numeric array.
Data Types: double

Output Arguments
xyz16 — Converted color values
numeric array

Converted color values, returned as a numeric array of the same size as the input.
Data Types: uint16

1 Functions

1-3170

Algorithms
The Image Processing Toolbox software follows the convention that double-precision XYZ arrays
contain 1931 CIE XYZ values (2° observer). The XYZ arrays that are uint16 follow the convention in
the ICC profile specification (ICC.1:2001-4, www.color.org) for representing XYZ values as
unsigned 16-bit integers. There is no standard representation of XYZ values as unsigned 8-bit
integers. The ICC encoding convention is illustrated by this table.

Value (X, Y, or Z) uint16 Value
0.0 0
1.0 32768
1.0 + (32767/32768) 65535

See Also
applycform | lab2double | lab2uint16 | lab2uint8 | makecform | whitepoint | xyz2double

Introduced before R2006a

 xyz2uint16

1-3171

ycbcr2rgb
Convert YCbCr color values to RGB color space

Syntax
RGB = ycbcr2rgb(YCBCR)

Description
RGB = ycbcr2rgb(YCBCR) converts the luminance (Y) and chrominance (Cb and Cr) values of a
YCbCr image to red, green, and blue values of an RGB image.

Examples

Convert Image from YCbCr to RGB

This example shows how to convert an image from RGB to YCbCr color space and back.

Read an RGB image into the workspace.

RGB = imread('board.tif');

Convert the image to YCbCr color space.

YCBCR = rgb2ycbcr(RGB);

Convert the YCbCr image back to RGB color space.

RGB2 = ycbcr2rgb(YCBCR);

Display the luminance channel of the image in YCbCr color space alongside the image that was
converted from YCbCr to RGB color space.

figure
subplot(1,2,1)
imshow(YCBCR(:,:,1))
title('Original Luminance (Y)');
subplot(1,2,2)
imshow(RGB2);
title('Image Converted to RGB');

1 Functions

1-3172

Input Arguments
YCBCR — YCbCr color values
numeric array

YCbCr color values to convert, specified as a numeric array in one of these formats.

• c-by-3 colormap. Each row specifies one YCbCr color value.
• m-by-n-by-3 image.

Data Types: single | double | uint8 | uint16

Output Arguments
RGB — Converted RGB color values
numeric array

Converted RGB color values, returned as a numeric array of the same size as the input. The output
data type is the same as the input data type.

References
[1] Poynton, C. A. A Technical Introduction to Digital Video, John Wiley & Sons, Inc., 1996, p. 175.

 ycbcr2rgb

1-3173

[2] Rec. ITU-R BT.601-5, Studio Encoding Parameters of Digital Television for Standard 4:3 and Wide-
screen 16:9 Aspect Ratios, (1982-1986-1990-1992-1994-1995), Section 3.5.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• ycbcr2rgb supports the generation of C code (requires MATLAB Coder). Note that if you choose
the generic MATLAB Host Computer target platform, ycbcr2rgb generates code that uses a
precompiled, platform-specific shared library. Use of a shared library preserves performance
optimizations but limits the target platforms for which code can be generated. For more
information, see “Types of Code Generation Support in Image Processing Toolbox”.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Image Processing on a GPU”.

See Also
ntsc2rgb | rgb2ntsc | rgb2ycbcr | ycbcr2rgbwide | rgbwide2ycbcr

Topics
“Understanding Color Spaces and Color Space Conversion”

Introduced before R2006a

1 Functions

1-3174

ycbcr2rgbwide
Convert YCbCr color values to wide-gamut RGB color values

Syntax
RGB = ycbcr2rgbwide(YCbCr,BPS)

Description
RGB = ycbcr2rgbwide(YCbCr,BPS) converts non-constant luminance YCbCr values into wide-
gamut RGB values in the BT.2020 or BT.2100 color spaces. BPS specifies the number of bits required
to represent each channel in the output image.

Examples

Convert YCbCr Color Values to Wide-Gamut RGB Color Values

Convert 10-bit and 12-bit YCbCr color values to the wide-gamut RGB color values in the BT.2020 or
BT.2100 color spaces.

Convert 12-bit YCbCr Color Value to Wide-Gamut RGB Color Value

Create a 12-bit YCbCr color value in the workspace.

ycbcrlist = uint16([3760 2048 2048]);

Convert the YCbCr color value to a wide-gamut RGB color value.

rgblist = ycbcr2rgbwide(ycbcrlist, 12);

Convert 10-bit YCbCr Image to Wide-Gamut RGB Image

Create a synthetic YCbCr image in the workspace.

YCBCR = reshape(uint16([64 512 512; 940 512 512]),[2 1 3]);

Convert the YCbCr image to a wide-gamut RGB image.

RGB = ycbcr2rgbwide(YCBCR,10);

Input Arguments
YCbCr — YCbCr color values
p-by-3 numeric matrix | m-by-n-by-3 numeric array

YCbCr color values, specified as one of these options:

• p-by-3 numeric matrix of color values (one color per row)
• m-by-n-by-3 numeric array representing an image

 ycbcr2rgbwide

1-3175

Data Types: uint16

BPS — Bits per sample for each channel of output image
10 | 12

Bits per sample for each channel of the output wide-gamut RGB image, specified as 10 or 12.

Output Arguments
RGB — Wide-gamut RGB values
numeric array

Wide-gamut RGB values, returned as a numeric array of the same size as the input YCbCr values.

The following table shows the data range for the wide-gamut, integer color values for 10- and 12-bit
data. The minimum value in the range maps to black, and the maximum value in the range maps to
white. The ycbcr2rgbwide function maps only pixels with RGB values within the supported data
range to valid YCbCr values.

Data Type Full Data Range Data Range for Wide-
Gamut RGB

10-bit [0, 1023] [64, 940]
12-bit [0, 4095] [256, 3760]

Data Types: uint16

Tips
• This table shows the data ranges of the YCbCr values for BT.2020 and BT.2100 color spaces.

Component 10-bit 12-bit
Y [64, 940] [256, 3760]
Cb, Cr [64, 960] [256, 3840]

References
[1] Rec. ITU-R BT.2020-2 (10/2015). "Parameter values for ultra-high definition television systems for

production and international programme exchange." International Telecommunication Union;
Broadcasting service (television). https://www.itu.int/rec/R-REC-BT.2020.

[2] Rec. ITU-R BT.2100-2 (07/2018). "Image parameter values for dynamic range television for use in
production and international programme exchange." International Telecommunication Union;
Broadcasting service (television). https://www.itu.int/rec/R-REC-BT.2100.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

ycbcr2rgbwide supports the generation of C code (requires MATLAB Coder). For more information,
see “Code Generation for Image Processing”.

1 Functions

1-3176

https://www.itu.int/rec/R-REC-BT.2020
https://www.itu.int/rec/R-REC-BT.2100

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

See Also
rgb2ycbcr | rgbwide2ycbcr | ycbcr2rgb

Introduced in R2020b

 ycbcr2rgbwide

1-3177

Hyperspectral Viewer
Visualize hyperspectral data

Description
The Hyperspectral Viewer app visualizes hyperspectral data and enables you to create spectral
profiles of points and regions in the data.

Note This app requires the Image Processing Toolbox Hyperspectral Imaging Library. You can install
the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Open the Hyperspectral Viewer App
• MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer Vision, click the

Hyperspectral Viewer app icon.
• MATLAB command prompt: Enter hyperspectralViewer. For more information, see

“Programmatic Use” on page 1-3179.

Examples

1 Functions

1-3178

Open Hyperspectral Viewer

Construct a hypercube object with the Indian Pines hyperspectral data set.

hcube = hypercube('indian_pines.dat');

Open the Hyperspectral Viewer app with the Indian Pines data.

hyperspectralViewer(hcube);

• “Explore Hyperspectral Data in the Hyperspectral Viewer”

Programmatic Use
hyperspectralViewer opens the Hyperspectral Viewer app.

hyperspectralViewer(hcube) opens the Hyperspectral Viewer app, loading the hypercube
object hcube into the app.

hyperspectralViewer(cube) opens the Hyperspectral Viewer app, loading the 3-D array cube.
When not loading a hypercube object, the capabilities of the app are limited.

hyperspectralViewer close closes all open Hyperspectral Viewer apps.

See Also
Objects
hypercube

Topics
“Explore Hyperspectral Data in the Hyperspectral Viewer”

Introduced in R2020a

 Hyperspectral Viewer

1-3179

anomalyRX
Detect anomalies using Reed-Xiaoli detector

Syntax
rxScore = anomalyRX(inputData)

Description
rxScore = anomalyRX(inputData) detects anomalous pixels in the hyperspectral data using the
Reed-Xialoi (RX) detector. The RX detector calculates a score for each pixel as the Mahalanobis
distance between the pixel and the background. The higher score indicates a likely anomaly. The
background is characterized by the spectral mean and covariance of the data cube. For more
information about computing the score and detecting anomalies, see “Algorithms” on page 1-3184.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

Detect Anomalous Pixels in Hyperspectral Data Using RX Detector

Detect anomalous pixels in hyperspectral data by computing the RX score for each pixel in a
hyperspectral data cube. Then compute the threshold for detecting true anomalous pixels by using
cumulative probability distribution of RX score values.

Read hyperspectral data containing anomalous pixels into the workspace.

hcube = hypercube('indian_pines.dat');

Find anomalous pixels in the input hyperspectral data by using the RX detector. The detector
searches for pixels with a high intensity difference within a homogeneous region.

rxScore = anomalyRX(hcube);

Reduce the dynamic range of the RX score values by rescaling them to the range [0, 255].

rxScore = im2uint8(rescale(rxScore));

Display the RX score map. Pixels with a high RX score are likely anomalous pixels.

figure
imagesc(rxScore)
colorbar

1 Functions

1-3180

Compute and plot the cumulative probability distribution of RX score values.

count = imhist(rxScore);
pdf = count/prod(size(rxScore,[1 2]));
cdf = cumsum(pdf(:));
figure
plot(cdf)
xlabel('RX Score')
ylabel('Cumulative Probability Values')

 anomalyRX

1-3181

Set the confidence coefficient value to 0.998. Select the first RX score with cumulative probability
distribution value greater than the confidence coefficient as the threshold. This threshold represents
the RX score above which a pixel is an anomaly with 99.8 percent confidence.

confCoefficient = 0.998;
rxThreshold = find(cdf > confCoefficient,1);

Apply thresholding to detect anomalous pixels with RX score greater than the computed threshold.
The result is a binary image in which the anomalous pixels are assigned the intensity value 1 and
other pixels are assigned 0.

bw = rxScore > rxThreshold;

Derive the RGB version of the data cube by using the colorize function. Overlay the binary image of
anomalous pixels on the RGB image.

rgbImg = colorize(hcube,'Method','rgb');
B = imoverlay(rgbImg,bw);

Display both the binary image and the overlaid image.

1 Functions

1-3182

fig = figure('Position',[0 0 800 400]);
axes1 = axes('Parent',fig,'Position',[0 0.1 0.5 0.8]);
imagesc(bw,'Parent',axes1);
title('Detected Anomalous Pixels')
axis off
colormap gray
axes2 = axes('Parent',fig,'Position',[0.5 0.1 0.5 0.8]);
imagesc(B,'Parent',axes2)
title('Overlaid Image');
axis off

Input Arguments
inputData — Input hyperspectral data
3-D numeric array | hypercube object

Input hyperspectral data, specified as a 3-D numeric array or hypercube object. If the input is an 3-
D numeric array of size M-by-N-by-C, the function reads it as a hyperspectral data cube of M-by-N
pixels with C spectral bands and computes the RX score. If the input is a hypercube object, the
function reads the data cube stored in the DataCube property and then computes the RX score. The
hyperspectral data cube must be real and non-sparse.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
rxScore — Output RX score
matrix

 anomalyRX

1-3183

Output RX score for each pixel in the hyperspectral data cube, returned as a matrix of size M-by-N,
same as the spatial dimensions of the input data.
Data Types: double

Algorithms
The RX score for each pixel is computed as

r is the pixel under test and μC and ΣC are the spectral mean and covariance respectively. Anomalous
pixels typically have the high RX scores.

You can estimate a threshold from the cumulative probability distribution of the RX scores to further
tune the anomalous pixel detection. See the “Detect Anomalous Pixels in Hyperspectral Data Using
RX Detector” on page 1-3180 example.

References
[1] Reed, I.S., and X. Yu. “Adaptive Multiple-Band CFAR Detection of an Optical Pattern with Unknown

Spectral Distribution.” IEEE Transactions on Acoustics, Speech, and Signal Processing 38, no.
10 (October 1990): 1760–70. https://doi.org/10.1109/29.60107.

[2] Chein-I Chang and Shao-Shan Chiang. “Anomaly Detection and Classification for Hyperspectral
Imagery.” IEEE Transactions on Geoscience and Remote Sensing 40, no. 6 (June 2002): 1314–
25. https://doi.org/10.1109/TGRS.2002.800280.

See Also
hypercube | spectralMatch | ndvi

Introduced in R2020a

1 Functions

1-3184

assignData
Assign new data to hyperspectral data cube

Syntax
newhcube = assignData(hcube,row,column,band,data)

Description
newhcube = assignData(hcube,row,column,band,data) assigns the specified data to a
hyperspectral data cube. The function reads the data cube stored in the hypercube object hcube,
assigns the new data to the spectral bands band at the locations specified by row and column, and
returns a new hypercube object.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

Assign New Reflectance Values to Hyperspectral Data

Read hyperspectral data from an ENVI format file.

hcube = hypercube('paviaU.dat');

Normalize the reflectance values to the range [0, 1].

data = rescale(hcube.DataCube);

Assign the normalized reflectance values to the data cube.

newhcube = assignData(hcube,':',':',':',data);

Specify the row and column indices of a region of interest (ROI). Assign all indices within the ROI a
value of zero.

row = 180:220;
column = 125:160;
newhcube = assignData(newhcube,row,column,':',0);

Display the original and the modified versions of a spectral band.

fig = figure('Position',[0 0 800 500]);
axes1 = axes('Parent',fig,'Position',[0.06 0.05 0.45 0.8]);
imagesc(hcube.DataCube(:,:,10),'Parent',axes1);
title('Original Data')
colorbar
axis off

 assignData

1-3185

axes2 = axes('Parent',fig,'Position',[0.55 0.05 0.45 0.8]);
imagesc(newhcube.DataCube(:,:,10),'Parent',axes2);
title('Modified Data')
colorbar
axis off
colormap gray

Input Arguments
hcube — Input hyperspectral data
hypercube object

Input hyperspectral data, specified as a hypercube object. The DataCube property of the
hypercube object contains the hyperspectral data cube.

row — Row indices of data cube
':' | positive integer | vector of positive integers

Row indices of the data cube, specified as ':', a positive integer, or a vector of positive integers.

• To select all the rows in the data cube, use ':'.
• To select a particular row or rows, specify the row index as a positive integer or vector of positive

integers respectively. If the data cube is of size M-by-N-by-C, the specified row index values must
all be less than or equal to M. To specify a range of row indices, or indices at a regular interval,
use the colon operator. For example, row = 1:10.

1 Functions

1-3186

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

column — Column indices of data cube
':' | positive integer | vector of positive integers

Column indices of the data cube, specified as ':', a positive integer, or a vector of positive integers.

• To select all the columns in the data cube, use ':'.
• To select a particular column or columns, specify the column index as a positive integer or vector

of positive integers respectively. If the data cube is of size M-by-N-by-C, the specified column
index values must all be less than or equal to N. To specify a range of column indices, or indices at
a regular interval, use the colon operator. For example, column = 1:10.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

band — Spectral band numbers
':' | positive integer | vector of positive integers

Spectral band numbers, specified as ':', a positive integer or a vector of positive integers.

• To select all the bands in the data cube, use ':'.
• To select a particular band or bands, specify the band number as a positive integer or vector of

positive integers respectively. If the data cube is of size M-by-N-by-C, the specified band number
values must all be less than or equal to C. To specify a range of band numbers or numbers at a
regular interval, use the colon operator. For example, band = 1:10.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

data — Values to assign
scalar | vector | matrix | 3-D array

Values to assign, specified as a scalar, vector, matrix, or 3-D array depending on the values of the row,
column, and band inputs.

If row is If column is If band is data must be
scalar scalar scalar scalar
M- element vector scalar scalar M- element row vector

or M-by-1 matrix or M-
by-1-by-1 array

scalar N-element vector scalar N- element column
vector or 1-by-N matrix
or 1-by-N-by-1 array

scalar scalar C-element vector 1-by-1-by-C array
M- element vector N-element vector scalar M-by-N matrix or M-by-

N-by-1 array
M- element vector N-element vector C-element vector M-by-N-by-C array

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

 assignData

1-3187

Output Arguments
newhcube — Output hyperspectral data
hypercube object

Output hyperspectral data, returned as a hypercube object.

See Also
hypercube | removeBands | selectBands | cropData

Introduced in R2020a

1 Functions

1-3188

countEndmembersHFC
Find number of endmembers

Syntax
numEndmembers = countEndmembersHFC(inputData)
numEndmembers = countEndmembersHFC(inputData,Name,Value)

Description
numEndmembers = countEndmembersHFC(inputData) finds the number of endmembers present
in a hyperspectral data cube by using the noise-whitened Harsanyi–Farrand–Chang (NWHFC)
method.

numEndmembers = countEndmembersHFC(inputData,Name,Value) specifies additional options
using one or more name-value pair arguments. For example, 'NoiseWhiten',false does not
perform noise-whitening of the data before extracting the endmembers.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

Find Number of Endmembers Using NWHFC Method

Read hyperspectral data into the workspace.

hcube = hypercube('jasperRidge2_R198.hdr');

Find the number of endmembers in the hyperspectral data by using the NWHFC method.

numEndmembers = countEndmembersHFC(hcube);

Estimate the endmember spectra using the N-FINDR method.

endmembers = nfindr(hcube,numEndmembers);

Plot the endmember spectra.

figure
plot(endmembers)
title(['Number of Endmembers: ' num2str(numEndmembers)])
xlabel('Band Number')
ylabel('Data Values')

 countEndmembersHFC

1-3189

Find Number of Endmembers Using HFC Method

Read hyperspectral data into the workspace.

hcube = hypercube('jasperRidge2_R198.hdr');

Find the number of endmembers in the hyperspectral data by using the HFC method. To use the HFC
method, set the 'NoiseWhiten' parameter value to false.

numEndmembers = countEndmembersHFC(hcube,'NoiseWhiten',false);

Estimate the endmember spectra using the N-FINDR method.

endmembers = nfindr(hcube,numEndmembers);

Plot the endmember spectra.

figure
plot(endmembers)

1 Functions

1-3190

title(['Number of Endmembers: ' num2str(numEndmembers)])
xlabel('Band Number')
ylabel('Data Values')

Input Arguments
inputData — Input hyperspectral data
3-D numeric array | hypercube object

Input hyperspectral data, specified as a 3-D numeric array that represent the hyperspectral data cube
of size M-by-N-by-C or hypercube object. If the input is a hypercube object, the function reads the
data cube stored in the DataCube property of the object. The hyperspectral data cube must be real
and non-sparse.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

 countEndmembersHFC

1-3191

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: countEndmembersHFC(inputData,'NoiseWhiten',false)

PFA — Probability of false alarm
10-3 (default) | positive scalar

Probability of false alarm, specified as the comma-separated pair consisting of 'PFA' and a positive
scalar in the range (0, 1].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NoiseWhiten — Perform noise whitening
true or 1 (default) | false or 0

Perform noise-whitening, specified as the comma-separated pair consisting of 'NoiseWhiten' and a
numeric or logical 1 (true) or 0 (false).

• true or 1 — Perform noise-whitening of input data before computing the number of endmembers.
This approach is the NWHFC method.

• false or 0 — Do not perform noise-whitening of input data before computing the number of
endmembers. This approach is the Harsanyi–Farrand–Chang (HFC) method.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Output Arguments
numEndmembers — Number of endmembers in hyperspectral data
positive numeric scalar

Number of endmembers in the hyperspectral data, returned as a positive numeric scalar.
Data Types: double

References
[1] Chang, C.-I., and Q. Du. “Estimation of Number of Spectrally Distinct Signal Sources in

Hyperspectral Imagery.” IEEE Transactions on Geoscience and Remote Sensing 42, no. 3
(March 2004): 608–19. https://doi.org/10.1109/TGRS.2003.819189.

See Also
hypercube | fippi | ppi | nfindr | estimateAbundanceLS

Introduced in R2020a

1 Functions

1-3192

colorize
Estimate color image of hyperspectral data

Syntax
coloredImage = colorize(hcube)
coloredImage = colorize(hcube,band)
[coloredImage,indices] = colorize(___)
___ = colorize(___ ,Name,Value)

Description
coloredImage = colorize(hcube) estimates a false-color image of hyperspectral data based on
the three most informative bands of the hypercube object hcube.

coloredImage = colorize(hcube,band) returns a false-color image using the specified spectral
bands band.

[coloredImage,indices] = colorize(___) returns the indices of the bands used in the color
image.

___ = colorize(___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to any combination of arguments from previous syntaxes. Use this syntax to
specify the options to estimate false-colored and color-infrared (CIR) images of the input data.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

Estimate False-Color Image of Hyperspectral Data

Read a hyperspectral data into the workspace.

hcube = hypercube('paviaU.dat');

Estimate a false-color image of the hyperspectral data.

coloredImg = colorize(hcube);

Display the false-color image.

imshow(coloredImg)

 colorize

1-3193

Create Contrast-Stretched RGB Image of Hyperspectral Data

Read a hyperspectral data into the workspace.

1 Functions

1-3194

hcube = hypercube('paviaU.dat');

Estimate an RGB image of the hyperspectral data. Increase the image contrast by applying contrast
stretching.

coloredImg = colorize(hcube,"Method","rgb","ContrastStretching",true);

Display the contrast-stretched RGB image.

imshow(coloredImg)

 colorize

1-3195

Input Arguments
hcube — Input hyperspectral data
hypercube object

1 Functions

1-3196

Input hyperspectral data, specified as a hypercube object. The DataCube property of the
hypercube object stores the hyperspectral data cube as an M-by-N-by-C numeric array, where C is
the number of bands.

band — Spectral band numbers
3-element vector of positive integers

Spectral band numbers, specified as a 3-element vector of positive integers. All elements of the vector
must be less than or equal to the total number of bands C in the input data.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: colorize(hcube,'Method','rgb')

Method — Method used to visualize bands
'falsecolored' (default) | 'rgb' | 'cir'

Method used to visualize the bands, specified as the comma-separated pair consisting of 'Method'
and one of these options.

• 'falsecolored' — Create a false-color image consisting of the three most informative bands
selected using selectBands function.

• 'rgb' — Create an RGB image by dividing the spectral range into red (R), green (G), and blue (B)
bands. The red band ranges from 600 nm to 700 nm, the green band ranges from 500 nm to 600
nm, and the blue band ranges from 400 nm to 500 nm. The displayed R, G, and B channels consist
of the most representative bands within the corresponding spectral range based on the correlation
coefficient metric.

• 'cir' — Create a color-infrared (CIR) image by dividing the spectral range into near infrared
(NIR), R, and G bands. The NIR band ranges from 760 nm to 960 nm, the red band ranges from
600 nm to 700 nm, and the green band ranges from 500 nm to 600 nm. The displayed channels
consist of the most representative bands within the corresponding spectral range based on the
correlation coefficient metric.

To create RGB or CIR images, the Wavelength property of the hypercube object hcube must have
wavelengths in each of the corresponding ranges.
Data Types: char | string

ContrastStretching — Perform contrast stretching of image
0 (false) (default) | 1 (true)

Perform contrast stretching of the image, specified as the comma-separated pair consisting of
'ContrastStretching' and the logical 0 (false) or 1 (true). When true, the colorize function
applies contrast-limited adaptive histogram equalization, using the adapthisteq function.
Data Types: logical

 colorize

1-3197

Output Arguments
coloredImage — Color image
M-by-N-by-3 numeric array

Color image, returned as an M-by-N-by-3 numeric array. Each of the three color planes contains one
band of the hyperspectral image.
Data Types: single | double

indices — Indices of selected bands
3-element column vector of positive integers

Indices of the selected bands, returned as a 3-element column vector of positive integers.
Data Types: double

See Also
hypercube | selectBands

Introduced in R2020a

1 Functions

1-3198

correctOOB
Correct out-of-band effect using sensor spectral response

Syntax
newhcube = correctOOB(hcube,spectralResponse)
[newhcube,oobEffect] = correctOOB(hcube,spectralResponse)
[___] = correctOOB(hcube,spectralResponse,'RegionMask',mask)
newhcube = correctOOB(___ ,'BlockSize',blocksize)

Description
newhcube = correctOOB(hcube,spectralResponse) corrects the out-of-band (OOB) effect in
the input satellite data by using the sensor's spectral response characteristics. This method is
suitable for OOB correction in multispectral satellite data.

Use this function to correct OOB effects over different regions such as clear waters, turbid waters,
green vegetation, sand, and soil. This method gives best results if the input data is compensated for
Rayleigh and aerosol scattering. To measure the OOB effect on scenes with large water bodies, you
must first compute the water leaving radiance spectra from the input satellite data.

[newhcube,oobEffect] = correctOOB(hcube,spectralResponse) also returns the relative
OOB effect for each spectral band.

[___] = correctOOB(hcube,spectralResponse,'RegionMask',mask) specifies region mask
by using the name-value pair argument 'RegionMask'. The region mask indicates the homogeneous
regions in the input satellite data.

newhcube = correctOOB(___ ,'BlockSize',blocksize) specifies the block size for block
processing of the hyperspectral data cube by using the name-value pair argument 'BlockSize'. You
can specify the 'BlockSize' name-value pair argument in addition to the input arguments in the
previous syntaxes.

The function divides the input image into distinct blocks, processes each block, and then
concatenates the processed output of each block to form the output matrix. Hyperspectral images are
multi-dimensional data sets that can be too large to fit in system memory in their entirety. This can
cause the system to run out of memory while running the correctOOB function. If you encounter
such an issue, perform block processing by using this syntax.

For example, correctOOB(hcube,spectralResponse,'BlockSize',[50 50]) divides the input
image into non-overlapping blocks of size 50-by-50 and then performs out-of-band correction on each
block.

Note To perform block processing by specifying the 'BlockSize' name-value pair argument, you
must have MATLAB R2021a or a later release.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

 correctOOB

1-3199

Examples

Perform OOB Correction Using Clear-Water Pixels

Read multispectral data into the workspace.

hcube = hypercube('LC08_L1TP_097070_20201101_20201101_01_cropped.dat');

Convert the pixel values from digital numbers to top of atmosphere (TOA) radiance values.

hcube = dn2radiance(hcube);

Estimate remotely sensed water reflectance.

[rrshcube,mask] = rrs(hcube);

Read the sensor spectral response.

spectralResponse = readtable('spectralResponse.txt');
spectralResponse = table2array(spectralResponse);

Perform OOB correction using the clear-water pixels specified by the region mask.

[newhcube,oobEffect] = correctOOB(rrshcube,spectralResponse,'RegionMask',mask);

Estimate RGB images of the input and the OOB corrected output data. Increase the image contrast by
applying contrast stretching.

imgIn = colorize(hcube,'Method','rgb','ContrastStretching',true);
imgOut = colorize(newhcube,'Method','rgb','ContrastStretching',true);

Display the input and the OOB corrected output images.

figure
montage({imgIn,imgOut})
title('Input Image | OOB Corrected Image')

1 Functions

1-3200

Input Arguments
hcube — Input satellite data
hypercube object

Input satellite data, specified as a hypercube object. The functions reads the data cube from the
DataCube property of the object. The data cube is of size M-by-N-by-C. C is the number of spectral
bands in the input satellite data.

spectralResponse — Sensor spectral response
matrix | table

Sensor spectral response, specified as a matrix or a table. The size of the matrix or the table must be
K-by-C+1. The first column of the matrix or table contains the wavelength values and the spectral
resolution is 1 nm.

You can download the spectral response for different sensors from https://oceancolor.gsfc.nasa.gov/
docs/rsr/rsr_tables/.

mask — Region mask indicating homogeneous regions
matrix

Region mask indicating homogeneous regions, specified as a matrix of size M-by-N. The region mask
is a binary image with intensity values 0 and 1. The regions with intensity value 1 corresponds to the
homogeneous regions in the input satellite data.
Example: correctOOB(hcube,spectralResponse,'RegionMask',mask)
Data Types: logical

 correctOOB

1-3201

https://oceancolor.gsfc.nasa.gov/docs/rsr/rsr_tables/
https://oceancolor.gsfc.nasa.gov/docs/rsr/rsr_tables/

blocksize — Size of data blocks
2-element vector of positive integers

Size of the data blocks, specified as a 2-element vector of positive integers. The elements of the
vector correspond to the number of rows and columns in each block, respectively. The size of the data
blocks must be less than the size of the input image. Dividing the hyperspectral images into smaller
blocks enables you process large data sets without running out of memory.

• If the blocksize value is too small, the memory usage of the function reduces at the cost of
increased execution time.

• If the blocksize value is large or equal to the input image size, the execution time reduces at the
cost of increased memory usage.

Example: 'BlockSize',[20 20] specifies the size of each data block as 20-by-20.

Output Arguments
newhcube — Out-of-band corrected data
hypercube

Out-of-band corrected data, returned as a hypercube.

oobEffect — Out-of-band effect for each band
C-element vector

Out-of-band effect for each band, returned as a C-element vector. The out-of-band effect for each
spectral band is measured as the relative difference between the values of homogeneous region
pixels in the input data hcube and the corrected data newhcube.

See Also
dn2radiance | fastInScene | hypercube | rrs

Introduced in R2020b

1 Functions

1-3202

cropData
Crop regions-of-interest

Syntax
newhcube = cropData(hcube,row,column)
newhcube = cropData(hcube,row,column,band)

Description
newhcube = cropData(hcube,row,column) crops the regions of interest (ROIs), specified by
row and column, across all the spectral bands in the hyperspectral data cube hcube. The function
returns the cropped data as a new hypercube object newhcube.

newhcube = cropData(hcube,row,column,band) crops the ROIs across the specified spectral
bands band.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

Crop ROI from Hyperspectral Data Cube

Read hyperspectral data from an ENVI format file.

hcube = hypercube('paviaU.dat');

Crop the first 10 spectral bands of the input data cube.

newhcube = cropData(hcube,':',':',1:10);

Specify the row and column indices of the ROI to crop from the extracted bands.

row = 130:250;
column = 60:200;

Crop the ROI.

newhcube = cropData(newhcube,row,column,':');

Display both bands in the original and the cropped versions of a spectral band.

fig = figure('Position',[0 0 800 500]);
axes1 = axes('Parent',fig,'Position',[0.05 0.05 0.45 0.8]);
imagesc(hcube.DataCube(:,:,5),'Parent',axes1)
title('Original Data')
axes2 = axes('Parent',fig,'Position',[0.55 0.05 0.45 0.8]);

 cropData

1-3203

imagesc(newhcube.DataCube(:,:,5),'Parent',axes2)
title('Cropped Data')
colormap gray

Input Arguments
hcube — Input hyperspectral data
hypercube object

Input hyperspectral data, specified as a hypercube object. The DataCube property of the
hypercube object contains the hyperspectral data cube.

row — Row indices of data cube
':' | positive integer | vector of positive integers

Row indices of the data cube, specified as ':', a positive integer, or a vector of positive integers.

• To select all the rows in the data cube, use ':'.
• To select a particular row or rows, specify the row index as a positive integer or vector of positive

integers respectively. If the data cube is of size M-by-N-by-C, the specified row index values must
all be less than or equal to M. To specify a range of row indices, or indices at a regular interval,
use the colon operator. For example, row = 1:10.

1 Functions

1-3204

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

column — Column indices of data cube
':' | positive integer | vector of positive integers

Column indices of the data cube, specified as ':', a positive integer, or a vector of positive integers.

• To select all the columns in the data cube, use ':'.
• To select a particular column or columns, specify the column index as a positive integer or vector

of positive integers respectively. If the data cube is of size M-by-N-by-C, the specified column
index values must all be less than or equal to N. To specify a range of column indices, or indices at
a regular interval, use the colon operator. For example, column = 1:10.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

band — Spectral band numbers
':' | positive integer | vector of positive integers

Spectral band numbers, specified as ':', a positive integer or a vector of positive integers.

• To select all the bands in the data cube, use ':'.
• To select a particular band or bands, specify the band number as a positive integer or vector of

positive integers respectively. If the data cube is of size M-by-N-by-C, the specified band number
values must all be less than or equal to C. To specify a range of band numbers or numbers at a
regular interval, use the colon operator. For example, band = 1:10.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

Output Arguments
newhcube — Output hyperspectral data
hypercube object

Output hyperspectral data, returned as a hypercube object.

See Also
hypercube | removeBands | selectBands | assignData

Introduced in R2020a

 cropData

1-3205

denoiseNGMeet
Denoise hyperspectral images using non-local meets global approach

Syntax
outputData = denoiseNGMeet(inputData)
outputData = denoiseNGMeet(inputData,Name,Value)

Description
outputData = denoiseNGMeet(inputData) reduces noise in hyperspectral data by using the
non-local meets global (NGMeet) approach. This is an iterative approach that integrates both the
spatial non-local similarity and spectral low-rank approximation for estimating the original pixel
values. For more information, see “Algorithms” on page 1-3209.

outputData = denoiseNGMeet(inputData,Name,Value) also specifies options using one or
more name-value pair arguments. Use this syntax to set the parameter values for NGMeet approach.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

Denoise Hyperspectral Data Using NGmeet Method

Read hyperspectral data into the workspace.

hcube = hypercube('paviaU.hdr');

Normalize the input data and add Gaussian noise to the normalized input data.

hcube = hypercube(rescale(hcube.DataCube),hcube.Wavelength);
inputData = imnoise(hcube.DataCube,'Gaussian',0,0.005);
inputData = assignData(hcube,':',':',':',inputData);

Denoise the noisy hyperspectral data using NGmeet method.

outputData = denoiseNGMeet(inputData);

Estimate RGB images for the input, noisy, and the denoised output datacube. Increase the image
contrast by applying contrast stretching.

originalImg = colorize(hcube,'Method','rgb','ContrastStretching',true);
noisyImg = colorize(inputData,'Method','rgb','ContrastStretching',true);
denoisedImg = colorize(outputData,'Method','rgb','ContrastStretching',true);

Display RGB images of the original, noisy, and denoised data.

1 Functions

1-3206

figure
montage({originalImg,noisyImg,denoisedImg})
title('Input Image | Noisy Image | Denoised Image');

Set NGMeet Parameters for Hyperspectral Denoising

Read hyperspectral data into the workspace.

hcube = hypercube('paviaU.hdr');

Normalize the input data and add Gaussian noise to the normalized input data.

hcube = hypercube(rescale(hcube.DataCube),hcube.Wavelength);
inputData = imnoise(hcube.DataCube,'Gaussian',0,0.005);
inputData = assignData(hcube,':',':',':',inputData);

Denoise the noisy hyperspectral data by using the NGmeet method. Set the smoothing parameter
value to 0.01 and the number of iterations to 4.

outputData = denoiseNGMeet(inputData,'Sigma',0.01,'NumIterations',4);

Estimate RGB images for the input, noisy, and the denoised output datacube. Increase the image
contrast by applying contrast stretching.

originalImg = colorize(hcube,'Method','rgb','ContrastStretching',true);
noisyImg = colorize(inputData,'Method','rgb','ContrastStretching',true);
denoisedImg = colorize(outputData,'Method','rgb','ContrastStretching',true);

 denoiseNGMeet

1-3207

Display RGB images of the original, noisy, and denoised data.

figure
montage({originalImg,noisyImg,denoisedImg})
title('Input Image | Noisy Image | Denoised Image');

Input Arguments
inputData — Input hyperspectral data
3-D numeric array | hypercube object

Input hyperspectral data, specified as a 3-D numeric array that represent the hyperspectral data cube
of size M-by-N-by-C or hypercube object. If the input is a hypercube object, the function reads the
data cube stored in the DataCube property of the object. The hyperspectral data cube must be real
and non-sparse.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: denoiseNGMeet(hcube,'Sigma',0.3)

Sigma — Smoothing parameter
0.1σn (default) | positive scalar

1 Functions

1-3208

Smoothing parameter, specified as the comma-separated pair consisting of 'Sigma' and a positive
scalar. The default value is 0.1 times the noise variance (σn). Increasing this value, increases the level
of smoothing in the denoised output.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SpectralSubspace — Number of spectral bands in low-rank approximation
6 (default) | positive integer scalar

Number of spectral bands in low-rank approximation, specified as the comma-separated pair
consisting of 'SpectralSubspace' and a positive integer scalar in the range (0, C]. C is the number
of bands in the input data. The number of endmembers in the hyperspectral data can be a good
estimate for the number of spectral bands to use for low-rank approximation. You can find the
number of endmembers in the input hyperspectral data by using the countEndmembersHFC function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NumIterations — Number of iterations
2 (default) | positive integer scalar

Number of iterations, specified as the comma-separated pair consisting of 'NumIterations' and a
positive integer scalar. Increase this value for better denoising results.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
outputData — Denoised hyperspectral data
3-D numeric array | hypercube object

Denoised hyperspectral data, returned as a 3-D numeric array or hypercube object.

Algorithms
The NGMeet method estimates the denoised data cube by using these steps. For each iteration, i

1 Compute spectral low-rank approximation of the noisy input data (Yi) by using singular value
decomposition. The approximation results in a reduced data cube (Mi) and the related orthogonal
basis Ai.

2 Perform spatial denoising of the reduced data cube Mi by using non-local similarity filtering. You
can control the degree of smoothing by specifying the smoothing parameter 'Sigma'.

3 Perform inverse projection. Map the denoised reduced data cube Mi to original space by using
the orthogonal basis Ai. The result is the denoised output (Xi) obtained at iteration i.

4 Perform iterative regularization. Update the noisy input data, Yi+1 = λXi + (1-λ)Yi.
5 Repeat steps 1 to 4, for the specified number of iterations. The final value Xi is the denoised

hyperspectral data.

References
[1] He, Wei, Quanming Yao, Chao Li, Naoto Yokoya, and Qibin Zhao. “Non-Local Meets Global: An

Integrated Paradigm for Hyperspectral Denoising.” In 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 6861–70. Long Beach, CA, USA: IEEE,
2019. https://doi.org/10.1109/CVPR.2019.00703.

 denoiseNGMeet

1-3209

See Also
hypercube | countEndmembersHFC

Introduced in R2020b

1 Functions

1-3210

dn2radiance
Convert digital number to radiance

Syntax
newhcube = dn2radiance(hcube)
newhcube = dn2radiance(hcube,'BlockSize',blocksize)

Description
newhcube = dn2radiance(hcube) converts the pixel values of the hyperspectral data cube from
digital number to radiance values. The function returns a new hypercube object and the pixel values
of the data cube are the top of atmosphere (TOA) radiances.

newhcube = dn2radiance(hcube,'BlockSize',blocksize) specifies the block size for block
processing of the hyperspectral data cube by using the name-value pair argument 'BlockSize'.

The function divides the input image into distinct blocks, processes each block, and then
concatenates the processed output of each block to form the output matrix. Hyperspectral images are
multi-dimensional data sets that can be too large to fit in system memory in their entirety. This can
cause the system to run out of memory while running the dn2radiance function. If you encounter
such an issue, perform block processing by using this syntax.

For example, dn2radiance(hcube,'BlockSize',[50 50]) divides the input image into non-
overlapping blocks of size 50-by-50 and then computes the radiance values for pixels in each block.

Note To perform block processing by specifying the 'BlockSize' name-value pair argument, you
must have MATLAB R2021a or a later release.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

Convert Digital Number to Radiance

Read hyperspectral data into the workspace.

hcube = hypercube('EO1H0440342002212110PY_cropped.hdr');

Determine the bad spectral band numbers using the BadBands parameter in the metadata.

bandNumber = find(~hcube.Metadata.BadBands);

Remove the bad spectral bands from the data cube.

hcube = removeBands(hcube,'BandNumber',bandNumber);

 dn2radiance

1-3211

Compute the radiance values using the dn2radiance function.

newhcube = dn2radiance(hcube);

Read and display a spectral band image in the input and the output radiance data.

inputBand = hcube.DataCube;
radianceBand = newhcube.DataCube;
band = 80;
figure
subplot(1,2,1)
imagesc(inputBand(:,:,band))
title('Input Band')
axis off
subplot(1,2,2)
imagesc(radianceBand(:,:,band))
title('Radiance Band')
axis off
colormap gray

Input Arguments
hcube — Input hyperspectral data
hypercube object

Input hyperspectral data, specified as a hypercube object. The DataCube property of the
hypercube object stores the hyperspectral data cube. To convert the pixel values in digital numbers

1 Functions

1-3212

to radiance values, the Metadata property of the hypercube object must contain the Gain and
Offset fields.

blocksize — Size of data blocks
2-element vector of positive integers

Size of the data blocks, specified as a 2-element vector of positive integers. The elements of the
vector correspond to the number of rows and columns in each block, respectively. The size of the data
blocks must be less than the size of the input image. Dividing the hyperspectral images into smaller
blocks enables you process large data sets without running out of memory.

• If the blocksize value is too small, the memory usage of the function reduces at the cost of
increased execution time.

• If the blocksize value is large or equal to the input image size, the execution time reduces at the
cost of increased memory usage.

Example: 'BlockSize',[20 20] specifies the size of each data block as 20-by-20.

Output Arguments
newhcube — Output hyperspectral data
hypercube object

Output hyperspectral data, returned as a hypercube object. The pixels values of the output data
cube are radiances specifying the amount of radiation from the surface being imaged. The radiance
values are computed from digital numbers by using the equation:

Gain and Bias are the gain and offset values for each spectral bands respectively. The Metadata
property of hypercube object contains the gain and the offset values.

See Also
dn2reflectance | radiance2Reflectance | empiricalLine | iarr | sharc | hypercube

Introduced in R2020b

 dn2radiance

1-3213

dn2reflectance
Convert digital number to reflectance

Syntax
newhcube = dn2reflectance(hcube)
newhcube = dn2reflectance(hcube,'BlockSize',blocksize)

Description
newhcube = dn2reflectance(hcube) converts the pixel values of the hyperspectral data cube
from digital number (DN) to reflectance values. The function returns a new hypercube object and
the pixel values of the data cube are the top of atmosphere (TOA) reflectance values. For details on
TOA reflectance values, see “Compute TOA Reflectance values from DNs” on page 1-3216.

newhcube = dn2reflectance(hcube,'BlockSize',blocksize) specifies the block size for
block processing of the hyperspectral data cube by using the name-value pair argument
'BlockSize'.

The function divides the input image into distinct blocks, processes each block, and then
concatenates the processed output of each block to form the output matrix. Hyperspectral images are
multi-dimensional data sets that can be too large to fit in system memory in their entirety. This can
cause the system to run out of memory while running the dn2reflectance function. If you
encounter such an issue, perform block processing by using this syntax.

For example, dn2reflectance(hcube,'BlockSize',[50 50]) divides the input image into non-
overlapping blocks of size 50-by-50 and then computes the reflectance values for pixels in each block.

Note To perform block processing by specifying the 'BlockSize' name-value pair argument, you
must have MATLAB R2021a or a later release.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

Convert Digital Number to Reflectance

Read hyperspectral data into the workspace.

hcube = hypercube('EO1H0440342002212110PY_cropped.hdr');

Determine the bad spectral band numbers using the BadBands parameter in the metadata.

bandNumber = find(~hcube.Metadata.BadBands);

Remove the bad spectral bands from the data cube.

1 Functions

1-3214

hcube = removeBands(hcube,'BandNumber',bandNumber);

Convert digital numbers to top of atmosphere (TOA) reflectances. The pixel values in the output data
cube are the TOA reflectances.

newhcube = dn2reflectance(hcube);

Read and display the 80th spectral band image in the input and the output reflectance data cubes.

inputBand = hcube.DataCube;
reflectanceBand = newhcube.DataCube;
band = 80;
figure
subplot(1,2,1)
imagesc(inputBand(:,:,band))
title('Input Band')
axis off
subplot(1,2,2)
imagesc(reflectanceBand(:,:,band))
title('Reflectance Band')
axis off
colormap gray

 dn2reflectance

1-3215

Input Arguments
hcube — Input hyperspectral data
hypercube object

Input hyperspectral data, specified as a hypercube object. The DataCube property of the
hypercube object stores the hyperspectral data cube. The MetaData property of the hypercube
object must contain reflectance gain values.

blocksize — Size of data blocks
2-element vector of positive integers

Size of the data blocks, specified as a 2-element vector of positive integers. The elements of the
vector correspond to the number of rows and columns in each block, respectively. The size of the data
blocks must be less than the size of the input image. Dividing the hyperspectral images into smaller
blocks enables you process large data sets without running out of memory.

• If the blocksize value is too small, the memory usage of the function reduces at the cost of
increased execution time.

• If the blocksize value is large or equal to the input image size, the execution time reduces at the
cost of increased memory usage.

Example: 'BlockSize',[20 20] specifies the size of each data block as 20-by-20.

Output Arguments
newhcube — Output hyperspectral data
hypercube object

Output hyperspectral data, returned as a hypercube object. The pixel values of the data cube
returned at the output specifies the top of atmosphere (TOA) reflectance values.

More About
Compute TOA Reflectance values from DNs

Given a digital number (DN), the TOA reflectance is computed by using the reflectance gain (RGain)
and reflectance offset (ROffset) of each spectral band in the data cube.

The reflectance gain and reflectance offset values of each spectral band are stored in the header file.

Alternatively, the TOA reflectance values can be estimated from digital numbers (DN) by using these
two steps:

1 Compute the radiance values from the digital number (DN).

Gainλ and Biasλ are the gain and offset values for each spectral band (λ) respectively. The
Metadata property of hypercube object contains the gain and offset values.

2 Compute the TOA reflectance values from the radiance values.

1 Functions

1-3216

d is the earth-sun distance in astronomical units, ESUNλ is the mean solar irradiance for each
spectral band, and θE is the sun elevation angle.

See Also
dn2radiance | radiance2Reflectance | empiricalLine | iarr | sharc | hypercube

Introduced in R2020b

 dn2reflectance

1-3217

empiricalLine
Empirical line calibration of hyperspectral data

Syntax
newhcube = empiricalLine(hcube,imgSpectra,fieldSpectra,fieldWL)

Description
newhcube = empiricalLine(hcube,imgSpectra,fieldSpectra,fieldWL) performs
empirical line calibration of the hyperspectral data, hcube. The function calculates empirical line
factors to force the image spectral data, imgSpectra, to match the field reflectance spectra,
fieldSpectra, with wavelengths fieldWL. For more information, see “Algorithms” on page 1-3221.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

Perform Empirical Line Calibration of Hyperspectral Data

Read hyperspectral data into the workspace. This data is from the EO-1 Hyperion sensor, with pixel
values in digital numbers.

hcube = hypercube('EO1H0440342002212110PY_cropped.hdr');

Remove bad bands from the input data.

hcube = removeBands(hcube,'BandNumber',find(~hcube.Metadata.BadBands));

Convert the pixel values from digital numbers to top of atmosphere (TOA) radiance values.

hcube_toa = dn2radiance(hcube);

Select a pixel with a low brightness value as the target pixel, and store the pixel value as a cell array.
The pixel belongs to the tar region of the input data.

targetPixel = hcube_toa.DataCube(100,86,:);
imgSpec = {permute(targetPixel,[3 1 2])};

Read the reflectance spectral signature of the tar material from the ECOSTRESS library.

filename = 'manmade.road.tar.solid.all.0099uuutar.jhu.becknic.spectrum.txt';
info = readEcostressSig(filename);

Get the field reflectance spectra and the corresponding wavelength information from the metadata of
the ECOSTRESS spectral signature. Store these values as cell arrays.

1 Functions

1-3218

refSpec = {info.Reflectance};
refWL = {info.Wavelength};

Perform empirical line calibration of the radiance value hyperspectral data.

hcube_empirical = empiricalLine(hcube_toa,imgSpec,refSpec,refWL);

Inspect the results by selecting the same band image from both the uncalibrated digital number
hypercube and the calibrated hypercube. For visualization purposes, rescale the values of the two
band images to the range [0, 1]. Calculate the absolute value of the difference between the rescaled
band images.

inputBand = rescale(hcube.DataCube(:,:,159));
outputBand = rescale(hcube_empirical.DataCube(:,:,159));
diffBand = abs(inputBand-outputBand);

Display the original spectral band image, the empirically corrected spectral band image, and the
absolute value difference between the band images, to visualize the changes.

figure('Position',[0 0 700 400])
subplot('Position',[0 0 0.25 0.9])
imagesc(inputBand)
title('Input Band')
axis off
subplot('Position',[0.3 0 0.25 0.9])
imagesc(outputBand)
axis off
title('Output Band')
subplot('Position',[0.6 0 0.25 0.9])
imagesc(diffBand)
axis off
title('Difference Image')
colormap gray

 empiricalLine

1-3219

Input Arguments
hcube — Input hyperspectral data
hypercube object

Input hyperspectral data, specified as a hypercube object. The DataCube property of the
hypercube object stores the hyperspectral data cube.

The input pixel values can be digital numbers, TOA radiance values, or TOA reflectance values. To
convert a hypercube containing digital numbers to a hypercube containing TOA radiance or TOA
reflectance data, use the dn2radiance or dn2reflectance function, respectively.

imgSpectra — Image spectral data
N-by-1 cell array

Image spectral data, specified as an N-by-1 cell array. N is the number of pixels or fields used in the
empirical line calibration. Each cell contains a C-by-1 numeric vector, where C is the number of
hyperspectral bands present in hcube.

fieldSpectra — Field reflectance spectra
N-by-1 cell array

Field reflectance spectra, specified as an N-by-1 cell array. N is the number of pixels or fields used in
the empirical line calibration. Each cell contains a vector of field reflectances. The vectors can vary in
size between cells, but the length of the vector in each cell of fieldSpectra and fieldWL must
match.

1 Functions

1-3220

fieldWL — Wavelength of field reflectance spectra
N-by-1 cell array

Wavelength of field reflectance spectra in nanometers, specified as an N-by-1 cell array. N is the
number of pixels or fields used in the empirical line calibration. Each cell contains a P-by-1 vector of
field wavelengths, of varying lengths. The length of the vector in each cell of fieldSpectra and
fieldWL must match.

Output Arguments
newhcube — Calibrated hyperspectral data
hypercube object | 3-D numeric array

Calibrated hyperspectral data, returned as a hypercube object or 3-D numeric array consistent with
the input data, inputData. The data type of numeric output is single. When the input data in
inputData is of data type double, then the corrected data is also of data type double. Otherwise,
the corrected data is of data type single.

Algorithms
The empiricalLine function performs linear regression for each band to equate the digital number
(DN), or TOA radiance or TOA reflectance, with the surface reflectance. Solving the linear regression
equation provides gain and offset values for each band. This equation shows how the empirical line
factors gain and offset values are calculated:

ρsurfaceλ = m rλ + of f set

The gain (m) and the offset values (offset) are the unknown parameters in the empirical line equation.
ρλ is the known surface reflectance value of a reference material in the input hyperspectral data
(known as the field reference spectra). rλ is the measured value for the reference material in the
input hyperspectral data (known as the image spectral data). The measured value can be a digital
number, TOA radiance, or TOA reflectance.

The field reference spectra is an a priori measurement which can also be read from the spectral
libraries. The empirical line approach solves the linear equation to find the gain and the offset values.
The surface reflectance values for all the other pixels in the input hyperspectral data is calculated
using the estimated gain and the offset values.

The empiricalLine function automatically resamples the input field spectra to match the selected
data wavelengths in hcube.

To solve the linear regression equation, at least two field spectrum values must be known for each
band. If the empiricalLine function is provided with only one field spectrum value for each band,
the offset value is set as zero. If there is no field spectrum value available for any of the bands, then
this function throws an error.

References
[1] Roberts, D. A., Y. Yamaguchi, and R. J. P. Lyon. "Comparison of Various Techniques for Calibration

of AIS Data." In Proceedings of the Second Airborne Imaging Spectrometer Data Analysis
Workshop, ed. Gregg Vane and Alexander F. H. Goetz, 21–30. Pasadena: Jet Propulsion
Laboratory, 1986.

 empiricalLine

1-3221

[2] Kruse, F. A., K. S. Kierein-Young, and J.W. Boardman. "Mineral Mapping at Cuprite, Nevada with a
63-Channel Imaging Spectrometer," Photogrammetric Engineering and Remote Sensing 56,
no. 1 (January 1990): 83–92.

See Also
hypercube | iarr | flatField | logResiduals | subtractDarkPixel | reduceSmile | sharc

Introduced in R2020b

1 Functions

1-3222

enviinfo
Read metadata from ENVI header file

Syntax
info = enviinfo(file)

Description
info = enviinfo(file) reads the metadata from ENVI (Environment for Visualizing Images)
header file.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

Read ENVI Header File

Read an ENVI header file into the workspace.

info = enviinfo('paviaU.hdr');

Create a hypercube object using the Filename of the ENVI header file.

hcube = hypercube(info.Filename)

hcube =
 hypercube with properties:

 DataCube: [610×340×103 double]
 Wavelength: [103×1 double]
 Metadata: [1×1 struct]

Read ENVI Binary Data File Using Metadata from ENVI Header File

Read an ENVI header file into the workspace.

info = enviinfo('indian_pines');

Read from the ENVI binary data file by using the metadata from the ENVI header file.

data = multibandread('indian_pines.dat',...
 [info.Height info.Width info.Bands],...
 info.DataType,info.HeaderOffset,info.Interleave,info.ByteOrder);

 enviinfo

1-3223

Input Arguments
file — Name of ENVI header file
string scalar | character vector

Name of ENVI header file, specified as a string scalar or character vector. An ENVI header file must
have the extension .hdr. If you do not specify a file extension, then the function looks for a file with
the specified name and the .hdr file extension.
Data Types: char | string

Output Arguments
info — Information about ENVI data and metadata
struct

Information about ENVI data and metadata, returned as a structure array containing at least these
fields. If the ENVI header file contains additional fields, then the structure array contains those
additional fields as well.

Field Description
Height Height of the image or number of rows in the

image, returned as a positive integer.
Width Width of the image or number of columns in the

image, returned as a positive integer.
Bands Number of spectral bands, returned as a positive

integer.
DataType Data type of data in the ENVI file, returned as

any of these values:

• "single"
• "double"
• "uint8"
• "uint16"
• "int16"
• "uint32"
• "int32"
• "uint64"
• "int64"

Interleave Data interleave, returned as any one of these
values:

• "bsq" — Band-sequential
• "bil" — Band-interleaved-by-line
• "bip" — Band-interleaved-by-pixel

1 Functions

1-3224

Field Description
HeaderOffset Zero-based location of the first element in the

image file, returned as a positive integer. The
header offset represents the number of bytes
from the beginning of the image file to the start
of the image data.

ByteOrder Endianness of the data, returned as the string
"ieee-le" for little endian or "ieee-be" for
big endian.

See Also
hypercube | multibandread

Introduced in R2020a

 enviinfo

1-3225

enviwrite
Write hyperspectral data to ENVI file format

Syntax
enviwrite(hcube,filename)
enviwrite(___ ,Name,Value)

Description
enviwrite(hcube,filename) writes the hyperspectral data stored in the hypercube object to an
ENVI (Environment for Visualizing Images) file format. The function creates an ENVI header file and
ENVI binary data file with file extensions .hdr and .dat, respectively. The function writes the
wavelength and metadata information to the ENVI header file and the data cube containing the
hyperspectral images to the ENVI binary data file.

enviwrite(___ ,Name,Value) specifies options using one or more name-value pair arguments in
addition to the input arguments in the previous syntax.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

Write Hyperspectral Bands to ENVI File

Read a hyperspectral data into the workspace.

hcube = hypercube('paviaU.hdr');

Extract the twenty most informative bands from the hyperspectral data.

sig = fippi(hcube,5);
newhcube = selectBands(hcube,sig,'NumberOfBands',20);

Write the selected hyperspectral data to the ENVI file format. The binary data file is named
newData.dat and the header file is named newData.hdr.

enviwrite(newhcube,'newData');

Input Arguments
hcube — Input hyperspectral data
hypercube object

1 Functions

1-3226

Input hyperspectral data, specified as a hypercube object. The hypercube object contains the data
cube, wavelength, and related metadata information.

filename — Name of ENVI files
character vector | string scalar

Name of the ENVI files, specified as a character vector or string scalar. The function uses the
specified value as the name of both the binary data file (.dat) and header file (.hdr).

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: enviwrite(hcube,filename,'Interleave','bip')

Interleave — Band interleaving method
'bsq' (default) | 'bil' | 'bip'

Band interleaving method, specified as the comma-separated pair consisting of 'Interleave' and
one of these values:

• 'bsq' — The function uses the band-sequential interleaving method. It writes the entirety of each
band before writing the next band. This is the default method.

• 'bil' — The function uses the band-interleaved-by-line interleaving method. It writes an entire
row from each band before writing the next row.

• 'bip' — The function uses the band-interleaved-by-pixel interleaving method. It writes a pixel
from each band before writing the next pixel.

 enviwrite

1-3227

Data Types: char | string

DataType — Data type to write to ENVI binary data file
'single' | 'double' | 'uint8' | 'uint16' | 'uint32' | 'uint64' | 'int8' | 'int16' | 'int32' | 'int64'

Data type to write to the ENVI binary data file, specified as the comma-separated pair consisting of
'DataType' and a valid data type.
Data Types: char | string

ByteOrder — Endianness of binary data file
'ieee-le' | 'ieee-be'

Endianness of binary data file, specified as the comma-separated pair consisting of 'ByteOrder' and
'ieee-le' or 'ieee-be'. Specify the value as 'ieee-le' for little-endian format and 'ieee-be'
for big-endian format. By default, the function uses endianness format of your machine.
Data Types: char | string

HeaderOffset — Number of bytes before data starts
0 (default) | positive integer

Number of bytes before the data starts, specified as the comma-separated pair consisting of
'HeaderOffset' and a positive integer. If the header file does not exist, the function writes ASCII
null values will be written to fill the space by default.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

1 Functions

1-3228

See Also
hypercube | removeBands | selectBands | multibandwrite

Introduced in R2020a

 enviwrite

1-3229

estimateAbundanceLS
Estimate abundance maps

Syntax
abundanceMap = estimateAbundanceLS(inputData,endmembers)
abundanceMap = estimateAbundanceLS(___ ,'Method',estMethod)

Description
abundanceMap = estimateAbundanceLS(inputData,endmembers) estimates the abundance
maps of the endmembers in a hyperspectral data cube by using the least-squares method.

A hyperspectral data cube can contain both pure and mixed pixels. Pure pixels exhibit the spectral
characteristics of a single class, while the mixed pixels exhibit the spectral characteristics of multiple
classes. The spectral signatures of the pure pixels comprise the endmembers that identify the unique
classes present in a hyperspectral data cube. The spectral signature of mixed pixels can be a linear
combination of two or more endmember spectra. The abundance map identifies the proportion of
each endmember present in the spectra of each pixel. For a hyperspectral data cube of spatial
dimensions M-by-N containing P endmembers, there exist P abundance maps, each of size M-by-N.

The abundance map estimation process is known as spectral unmixing, which is the decomposition of
the spectra of each pixel into a given set of endmember spectra.

abundanceMap = estimateAbundanceLS(___ ,'Method',estMethod) specifies the least-
squares method to use for estimating the abundance maps.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

Estimate Abundance Maps For Hyperspectral Data

Load a MAT-file containing a hyperspectral data cube and endmember signatures into the workspace.
Extract the data cube and endmember signatures.

data = load('indian_pines.mat');
dataCube = data.indian_pines;
endmembers = data.signatures;

Plot the endmember spectra.

plot(endmembers)
numEndMem = num2str(size(endmembers,2));
title(['Number of Endmembers:' numEndMem])

1 Functions

1-3230

Estimate the abundance maps for the endmember spectra.

abundanceMap = estimateAbundanceLS(dataCube,endmembers);

Display the abundance map for each endmember spectra. The order of the abundance maps is the
same as the order of the endmembers in the endmembers input.

montage(abundanceMap,'Size',[4 4],'BorderSize',[10 10]);
colormap default
title('Abundance Maps for Endmembers');

 estimateAbundanceLS

1-3231

Extract Endmembers and Abundance Maps for Spectral Unmixing

Read hyperspectral data into the workspace.

hcube = hypercube('jasperRidge2_R198.hdr');

Extract six endmembers from the hyperspectral data.

endmembers = nfindr(hcube,6);

Estimate the abundance map for each endmember using the fully constrained least squares method.

1 Functions

1-3232

abundanceMap = estimateAbundanceLS(hcube.DataCube,endmembers,'Method','fcls');

Estimate an RGB image of the data cube using the colorize function.

rgbImg = colorize(hcube,'Method','RGB');

Display the RGB image.

figure
imagesc(rgbImg)
title('RGB Image of Data Cube')

Display the abundance maps for the endmember spectra. The order of the abundance maps is the
same as the order of the endmembers in the endmembers input argument.

figure
montage(abundanceMap(:,:,1:3),'Size',[1 3],'BorderSize',[20 20])
colormap default
colorbar
title('Abundance Map for Endmember 1 | Abundance Map for Endmember 2 | Abundance Map for Endmember 3','FontSize',14)

 estimateAbundanceLS

1-3233

figure
montage(abundanceMap(:,:,4:6),'Size',[1 3],'BorderSize',[20 20])
colormap default
colorbar
title('Abundance Map for Endmember 4 | Abundance Map for Endmember 5 | Abundance Map for Endmember 6','FontSize',14)

Input Arguments
inputData — Input hyperspectral data
3-D numeric array | hypercube object

Input hyperspectral data, specified as a 3-D numeric array that represent the hyperspectral data cube
of size M-by-N-by-C or hypercube object. If the input is a hypercube object, the function reads the
data cube stored in the DataCube property of the object. The hyperspectral data cube must be real
and non-sparse.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

endmembers — Endmember signatures
C-by-P matrix

1 Functions

1-3234

Endmember signatures, specified as a matrix of size C-by-P. where C is the number of spectral bands
in the input hyperspectral data and P is the number of endmember spectral signatures.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

estMethod — Method for estimating abundance maps
'ucls' (default) | 'fcls' | 'ncls'

Method for estimating abundance maps, specified as one of these values.

• 'ucls' — Unconstrained least-squares method.
• 'fcls' — Fully constrained least-squares method.
• 'ncls' — Nonnegative constrained least-squares method.

Example: estimateAbundanceLS(inputData,endmembers,'Method','ncls')
Data Types: char | string

Output Arguments
abundanceMap — Abundance maps
3-D numeric array

Abundance maps, returned as a 3-D numeric array of size M-by-N-by-P.
Data Types: double

References
[1] Keshava, N., and J.F. Mustard. “Spectral Unmixing.” IEEE Signal Processing Magazine 19, no. 1

(January 2002): 44–57. https://doi.org/10.1109/79.974727.

[2] Kay, Steven M. Fundamentals of Statistical Signal Processing. Prentice Hall Signal Processing
Series. Englewood Cliffs, N.J: Prentice-Hall PTR, 1993.

See Also
hypercube | fippi | ppi | nfindr

Introduced in R2020a

 estimateAbundanceLS

1-3235

fastInScene
Perform fast in-scene atmospheric correction

Syntax
newhcube = fastInScene(hcube)

Description
newhcube = fastInScene(hcube)returns atmospherically corrected data cube by computing the
surface reflectance values from the top of atmosphere (TOA) reflectance values in input hyperspectral
data. Use this function to perform fast atmospheric correction that uses the in-scene characteristics
for estimating the correction parameters.

The fast in-scene method gives best correction results, if the hyperspectral data

• is radiometrically calibrated
• is uniformly illuminated
• does not contain large water bodies, cloud, or cloud shadows
• contain adequate dark pixels for approximately computing the baseline spectrum
• contain heterogeneous regions that include soil, water, vegetation, and man-made structures. The

method assumes that the mean reflectance spectrum of different endmember spectra are scene-
independent.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

Perform Fast In-Scene Atmospheric Correction of Hyperspectral Data

Read hyperspectral data into the workspace.

inputCube = hypercube('EO1H0440342002212110PY_cropped.dat');

Remove low signal-to-noise ratio (SNR) bands from the hyperspectral data cube.

inputCube = removeBands(inputCube,'BandNumber',find(~inputCube.Metadata.BadBands));

Convert digital number (DN) to top of atmosphere (TOA) reflectance values.

inputCube = dn2reflectance(inputCube);

Remove atmospheric effects from the input hyperspectral data based on the in-scene characteristics.

correctedCube = fastInScene(inputCube);

1 Functions

1-3236

Input Arguments
hcube — Input hyperspectral data
hypercube object

Input hyperspectral data, specified as a hypercube object. The DataCube property of the
hypercube object stores the hyperspectral data cube. For better results, the input values must be
TOA reflectance values. If the input values are digital numbers, use the dn2reflectance function to
estimate the TOA reflectance values.

Output Arguments
newhcube — Output hyperspectral data
hypercube object

Output hyperspectral data, returned as a hypercube object. The pixel values of the data cube
returned at the output specifies the surface reflectance values.

References
[1] Bernstein, L.S., S.M. Adler-Golden, R.L. Sundberg, R.Y. Levine, T.C. Perkins, A. Berk, A.J.

Ratkowski, G. Felde, and M.L. Hoke. “A New Method for Atmospheric Correction and Aerosol
Optical Property Retrieval for VIS-SWIR Multi- and Hyperspectral Imaging Sensors: QUAC
(QUick Atmospheric Correction).” In Proceedings. 2005 IEEE International Geoscience and
Remote Sensing Symposium, 2005. IGARSS ’05., 5:3549–52. Seoul, Korea: IEEE, 2005.
https://doi.org/10.1109/IGARSS.2005.1526613.

See Also
dn2reflectance | dn2radiance | radiance2Reflectance | sharc

Introduced in R2020b

 fastInScene

1-3237

fippi
Extract endmember signatures using fast iterative pixel purity index

Syntax
endmembers = fippi(inputData,numEndmembers)
endmembers = fippi(inputData,numEndmembers,'ReductionMethod',method)

Description
endmembers = fippi(inputData,numEndmembers) extracts endmember signatures from
hyperspectral data inputData by using the fast iterative pixel purity index (FIPPI) algorithm.
numEndmembers is the number of endmember signatures to be extracted using the FIPPI algorithm.
For more information about the FIPPI method, see “Algorithms” on page 1-3241.

endmembers = fippi(inputData,numEndmembers,'ReductionMethod',method) additionally
specifies the option for selecting the dimensionality reduction method to be used before computing
the endmembers.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

Extract Endmembers Using Fast Iterative Pixel Purity Index

Read a hyperspectral data into the workspace.

hcube = hypercube('paviaU.hdr');

Find the number of spectrally distinct endmembers present in the hyperspectral data cube by using
countEndmembersHFC function.

numEndmembers = countEndmembersHFC(hcube,'PFA',10^-7);

Compute the endmembers using the fast iterative pixel purity index (FIPPI) method. By default, the
fippi function uses maximum noise fraction (MNF) transform for preprocessing.

endmembers = fippi(hcube.DataCube,numEndmembers);

Plot the endmembers of the hyperspectral data.

figure
plot(endmembers)
xlabel('Band Number')
ylabel('Pixel Values')
ylim([0 9000])
title({'Endmembers Spectra',['Number of Endmembers = ' num2str(numEndmembers)]});

1 Functions

1-3238

Use PCA Reduction Method For Computing Endmembers

Read a hyperspectral data into the workspace.

hcube = hypercube('paviaU.hdr');

Find the number of spectrally distinct endmembers present in the hyperspectral data cube by using
countEndmembersHFC function.

numEndmembers = countEndmembersHFC(hcube,'PFA',10^-7);

Compute the endmembers using the fast iterative pixel purity index (FIPPI) method. Select principal
component analysis (PCA) as the dimensionality reduction method for preprocessing.

endmembers = fippi(hcube.DataCube,numEndmembers,'ReductionMethod','PCA');

Plot the endmembers of the hyperspectral data.

 fippi

1-3239

figure
plot(endmembers)
xlabel('Band Number')
ylabel('Pixel Values')
ylim([0 9000])
title({'Endmembers Spectra',['Number of Endmembers = ' num2str(numEndmembers)]});

Input Arguments
inputData — Input hyperspectral data
3-D numeric array | hypercube object

Input hyperspectral data, specified as an 3-D numeric array or a hypercube object. If the input is a
hypercube object, then the function reads the hyperspectral data from its DataCube property.

The hyperspectral data is an numeric array of size M-by-N-by-C. M andN are the number of rows and
columns in the hyperspectral data respectively. C is the number of spectral bands in the
hyperspectral data.

1 Functions

1-3240

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

numEndmembers — Number of endmembers
positive scalar integer

Number of endmembers to be extracted, specified as a positive scalar integer. The value must be in
the range [1 C]. C is the number of spectral bands in the input hyperspectral data. You can find the
number of spectrally distinct endmembers in the input data by using the countEndmembersHFC
function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

method — Dimensionality reduction method
'MNF' (default) | 'PCA'

Dimensionality reduction method, specified as a comma-separated pair of 'ReductionMethod' and
one of 'MNF' or 'PCA'.

Specify the value as

• 'MNF' — To perform dimensionality reduction using the maximum noise fraction (MNF) method.
• 'PCA' — To perform dimensionality reduction using the principal component analysis (PCA)

method.

The function computes the endmembers from the reduced data.
Data Types: char | string

Output Arguments
endmembers — Endmember signatures
C-by-K matrix

Endmember signatures, returned as a matrix of size C-by-K and datatype same as the input
hyperspectral data.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Algorithms
FIPPI is an iterative approach that iteratively selects the better candidates for endmembers after
each iteration. Unlike pixel purity index (PPI) technique, the FIPPI method selects the initial set of
skewers by using the automatic target generation process (ATGP) [1]. As a result the algorithm
converges faster and generates unique pixel for each endmember. The steps involved in FIPPI
approach are summarized as follows:

1 Compute principal component bands and reduce the spectral dimensionality of the input data by
using MNF or PCA. The number of principal component bands to be extracted is set equal to the
number of endmembers to be extracted.

2 Find the initial set of endmembers by using the ATGP method. The initial set of endmembers
form the set of skewers skewer j

(1)
j = 1
p

 onto which you project the input data.

3 For iteration 1, Let r1 be a sample vector that denote a pixel spectra. Then, orthogonally project
the sample vector onto each skewers and find the extrema.

 fippi

1-3241

4 Store the location of each extreme value and count their occurrences. The number of
occurrences is known as the PPI count.

5 Find the PPI count for each pixel spectra and identify the set of sample vectors {rk} with
maximum PPI count as endmembers.

6 Generate a new set of skewers by combining the set of new endmembers with the initial set of
skewers.

skewer j
(2) = rk

(1) ∪ skewer j
(1)

7 For iteration 2, project all the sample vectors onto the new set of skewers and identify the new
set of endmembers. Then, generate the new set of skewers for the next iteration, skewer j

(3) .

8 The iteration stops, if the set of skewers generated in two consecutive iterations remain same.
This final set of skewers are the endmembers of the input data.

skewer j
(n + 1) = skewer j

(n)

References
[1] Chang, C.-I., and A. Plaza. “A Fast Iterative Algorithm for Implementation of Pixel Purity Index.”

IEEE Geoscience and Remote Sensing Letters 3, no. 1 (January 2006): 63–67. https://doi.org/
10.1109/LGRS.2005.856701.

See Also
hypercube | ppi | countEndmembersHFC

Introduced in R2020a

1 Functions

1-3242

flatField
Apply flat field correction to hyperspectral data cube

Syntax
correctedData = flatField(inputData,roi)

Description
correctedData = flatField(inputData,roi) applies flat field correction to the hyperspectral
data, inputData, using the flat field mean spectrum calculated in the specified region of interest
(ROI) of the hyperspectral data. A valid ROI has these characteristics:

• Topographically flat
• Spectrally flat (uniform spectral response)
• Strong signal source to reduce the impact of random noise

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

Apply Flat Field Correction to Hyperspectral Data

Read hyperspectral data into the workspace.

hcube = hypercube('paviaU');

Specify the ROI from which to calculate the flat field mean spectrum.

roi = [1 1 10 10];

Apply the flat field correction to the hyperspectral data.

hcube_flatfield = flatField(hcube,roi);

Input Arguments
inputData — Input hyperspectral data
hypercube object | M-by-N-by-C numeric array

Input hyperspectral data, specified as one of these options:

• hypercube object — The DataCube property of the hypercube object stores the hyperspectral
data cube.

 flatField

1-3243

• M-by-N-by-C numeric array — M and N are the number of rows and columns of pixels in the
hyperspectral data, respectively. C is the number of spectral bands in the hyperspectral data.

The input pixel values can be digital numbers, TOA radiance values, or TOA reflectance values. To
convert a hypercube containing digital numbers to a hypercube containing TOA radiance or TOA
reflectance data, use the dn2radiance or dn2reflectance function, respectively.

roi — ROI for calculation of flat field mean spectrum
4-element vector

ROI for the calculation of the flat field mean spectrum, specified as a 4-element vector of positive
integers of the form [xmin ymin width height]. The vector defines a rectangular ROI within the
hyperspectral data. xmin and ymin are the xy-coordinates of the upper-left corner of the ROI. width
and height are the width and height, respectively, of the ROI, in pixels

Output Arguments
correctedData — Corrected hyperspectral data
hypercube object | M-by-N-by-C numeric array

Corrected hyperspectral data, returned as a hypercube object or M-by-N-by-C numeric array
consistent with the input data, inputData. If the input data in inputData is of data type double,
then the corrected data is also of data type double. Otherwise, the corrected data is of data type
single.

References
[1] Roberts, D. A., Y. Yamaguchi, and R. J. P. Lyon. "Comparison of Various Techniques for Calibration

of AIS Data." In Proceedings of the Second Airborne Imaging Spectrometer Data Analysis
Workshop, ed. Gregg Vane and Alexander F. H. Goetz, 21 -30. Pasadena: Jet Propulsion
Laboratory, 1986.

See Also
hypercube | iarr | logResiduals | subtractDarkPixel | empiricalLine | reduceSmile |
sharc

Introduced in R2020b

1 Functions

1-3244

hypercube
Read hyperspectral data

Description
The hypercube function reads hyperspectral data and returns an hypercube object. The object
contains the hyperspectral data cube and its related properties. Use the object functions to remove or
select a desired hyperspectral band, assign new pixels values, generate colored image, and write
hyperspectral data to the ENVI (environment for visualizing images) file format.

Creation

Syntax
hcube = hypercube(filename)
hcube = hypercube(img,hdr)
hcube = hypercube(___ ,wavelength)
hcube = hypercube(tifFile,wavelength)
hcube = hypercube(image,wavelength)
hcube = hypercube(image,wavelength,metadata)

Description

hcube = hypercube(filename) reads hyperspectral data from the specified input file filename.
The input file can be a national imagery transmission format (NITF) file, Hyperion level 1R (L1R) file
stored in hierarchical data format (HDF), ENVI header or image file, or metadata text extension
(MTL) file that contains satellite data from earth observing (EO) satellites.

• EO-1 Hyperion
• EO-1 Advanced Land Imager (EO-1 ALI)
• Landsat Multispectral Scanner (Landsat MSS)
• Landsat Thematic Mapper (Landsat TM)
• Landsat Enhanced Thematic Mapper Plus (Landsat ETM+)
• Landsat Operational Land Imager / Thermal Infrared Scanner (Landsat OLI / TIRS)

Note The hypercube function reads satellite data that are stored in georeferenced tagged image
file format (GeoTIFF).

hcube = hypercube(img,hdr) reads hyperspectral data from the data file img. The data file can
be an ENVI image file or Hyperion L1R file. The function uses the metadata in the header file hdr to
interpret the data from img.

hcube = hypercube(___ ,wavelength) specifies the wavelength for each spectral band in the
input data and sets the Wavelength property of the output hypercube object.

 hypercube

1-3245

hcube = hypercube(tifFile,wavelength) reads hyperspectral data from a tagged image file
format (TIFF) file tifFile.

hcube = hypercube(image,wavelength) creates a hypercube object from the hyperspectral
data cube image and the specified center wavelength values wavelength.

hcube = hypercube(image,wavelength,metadata) creates a hypercube object from the
hyperspectral data cube image, specified center wavelength values wavelength, and the metadata
metadata. You can use this syntax to modify the Metadata property of a hypercube object.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Input Arguments

filename — Input file name
character vector | string scalar

Input file name, specified as a character vector or string scalar. The input file name must be one of
these file types.

File Format Extensions Additional Requirements
NITF files .ntf

.nsf

None

GeoTIFF metadata files from EO
satellites

.txt File name must end with suffix
"MTL".

ENVI image files

ENVI header files

.dat

.hdr

Image and header file must be
in the same folder and have the
same file name.

Hyperion level 1R image files

Hyperion header files

.L1R

.hdr

Image and header file must be
in the same folder and have the
same file name.

Data Types: char | string

img — Image file name
character vector | string scalar

Image file name, specified as a character vector or string scalar. The input file must be a flat binary
raster file with the .dat or .L1R file extensions. The binary data must be in band sequential (BSQ),
band-interleaved-by-pixel (BIP), or band-interleaved-by-line (BIL) format.
Data Types: char | string

hdr — Header file name
character vector | string scalar

Header file name, specified as a character vector or string scalar. The header file contains the
metadata for the image file img and has the extension .hdr.

1 Functions

1-3246

Data Types: char | string

wavelength — Center wavelength values
C-element vector

Center wavelength values of each spectral band, specified as C-element vector. C is the spectral
dimension, defined as the number of spectral bands, of the input hyperspectral data.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

tifFile — TIFF file name
character vector | string scalar

TIFF file name, specified as a character vector or string scalar. The file name must include the
extension .tiff or .tif.
Data Types: char | string

image — Input hyperspectral data
3-D numeric array

Input hyperspectral data, specified as a 3-D numeric array of size M-by-N-by-C. M and N are the
number of rows and columns in the hyperspectral data, respectively. C is the number of spectral
bands in the hyperspectral data.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

metadata — Metadata of hyperspectral data
structure array

Metadata of hyperspectral data, specified as a structure array.
Data Types: struct

Properties
DataCube — Hyperspectral data cube
3-D numeric array

This property is read-only.

Hyperspectral data cube, stored as a 3-D numeric array of size M-by-N-by-C. The data cube stores the
hyperspectral data read from a file or numeric array as an array of 2-D monochromatic images. C is
the number of images or spectral bands, M and N are the spatial resolution of the images in pixels.
The data cube is of the same size and data type as the input data.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Wavelength — Center wavelength values
C-element vector

This property is read-only.

Center wavelength values of each spectral band, specified as a C-element vector. C is the spectral
dimension, defined as the number of spectral bands, of the input hyperspectral data. You can set this
property by using wavelength input argument.

 hypercube

1-3247

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Metadata — Metadata of hyperspectral data
structure array

This property is read-only.

Metadata of hyperspectral data, stored as a structure array with these fields as defaults.

Field Description
Height Height of the image or number of rows in the

data cube, specified as a positive integer
Width Width of the image or number of columns in the

data cube, specified as a positive integer
Bands Number of spectral bands comprising the data

cube, specified as a positive integer
DataType Data type of data, specified as any of these

values:

• "single"
• "double"
• "uint8"
• "uint16"
• "int16"
• "uint32"
• "int32"
• "uint64"
• "int64"

Interleave Data interleave, specified as any one of these
values:

• "bsq" — Band-sequential
• "bil" — Band-interleaved-by-line
• "bip" — Band-interleaved-by-pixel

HeaderOffset Zero-based location of the first element in the
image file, specified as a positive integer

The header offset represents the number of bytes
from the beginning of the image file to the start
of the image data. The default value is 0.

ByteOrder Endianness of the data, specified as the string
"ieee-le" for little endian or "ieee-be" for
big endian.

WavelengthUnits Units for the wavelengths of spectral bands,
specified as a string. The default value is
"Nanometers".

1 Functions

1-3248

Note The Metadata property of hypercube object can have one or more additional fields depending
on the parameter values stored in the header file of the input hyperspectral data. You can modify the
parameters values of the Metadata property or add new Metadata to the hypercube object by
specifying the input argument metadata.

Data Types: struct

Object Functions
assignData Assign new data to hyperspectral data cube
cropData Crop regions-of-interest
enviwrite Write hyperspectral data to ENVI file format
selectBands Select most informative bands
removeBands Remove spectral bands from data cube
colorize Estimate color image of hyperspectral data

Examples

Read and Visualize Hyperspectral Data from ENVI File

Read hyperspectral data stored in the ENVI format into the workspace. Create a hypercube object
by specifying an ENVI data file and the associated ENVI header file.

hcube = hypercube('paviaU.dat','paviaU.hdr');

Display the properties of the hypercube object.

hcube

hcube =
 hypercube with properties:

 DataCube: [610×340×103 double]
 Wavelength: [103×1 double]
 Metadata: [1×1 struct]

Estimate an RGB image from the hyperspectral data by using the colorize function. Visualize the
RGB image.

rgbImg = colorize(hcube,'Method','RGB');
figure
imagesc(rgbImg)
title('RGB Image of Data Cube')

 hypercube

1-3249

Inspect the metadata of the hypercube object.

hcube.Metadata

ans = struct with fields:
 Filename: "Y:\jobarchive\Bspkg20b\2020_06_16_h06m34s27_job1406120_pass\matlab\toolbox\images\supportpackages\hyperspectral\hyperdata\paviaU.hdr"
 FileModDate: "25-Feb-2020 14:29:34"
 FileSize: 654
 Format: "HDR"
 FormatVersion: ''
 SensorType: [0×0 string]
 Description: [0×0 string]
 AcquisitionTime: [0×0 string]
 RasterFormat: "ENVI"
 Height: 610
 Width: 340
 Bands: 103
 DataType: "double"
 Interleave: "bsq"
 HeaderOffset: 0
 ByteOrder: "ieee-le"

1 Functions

1-3250

 BandNames: [0×0 string]
 FWHM: []
 Gain: []
 Offset: []
 ReflectanceGain: []
 ReflectanceOffset: []
 BadBands: []
 CloudCover: []
 SunAzimuth: []
 SunElevation: []

Read Data from ENVI File and Replace Wavelength Values

Read ENVI format data into the workspace by specifying a header file that contains information about
hyperspectral data. The associated ENVI binary data file must be stored in the same folder as the
ENVI header file.

hcube = hypercube('paviaU.hdr');

Display the properties of the hypercube object.

hcube

hcube =
 hypercube with properties:

 DataCube: [610×340×103 double]
 Wavelength: [103×1 double]
 Metadata: [1×1 struct]

Estimate an RGB image from the data cube by using the colorize function. Increase the contrast of
the RGB image using contrast stretching. Visualize the RGB image.

rgbImg = colorize(hcube,'Method','RGB','ContrastStretching',true);
figure
imagesc(rgbImg)
title('RGB Image of Data Cube')

 hypercube

1-3251

Assign new center wavelength values for the hyperspectral data. The number of wavelength values
must be equal to the number of bands in the hyperspectral data cube. Each wavelength value must be
unique values.

minWavelength = 500;
maxWavelength = 1010;
newWavelength = minWavelength:5:maxWavelength;

Create a new hypercube object with the new wavelength values.

newhcube = hypercube('paviaU.hdr',newWavelength);

Plot the old and the new wavelength values. Display the wavelength range.

figure
plot(hcube.Wavelength,'o')
hold on
plot(newhcube.Wavelength,'or')
xlabel('Band Number')
ylabel('Wavelength')
str1 = ['Original wavelength range: ' num2str(min(hcube.Wavelength)) 'nm to ' num2str(max(hcube.Wavelength)) 'nm'];

1 Functions

1-3252

text(5,1075,str1)
str2 = ['New wavelength range: ' num2str(min(newhcube.Wavelength)) 'nm to ' num2str(max(newhcube.Wavelength)) 'nm'];
text(5,1035,str2)
legend('Original Values','New Values','Location','SouthEast')

Create Data Cube from Numeric Inputs

Read an RGB image into the workspace. An RGB image contains three spectral channels: red, green,
and blue channels.

image = imread('peppers.png');

Specify the center wavelength values for the red, green, and blue channels as 700, 530, and 470
nanometers (nm) respectively.

wavelength = [700 530 470];

Create a hypercube object using the image and the wavelength values.

 hypercube

1-3253

hcube = hypercube(image,wavelength)

hcube =
 hypercube with properties:

 DataCube: [384×512×3 uint8]
 Wavelength: [3×1 double]
 Metadata: [1×1 struct]

Modify Metadata Property

Read a hyperspectral data into the workspace and inspect its properties.

hcube = hypercube('paviaU.dat');

Inspect the Metadata property of the hypercube object.

hcube.Metadata

ans = struct with fields:
 Filename: "B:\matlab\toolbox\images\supportpackages\hyperspectral\hyperdata\paviaU.hdr"
 FileModDate: "25-Feb-2020 03:59:34"
 FileSize: 654
 Format: "HDR"
 FormatVersion: ''
 SensorType: [0x0 string]
 Description: [0x0 string]
 AcquisitionTime: [0x0 string]
 RasterFormat: "ENVI"
 Height: 610
 Width: 340
 Bands: 103
 DataType: "double"
 Interleave: "bsq"
 HeaderOffset: 0
 ByteOrder: "ieee-le"
 BandNames: [0x0 string]
 FWHM: []
 Gain: []
 Offset: []
 ReflectanceGain: []
 ReflectanceOffset: []
 BadBands: []
 CloudCover: []
 SunAzimuth: []
 SunElevation: []
 SolarIrradiance: []
 EarthSunDistance: []
 WavelengthUnits: "Nanometers"

Find and remove the empty fields from the metadata.

metadata = hcube.Metadata;
fields = fieldnames(metadata);

1 Functions

1-3254

indx = find(structfun(@isempty,metadata)==1);
newMetadata = rmfield(metadata,fields(indx));

Set the value for the AcquistionTime field to current date.

currentDate = datestr(now,'yyyy-mm-dd');
newMetadata.AcquistionTime = currentDate;

Create a hypercube object with the new metadata. The DataCube and Wavelength properties of
the new hypercube object is same as that of the input data.

nhcube = hypercube(hcube.DataCube,hcube.Wavelength,newMetadata);

Inspect the Metadata property of the new hypercube object.

nhcube.Metadata

ans = struct with fields:
 Height: 610
 Width: 340
 Bands: 103
 DataType: "double"
 Interleave: "bsq"
 HeaderOffset: 0
 ByteOrder: "ieee-le"
 AcquistionTime: '2021-09-01'
 WavelengthUnits: "Nanometers"

See Also
enviinfo | fippi | nfindr | estimateAbundanceLS | ndvi | countEndmembersHFC | hyperpca |
hypermnf | inverseProjection | multibandread | multibandwrite | nitfread | h5read

Introduced in R2020a

 hypercube

1-3255

hypermnf
Maximum noise fraction transform of hyperspectral data

Syntax
outputDataCube = hypermnf(inputData,numComponents)
[outputDataCube,coeff] = hypermnf(inputData,numComponents)
[___] = hypermnf(inputData,numComponents,'MeanCentered',flag)

Description
outputDataCube = hypermnf(inputData,numComponents) computes specified number of
principal component bands numComponents by using the maximum noise fraction (MNF) transform.
To achieve spectral dimensionality reduction, the specified number of principal components must be
less than the number of spectral bands in the input data cube.

The components derived using MNF transform are also called non-adjusted principal components and
the MNF transform arranges principal components (PC) in the decreasing order of PC image quality.

[outputDataCube,coeff] = hypermnf(inputData,numComponents) also returns the MNF
coefficients estimated across the spectral bands of the input data cube.

[___] = hypermnf(inputData,numComponents,'MeanCentered',flag) computes MNF
transform from mean centered spectral bands. The option for mean centering each spectral band in
the input data cube is specified by flag.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

Reduce Spectral Dimensionality of Data Cube Using MNF

Read a hyperspectral data into the workspace.

hcube = hypercube('indian_pines.dat');

Compute 10 principal component bands of hyperspectral data and the associated transformation
coefficients.

[outputDataCube,coeff] = hypermnf(hcube,10);

Display the first 10 spectral bands in input data cube.

figure
montage(hcube.DataCube(:,:,1:10),'BorderSize',[10 10],'Size',[2 5],'DisplayRange',[]);
title('First 10 Spectral Band Images')

1 Functions

1-3256

For the purpose of visualization, rescale the principal component values to lie in the range [0, 1].
Display all the principal component bands extracted from the data cube. The principal component
bands are arranged in the order of decreasing image quality (or increasing noise level).

figure
rescalePC = rescale(outputDataCube,0,1);
montage(rescalePC,'BorderSize',[10 10],'Size',[2 5]);
title('Principal Component Bands of Data Cube')

Input Arguments
inputData — Input hyperspectral data
3-D numeric array | hypercube object

 hypermnf

1-3257

Input hyperspectral data, specified as a 3-D numeric array that represent the hyperspectral data cube
of size M-by-N-by-C or hypercube object. If the input is a hypercube object, the function reads the
data cube stored in the DataCube property of the object. The hyperspectral data cube must be real
and non-sparse.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

numComponents — Number of principal components to extract
positive integer scalar

Number of principal component bands to extract from the data cube, specified as a positive integer
scalar. The value must be less than or equal to the number of spectral bands in the input data cube.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

flag — Indicator for mean centering spectral bands
trueor 1 (default) | false or 0

Indicator for mean centering spectral bands, specified as one of these values:

• true or 1 — Mean center each spectral bands in the input data cube by subtracting the mean of
spectral bands before computing the MNF transform.

• false or 0 — Compute principal component bands without mean centering the spectral bands in
the input data cube.

Data Types: logical

Output Arguments
outputDataCube — MNF transformed data cube
3-D numeric array

MNF transformed data cube, returned as a 3-D numeric array of size M-by-N-by-numComponents.
The spatial dimension of the output data cube is same as that of the input data cube. The spectral
dimension of the output data cube is equal to the number of principal components specified at the
input.

If the input data type is double, the output data type is also double. Otherwise, the output data type is
single.
Data Types: single | double

coeff — MNF coefficients
matrix

MNF coefficients, returned as a matrix of size C-by-numComponents. C is the number of spectral
bands in the input data cube. Each column of coeff contains the coefficients for one principal
component. The columns are in the order of principal component image quality.

If the input data type is double, the data type of coeff is also double. Otherwise, the data type is
single.
Data Types: single | double

1 Functions

1-3258

References
[1] Green, A.A., M. Berman, P. Switzer, and M.D. Craig. “A Transformation for Ordering Multispectral

Data in Terms of Image Quality with Implications for Noise Removal.” IEEE Transactions on
Geoscience and Remote Sensing 26, no. 1 (January 1988): 65–74. https://doi.org/
10.1109/36.3001.

See Also
hyperpca | inverseProjection | hypercube

Introduced in R2020a

 hypermnf

1-3259

hyperpca
Principal component analysis of hyperspectral data

Syntax
outputDataCube = hyperpca(inputData,numComponents)
[outputDataCube,coeff] = hyperpca(___)
[outputDataCube,coeff,var] = hyperpca(___)
[___] = hyperpca(___ ,Name,Value)

Description
outputDataCube = hyperpca(inputData,numComponents) computes the specified number of
principal components from the spectral bands of the hyperspectral data cube. The function returns a
new data cube that contains the principal component bands. The number of spectral bands in the
output data cube is equal to the number of specified principal components numComponents. To
achieve spectral dimensionality reduction, the specified number of principal components must be less
than the number of spectral bands in the hyperspectral data cube inputData.

[outputDataCube,coeff] = hyperpca(___) also returns the principal component coefficients
estimated across the spectral dimension of the hyperspectral data cube.

[outputDataCube,coeff,var] = hyperpca(___) returns the percentage of variance retained
by the principal component bands in addition to the output arguments mention in the previous
syntaxes.

[___] = hyperpca(___ ,Name,Value) specifies the principal component analysis (PCA) method
and additional options by using the name-value pair arguments.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

Reduce Spectral Dimensionality of Data Cube Using PCA

Read a hyperspectral data into the workspace.

hcube = hypercube('paviaU.dat');

Compute the principal component bands of the hyperspectral data cube. Specify the number of
principal components to extract as 10. By default, the function uses the singular value decomposition
(SVD) method for extracting principal components.

reducedDataCube = hyperpca(hcube,10);

Display the first 10 spectral bands in input data cube.

1 Functions

1-3260

figure
montage(hcube.DataCube(:,:,1:10),'BorderSize',[10 10],'Size',[2 5],'DisplayRange',[]);

For the purpose of visualization, rescale the principal component values to lie in the range [0, 1].
Display all the principal component bands extracted from the data cube.

figure
rescalePC = rescale(reducedDataCube,0,1);
montage(rescalePC,'BorderSize',[10 10],'Size',[2 5]);
title('Principal Component Bands of Data Cube')

 hyperpca

1-3261

Derive Principal Component Coefficients of Data Cube

Read a hyperspectral data into the workspace.

hcube = hypercube('paviaU.dat');

Perform PCA of input data cube using Eigen value decomposition. Specify the number of principal
components to extract as 3. Derive the principal component (PC) bands, coefficients, and retained
variance.

[outputDataCube,coeff,var] = hyperpca(hcube,3,'Method','Eig');

For the purpose of visualization, rescale the principal component values to lie in the range [0, 1].
Display all the principal component bands extracted from the data cube.

figure
rescalePC = rescale(outputDataCube,0,1);
montage(rescalePC,'BorderSize',[10 10],'Size',[1 3]);
title('Principal Component Bands of Data Cube')

1 Functions

1-3262

Plot the principal component coefficients and display the percentage of variance retained by each of
the principal components. The summation of retained variance values imply that almost 99% of the
information in input hyperspectral data is captured by the 3 principal components.

figure
plot(hcube.Wavelength,coeff);
legend(['PC1';'PC2';'PC3'],'Location','SouthEast')
text(430,0.19,'Retained variance');
text(430,0.17,['PC1: ' num2str(var(1))])
text(430,0.15,['PC2: ' num2str(var(2))])
text(430,0.13,['PC3: ' num2str(var(3))])
xlabel('Wavelength')
ylabel('PC Coefficients')

 hyperpca

1-3263

Input Arguments
inputData — Input hyperspectral data
3-D numeric array | hypercube object

Input hyperspectral data, specified as a 3-D numeric array that represent the hyperspectral data cube
of size M-by-N-by-C or hypercube object. If the input is a hypercube object, the function reads the
data from the DataCube property of the object. The hyperspectral data cube must be real and non-
sparse.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

numComponents — Number of principal component bands to extract
positive integer scalar

Number of principal component bands to extract from the data cube, specified as a positive integer
scalar. The value must be less than or equal to the number of spectral bands in the input data cube.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

1 Functions

1-3264

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: hyperpca(hcube,10,'Method','eig')

Method — PCA method
'svd' (default) | 'eig'

Method for PCA, specified as one of these values:

• 'svd' — To derive principal components by using the singular value decomposition method.
• 'eig' — To derive principal components by using the eigen value decomposition method.

Data Types: char | string

MeanCentered — Indicator for mean centering spectral bands
trueor 1 (default) | false or 0

Indicator for mean centering spectral bands, specified as one of these values:

• true or 1 — To center each spectral bands in the input data cube by subtracting the mean of
spectral bands before computing the principal component bands.

• false or 0 — To compute principal component bands without mean centering the spectral bands
in the input data cube.

Data Types: logical

Output Arguments
outputDataCube — PCA transformed data cube
3-D numeric array

PCA transformed data cube, returned as a 3-D numeric array of size M-by-N-by-numComponents. The
spatial dimension of the output data cube is same as that of the input data cube. The spectral
dimension of the output data cube is equal to the specified number of principal components
numComponents.

If the input data type is double, the output data type is also double. Otherwise, the output data type is
single.
Data Types: single | double

coeff — Principal component coefficients
matrix

Principal component coefficients, returned as a matrix of size C-by-numComponents. C is the number
of spectral bands in the input data cube. Each column of coeff contains the coefficients for one
principal component. The columns are in the order of descending component variance.

If the input data type is double, the data type of coeff is also double. Otherwise, the data type is
single.
Data Types: single | double

 hyperpca

1-3265

var — Variance retained by each principal component
vector

Variance retained by each principal component, returned as a vector of length equal to
numComponents. The retained variance specifies the total percentage of variance explained by each
principal component.

If the input data type is double, the data type of var is also double. Otherwise, the data type is single.
Data Types: single | double

See Also
hypermnf | inverseProjection | hypercube

Introduced in R2020a

1 Functions

1-3266

iarr
Apply internal average relative reflectance (IARR) correction to hyperspectral data cube

Syntax
correctedData = iarr(inputData)

Description
correctedData = iarr(inputData) applies IARR based correction to the hyperspectral data
inputData. The IARR method computes the mean spectrum from the entire hyperspectral dataset,
then divides the spectrum of each pixel by the mean spectrum.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

Apply IARR Correction to Hyperspectral Data

Read hyperspectral data into the workspace. This data is from the EO-1 Hyperion sensor, with pixel
values in digital numbers.

hcube = hypercube('EO1H0440342002212110PY_cropped.hdr');

Convert the digital numbers to top of atmosphere (TOA) reflectance values.

hcube_toa = dn2reflectance(hcube);

Apply IARR correction to the reflectance data.

hcube_iarr = iarr(hcube_toa);

Input Argument
inputData — Input hyperspectral data
hypercube object | M-by-N-by-C numeric array

Input hyperspectral data, specified as one of these options:

• hypercube object — The DataCube property of the hypercube object stores the hyperspectral
data cube.

• M-by-N-by-C numeric array — M and N are the number of rows and columns of pixels in the
hyperspectral data, respectively. C is the number of spectral bands in the hyperspectral data.

 iarr

1-3267

The input pixel values can be digital numbers, TOA radiance values, or TOA reflectance values. To
convert a hypercube containing digital numbers to a hypercube containing TOA radiance or TOA
reflectance data, use the dn2radiance or dn2reflectance function, respectively.

Output Arguments
correctedData — Corrected hyperspectral data
hypercube object | M-by-N-by-C numeric array

Corrected hyperspectral data, returned as a hypercube object or M-by-N-by-C numeric array
consistent with the input data, inputData. If the input data in inputData is of data type double,
then the corrected data is also of data type double. Otherwise, the corrected data is of data type
single.

References
[1] Kruse, Fred A. “Use of Airborne Imaging Spectrometer Data to Map Minerals Associated with

Hydrothermally Altered Rocks in the Northern Grapevine Mountains, Nevada, and
California.” Remote Sensing of Environment 24, no. 1 (February 1988): 31–51. https://doi.org/
10.1016/0034-4257(88)90004-1.

See Also
hypercube | logResiduals | flatField | subtractDarkPixel | empiricalLine |
reduceSmile | sharc

Introduced in R2020b

1 Functions

1-3268

inverseProjection
Reconstruct data cube from principal component bands

Syntax
reconstructedData = inverseProjection(pcDataCube,coeff)

Description
reconstructedData = inverseProjection(pcDataCube,coeff) reconstructs the original
spectral bands in a hyperspectral data cube from the PCA (principal component analysis) or MNF
(maximum noise fraction) transformed data cube and their related coefficients.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

Reconstruct Data From Principal Component Coefficients

Read a hyperspectral data into the workspace.

hcube = hypercube('indian_pines.dat');

Extract 10 principal component bands and the transformation coefficients using the principal
component analysis method.

[pcDataCube,coeff] = hyperpca(hcube,10);

Reconstruct the original data from 10 principal component bands.

reconstructedData = inverseProjection(pcDataCube,coeff);

Display the first 10 spectral bands in input data cube.

figure
montage(hcube.DataCube(:,:,1:10),'BorderSize',[10 10],'Size',[2 5],'DisplayRange',[]);
title('Original Data Cube')

 inverseProjection

1-3269

Display the first 10 spectral bands in the reconstructed data cube.

figure
montage(reconstructedData(:,:,1:10),'BorderSize',[10 10],'Size',[2 5],'DisplayRange',[]);
title('Reconstructed Data Cube')

Input Arguments
pcDataCube — PCA or MNF transformed data cube
3-D numeric array

PCA or MNF transformed data cube, specified as a 3-D numeric array of size M-by-N-by-P. The PCA
or MNF transformed data cube of a hyperspectral data cube is computed using the hyperpca or

1 Functions

1-3270

hypermnf functions respectively. P specifies the number of principal component bands in the
transformed data cube.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

coeff — PCA or MNF coefficients
matrix

PCA or MNF coefficients, specified as a matrix of size C-by-P.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
reconstructedData — Reconstructed data cube
3-D numeric array

Reconstructed data cube, returned as a 3-D numeric array of size M-N-by-C. The data type of the
reconstructed data cube is same as that of the transformed data cube at the input.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

See Also
hypermnf | hyperpca

Introduced in R2020a

 inverseProjection

1-3271

jmsam
Measure spectral similarity using Jeffries Matusita-Spectral Angle Mapper method

Syntax
score = jmsam(inputData,refSpectrum)
score = jmsam(testSpectrum,refSpectrum)

Description
score = jmsam(inputData,refSpectrum) measures the spectral similarity between the
spectrum of each pixel in the hyperspectral data inputData and the specified reference spectrum
refSpectrum by using Jeffries Matusita-Spectral Angle Mapper (JMSAM) method. Use this syntax to
identify different regions or materials in a hyperspectral data cube. For information about the JMSAM
method, see “More About” on page 1-3277.

score = jmsam(testSpectrum,refSpectrum) measures the spectral similarity between the
specified test spectrum testSpectrum and reference spectrum refSpectrum by using the JMSAM
method. Use this syntax to compare the spectral signature of an unknown material against the
reference spectrum or to compute spectral variability between two spectral signatures.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

Distinguish Hyperspectral Regions Using JM-SAM Hybrid Measure

Read hyperspectral data into the workspace.

hcube = hypercube('paviaU.dat');

Extract the first 9 endmember spectral signatures from the data cube by using the NFINDR
algorithm.

numEndmembers = 9;
endmembers = nfindr(hcube,numEndmembers);

Plot the spectral signatures of the extracted endmembers.

figure
plot(endmembers)
xlabel('Bands')
ylabel('Reflectance')
legend('Location','Bestoutside')

1 Functions

1-3272

Compute the JM-SAM distance between each endmember and the spectrum of each pixel in the data
cube.

score = zeros(size(hcube.DataCube,1),size(hcube.DataCube,2),numEndmembers);
for i = 1:numEndmembers
 score(:,:,i) = jmsam(hcube,endmembers(:,i));
end

Compute the minimum score value from the distance scores obtained for each pixel spectrum with
respect to all the endmembers. The index of each minimum score identifies the endmember spectrum
to which a pixel spectrum exhibits maximum similarity. An index value, n, at the spatial location (x, y)
in the score matrix indicates that the spectral signature of the pixel at spatial location (x, y) in the
data cube best matches the spectral signature of the nth endmember.

[~,matchingIdx] = min(score,[],3);

Estimate an RGB image of the input data by using the colorize function.

rgbImg = colorize(hcube,'Method','rgb','ContrastStretching',true);

Display both the RGB image and the matrix of matched index values.

figure('Position',[0 0 800 400])
subplot('Position',[0 0.1 0.4 0.8])
imagesc(rgbImg)
axis off
title('RGB Image of Hyperspectral Data')

 jmsam

1-3273

subplot('Position',[0.45 0.1 0.45 0.8])
imagesc(matchingIdx)
axis off
title('Indices of Matching Endmembers')
colorbar

Determine Similarity of Endmember Spectra Using JM-SAM

Read hyperspectral data into the workspace.

hcube = hypercube('indian_pines.dat');

Find the first 10 endmembers of the hyperspectral data.

numEndmembers = 10;
endmembers = nfindr(hcube,numEndmembers);

Consider the first endmember as the reference spectrum and the rest of the endmembers as the test
spectra.

refSpectrum = endmembers(:,1);
testSpectra = endmembers(:,2:end);

Plot the reference spectrum and other endmember spectra.

figure
plot(refSpectrum,'LineWidth',2)
hold on
plot(testSpectra)
hold off

1 Functions

1-3274

label = cell(1,numEndmembers-1);
label{1} = 'Reference';
for itr = 1:numEndmembers-1
 label{itr+1} = ['endmember-' num2str(itr)];
end
xlabel('Bands')
ylabel('Reflectances')
legend(label)
xlim([1 size(hcube.DataCube,3)]);

Compute the JM-SAM score between the reference and test spectra.

score = zeros(1,numEndmembers-1);
for itr = 1:numEndmembers-1
 score(itr) = jmsam(testSpectra(:,itr),refSpectrum);
end

Find the test spectrum that exhibit maximum similarity (minimum distance) to the reference
spectrum. Then find the test spectrum that exhibit minimum similarity (maximum distance) to the
reference spectrum.

[minval,minidx] = min(score);
maxMatch = testSpectra(:,minidx);
[maxval,maxidx] = max(score);
minMatch = testSpectra(:,maxidx);

Plot the reference spectrum, the maximum similarity, and the minimum similarity test spectrum. The
test spectrum with the minimum score value indicates highest similarity to the reference endmember.

 jmsam

1-3275

On the other hand, the test spectrum with the maximum score value has the highest spectral
variability and characterises the spectral behaviour of two different materials.

figure
plot(refSpectrum,'LineWidth',2)
hold on
plot(maxMatch,'k')
plot(minMatch,'r')
xlabel('Band Number')
ylabel('Data Values')
xlim([1 size(hcube.DataCube,3)]);
legend('Reference spectrum','Maximum match test spectrum','Minimum match test spectrum')
title('Similarity Between Spectra')
text(5,1000,['Max score: ' num2str(maxval)],'Color','r')
text(140,3000,['Min score: ' num2str(minval)],'Color','k')

Input Arguments
inputData — Input hyperspectral data
hypercube object | 3-D numeric array

Input hyperspectral data, specified as a hypercube object or a 3-D numeric array containing the data
cube. If the input is a hypercube object, the data is read from the DataCube property of the object.

testSpectrum — Test spectrum
C-element vector

1 Functions

1-3276

Test spectrum, specified as a C-element vector. The test spectrum is the spectral signature of an
unknown region or material.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

refSpectrum — Reference spectrum
C-element vector

Reference spectrum, specified as a C-element vector. The reference spectrum is the spectral
signature of a known region or material. The function matches the test spectrum against these
values.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
score — JMSAM score
scalar | matrix

JMSAM score, returned as a scalar or matrix. The output is a

• scalar — If you specify the testSpectrum input argument. The function matches the test spectral
signature against the reference spectral signature and returns a scalar value. Both the test and
the reference spectra must be vectors of same length.

• matrix — If you specify the inputData input argument. The function matches the spectral
signature of each pixel in the data cube against the reference spectral signature and returns a
matrix. If the data cube is of size M-by-N-by-C and the reference spectra is a vector of length C,
the output matrix is of size M-by-N.

A smaller JMSAM score indicates a strong match between the test signature and the reference
signature.
Data Types: single | double

More About
Jeffries Matusita-Spectral Angle Mapper (JMSAM)

The JMSAM method computes spectral similarity based on the Jeffries Matusita (JM) and SAM
distances between two spectra. Let r and t be the reference and test spectra respectively.

First, compute the JM distance,

where B is the Bhattacharyya distance,

B = 1
8 μt− μr

T σt + σr
2

−1
μt− μr + 1

2ln
σt + σr

2
σt σr

μr and μt are the mean values of the reference and test spectra respectively. σr and σt are the
covariance values of the reference and test spectra respectively.

Then, compute the SAM value α by using the test spectra t and a reference spectra r of length C,

 jmsam

1-3277

Finally, compute the JMSAM score as:

JMSAM = JMdistance × tan α

References
[1] Padma, S., and S. Sanjeevi. “Jeffries Matusita Based Mixed-Measure for Improved Spectral

Matching in Hyperspectral Image Analysis.” International Journal of Applied Earth
Observation and Geoinformation 32 (October 2014): 138–51. https://doi.org/10.1016/
j.jag.2014.04.001.

See Also
spectralMatch | readEcostressSig | sid | hypercube | sidsam | ns3 | sam

Introduced in R2020b

1 Functions

1-3278

logResiduals
Apply log residual correction to hyperspectral data cube

Syntax
correctedData = logResiduals(inputData)

Description
correctedData = logResiduals(inputData) applies a log residual correction to the
hyperspectral data inputData. The log residual method divides the spectrum of each pixel by the
spectral geometric mean and the spatial geometric mean, which produces a pseudoreflectance data
set.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

Apply Log Residual Correction to Hyperspectral Data

Read hyperspectral data into the workspace. This data is from the EO-1 Hyperion sensor, with pixel
values in digital numbers.

hcube = hypercube('EO1H0440342002212110PY_cropped.hdr');

Convert the digital numbers to top of atmosphere (TOA) reflectance values.

hcube_toa = dn2reflectance(hcube);

Apply a log residual correction to the reflectance data.

hcube_logR = logResiduals(hcube_toa);

Input Arguments
inputData — Input hyperspectral data
hypercube object | M-by-N-by-C numeric array

Input hyperspectral data, specified as one of these options:

• hypercube object — The DataCube property of the hypercube object stores the hyperspectral
data cube.

• M-by-N-by-C numeric array — M and N are the number of rows and columns of pixels in the
hyperspectral data, respectively. C is the number of spectral bands in the hyperspectral data.

 logResiduals

1-3279

The input pixel values can be digital numbers, TOA radiance values, or TOA reflectance values. To
convert a hypercube containing digital numbers to a hypercube containing TOA radiance or TOA
reflectance data, use the dn2radiance or dn2reflectance function, respectively.

Output Arguments
correctedData — Corrected hyperspectral data
hypercube object | M-by-N-by-C numeric array

Corrected hyperspectral data, returned as a hypercube object or M-by-N-by-C numeric array
consistent with the input data, inputData. If the input data in inputData is of data type double,
then the corrected data is also of data type double. Otherwise, the corrected data is of data type
single.

References
[1] Green, A. A. and M. D. Craig. "Analysis of Aircraft Spectrometer Data with Logarithmic

Residuals." In Proceedings of the Airborne Imaging Spectrometer Data Analysis Workshop,
ed. Gregg Vane and Alexander F. H. Goetz, 111–119. Pasadena: Jet Propulsion Laboratory,
1985.

See Also
hypercube | iarr | flatField | subtractDarkPixel | empiricalLine | reduceSmile | sharc

Introduced in R2020b

1 Functions

1-3280

nfindr
Extract endmember signatures using N-FINDR

Syntax
endmembers = nfindr(inputData,numEndmembers)
endmembers = nfindr(inputData,numEndmembers,Name,Value)

Description
endmembers = nfindr(inputData,numEndmembers) extracts endmember signatures from
hyperspectral data cube by using the N-finder (N-FINDR) algorithm. numEndmembers is the number
of endmember signatures to be extracted using N-FINDR algorithm. For more information about the
N-FINDR method, see “Algorithms” on page 1-3285.

endmembers = nfindr(inputData,numEndmembers,Name,Value) specifies options using one
or more name-value pair arguments in addition to the input arguments in the previous syntax. Use
this syntax to set the options for number of iterations and dimensionality reduction.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

Extract Endmembers Using N-FINDR Method

Read a hyperspectral data into the workspace.

hcube = hypercube('paviaU.hdr');

Find the number of spectrally distinct endmembers present in the hyperspectral data cube by using
countEndmembersHFC function.

numEndmembers = countEndmembersHFC(hcube,'PFA',10^-7);

Compute the endmembers using the N-FINDR method. By default, the nfindr function uses
maximum noise fraction (MNF) transform for preprocessing. The default value for number of
iterations is 3 times the number of estimated endmembers.

endmembers = nfindr(hcube.DataCube,numEndmembers);

Plot the endmembers of the hyperspectral data.

figure
plot(endmembers)
xlabel('Band Number')
ylabel('Pixel Values')

 nfindr

1-3281

ylim([0 9000])
title({'Endmembers Spectra',['Number of Endmembers = ' num2str(numEndmembers)]});

Set N-FINDR Parameter Values for Finding Endmembers

Read a hyperspectral data into the workspace.

hcube = hypercube('paviaU.hdr');

Find the number of spectrally distinct endmembers present in the hyperspectral data cube by using
countEndmembersHFC function.

numEndmembers = countEndmembersHFC(hcube,'PFA',10^-7);

Compute the endmembers using the N-FINDR method. Specify the value for number of iterations as
1000. Select principal component analysis (PCA) as the dimensionality reduction method for
preprocessing.

endmembers = nfindr(hcube.DataCube,numEndmembers,'NumIterations',1000,'ReductionMethod','PCA');

1 Functions

1-3282

Plot the endmembers of the hyperspectral data.

figure
plot(endmembers)
xlabel('Band Number')
ylabel('Pixel Values')
ylim([0 9000])
title({'Endmembers Spectra',['Number of Endmembers = ' num2str(numEndmembers)]});

Input Arguments
inputData — Input hyperspectral data
3-D numeric array | hypercube object

Input hyperspectral data, specified as an 3-D numeric array or a hypercube object. If the input is a
hypercube object, then the function reads the hyperspectral data from its DataCube property.

 nfindr

1-3283

The hyperspectral data is an numeric array of size M-by-N-by-C. M and N are the number of rows and
columns in the hyperspectral data respectively. C is the number of spectral bands in the
hyperspectral data.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

numEndmembers — Number of endmembers
positive scalar integer

Number of endmembers to extract, specified as a positive scalar integer. The value must be in the
range [1 C]. C is the number of spectral bands in the input hyperspectral data.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: nfindr(cube,7,'NumIterations',100,'Method','None')

NumIterations — Number of iterations
3P (default) | positive scalar integer

Number of iterations, specified as a positive scalar integer. The default value is 3P. P is the number of
endmember signatures to be extracted. The computation time of the algorithm increases with the
increase in the number of iterations.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ReductionMethod — Dimensionality reduction method
'MNF' (default) | 'PCA'

Dimensionality reduction method, specified as one of these values:

• 'MNF' — To perform dimensionality reduction by using the maximum noise fraction (MNF)
method. This is the default.

• 'PCA' — To perform dimensionality reduction by using the principal component analysis (PCA)
method.

If you specify this argument, the function first reduces the spectral dimension of the input data by
using the specified method. Then, it computes the endmember signatures from the reduced data.
Data Types: char | string

Output Arguments
endmembers — Endmember signatures
C-by-P matrix

Endmember signatures, returned as a matrix of size C-by-P and datatype same as the datatype of the
input hyperspectral data.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

1 Functions

1-3284

Algorithms
N-FINDR is an iterative approach for finding the endmembers of a hyperspectral data. The method
assumes that the volume of a simplex formed by the endmembers (purest pixels) is larger than any
other volume defined by any other combination of pixels [1]. The steps involved are as follows:

1 Compute principal component bands and reduce the spectral dimensionality of the input data by
using MNF or PCA. The number of principal component bands to be extracted is set equal to the
number of endmembers to be extracted. The endmembers are extracted from the principal
component bands.

2 Randomly select n number of pixel spectra from the reduced data as initial set of endmembers.
3 For iteration 1, denote the initial set of endmembers as e1

(1), e2
(1), ⋯ , ep

(1) .

Consider the endmembers as vertices of a simplex and compute the volume by using

V E(1) = det E(1)

where E(1) =
1 1 ⋯ 1

e1
(1) e2

(1) ⋯ ep
(1) .

4 For iteration 2, Select a new pixel spectra r, such that r ∉ e1
(1), e2

(1), ⋯ , ep
(1) .

5 Replace each endmember in the set with r and compute the volume of the simplex V(E(2)).
6 Replace the ith endmember in the set with r, if the computed volume V(E(2)) is greater than

V(E(1)). This results in an updated set of endmembers. For example, if i = 2, the new set of
endmembers derived at the end of the second iteration is e1

(2), e2
(2) = r, ⋯ , ep

(2) .

7 For each iteration, select a new pixel spectra r and repeat steps 5 and 6. Each iteration results in
an update set of endmembers. The iteration ends when the total number of iterations reaches the
specified value NumIterations.

References
[1] Winter, Michael E. “N-FINDR: An Algorithm for Fast Autonomous Spectral End-Member

Determination in Hyperspectral Data.” Proc. SPIE Imaging Spectrometry V 3753, (October
1999): 266–75. https://doi.org/10.1117/12.366289.

See Also
hypercube | ppi | countEndmembersHFC | fippi

Introduced in R2020a

 nfindr

1-3285

ndvi
Normalized vegetation index

Syntax
output = ndvi(hcube)
output = ndvi(hcube,'BlockSize',blocksize)

Description
output = ndvi(hcube) computes the normalized vegetation index (NDVI) value for each pixel in
the data cube and returns an NDVI image. The NDVI image displays the vegetation cover regions of
the input hyperspectral data. The function computes the NDVI value using the red (R) band and the
near-infra red (NIR) band images in the data cube. The ndvi function uses the 670 nm and 800 nm
band reflectance values for the red and NIR band images respectively.

output = ndvi(hcube,'BlockSize',blocksize) specifies the block size for block processing of
the hyperspectral data cube by using the name-value pair argument 'BlockSize'.

The function divides the input image into distinct blocks, processes each block, and then
concatenates the processed output of each block to form the output matrix. Hyperspectral images are
multi-dimensional data sets that can be too large to fit in system memory in their entirety. This can
cause the system to run out of memory while running the ndvi function. If you encounter such an
issue, perform block processing by using this syntax.

For example, ndvi(hcube,'BlockSize',[50 50]) divides the input image into non-overlapping
blocks of size 50-by-50 and then computes the NDVI values for pixels in each block.

Note To perform block processing by specifying the 'BlockSize' name-value pair argument, you
must have MATLAB R2021a or a later release.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

Measure Vegetation Cover in Hyperspectral Data Using NDVI Image

Read hyperspectral data into the workspace.

hcube = hypercube('indian_pines.dat');

Compute the NDVI value for each pixel in the data cube.

ndviImg = ndvi(hcube);

1 Functions

1-3286

Estimate a contrast-stretched RGB image from the original data cube by using the colorize
function.

rgbImg = colorize(hcube,'Method','RGB','ContrastStretching',true);

Display the original and the NDVI image.

fig = figure('Position',[0 0 1200 600]);
axes1 = axes('Parent',fig,'Position',[0 0.1 0.4 0.8]);
imshow(rgbImg,'Parent',axes1)
title('RGB Image of Data Cube')
axes2 = axes('Parent',fig,'Position',[0.45 0.1 0.4 0.8]);
imagesc(ndviImg,'Parent',axes2)
colorbar
title('NDVI Image')

Vegetation regions typically have NDVI values from 0.2 and 0.8. NDVI values less than or equal to 0.2
indicate the absence of vegetation. Perform thresholding of NDVI image to segment the vegetation
regions. Specify the threshold value.

threshold = 0.2;

Generate a binary image with a intensity value 1 for pixels with a score greater than or equal to the
specified threshold. All other pixels have a value 0. The regions in the binary image with a value of 1
correspond to the vegetation regions in the data cube with NDVI values greater than the threshold.

bw = ndviImg > threshold;

Overlay the binary image on to the RGB image and display the overlaid image.

overlayImg = imoverlay(rgbImg,bw,[0 1 0]);
figure

 ndvi

1-3287

imagesc(overlayImg)
title('Vegetation Region Overlaid on RGB Image')

Compute the vegetation cover based on the total number of pixels in a spectral band and the number
of pixels with an NDVI value greater than 0.2.

numVeg = find(bw == 1);
imgSize = size(hcube.DataCube,1)*size(hcube.DataCube,2);
vegetationCover = length(numVeg)/imgSize

vegetationCover = 0.5696

Input Arguments
hcube — Input hyperspectral data
hypercube object

Input hyperspectral data, specified as a hypercube object. The functions reads the hyperspectral
data cube from the DataCube property of the object and then computes the NDVI value of each pixel.

1 Functions

1-3288

blocksize — Size of data blocks
2-element vector of positive integers

Size of the data blocks, specified as a 2-element vector of positive integers. The elements of the
vector correspond to the number of rows and columns in each block, respectively. The size of the data
blocks must be less than the size of the input image. Dividing the hyperspectral images into smaller
blocks enables you process large data sets without running out of memory.

• If the blocksize value is too small, the memory usage of the function reduces at the cost of
increased execution time.

• If the blocksize value is large or equal to the input image size, the execution time reduces at the
cost of increased memory usage.

Example: 'BlockSize',[20 20] specifies the size of each data block as 20-by-20.

Output Arguments
output — Output NDVI image
matrix

Output NDVI image, returned as a matrix of size M-by-N. M and N are spatial dimensions of the input
data cube. If the data type of the input data cube is double, the output data type is also double.
Otherwise, the output data type is single.

The function computes the NDVI value for each pixel as

and the values are in the range [-1, 1]. A value close to 1 indicates healthy vegetation, 0 indicates
unhealthy vegetation, and -1 indicates no vegetation.
Data Types: single | double

References
[1] Haboudane, D. “Hyperspectral Vegetation Indices and Novel Algorithms for Predicting Green LAI

of Crop Canopies: Modeling and Validation in the Context of Precision Agriculture.” Remote
Sensing of Environment 90, no. 3 (April 15, 2004): 337–52. https://doi.org/10.1016/
j.rse.2003.12.013.

See Also
hypercube | spectralMatch | anomalyRX

Topics
“Identify Vegetation Regions Using Interactive NDVI Thresholding”

Introduced in R2020a

 ndvi

1-3289

ns3
Measure normalized spectral similarity score

Syntax
score = ns3(inputData,refSpectrum)
score = ns3(testSpectrum,refSpectrum)

Description
score = ns3(inputData,refSpectrum) measures the spectral similarity between the spectrum
of each pixel in the hyperspectral data inputData and the specified reference spectrum
refSpectrum by using the normalized spectral similarity score (NS3) method. Use this syntax to
identify different regions or materials in a hyperspectral data cube. For information about the NS3
method, see “More About” on page 1-3295.

score = ns3(testSpectrum,refSpectrum) measures the spectral similarity between the
specified test spectrum testSpectrum and reference spectrum refSpectrum by using the NS3
method. Use this syntax to compare the spectral signature of an unknown material against the
reference spectrum or to compute spectral variability between two spectral signatures.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

Distinguish Hyperspectral Regions Using NS3 Measure

Read hyperspectral data into the workspace.

hcube = hypercube('jasperRidge2_R198.hdr');

Estimate the number of spectrally distinct endmembers in the data cube by using
countEndmembersHFC function.

numEndmembers = countEndmembersHFC(hcube,'PFA',10^-7);

Extract the endmember spectral signatures from the data cube by using the NFINDR algorithm.

endmembers = nfindr(hcube,numEndmembers);

Plot the spectral signatures of the extracted endmembers.

figure
plot(endmembers)
xlabel('Bands')
ylabel('Reflectance')
legend('Location','Bestoutside')

1 Functions

1-3290

Compute the NS3 distance between each endmember and the spectrum of each pixel in the data
cube.

score = zeros(size(hcube.DataCube,1),size(hcube.DataCube,2),numEndmembers);
for i = 1:numEndmembers
 score(:,:,i) = ns3(hcube,endmembers(:,i));
end

Compute the minimum score value from the distance scores obtained for each pixel spectrum with
respect to all the endmembers. The index of each minimum score identifies the endmember spectrum
to which a pixel spectrum exhibits maximum similarity. An index value, n, at the spatial location (x, y)
in the score matrix indicates that the spectral signature of the pixel at spatial location (x, y) in the
data cube best matches the spectral signature of the nth endmember.

[~,matchingIdx] = min(score,[],3);

Estimate an RGB image of the input data by using the colorize function.

rgbImg = colorize(hcube,'Method','rgb','ContrastStretching',true);

Display both the RGB image and the matrix of matched index values.

figure('Position',[0 0 800 400])
subplot('Position',[0 0.1 0.4 0.8])
imagesc(rgbImg)
axis off
title('RGB Image of Hyperspectral Data')

 ns3

1-3291

subplot('Position',[0.45 0.1 0.45 0.8])
imagesc(matchingIdx)
axis off
title('Indices of Matching Endmembers')
colorbar

Determine Similarity of Endmember Spectra Using NS3

Read hyperspectral data into the workspace.

hcube = hypercube('jasperRidge2_R198.hdr');

Find the first 10 endmembers of the hyperspectral data.

numEndmembers = 10;
endmembers = nfindr(hcube,numEndmembers);

Consider the first endmember as the reference spectrum and the rest of the endmembers as the test
spectrum.

refSpectrum = endmembers(:,1);
testSpectra = endmembers(:,2:end);

Plot the reference spectrum and other endmember spectra.

figure
plot(refSpectrum,'LineWidth',2)
hold on
plot(testSpectra)
hold off

1 Functions

1-3292

label = cell(1,numEndmembers-1);
label{1} = 'Reference';
for itr = 1:numEndmembers-1
 label{itr+1} = ['endmember-' num2str(itr)];
end
xlabel('Bands')
ylabel('Reflectances')
legend(label,'Location','Bestoutside')

Compute the NS3 score between the reference and test spectra.

score = zeros(1,numEndmembers-1);
for itr = 1:numEndmembers-1
 score(itr) = ns3(testSpectra(:,itr),refSpectrum);
end

Find the test spectrum that exhibit maximum similarity (minimum distance) to the reference
spectrum. Then, find the test spectrum that exhibit minimum similarity (maximum distance) to the
reference spectrum.

[minval,minidx] = min(score);
maxMatch = testSpectra(:,minidx);
[maxval,maxidx] = max(score);
minMatch = testSpectra(:,maxidx);

Plot the reference spectrum, the maximum similarity, and the minimum similarity test spectrum. The
test spectrum with the minimum score value indicates highest similarity to the reference endmember.

 ns3

1-3293

On the other hand, the test spectrum with the maximum score value has the highest spectral
variability.

figure
plot(refSpectrum,'LineWidth',2)
hold on
plot(maxMatch,'k')
plot(minMatch,'r')
xlabel('Band Number')
ylabel('Data Values')
legend('Reference spectrum','Maximum match test spectrum','Minimum match test spectrum',...
 'Location','Southoutside')
title('Similarity Between Spectra')
text(40,500,['Max score: ' num2str(maxval)],'Color','r')
text(120,1900,['Min score: ' num2str(minval)],'Color','k')

Input Arguments
inputData — Input hyperspectral data
hypercube object | 3-D numeric array

Input hyperspectral data, specified as a hypercube object or a 3-D numeric array containing the data
cube. If the input is a hypercube object, the data is read from the DataCube property of the object.

testSpectrum — Test spectrum
C-element vector

1 Functions

1-3294

Test spectrum, specified as a C-element vector. The test spectrum is the spectral signature of an
unknown region or material.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

refSpectrum — Reference spectrum
C-element vector

Reference spectrum, specified as a C-element vector. The reference spectrum is the spectral
signature of a known region or material. The function matches the test spectrum against these
values.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
score — NS3 score
scalar | matrix

NS3 score, returned as a scalar or matrix. The output is a

• scalar — If you specify the testSpectrum input argument. The function matches the test spectral
signature against the reference spectral signature and returns a scalar value. Both the test and
the reference spectra must be vectors of same length.

• matrix — If you specify the inputData input argument. The function matches the spectral
signature of each pixel in the data cube against the reference spectral signature and returns a
matrix. If the data cube is of size M-by-N-by-C and the reference spectrum is a vector of length C,
the output matrix is of size M-by-N.

A smaller NS3 score indicates a strong match between the test signature and the reference
signature.
Data Types: single | double

More About
Normalized Spectral Similarity Score (NS3)

The NS3 method computes spectral similarity based on the Euclidean and SAM distances between
two spectra. Let r and t be the reference and test spectra respectively. Compute the Euclidean
distance between two spectra as:

Then, compute the SAM value α

Finally, compute the NS3 score as:

References
[1] Nidamanuri, Rama Rao, and Bernd Zbell. “Normalized Spectral Similarity Score (NS3) as an

Efficient Spectral Library Searching Method for Hyperspectral Image Classification.” IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing 4, no. 1 (March
2011): 226–40. https://doi.org/10.1109/JSTARS.2010.2086435.

 ns3

1-3295

See Also
spectralMatch | readEcostressSig | sid | hypercube | jmsam | sidsam | sam

Introduced in R2020b

1 Functions

1-3296

ppi
Extract endmember signatures using pixel purity index

Syntax
endmembers = ppi(inputData,numEndmembers)
endmembers = ppi(inputData,numEndmembers,Name,Value)

Description
endmembers = ppi(inputData,numEndmembers) extracts endmember signatures from
hyperspectral data cube by using the pixel purity index (PPI) algorithm. numEndmembers is the
number of endmember signatures to be extracted using PPI algorithm.

The function projects the hyperspectral data onto a set of randomly generated unit vectors. The pixels
with extreme values in the direction of an unit vector are considered pure pixels and they constitute
the endmembers. The value of an endmember across all the spectral bands in the input data
comprises the endmember signature. For more information, see “Algorithms” on page 1-3301.

endmembers = ppi(inputData,numEndmembers,Name,Value) specifies options using one or
more name-value pair arguments in addition to the input arguments in the previous syntax. Use this
syntax to set the options for

• number of randomly generated unit vectors to be used for projection.
• extracting endmember signatures from a reduced hyperspectral data.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

Find Endmembers Using Pixel Purity Index

Read a hyperspectral data into the workspace.

hcube = hypercube('paviaU.hdr');

Find the number of spectrally distinct endmembers present in the hyperspectral data cube by using
countEndmembersHFC function.

numEndmembers = countEndmembersHFC(hcube,'PFA',10^-7);

Compute the endmembers using the pixel purity index (PPI) method. By default, the ppi function
uses maximum noise fraction (MNF) transform for preprocessing. The default number of skewers
used for projection is 104.

endmembers = ppi(hcube.DataCube,numEndmembers);

 ppi

1-3297

Plot the endmembers of the hyperspectral data.

figure
plot(endmembers)
xlabel('Band Number')
ylabel('Pixel Values')
title({'Endmembers Spectra',['Number of Endmembers = ' num2str(numEndmembers)]});
ylim([0 9000])

Specify Parameters to Compute Endmembers

Read a hyperspectral data into the workspace.

hcube = hypercube('paviaU.hdr');

Find the number of spectrally distinct endmembers present in the hyperspectral data cube by using
countEndmembersHFC function.

numEndmembers = countEndmembersHFC(hcube,'PFA',10^-7);

1 Functions

1-3298

Compute the endmembers using the pixel purity index (PPI) method. Specify the number of unit
vectors to be used for projection as 100. Also, select principal component analysis (PCA) method for
dimensionality reduction.

endmembers = ppi(hcube.DataCube,numEndmembers,'NumVectors',100,'ReductionMethod','PCA');

Plot the endmembers of the hyperspectral data.

figure
plot(endmembers)
xlabel('Band Number')
ylabel('Pixel Values')
ylim([0 9000])
title({'Endmembers Spectra',['Number of Endmembers = ' num2str(numEndmembers)]});

Input Arguments
inputData — Input hyperspectral data
3-D numeric array | hypercube object

 ppi

1-3299

Input hyperspectral data, specified as an 3-D numeric array or a hypercube object. If the input is a
hypercube object, then the function reads the hyperspectral data cube from its DataCube property.

The hyperspectral data is an numeric array of size M-by-N-by-C. M andN are the number of rows and
columns in the hyperspectral data respectively. C is the number of spectral bands in the
hyperspectral data.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

numEndmembers — Number of endmembers
positive scalar integer

Number of endmembers to be extracted, specified as a positive scalar integer. The value must be in
the range [1 C]. C is the number of spectral bands in the input hyperspectral data.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: ppi(inputData,7,'NumVectors',100,'Method','None')

NumVectors — Number of random unit vectors
104 (default) | positive scalar integer

Number of random unit vectors, specified as the comma-separated pair of 'NumVectors' and a
positive scalar integer. The accuracy of the extracted endmembers increases with the number of
vectors used for projection. However, increasing the number of vectors also increases the
computational complexity.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ReductionMethod — Dimensionality reduction method
'MNF' (default) | 'PCA' | 'None'

Dimensionality reduction method, specified as the comma-separated pair of 'ReductionMethod' and
'MNF', 'PCA', or 'None'.

If you specify the value as 'MNF' or 'PCA', the function first reduces the spectral dimension of the
input data by using the specified method. Then, it computes the endmember signatures from the
reduced data.

• 'MNF' — perform dimensionality reduction using the maximum noise fraction (MNF) method.
• 'PCA' — perform dimensionality reduction using the principal component analysis (PCA) method.

If you specify the value as 'None', the function does not perform dimensionality reduction. The
endmember signatures are extracted directly from the input data.
Data Types: char | string

Output Arguments
endmembers — Endmember signatures
C-by-P matrix

1 Functions

1-3300

Endmember signatures, returned as a matrix of size C-by-P and datatype same as the input
hyperspectral data.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Algorithms
Pixel purity index (PPI) method computes the orthogonal projections of hyperspectral data values on
a set of randomly generated unit vectors known as the skewers. Then, the method computes the PPI
count for each data value. PPI count is the number of times a data value results as an extrema point
when projected on to these skewers. Those data values with more than expected number of PPI count
comprise the endmembers of the hyperspectral data. PPI is a non-iterative method and the steps
involved are summarised as follows:

1 Compute principal component bands and reduce the dimensionality of the input data by using
MNF or PCA. The number of principal component bands to be extracted is set equal to the
number of endmembers to be extracted.

2 Generate k number of skewers of length same as the input data.
3 Let r be the sample vector that denote a pixel spectra. Then, orthogonally project the sample

vector onto each skewers and find the extrema.
4 Store the location of each extreme value and count their occurrences. The number of

occurrences is known as the PPI count.
5 Find the PPI count for each pixel spectra in the input data cube.
6 Arrange the pixel spectra in descending order of their PPI counts and identify the first n number

of pixel spectra in the ordered set as endmembers. The number of endmembers to be selected is
specified by the input argument numEndmembers.

References
[1] J.W Boardman, F.A. Kruse and R.O. Green, "Mapping target signatures via partial unmixing of

AVIRIS data.", Technical Report, California, USA, 1995.

See Also
fippi | nfindr | countEndmembersHFC | hypercube

Introduced in R2020a

 ppi

1-3301

radiance2Reflectance
Convert radiance to reflectance

Syntax
newhcube = radiance2Reflectance(hcube)
newhcube = radiance2Reflectance(hcube,'BlockSize',blocksize)

Description
newhcube = radiance2Reflectance(hcube) converts the pixel values of the hyperspectral data
cube from radiance to reflectance values. The function returns a new hypercube object and the pixel
values of the data cube represent the top of atmosphere (TOA) reflectance. For more information, see
“TOA Reflectance” on page 1-3304.

newhcube = radiance2Reflectance(hcube,'BlockSize',blocksize) specifies the block
size for block processing of the hyperspectral data cube by using the name-value pair argument
'BlockSize'.

The function divides the input image into distinct blocks, processes each block, and then
concatenates the processed output of each block to form the output matrix. Hyperspectral images are
multi-dimensional data sets that can be too large to fit in system memory in their entirety. This can
cause the system to run out of memory while running the radiance2Reflectance function. If you
encounter such an issue, perform block processing by using this syntax.

For example, radiance2Reflectance(hcube,'BlockSize',[50 50]) divides the input image
into non-overlapping blocks of size 50-by-50 and then computes the reflectance values for pixels in
each block.

Note To perform block processing by specifying the 'BlockSize' name-value pair argument, you
must have MATLAB R2021a or a later release.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

Convert Radiance to Reflectance Values

Read hyperspectral data into the workspace.

input = hypercube('EO1H0440342002212110PY_cropped.hdr');

Determine the bad spectral band numbers using the BadBands parameter in the metadata.

bandNumber = find(~input.Metadata.BadBands);

1 Functions

1-3302

Remove the bad spectral bands from the data cube.

input = removeBands(input,'BandNumber',bandNumber);

Convert the digital numbers to radiance values by using the dn2radiance function.

hcube = dn2radiance(input);

Convert the radiance values to reflectance values by using the radiance2Reflectance function.

newhcube = radiance2Reflectance(hcube);

Read and display the 80th spectral band in the input radiance and the output reflectance data.

radianceBand = hcube.DataCube;
reflectanceBand = newhcube.DataCube;
band = 80;

figure
subplot(1,2,1)
imagesc(radianceBand(:,:,band))
axis off
title('Radiance Band')
subplot(1,2,2)
imagesc(reflectanceBand(:,:,band))
title('Reflectance Band')

colormap(gray)
axis off

 radiance2Reflectance

1-3303

Input Arguments
hcube — Input hyperspectral data
hypercube object

Input hyperspectral data, specified as a hypercube object. The DataCube property of the
hypercube object stores the hyperspectral data cube. The pixels values of the data cube must be
radiance values specifying the amount of radiation from the surface being imaged. You can convert
the pixel values in digital numbers to radiance values by using dn2radiance function.

blocksize — Size of data blocks
2-element vector of positive integers

Size of the data blocks, specified as a 2-element vector of positive integers. The elements of the
vector correspond to the number of rows and columns in each block, respectively. The size of the data
blocks must be less than the size of the input image. Dividing the hyperspectral images into smaller
blocks enables you process large data sets without running out of memory.

• If the blocksize value is too small, the memory usage of the function reduces at the cost of
increased execution time.

• If the blocksize value is large or equal to the input image size, the execution time reduces at the
cost of increased memory usage.

Example: 'BlockSize',[20 20] specifies the size of each data block as 20-by-20.

Output Arguments
newhcube — Output hyperspectral data
hypercube object

Output hyperspectral data, returned as a hypercube object. The pixels values in the output data
cube are top of atmosphere (TOA) reflectance values.

More About
TOA Reflectance

The TOA reflectance values specifies the ratio of radiation reflected by the surface to the radiation
incident on the surface.

d is the earth-sun distance in astronomical units, ESUNλ is the mean solar irradiance for each
spectral band, and θE is the sun elevation angle.

Lλ is the spectral radiance computed as:

Gain and Bias are the gain and offset values for each spectral bands respectively. The Metadata
property of hypercube object contains the gain and offset values.

See Also
dn2radiance | dn2reflectance | empiricalLine | iarr | sharc | hypercube

1 Functions

1-3304

Introduced in R2020b

 radiance2Reflectance

1-3305

readEcostressSig
Read data from ECOSTRESS spectral library

Syntax
libData = readEcostressSig(filenames)
libData = readEcostressSig(dirname)
libData = readEcostressSig(dirname,keyword)

Description
libData = readEcostressSig(filenames) reads spectral data from the specified ECOSTRESS
spectrum files.

The function supports only ECOSTRESS spectrum files. All inputs must be text files with suffix
spectrum.txt.

libData = readEcostressSig(dirname) reads spectral data from the ECOSTRESS spectrum
files stored in the specified directory.

libData = readEcostressSig(dirname,keyword) reads spectral data from only those
ECOSTRESS spectrum files stored in the specified directory with the specified keyword in their file
names.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

Read ECOSTRESS Spectrum Files

Specify the names of the spectrum files to read from the ECOSTRESS spectral library as a cell array
of character vectors.

ecostressfiles = [{'soil.utisol.hapludult.none.all.87p707.jhu.becknic.spectrum.txt'},...
 {'water.seawater.none.liquid.tir.seafoam.jhu.becknic.spectrum.txt'},...
 {'vegetation.tree.eucalyptus.maculata.vswir.jpl087.jpl.asd.spectrum.txt'},...
 {'manmade.road.tar.solid.all.0099uuutar.jhu.becknic.spectrum.txt'}];

Read and display the data from the specified ECOSTRESS spectrum files. The function returns a
structure array with a row for each specified ECOSTRESS spectrum file. Each row stores the spectral
data read from the associated file.

libData = readEcostressSig(ecostressfiles)

libData=1×4 struct array with fields:
 Name

1 Functions

1-3306

 Type
 Class
 SubClass
 ParticleSize
 Genus
 Species
 SampleNo
 Owner
 WavelengthRange
 Origin
 CollectionDate
 Description
 Measurement
 FirstColumn
 SecondColumn
 WavelengthUnit
 DataUnit
 FirstXValue
 LastXValue
 NumberOfXValues
 AdditionalInformation
 Wavelength
 Reflectance
 ⋮

Extract the details of the spectral data of the second file from the structure array.

libData(2)

ans = struct with fields:
 Name: "Sea Foam"
 Type: "Water"
 Class: "Sea Water"
 SubClass: "none"
 ParticleSize: "Liquid"
 Genus: [0x0 string]
 Species: [0x0 string]
 SampleNo: "seafoam"
 Owner: "Dept. of Earth and Planetary Science, John Hopkins University"
 WavelengthRange: "TIR"
 Origin: "JHU IR Spectroscopy Lab."
 CollectionDate: "N/A"
 Description: "Sea foam water. Original filename FOAM Original ASTER Spectral Library name was jhu.becknic.water.sea.none.liquid.seafoam.spectrum.txt"
 Measurement: "Directional (10 Degree) Hemispherical Reflectance"
 FirstColumn: "X"
 SecondColumn: "Y"
 WavelengthUnit: "micrometer"
 DataUnit: "Reflectance (percent)"
 FirstXValue: "14.0112"
 LastXValue: "2.0795"
 NumberOfXValues: "2110"
 AdditionalInformation: "none"
 Wavelength: [2110x1 double]
 Reflectance: [2110x1 double]

Extract the reflectance and the wavelength values from the spectral data of the second file.

 readEcostressSig

1-3307

reflectance = libData(2).Reflectance;
wavelength = libData(2).Wavelength;

Plot the spectral signature using the wavelength and reflectance values.

figure
plot(wavelength,reflectance)
title(['Spectra of ' libData(2).Name])
xlabel('Wavelength')
ylabel('Reflectance Value')

Read All ECOSTRESS Spectrum Files in Directory

Specify the full path of the directory that contains the ECOSTRESS spectrum files.

fileroot = matlabshared.supportpkg.getSupportPackageRoot();
dirname = fullfile(fileroot,'toolbox','images','supportpackages','hyperspectral','hyperdata','ECOSTRESSSpectraFiles');

Read and display the spectral data from all the files in the directory. The function returns a structure
array with a row for each ECOSTRESS spectrum file in the specified directory.

libData = readEcostressSig(dirname)

libData=1×15 struct array with fields:
 Name

1 Functions

1-3308

 Type
 Class
 SubClass
 ParticleSize
 Genus
 Species
 SampleNo
 Owner
 WavelengthRange
 Origin
 CollectionDate
 Description
 Measurement
 FirstColumn
 SecondColumn
 WavelengthUnit
 DataUnit
 FirstXValue
 LastXValue
 NumberOfXValues
 AdditionalInformation
 Wavelength
 Reflectance
 ⋮

Extract the details of the spectral data of the 15th file.

libData(15)

ans = struct with fields:
 Name: "Tap water"
 Type: "Water"
 Class: "Tap Water"
 SubClass: "none"
 ParticleSize: "Liquid"
 Genus: [0×0 string]
 Species: [0×0 string]
 SampleNo: "tapwater"
 Owner: "Dept. of Earth and Planetary Science, John Hopkins University"
 WavelengthRange: "All"
 Origin: "JHU IR Spectroscopy Lab. Original filename TAPWATER."
 CollectionDate: "N/A"
 Description: "Tap water. Original ASTER Spectral Library name was jhu.becknic.water.tap.none.liquid.tapwater.spectrum.txt"
 Measurement: "Directional (10 Degree) Hemispherical Reflectance"
 FirstColumn: "X"
 SecondColumn: "Y"
 WavelengthUnit: "micrometer"
 DataUnit: "Reflectance (percent)"
 FirstXValue: "14.0110"
 LastXValue: "0.4000"
 NumberOfXValues: "2844"
 AdditionalInformation: "none"
 Wavelength: [2844×1 double]
 Reflectance: [2844×1 double]

 readEcostressSig

1-3309

Search ECOSTRESS Spectrum Files Using Keyword

Specify full path of the directory that contains the ECOSTRESS spectrum files.

fileroot = matlabshared.supportpkg.getSupportPackageRoot();
dirname = fullfile(fileroot,'toolbox','images','supportpackages','hyperspectral','hyperdata','ECOSTRESSSpectraFiles');

Read and display the spectral data of the ECOSTRESS spectrum files with a specific keyword in their
file names. The function returns a structure array with a row for each spectrum file in the specified
directory with the keyword in their file names.

keyword = 'water';
libData = readEcostressSig(dirname,keyword)

libData=1×3 struct array with fields:
 Name
 Type
 Class
 SubClass
 ParticleSize
 Genus
 Species
 SampleNo
 Owner
 WavelengthRange
 Origin
 CollectionDate
 Description
 Measurement
 FirstColumn
 SecondColumn
 WavelengthUnit
 DataUnit
 FirstXValue
 LastXValue
 NumberOfXValues
 AdditionalInformation
 Wavelength
 Reflectance
 ⋮

Input Arguments
filenames — Names of ECOSTRESS files
character vector | string scalar | cell array of character vectors | vector of strings

Names of the ECOSTRESS files, specified as a character vector, string scalar, cell array of character
vectors, or vector of strings. To read the data from multiple ECOSTRESS files simultaneously, use a
cell array of character vectors or vector of strings. The function reads data from the files in the order
in which you specify them. If the ECOSTRESS files are not in the current folder, you must specify the
full path of each file.
Data Types: char | string

dirname — Name of directory
character vector | string scalar

1 Functions

1-3310

Name of the directory containing the ECOSTRESS files, specified as a character vector or string
scalar. If the directory is not in the current folder, you must specify the full path of the directory.
Data Types: char | string

keyword — File search keyword
character vector | string scalar

File search keyword, specified as a character vector or string scalar. The function returns data from
only the ECOSTRESS spectrum files with the specified keyword in their file names. You cannot
specify multiple keywords simultaneously.
Data Types: char | string

Output Arguments
libData — Spectral data from ECOSTRESS files
structure array

Spectral data from ECOSTRESS files, returned as a 1-by-K structure array. K is the number of
spectrum files read by the function. Each element of the structure array has 24 fields that contain the
header information of the spectrum files.

Field Names Description
Name Name of the measured sample or material
Type Type of sample, such as "mineral", "rock",

"tree", or "manmade"
Class Class of the sample type

For example, if the sample type is "mineral"
then the class can be: "native
elements","silicates", "oxides",
"sulfides", "sulfates", "halides",
"carbonates", "phosphates", or
"mineraloids".

SubClass Subclass of the sample type

This field contains an empty array or "none",
unless the Type value is "mineral", "rock",
"manmade", "soil", "lunar", or
"meteorite".

ParticleSize Particle size of the sample type

This field contains an empty array unless the
Type value is "mineral", "rock", "manmade",
"soil", "lunar", or "meteorite".

Genus Genus of the sample

This field contains an empty array unless the
Type value is "vegetation" or
"nonphotosynthetic".

 readEcostressSig

1-3311

Species Species of the sample

This field contains an empty array unless the
Type value is "vegetation" or
"nonphotosynthetic".

SampleNo Sample number

This value is an identifier for the associated
sample.

Owner Owner of the sample
WavelengthRange Wavelength range of the measured sample

The value must be "All", "TIR", or "VSWIR".
Origin Location from which the data was obtained
CollectionDate Date on which the sample was collected

This value is in mm/dd/yy format.
Description Description of the measured sample

This field provides additional information about
the characteristics of the sample.

Measurement Spectral measurement mode used to measure the
sample

FirstColumn First column of data values in the spectrum file
SecondColumn Second column of data values in the spectrum file
WavelengthUnit Measuring unit for the spectral wavelengths of

the samples

The value for every sample type is
"micrometer". This field corresponds to the X
Units field of the header data in the
ECOSTRESS spectrum file.

DataUnit Unit of the spectral measurement mode

Spectral measurement mode includes reflectance,
transmittance, transittance, and transmission.
The unit is percentage. This field corresponds to
the Y Units field of the header data in the
ECOSTRESS spectrum file.

FirstXValue First value in the first column of data values in
the spectrum file

LastXValue Last value in the first column of data values in the
spectrum file

NumberofXValues Total number of data values in the first column of
the spectrum file

1 Functions

1-3312

AdditionalInformation Additional information about the sample

This field includes information that is not part of
the spectral data.

Wavelength Wavelength values at which the reflectances were
measured

Reflectance Reflectance values measured at each
wavelengths

References
[1] Meerdink, Susan K., Simon J. Hook, Dar A. Roberts, and Elsa A. Abbott. “The ECOSTRESS

Spectral Library Version 1.0.” Remote Sensing of Environment 230 (September 2019):
111196. https://doi.org/10.1016/j.rse.2019.05.015.

[2] Download the ECOSTRESS Spectral Library: https://speclib.jpl.nasa.gov/download

See Also
spectralMatch | sam | sid | hypercube

Introduced in R2020a

 readEcostressSig

1-3313

https://speclib.jpl.nasa.gov/download

reduceSmile
Reduce spectral smile effect in hyperspectral data cube

Syntax
correctedData = reduceSmile(hcube)
correctedData = reduceSmile(hcube,'BlockSize',blocksize)
correctedData = reduceSmile(___ ,Name,Value)

Description
correctedData = reduceSmile(hcube) reduces the spectral smile effect in the hyperspectral
data hcube by averaging the pixel values of each band along the spectral dimension with a window of
size 3. The function averages the pixel values of each band with the corresponding pixel values of the
previous band and the next band. The spectral smile effect occurs only in the data captured using
push-broom hyperspectral sensors, such as the Hyperion EO-1 and the SEBASS.

correctedData = reduceSmile(hcube,'BlockSize',blocksize) specifies the block size for
block processing of the hyperspectral data cube by using the name-value pair argument
'BlockSize'. You can specify the 'BlockSize' name-value pair argument in addition to the input
arguments in the previous syntaxes.

The function divides the input image into distinct blocks, processes each block, and then
concatenates the processed output of each block to form the output matrix. Hyperspectral images are
multi-dimensional data sets that can be too large to fit in system memory in their entirety. This can
cause the system to run out of memory while running the reduceSmile function. If you encounter
such an issue, perform block processing by using this syntax.

For example, reduceSmile(hcube,'BlockSize',[50 50]) divides the input image into non-
overlapping blocks of size 50-by-50 and then performs smile correction on each block.

Note To perform block processing by specifying the 'BlockSize' name-value pair argument, you
must have MATLAB R2021a or a later release.

correctedData = reduceSmile(___ ,Name,Value) specifies options using one or more name-
value arguments in addition to the input arguments in the previous syntaxes. For example,
'Method','MNF' specifies to perform smile correction using the maximum noise fraction (MNF)
transform-based method.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

1 Functions

1-3314

Perform Spectral Smile Correction

Read hyperspectral data from the Hyperion EO-1 sensor into the workspace.

hCube = hypercube('EO1H0440342002212110PY_cropped.dat');

Typically, Oxygen molecules have strong absorption features at 762 nm wavelength and causes
spectral smile. In the Hyperion EO-1 sensor, 762 nm wavelength corresponds to band 41. The
spectral smile effect in band 41 also affects the bands 40 and 42. Hence, calculate the absolute
difference between the pixel values of bands 40 and 42.

originalData = hCube.DataCube;
band40 = originalData(:,:,40);
band42 = originalData(:,:,42);
bandDiffBeforeCorr = imabsdiff(band40,band42);

Display the difference image of bands 40 and 42. The spectral smile effect appears as a brightness
gradient from left to right in the difference image.

imagesc(bandDiffBeforeCorr)
axis image off
title('Difference of Bands 40 and 42 Before Correction')
colorbar

Specify the size of the averaging window to use along the spectral dimension.

window = 5;

 reduceSmile

1-3315

Perform spectral smile reduction.

correctedHcube = reduceSmile(hCube,'SpectralWindow',window);

Calculate and display the absolute difference of the corrected bands 40 and 42. There is no gradient
in the difference image after smile correction.

correctedData = correctedHcube.DataCube;
corrBand40 = correctedData(:,:,40);
corrBand42 = correctedData(:,:,42);
bandDiffAfterCorr = imabsdiff(corrBand40,corrBand42);
imagesc(bandDiffAfterCorr)
axis image off
title('Difference of Bands 40 and 42 After Smile Correction')
colorbar

Input Arguments
hcube — Input hyperspectral data
hypercube object

Input hyperspectral data, specified as a hypercube object. The DataCube property of the
hypercube object stores the hyperspectral data cube.

blocksize — Size of data blocks
2-element vector of positive integers

1 Functions

1-3316

Size of the data blocks, specified as a 2-element vector of positive integers. The elements of the
vector correspond to the number of rows and columns in each block, respectively. The size of the data
blocks must be less than the size of the input image. Dividing the hyperspectral images into smaller
blocks enables you process large data sets without running out of memory.

• If the blocksize value is too small, the memory usage of the function reduces at the cost of
increased execution time.

• If the blocksize value is large or equal to the input image size, the execution time reduces at the
cost of increased memory usage.

Example: 'BlockSize',[20 20] specifies the size of each data block as 20-by-20.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: reduceSmile(hcube,'Method','MNF')

Method — Spectral smile correction method
'SpectralSmoothing' (default) | 'MNF'

Spectral smile correction method, specified as 'SpectralSmoothing' or 'MNF'.

• 'SpectralSmoothing' — Perform smile reduction using the spectral smoothing method.
• 'MNF' — Perform smile reduction using the maximum noise fraction (MNF) transform-based

method.

SpectralWindow — Size of averaging window
3 (default) | positive integer

Size of the averaging window along the spectral dimension, specified as a positive integer that is less
than or equal to the number of hyperspectral bands in the hyperspectral data inputData. Increasing
the window size can further reduce the smile effect, but using an averaging window greater than 9
can result in the loss of fine atmospheric absorption spectral features. To specify this argument, you
must specify the 'Method' argument as 'SpectralSmoothing'.

Output Arguments
correctedData — Corrected hyperspectral data
hypercube object

Corrected hyperspectral data, returned as a hypercube object of the size same as the input data
hcube. If the input data is of type double, then the corrected hyperspectral data is of type double.
Otherwise, the data type of the corrected hyperspectral data is single.

References
[1] Perkins, Timothy, Steven M. Adler-Golden, Michael W. Matthew, Alexander Berk, Lawrence S.

Bernstein, Jasmine Lee, and Marsha E. Fox. "Speed and Accuracy Improvements in FLAASH
Atmospheric Correction of Hyperspectral Imagery." Optical Engineering 51, no. 11 (June 13,
2012): 111707, https://doi.org/10.1117/1.OE.51.11.111707.

 reduceSmile

1-3317

[2] Yokoya, Naoto, Norihide Miyamura, and Akira Iwasaki. “Detection and Correction of Spectral and
Spatial Misregistrations for Hyperspectral Data Using Phase Correlation Method.” Applied
Optics 49, no. 24 (August 20, 2010): 4568. https://doi.org/10.1364/AO.49.004568.

See Also
hypercube | sharc | smileMetric | blockedImage

Introduced in R2020b

1 Functions

1-3318

removeBands
Remove spectral bands from data cube

Syntax
newhcube = removeBands(hcube,'Wavelength',wlrange)
newhcube = removeBands(hcube,'BandNumber',band)

Description
newhcube = removeBands(hcube,'Wavelength',wlrange) removes spectral bands from the
data cube within the specified wavelength range. The function returns a new hypercube object with
the remaining wavelengths, their metadata information, and the corresponding spectral bands from
the original data cube.

newhcube = removeBands(hcube,'BandNumber',band) removes the spectral bands with the
specified spectral band numbers from the hyperspectral data cube.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

Remove Bands in Specified Wavelength Range

Read hyperspectral data into the workspace.

hcube = hypercube('paviaU.dat');

Inspect the properties of the hypercube object.

hcube

hcube =
 hypercube with properties:

 DataCube: [610×340×103 double]
 Wavelength: [103×1 double]
 Metadata: [1×1 struct]

Find the spectral wavelength range of the hyperspectral data cube.

range = [min(hcube.Wavelength) max(hcube.Wavelength)]

range = 1×2

 430 838

 removeBands

1-3319

Specify the ranges of wavelengths to be remove from the hyperspectral data cube.

wlrange = [410 450; 620 850];

Remove the spectral bands that lie in the specified wavelength ranges. The function returns a new
hypercube object without the removed bands.

newhcube = removeBands(hcube,'Wavelength',wlrange)

newhcube =
 hypercube with properties:

 DataCube: [610×340×42 double]
 Wavelength: [42×1 double]
 Metadata: [1×1 struct]

Plot the original and the new wavelength values.

figure
plot(hcube.Wavelength,'o')
hold on
plot(newhcube.Wavelength,'or')
xlabel('Band Number')
ylabel('Wavelength')
legend('Original Values','New Values','Location','SouthEast')

1 Functions

1-3320

Remove NonInformative Bands from Data Cube

Read a hyperspectral data into the workspace.

hcube = hypercube('paviaU.dat')

hcube =
 hypercube with properties:

 DataCube: [610×340×103 double]
 Wavelength: [103×1 double]
 Metadata: [1×1 struct]

Compute five spectrally distinct endmembers of the hyperspectral data cube by using the ppi
function.

endmembers = fippi(hcube,5);

 removeBands

1-3321

Determine the 10 most informative bands of the input data cube based on the endmembers spectra.

[~,informativeband] = selectBands(hcube,endmembers,'NumberOfBands',10);

Find the band numbers of the noninformative bands of the data cube by using the band numbers of
the informative bands.

band = setdiff(1:size(hcube.DataCube,3),informativeband);

Remove the noninformative bands from the hyperspectral data cube. The function returns a new
hypercube object with only the most informative bands.

newhcube = removeBands(hcube,'BandNumber',band)

newhcube =
 hypercube with properties:

 DataCube: [610×340×10 double]
 Wavelength: [10×1 double]
 Metadata: [1×1 struct]

Plot the original and the new wavelength values.

figure
plot(hcube.Wavelength,'o')
hold on
plot(newhcube.Wavelength,'or')
xlabel('Band Number')
ylabel('Wavelength')
legend('Original Values','New Values','Location','SouthEast')

1 Functions

1-3322

Input Arguments
hcube — Input hyperspectral data
hypercube object

Input hyperspectral data, specified as a hypercube object. The DataCube property of the
hypercube object stores the hyperspectral data cube.

wlrange — Wavelength range to remove
K-by-2 matrix

Wavelength range to remove, specified as a K-by-2 matrix. K is the number of wavelength ranges to
remove from the input data. Each row is of form [Wmin Wmax]. Wmin and Wmax are the minimum and the
maximum wavelengths of the ranges to remove. At least one specified wavelength range must overlap
the wavelength value of at least one spectral band within the input hypercube object.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

 removeBands

1-3323

band — Spectral band number to remove
positive integer | vector of positive integers

Spectral band number to remove, specified as a positive integer or vector of positive integers. All of
the specified band numbers must be less than or equal to the number of spectral bands in the input
hyperspectral data.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
newhcube — Output hyperspectral data
hypercube object

Output hyperspectral data, returned as a hypercube object.

See Also
hypercube | selectBands | ppi | fippi | nfindr

Introduced in R2020a

1 Functions

1-3324

rrs
Compute remote sensing reflectance

Syntax
newhcube = rrs(hcube)
[newhcube,mask] = rrs(hcube)

Description
newhcube = rrs(hcube) computes remote sensing reflectance (RRS) values. The remote sensing
reflectance values are the atmospherically corrected values. The function first computes the water
leaving radiance and then, estimates RRS as the ratio of water leaving radiance to solar irradiance at
the top of the atmosphere (TOA).

The pixels values of the data cube must be TOA radiance values. If the values are digital numbers,
use the dn2radiance function to compute the TOA radiance values. This method gives best results
for multispectral data.

[newhcube,mask] = rrs(hcube) also returns a region mask indicating the clear water regions in
the input satellite data.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

Estimate Remotely Sensed Water Reflectance

Read multispectral data into the workspace.

hcube = hypercube('LC08_L1TP_097070_20201101_20201101_01_cropped.dat');

Convert the pixel values from digital numbers to top of atmosphere (TOA) radiances.

hcube = dn2radiance(hcube);

Estimate remotely sensed water reflectance using the clear-water pixels approach.

[newhcube,mask] = rrs(hcube);

Estimate RGB images of the input and the atmospherically corrected output data.

imgIn = colorize(hcube,'Method','rgb');
imgOut = colorize(newhcube,'Method','rgb');

Display the RGB images of the input and the atmospherically corrected output data. Also, display the
clear-water pixel region mask used for computing the correction parameters.

 rrs

1-3325

figure
montage({imgIn;imgOut;mask},'Size',[1 3])
title('Input Data | Atmospherically Corrected Output | Region Mask')

Input Arguments
hcube — Input satellite data
hypercube object

Input satellite data, specified as a hypercube object. The functions reads the data cube from the
DataCube property of the object.

Output Arguments
newhcube — Atmospherically corrected data
hypercube object

Atmospherically corrected data, returned as a hypercube object.

mask — Region mask indicating clear water regions
matrix

Region mask indicating clear water regions, returned as a matrix. The mask is a binary image of
spatial dimension same as that of the input data cube.

References
[1] Wang, Deyu, Xuezhi Feng, Ronghua Ma, and Guoding Kang. “A Method for Retrieving Water-

Leaving Radiance from Landsat TM Image in Taihu Lake, East China.” Chinese Geographical
Science 17, no. 4 (December 2007): 364–69. https://doi.org/10.1007/s11769-007-0364-7.

See Also
correctOOB | dn2radiance | fastInscene | hypercube

1 Functions

1-3326

Introduced in R2020b

 rrs

1-3327

sam
Measure spectral similarity using spectral angle mapper

Syntax
score = sam(inputData,refSpectra)
score = sam(testSpectra,refSpectra)

Description
score = sam(inputData,refSpectra) measures the spectral similarity between the spectra of
each pixel in the hyperspectral data inputData and the specified reference spectra refSpectra by
using the spectral angle mapper (SAM) classification algorithm. Use this syntax to identify different
regions or materials in a hyperspectral data cube.

score = sam(testSpectra,refSpectra) measures the spectral similarity between the specified
test spectra testSpectra and reference spectra refSpectra by using the SAM classification
algorithm. Use this syntax to compare the spectral signature of an unknown material against the
reference spectra or to compute spectral variability between two spectral signatures.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

Distinguish Hyperspectral Regions Using Spectral Angle Mapper

Distinguish different regions in a hyperspectral data cube by computing the spectral angle distance
between each pixel and the endmember spectra of the data cube.

Read hyperspectral data into the workspace.

hcube = hypercube('jasperRidge2_R198.hdr');

Identify the number of spectrally distinct bands in the data cube by using the countEndmembersHFC
function.

numEndmembers = countEndmembersHFC(hcube)

numEndmembers = 15

Extract the endmember spectral signatures from the data cube by using the NFINDR algorithm.

endmembers = nfindr(hcube,numEndmembers);

Plot the spectral signatures of the endmembers. The result shows the 14 spectrally distinct regions in
the data cube.

1 Functions

1-3328

figure
plot(endmembers)
legend('Location','Bestoutside')

Compute the spectral angular distance between each endmember and the spectrum of each pixel in
the data cube.

score = zeros(size(hcube.DataCube,1),size(hcube.DataCube,2),numEndmembers);
for i = 1:numEndmembers
 score(:,:,i) = sam(hcube,endmembers(:,i));
end

Compute the minimum score value from the distance scores obtained for each pixel spectrum with
respect to all the endmembers. The index of each minimum score identifies the endmember spectrum
to which a pixel spectrum exhibits maximum similarity. An index value, n, at the spatial location (x, y)
in the score matrix indicates that the spectral signature of the pixel at spatial location (x, y) in the
data cube best matches the spectral signature of the nth endmember.

[~,matchingIndx] = min(score,[],3);

Estimate an RGB image of the hyperspectral data cube by using the colorize function. Display both
the RGB image and the matrix of matched index values.

rgbImg = colorize(hcube,'Method','RGB');
figure('Position',[0 0 1100 500])
subplot('Position',[0 0.15 0.4 0.8])
imagesc(rgbImg)

 sam

1-3329

axis off
title('RGB Image of Hyperspectral Data')
subplot('Position',[0.45 0.15 0.4 0.8])
imagesc(matchingIndx)
axis off
title('Indices of Matching Endmembers')
colorbar

Determine Similarity of Endmember Spectra Using SAM

Read hyperspectral data into the workspace.

hcube = hypercube('indian_pines.dat');

Find ten endmembers of the hyperspectral data.

numEndmembers = 10;
endmembers = nfindr(hcube,numEndmembers);

Consider the first endmember as the reference spectrum and the rest of the endmembers as the test
spectrum. Compute the SAM score between the reference and test spectrum.

score = zeros(1,numEndmembers-1);
refSpectrum = endmembers(:,1);
for i = 2:numEndmembers
 testSpectrum = endmembers(:,i);
 score(i-1) = sam(testSpectrum,refSpectrum);
end

Find the test spectrum that exhibit maximum similarity (minimum distance) to the reference
spectrum. Then find the test spectrum that exhibit minimum similarity (maximum distance) to the
reference spectrum.

1 Functions

1-3330

[minval,minidx] = min(score);
maxMatch = endmembers(:,minidx);
[maxval,maxidx] = max(score);
minMatch = endmembers(:,maxidx);

Plot the reference spectrum, the maximum similarity and the minimum similarity test spectrum. The
test spectrum with the minimum score value indicates highest similarity to the reference endmember.
On the other hand, the test spectrum with the maximum score value has the highest spectral
variability and characterises the spectral behaviour of two different materials.

figure
plot(refSpectrum)
hold on
plot(maxMatch,'k')
plot(minMatch,'r')
xlabel('Band Number')
ylabel('Data Values')
legend('Reference spectrum','Minimum match test spectrum','Maximum match test spectrum',...
 'Location','Southoutside')
title('Similarity Between Spectra')
annotation('textarrow',[0.25 0.25],[0.4 0.5],'String',['Max score: ' num2str(maxval)])
annotation('textarrow',[0.6 0.55],[0.6 0.45],'String',['Min score: ' num2str(minval)])

 sam

1-3331

Input Arguments
inputData — Input hyperspectral data
hypercube object | 3-D numeric array

Input hyperspectral data, specified as a hypercube object or a 3-D numeric array containing the data
cube. If the input is a hypercube object, the data is read from the DataCube property of the object.

testSpectra — Test spectra
C-element vector

Test spectra, specified as a C-element vector. The test spectra is the spectral signature of an unknown
region or material.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

refSpectra — Reference spectra
C-element vector

Reference spectra, specified as a C-element vector. The reference spectra is the spectral signature of
a known region or material. The function matches the test spectra against these values.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
score — SAM score
scalar | matrix

SAM score, returned as a scalar or matrix. The output is a

• scalar — If you specify the testSpectra input argument. The function matches the test spectral
signature against the reference spectral signature and returns a scalar value. Both the test and
the reference spectra must be vectors of same length.

• matrix — If you specify the inputData input argument. The function matches the spectral
signature of each pixel in the data cube against the reference spectral signature and returns a
matrix. If the data cube is of size M-by-N-by-C and the reference spectra is a vector of length C,
the output matrix is of size M-by-N.

Each element of the SAM score is a spectral angle in radians in the range [0, 3.142]. A smaller SAM
score indicates a strong match between the test signature and the reference signature.
Data Types: single | double

More About
Spectral angle mapper

Given the test spectra t and a reference spectra r of length C, the SAM score α is calculated as

References
[1] Kruse, F.A., A.B. Lefkoff, J.W. Boardman, K.B. Heidebrecht, A.T. Shapiro, P.J. Barloon, and A.F.H.

Goetz. “The Spectral Image Processing System (SIPS)—Interactive Visualization and Analysis

1 Functions

1-3332

of Imaging Spectrometer Data.” Remote Sensing of Environment 44, no. 2–3 (May 1993):
145–63. https://doi.org/10.1016/0034-4257(93)90013-N.

See Also
spectralMatch | readEcostressSig | sid | hypercube | sidsam | jmsam

Introduced in R2020a

 sam

1-3333

selectBands
Select most informative bands

Syntax
newhcube = selectBands(hcube,endmembers)
[newhcube,band] = selectBands(hcube,endmembers)
[___] = selectBands(hcube,endmembers,'NumberOfBands',numBands)

Description
newhcube = selectBands(hcube,endmembers) selects the most informative bands of the
hyperspectral data cube by using orthogonal space projection method [1]. The function returns a new
hypercube object that contains the data from only the most informative bands.

Note

• For preprocessing, the function removes the water absorption and low signal-to-noise ratio (SNR)
bands prior to computing the most informative bands.

• To reduce the computational complexity, the function computes the most informative bands by
considering only 10% of the pixel values in the pre-processed data cube. These values are selected
randomly. The function also ensures that the random selection does not result in the removal of
endmembers.

[newhcube,band] = selectBands(hcube,endmembers) also returns the band numbers of the
most informative bands in the hyperspectral data cube.

[___] = selectBands(hcube,endmembers,'NumberOfBands',numBands) additionally
specifies the number of most informative bands to select from the input data cube, in addition to any
combination of arguments from previous syntaxes.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

Select Most Informative Hyperspectral Bands

Read hyperspectral data into the workspace.

hcube = hypercube('paviaU.dat');

Estimate the endmembers of the data cube by using the FIPPI algorithm.

1 Functions

1-3334

endmembers = fippi(hcube,9);

Create a new hypercube consisting of the ten most informative bands.

newhcube = selectBands(hcube,endmembers,'NumberOfBands',10);

Input Arguments
hcube — Input hyperspectral data
hypercube object

Input hyperspectral data, specified as a hypercube object. The DataCube property of the
hypercube object contains the hyperspectral data cube.

endmembers — Spectral signatures of endmembers
matrix

Spectral signatures of the endmembers, specified as a matrix of size C-by-K. C is the number of
spectral bands in the hyperspectral data cube and K is the number of endmembers of the
hyperspectral data cube. Use the fippi, ppi, or nfindr function to find the endmembers of a
hyperspectral data cube.
Data Types: single | double

numBands — Number of bands to select
positive scalar

Number of most informative bands to select from the data cube, specified as a scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
newhcube — Output hyperspectral data
hypercube object

Output hyperspectral data, returned as a hypercube object.

band — Spectral band number of most informative bands
positive integer | vector of positive integers

Spectral band number of the most informative bands in the input data cube, returned as a positive
integer or a vector of positive integers.
Data Types: double

References
[1] Du, Qian, and He Yang. “Similarity-Based Unsupervised Band Selection for Hyperspectral Image

Analysis.” IEEE Geoscience and Remote Sensing Letters, Vol. 5, no. 4 (October 2008): 564–68.
https://doi.org/10.1109/LGRS.2008.2000619.

See Also
hypercube | removeBands | ppi | fippi | nfindr

 selectBands

1-3335

Introduced in R2020a

1 Functions

1-3336

sharc
Perform atmospheric correction using satellite hypercube atmospheric rapid correction (SHARC)

Syntax
newhcube = sharc(hcube)
newhcube = sharc(hcube,Name,Value)

Description
newhcube = sharc(hcube) returns an atmospherically corrected data cube by computing the
surface radiance or surface reflectance values from the input hyperspectral data. The function
implements the SHARC algorithm to compute the atmospherically corrected hyperspectral data.

The input must be radiometrically corrected hyperspectral data. The pixel values of the input data
cube must be either top of atmosphere (TOA) radiance or TOA reflectance values. For better results,
use TOA reflectance values.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

newhcube = sharc(hcube,Name,Value) also specifies options using one or more name-value pair
arguments. Use this syntax to set the parameter values for SHARC.

Examples

Perform Atmospheric Correction of Hyperspectral Data

Read a hyperspectral data cube into the workspace.

input = hypercube('EO1H0440342002212110PY_cropped.dat');

Determine the bad spectral band numbers using the BadBands parameter in the metadata.

bandNumber = find(~input.Metadata.BadBands);

Remove the bad spectral bands from the data cube.

input = removeBands(input,'BandNumber',bandNumber);

Convert the digital numbers to radiance values by using the dn2radiance function.

hcube = dn2radiance(input);

Convert the radiance values to reflectance values by using the radiance2Reflectance function.

hcube = radiance2Reflectance(hcube);

 sharc

1-3337

Compute atmospherically corrected data by using the sharc function.

newhcube = sharc(hcube);

Estimate RGB images of the input and the atmospherically corrected output data. Increase the image
contrast by applying contrast stretching.

inputImg = colorize(hcube,'Method','rgb','ContrastStretching',true);
outputImg = colorize(newhcube,'Method','rgb','ContrastStretching',true);

Display the contrast-stretched RGB images of the input and the atmospherically corrected output
data.

figure('Position',[0 0 700 400])
subplot('Position',[0.1 0 0.3 0.9])
imagesc(inputImg)
title('Input Radiometrically Calibrated Image')
axis off
subplot('Position',[0.5 0 0.3 0.9])
imagesc(outputImg)
axis off
title('Output Atmospherically Corrected Image')

Specify Dark Pixel Location for Atmospheric Correction

Read a hyperspectral data cube into the workspace.

1 Functions

1-3338

input = hypercube('EO1H0440342002212110PY_cropped.dat');

Determine the bad spectral band numbers using the BadBands parameter in the metadata.

bandNumber = find(~input.Metadata.BadBands);

Remove the bad spectral bands from the data cube.

input = removeBands(input,'BandNumber',bandNumber);

Convert the digital numbers to radiance values by using the dn2radiance function.

hcube = dn2radiance(input);

Convert the radiance values to reflectance values by using the radiance2Reflectance function.

hcube = radiance2Reflectance(hcube);

Compute atmospherically corrected data by using the sharc function. Specify the dark pixel location
for computing the adjacency effect and the initial atmospheric parameters. The choice of the dark
pixel affects the atmospheric correction results.

newhcube = sharc(hcube,'DarkPixelLocation',[217 7]);

Estimate RGB images of the input and the atmospherically corrected output data. Increase the image
contrast by applying contrast stretching.

inputImg = colorize(hcube,'Method','rgb','ContrastStretching',true);
outputImg = colorize(newhcube,'Method','rgb','ContrastStretching',true);

Display the contrast-stretched RGB images of the input and the atmospherically corrected output
data.

figure('Position',[0 0 700 400])
subplot('Position',[0.1 0 0.3 0.9])
imagesc(inputImg)
title('Input Radiometrically Calibrated Image')
axis off
subplot('Position',[0.5 0 0.3 0.9])
imagesc(outputImg)
axis off
title('Output Atmospherically Corrected Image')

 sharc

1-3339

Input Arguments
hcube — Input hyperspectral data
hypercube object

Input hyperspectral data, specified as a hypercube object. The DataCube property of the
hypercube object contains the hyperspectral data cube. The pixel values of the data cube must
signify either the TOA radiance or TOA reflectance values.

If the pixel values are digital numbers, use the dn2radiance and dn2reflectance functions for
computing the TOA radiance and reflectance values, respectively. You can also use the
radiance2Reflectance function for directly computing TOA reflectance values from the radiance
values.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: ('AtmosphericModel','Tropical')

AtmosphericModel — Atmospheric model for calculating optical thickness
'1962 US Standard' (default) | 'Tropical' | 'Midlatitude Summer' | 'Midlatitude
Winter' | 'Subarctic Summer' | 'Subarctic Winter'

1 Functions

1-3340

Atmospheric model for calculating the optical thickness of the total atmosphere, specified as the
comma-separated pair consisting of 'AtmosphericModel' and one of these values:

• '1962 US Standard' — Standard atmospheric parameters that are defined for Earth's
atmosphere over a wide range of temperature and pressure. This is a generic model and can be
used for atmospheric correction of hyperspectral data acquired at different latitudes and seasons.

• 'Tropical' — Atmospheric parameters of regions in the tropical zone. The latitude range of the
tropical zone is [-23° 45', 23° 45']. Use this model if the hyperspectral data is collected from the
tropical zone.

• 'Midlatitude Summer' — Atmospheric parameters of regions in a midlatitude zone during the
summer season. The latitude ranges for midlatitude zones are [23° 45', 66° 55'] and [-66° 55', -23°
45']. Use this model if the hyperspectral data is collected from mid-latitude zones during summer.
You can determine the season from the acquisition date stored as AcquistionTime in the
metadata.

• 'Midlatitude Winter' — Atmospheric parameters of regions in a midlatitude zone during the
winter season. The latitude ranges for midlatitude zones are [23° 45', 66° 55'] and [-66° 55', 23°
45']. Use this model if the hyperspectral data is collected from mid-latitude zones during winter.
You can determine the season from the acquisition date stored as AcquistionTime in the
metadata.

• 'Subarctic Summer' — Atmospheric parameters of regions in a subarctic zone during the
summer season. The latitude ranges for subarctic zones are [66° 55' ,90°] and [-90°, -66° 55']
degrees. Use this model if the hyperspectral data is collected from subarctic zones during
summer. You can determine the season from the acquisition date stored as AcquistionTime in
the metadata.

• 'Subarctic Winter' — Atmospheric parameters of regions in a subarctic zone during the
winter season. The latitude ranges for subarctic zones are [66° 55' ,90°] and [-90°, -66° 55']
degrees. Use this model if the hyperspectral data is collected from subarctic zones during winter.
You can determine the season from the acquisition date stored as AcquistionTime in the
metadata.

DarkPixelLocation — Location of dark pixel
1-by-2 vector of form [x y]

Location of the dark pixel, specified as the comma-separated pair consisting of
'DarkPixelLocation' and a 1-by-2 vector of form [x y]. x and y are the spatial coordinates of the
dark pixel to be selected from the blue-green band. The dark pixel has the lowest TOA reflectance
value, and the sharc function uses it for computing the spectral illuminance of the surface.

By default, the sharc function chooses the pixel with the minimum blue-green band value as the dark
pixel. Typically the wavelength range (in micrometers) for the blue-green band is [0.45, 0.57]. The
TOA reflectance values in the blue-green band are most affected by atmospheric haze. Hence, the
dark pixel from blue-green band is generally selected as the candidate pixel for estimating the
atmospheric effects on the hyperspectral data.

AdjacencyWindow — Window size for computing adjacency effect
5 (default) | positive integer scalar

Window size for computing the adjacency effect, specified as the comma-separated pair consisting of
'AdjacencyWindow' and a positive integer scalar. The value signifies the size of the window
centered around the dark pixel. The sharc function uses all the pixels that lie inside this window for
estimating the adjacency effect.

 sharc

1-3341

The window size must be less than the spatial dimension of the input hyperspectral data cube.

Output Arguments
newhcube — Atmospherically corrected data
hypercube object

Atmospherically corrected data, returned as a hypercube object. The DataCube property of the
hypercube object contains the hyperspectral data cube. The pixel values of the output data cube are
surface radiance or surface reflectance values depending on the input.

• If the pixel values of the input data cube are TOA radiances, the pixel values of the
atmospherically corrected data at the output are surface radiance values.

• If the pixel values of the input data cube are TOA reflectances, the pixel values of the
atmospherically corrected data at the output contains surface reflectance values.

References
[1] Katkovsky, Leonid, Anton Martinov, Volha Siliuk, Dimitry Ivanov, and Alexander Kokhanovsky.

“Fast Atmospheric Correction Method for Hyperspectral Data.” Remote Sensing 10, no. 11
(October 28, 2018): 1698. https://doi.org/10.3390/rs10111698.

See Also
hypercube | dn2reflectance | dn2radiance

Introduced in R2020b

1 Functions

1-3342

sharpencnmf
Sharpen hyperspectral data using coupled nonnegative matrix factorization (CNMF) method

Syntax
outputData = sharpencnmf(lrData,hrData)
outputData = sharpencnmf(lrData,hrData,Name,Value)

Description
outputData = sharpencnmf(lrData,hrData) sharpens the low resolution hyperspectral data,
lrData of a scene by using coupled nonnegative matrix factorization (CNMF) method. The CNMF
method is an iterative approach that uses the high resolution multispectral or panchromatic data,
hrData of the same scene for sharpening the hyperspectral data.

Hyperspectral image sharpening increases the spatial resolution of a hyperspectral data by fusing
information from a high resolution multispectral data or a panchromatic data. The sharpening
process is also called as image fusion (fusing multispectral and hyperspectral data) or pan-sharpening
(fusing panchromatic and hyperspectral data).

Note

• The spatial dimension of the hyperspectral data must be less than the spatial dimension of the
multispectral or panchromatic data.

• The number of spectral bands in the hyperspectral data must be greater than the number of bands
in the multispectral data. For panchromatic data, the number of spectral bands is always 1.

outputData = sharpencnmf(lrData,hrData,Name,Value) also specifies options using one or
more name-value pair arguments. Use this syntax to set the parameter values for CNMF method.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

Sharpen Hyperspectral Image Using CNMF Method

Read a low spatial resolution hyperspectral image of a scene into the workspace.

hcube = hypercube('EO1H0440342002212110PY_hsi.hdr');

Read the high spatial resolution multispectral image of the same scene into the workspace.

pcube = hypercube('EO1H0440342002212110PY_msi.hdr');

 sharpencnmf

1-3343

Sharpen the low spatial resolution hyperspectral data by fusing information from the high spatial
resolution multispectral data by using the CNMF method. The output is a high resolution
hyperspectral data and the data cube has a spatial resolution same as that of the input multispectral
data.

newhcube = sharpencnmf(hcube,pcube);

Estimate an RGB image of the input hyperspectral, input multispectral, and the sharpened
hyperspectral output.

lrData = colorize(hcube,'method','rgb','ContrastStretching',true);
hrData = colorize(pcube,'method','rgb','ContrastStretching',true);
outputData = colorize(newhcube,'method','rgb','ContrastStretching',true);

Display the low spatial resolution hyperspectral (HS) image, high spatial resolution multispectral
(MS) image, and high resolution HS output image.

figure
montage({lrData;hrData;outputData})
title('Low Resolution HS Input | High Resolution MS Input | High Resolution HS Output')

1 Functions

1-3344

Set Convergence Threshold for Sharpening Hyperspectral Data

Read low spatial resolution hyperspectral image of a scene into the workspace.

hcube = hypercube('EO1H0440342002212110PY_hsi.hdr');

Read the high spatial resolution multispectral image of the same scene into the workspace.

pcube = hypercube('EO1H0440342002212110PY_msi.hdr');

Sharpen the low spatial resolution hyperspectral data by using the CNMF method. Set the
convergence threshold value to 0.1.

newhcube = sharpencnmf(hcube,pcube,'ConvergenceThreshold',0.1);

 sharpencnmf

1-3345

Estimate an RGB image of the input hyperspectral, input multispectral, and the sharpened
hyperspectral output.

lrData = colorize(hcube,'method','rgb','ContrastStretching',true);
hrData = colorize(pcube,'method','rgb','ContrastStretching',true);
outputData = colorize(newhcube,'method','rgb','ContrastStretching',true);

Display the low spatial resolution hyperspectral (HS) image, high spatial resolution multispectral
(MS) image, and high resolution HS output image.

figure
montage({lrData;hrData;outputData})
title('Low Resolution HS Input | High Resolution MS Input | High Resolution HS Output')

1 Functions

1-3346

Input Arguments
lrData — Low resolution hyperspectral data
hypercube object | 3-D numeric array

Low resolution hyperspectral data, specified as a hypercube object or a 3-D numeric array
containing the data cube. If the input is a hypercube object, the data is read from the DataCube
property of the object.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

hrData — High resolution input
hypercube object | 3-D numeric array | matrix

High resolution input, specified as a hypercube object, 3-D numeric array containing the data cube,
or matrix. If the input is a hypercube object, the data is read from the DataCube property of the
object.

The high resolution input is either a multispectral or panchromatic data.

• For multispectral data, the input value must be hypercube object or 3-D numeric array
containing the data cube.

• For panchromatic data, the input value can be any of these:

• A hypercube object or 3-D numeric array containing the data cube. The number of spectral
bands in the data cube must be 1.

• A matrix.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: cnmf(lrData,hrData,'MaxConvergenceIterations',40)

MaxConvergenceIterations — Maximum number of iterations required for convergence
25 (default) | positive integer scalar

Maximum number of iterations required for convergence, specified as the comma-separated pair
consisting of 'MaxConvergenceIterations' and a positive integer scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

MaxOptimizationIterations — Maximum number of iterations to optimize unmixing
2 (default) | positive integer scalar

Maximum number of iterations required to optimize spectral unmixing of hyperspectral and
multispectral data, specified as the comma-separated pair consisting of
'MaxOptimizationIterations' and a positive integer scalar. If the high resolution input hrData
is a panchromatic image, the spectral unmixing is performed only on the hyperspectral data.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

 sharpencnmf

1-3347

ConvergenceThreshold — Threshold for convergence
0.0001 (default) | positive scalar

Threshold for convergence, specified as the comma-separated pair consisting of
'ConvergenceThreshold' and a positive scalar. If you increase the convergence threshold, the
accuracy of spectral unmixing decreases.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NumEndmembers — Number of endmembers for spectral unmixing
positive integer scalar

Number of endmembers for spectral unmixing, specified as the comma-separated pair consisting of
'NumEndmembers' and a positive integer scalar.

For the default value, the sharpencnmf first counts the total number of endmembers (TotalEM) in the
hyperspectral data by using the countEndmembersHFC function. Then, computes the number of
endmembers for unmixing pixel values as, min(40,TotalEM).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
outputData — Sharpened hyperspectral data
hypercube object | 3-D numeric array

Sharpened hyperspectral data, returned as a hypercube object or 3-D numeric array.

If the low resolution hyperspectral data cube specified by lrData is of size P-by-Q-by-C and the high
resolution data hrData is of size M-by-N-by-K then the sharpened output

is of size M-by-N-by-C.

References
[1] Yokoya, Naoto, Takehisa Yairi, and Akira Iwasaki. “Coupled Nonnegative Matrix Factorization

Unmixing for Hyperspectral and Multispectral Data Fusion.” IEEE Transactions on
Geoscience and Remote Sensing 50, no. 2 (February 2012): 528–37. https://doi.org/10.1109/
TGRS.2011.2161320.

See Also
countEndmembersHFC | hypercube | nfindr | ppi

Introduced in R2020b

1 Functions

1-3348

sid
Measure spectral similarity using spectral information divergence

Syntax
score = sid(inputData,refSpectra)
score = sid(testSpectra,refSpectra)

Description
score = sid(inputData,refSpectra) measures the spectral similarity between the spectra of
each pixel in the hyperspectral data inputData and the specified reference spectra refSpectra by
using the spectral information divergence (SID) technique. Use this syntax to identify different
regions or materials in a hyperspectral data cube.

score = sid(testSpectra,refSpectra) measures the spectral similarity between the specified
test spectra testSpectra and reference spectra refSpectra by using the SID method. Use this
syntax to compare the spectral signature of an unknown material against the reference spectra or to
compute spectral variability between two spectral signatures.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

Distinguish Hyperspectral Regions Using Spectral Information Divergence

Distinguish different regions in a hyperspectral data cube by computing the spectral information
divergence (SID) between each pixel spectrum and the endmember spectrum of the data cube.

Read hyperspectral data into the workspace.

 hcube = hypercube('jasperRidge2_R198.hdr');

Specify the number of spectrally distinct bands to identify in the data cube.

numEndmembers = 7;

Extract endmember spectral signatures from the data cube by using the NFINDR algorithm.

endmembers = nfindr(hcube,numEndmembers);

Plot the spectral signatures of the endmembers.

figure
plot(endmembers)
xlabel('Band Number')

 sid

1-3349

ylabel('Data Value')
legend('Location','Bestoutside')

Compute the spectral information divergence between each endmember and the spectrum of each
pixel in the data cube.

score = zeros(size(hcube.DataCube,1),size(hcube.DataCube,2),numEndmembers);
for i= 1:numEndmembers
 score(:,:,i) = sid(hcube,endmembers(:,i));
end

Compute the minimum score value from the distance scores obtained for each pixel spectrum with
respect to all the endmembers. The index of each minimum score identifies the endmember spectrum
to which a pixel spectrum exhibits maximum similarity. An index value, n, at the spatial location (x, y)
in the score matrix indicates that the spectral signature of the pixel at spatial location (x, y) in the
data cube best matches the spectral signature of the nth endmember.

[~,matchingIndx] = min(score,[],3);

Estimate an RGB image of the hyperspectral data cube by using the colorize function. Display both
the RGB image and the matrix of matched index values.

rgbImg = colorize(hcube,'Method','RGB');
figure('Position',[0 0 1100 500])
subplot('Position',[0 0.2 0.4 0.7])
imagesc(rgbImg)
axis off

1 Functions

1-3350

colormap default
title('RGB Image of Hyperspectral Data')
subplot('Position',[0.5 0.2 0.4 0.7])
imagesc(matchingIndx);
axis off
title('Indices of Matching Endmembers')
colorbar

Determine Similarity of Endmember Spectra Using SID

Read hyperspectral data into the workspace.

hcube = hypercube('jasperRidge2_R198.hdr');

Find 10 endmembers of the hyperspectral data cube by using the N-FINDR method.

numEndmembers = 10;
endmembers = nfindr(hcube,numEndmembers);

Consider the first endmember as the reference spectrum and the rest of the endmembers as the test
spectrum. Compute the SID score between the reference and test spectra.

score = zeros(1,numEndmembers-1);
refSpectrum = endmembers(:,1);
for i = 2:numEndmembers
 testSpectrum = endmembers(:,i);
 score(i-1) = sid(testSpectrum,refSpectrum);
end

Find the test spectrum that exhibit maximum similarity (minimum distance) to the reference
spectrum. Then find the test spectrum that exhibit minimum similarity (maximum distance) to the
reference spectrum.

 sid

1-3351

[minval,minidx] = min(score);
maxMatch = endmembers(:,minidx);
[maxval,maxidx] = max(score);
minMatch = endmembers(:,maxidx);

Plot the reference spectrum, maximum similarity test spectrum, and the minimum similarity test
spectrum. The test spectrum with the minimum score has the highest similarity to the reference
endmember. On the other hand, the test spectrum with maximum score has the highest spectral
variability and characterises the spectral behaviour of two different materials.

figure
plot(refSpectrum)
hold on
plot(maxMatch,'k')
plot(minMatch,'r')
legend('Reference spectrum','Minimum match test spectrum','Maximum match test spectrum',...
 'Location','Southoutside');
title('Similarity Between Spectra')
annotation('textarrow',[0.3 0.3],[0.4 0.52],'String',['Min score: ' num2str(minval)])
annotation('textarrow',[0.6 0.6],[0.4 0.55],'String',['Max score: ' num2str(maxval)])
xlabel('Band Number')
ylabel('Data Values')

1 Functions

1-3352

Input Arguments
inputData — Input hyperspectral data
hypercube object | 3-D numeric array

Input hyperspectral data, specified as a hypercube object or a 3-D numeric array containing the data
cube. If the input is a hypercube object, the data is read from the DataCube property of the object.

testSpectra — Test spectra
C-element vector

Test spectra, specified as a C-element vector. The test spectra is the spectral signature of an unknown
region or material.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

refSpectra — Reference spectra
C-element vector

Reference spectra, specified as a C-element vector. The reference spectra is the spectral signature of
a known region or material. The function matches the test spectra against these values.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
score — SID score
scalar | matrix

SID score, returned as a scalar or matrix. The output is a

• scalar — If you specify the testSpectra input argument. The function matches the test spectral
signature against the reference spectral signature and returns a scalar value. Both the test and
the reference spectra must be vectors of same length.

• matrix — If you specify the inputData input argument. The function matches the spectral
signature of each pixel in the data cube against the reference spectral signature and returns a
matrix. If the data cube is of size M-by-N-by-C and the reference spectra is a vector of length C,
the output matrix is of size M-by-N.

A smaller SAM score indicates a strong match between the test signature and the reference
signature.
Data Types: single | double

More About
Spectral information divergence

The spectral information divergence (SID) method computes spectral similarity based on the
divergence between the probability distributions of the two spectra. Let r and t be the reference and
test spectra respectively. Calculate the distribution values for the reference spectra as:

.

 sid

1-3353

Calculate the distribution values for the test spectra as:

.

Then, compute the SID value by using the probability distributions of the reference and the test
spectra:

References
[1] Chein-I Chang. “An Information-Theoretic Approach to Spectral Variability, Similarity, and

Discrimination for Hyperspectral Image Analysis.” IEEE Transactions on Information Theory
46, no. 5 (August 2000): 1927–32. https://doi.org/10.1109/18.857802.

See Also
spectralMatch | readEcostressSig | sam | hypercube | sidsam

Introduced in R2020a

1 Functions

1-3354

sidsam
Measure spectral similarity using spectral information divergence-spectral angle mapper hybrid
method

Syntax
score = sidsam(inputData,refSpectrum)
score = sidsam(testSpectrum,refSpectrum)

Description
score = sidsam(inputData,refSpectrum) measures the spectral similarity between the
spectrum of each pixel in the hyperspectral data inputData and the specified reference spectrum
refSpectrum by using the spectral information divergence-spectral angle mapper (SID-SAM) hybrid
method. Use this syntax to identify different regions or materials in a hyperspectral data cube. For
information about the SID-SAM method, see “More About” on page 1-3360.

score = sidsam(testSpectrum,refSpectrum) measures the spectral similarity between the
specified test spectrum testSpectrum and reference spectrum refSpectrum by using the SID-SAM
hybrid method. Use this syntax to compare the spectral signature of an unknown material against the
reference spectrum or to compute spectral variability between two spectral signatures.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

Distinguish Hyperspectral Regions Using SID-SAM Hybrid Measure

Read hyperspectral data into the workspace.

hcube = hypercube('jasperRidge2_R198.hdr');

Estimate the number of spectrally distinct endmembers in the data cube by using
countEndmembersHFC function.

numEndmembers = countEndmembersHFC(hcube,'PFA',10^-7);

Extract the endmember spectral signatures from the data cube by using the NFINDR algorithm.

endmembers = nfindr(hcube,numEndmembers);

Plot the spectral signatures of the extracted endmembers.

figure
plot(endmembers)
xlabel('Bands')

 sidsam

1-3355

ylabel('Reflectance')
legend('Location','Bestoutside')

Compute the SID-SAM distance between each endmember and the spectrum of each pixel in the data
cube.

score = zeros(size(hcube.DataCube,1),size(hcube.DataCube,2),numEndmembers);
for i = 1:numEndmembers
 score(:,:,i) = sidsam(hcube,endmembers(:,i));
end

Compute the minimum score value from the distance scores obtained for each pixel spectrum with
respect to all the endmembers. The index of each minimum score identifies the endmember spectrum
to which a pixel spectrum exhibits maximum similarity. An index value, n, at the spatial location (x, y)
in the score matrix indicates that the spectral signature of the pixel at spatial location (x, y) in the
data cube best matches the spectral signature of the nth endmember.

[~,matchingIdx] = min(score,[],3);

Estimate an RGB image of the input data by using the colorize function.

rgbImg = colorize(hcube,'Method','rgb','ContrastStretching',true);

Display both the RGB image and the matrix of matched index values.

figure('Position',[0 0 800 400])
subplot('Position',[0 0.1 0.4 0.8])
imagesc(rgbImg)

1 Functions

1-3356

axis off
title('RGB Image of Hyperspectral Data')
subplot('Position',[0.45 0.1 0.45 0.8])
imagesc(matchingIdx)
axis off
title('Indices of Matching Endmembers')
colorbar

Determine Similarity of Endmember Spectra Using SID-SAM

Read hyperspectral data into the workspace.

hcube = hypercube('jasperRidge2_R198.hdr');

Find the first 10 endmembers of the hyperspectral data.

numEndmembers = 10;
endmembers = nfindr(hcube,numEndmembers);

Consider the first endmember as the reference spectrum and the rest of the endmembers as the test
spectrum.

refSpectrum = endmembers(:,1);
testSpectra = endmembers(:,2:end);

Plot the reference spectrum and other endmember spectra.

figure
plot(refSpectrum,'LineWidth',2);
hold on

 sidsam

1-3357

plot(testSpectra);
hold off
label = cell(1,numEndmembers-1);
label{1} = 'Reference';
for itr = 1:numEndmembers-1
 label{itr+1} = ['Endmember-' num2str(itr)];
end
xlabel('Bands')
ylabel('Reflectances')
legend(label,'Location','Bestoutside');

Compute the SID-SAM score between the reference and test spectra.

score = zeros(1,numEndmembers-1);
for itr = 1:numEndmembers-1
 testSpectrum = testSpectra(:,itr);
 score(itr) = sidsam(testSpectrum,refSpectrum);
end

Find the test spectrum that exhibit maximum similarity (minimum distance) to the reference
spectrum. Then find the test spectrum that exhibit minimum similarity (maximum distance) to the
reference spectrum.

[minval,minidx] = min(score);
maxMatch = testSpectra(:,minidx);
[maxval,maxidx] = max(score);
minMatch = testSpectra(:,maxidx);

1 Functions

1-3358

Plot the reference spectrum, the maximum similarity, and the minimum similarity test spectra. The
test spectrum with the minimum score value indicates highest similarity to the reference endmember.
On the other hand, the test spectrum with the maximum score value has the highest spectral
variability and characterises the spectral behaviour of two different materials.

figure
plot(refSpectrum,'LineWidth',2)
hold on
plot(maxMatch,'k')
plot(minMatch,'r')
xlabel('Band Number')
ylabel('Data Values')
legend('Reference spectrum','Maximum match test spectrum','Minimum match test spectrum',...
 'Location','Southoutside')
title('Similarity Between Spectra')
text(20,1000,['Max score: ' num2str(maxval)],'Color','r')
text(145,1800,['Min score: ' num2str(minval)],'Color','k')

Input Arguments
inputData — Input hyperspectral data
hypercube object | 3-D numeric array

Input hyperspectral data, specified as a hypercube object or a 3-D numeric array containing the data
cube. If the input is a hypercube object, the data is read from the DataCube property of the object.

 sidsam

1-3359

testSpectrum — Test spectrum
C-element vector

Test spectrum, specified as a C-element vector. The test spectrum is the spectral signature of an
unknown region or material.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

refSpectrum — Reference spectrum
C-element vector

Reference spectrum, specified as a C-element vector. The reference spectrum is the spectral
signature of a known region or material. The function matches the test spectrum against these
values.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
score — SID-SAM score
scalar | matrix

SID-SAM score, returned as a scalar or matrix. The output is a

• scalar — If you specify the testSpectrum input argument. The function matches the test spectral
signature against the reference spectral signature and returns a scalar value. Both the test and
the reference spectra must be vectors of same length.

• matrix — If you specify the inputData input argument. The function matches the spectral
signature of each pixel in the data cube against the reference spectral signature and returns a
matrix. If the data cube is of size M-by-N-by-C and the reference spectra is a vector of length C,
the output matrix is of size M-by-N.

A smaller SID-SAM score indicates a strong match between the test signature and the reference
signature.
Data Types: single | double

More About
SID-SAM

Given the test spectra t and a reference spectra r of length C, the SAM score α is calculated as

Compute the SID value by using the probability distributions of the reference and the test spectra:

where,

Then, compute the SID-SAM hybrid score as

1 Functions

1-3360

References
[1] Chang, Chein-I. “New Hyperspectral Discrimination Measure for Spectral Characterization.”

Optical Engineering 43, no. 8 (August 1, 2004): 1777. https://doi.org/10.1117/1.1766301.

See Also
spectralMatch | readEcostressSig | sid | hypercube | jmsam | ns3 | sam

Introduced in R2020b

 sidsam

1-3361

smileMetric
Compute spectral smile metrics of hyperspectral data

Syntax
[oxystd,carbonstd,oxyderiv,carbonderiv] = smileMetric(hcube)

Description
[oxystd,carbonstd,oxyderiv,carbonderiv] = smileMetric(hcube) computes the column
mean derivatives, and their standard deviations, for the oxygen and carbon-dioxide absorption
features of a hyperspectral data set. You can use these values to detect the spectral smile effect in the
hyperspectral data set. For more information, see “Smile Indicators” on page 1-3365.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

Compute Derivative Values for Oxygen and Carbon-Dioxide Absorption Features

Load the hyperspectral data into the workspace.

hcube = hypercube('EO1H0440342002212110PY_cropped.dat');

Compute the column mean derivative values, and their standard deviations, for the oxygen and
carbon-dioxide absorption features of the hyperspectral dataset hcube.

[oxystd,carbonstd,oxyderiv,carbonderiv] = smileMetric(hcube);

Perform spectral smile reduction using the maximum noise fraction (MNF) transform-based method.

correctedData = reduceSmile(hcube,'Method','MNF');

Compute the column mean derivative values, and their standard deviations, for the oxygen and
carbon-dioxide absorption features of the smile-corrected hyperspectral dataset correctedData.

[noxystd,ncarbonstd,noxyderiv,ncarbonderiv] = smileMetric(correctedData);

Plot the column mean derivative values of the oxygen absorption feature for both the uncorrected
hypercube hcube and the smile-corrected hypercube correctedData, and display their standard
deviations.

figure
plot(oxyderiv,'LineWidth',2)
hold on
plot(noxyderiv,'LineWidth',2)
hold off

1 Functions

1-3362

axis tight
grid on
xlabel('Cross-track positions (Columns)')
ylabel('Derivatives for oxygen absorption features')
legend({'Before smile correction','After smile correction'},'Location','northwest');
annotation(gcf,'textarrow',[0.4 0.4],[0.6 0.5],...
 'String',['Standard deviation = ' num2str(oxystd)]);
annotation(gcf,'textarrow',[0.7 0.7],[0.3 0.2],...
 'String',['Standard deviation = ' num2str(noxystd)]);

Plot the column mean derivative values of the carbon-dioxide absorption feature for both the
uncorrected hypercube hcube and the smile-corrected hypercube correctedData, and display their
standard deviations.

figure
plot(carbonderiv,'LineWidth',2)
hold on
plot(ncarbonderiv,'LineWidth',2)
hold off
axis tight
grid on
xlabel('Cross-track positions (Columns)')
ylabel('Derivatives for carbon-dioxide absorption features')
legend({'Before smile correction','After smile correction'},'Location','southwest');
annotation(gcf,'textarrow',[0.4 0.4],[0.7 0.85],...
 'String',['Standard deviation = ' num2str(carbonstd)]);

 smileMetric

1-3363

annotation(gcf,'textarrow',[0.7 0.7],[0.3 0.45],...
 'String',['Standard deviation = ' num2str(ncarbonstd)]);

Input Arguments
hcube — Input hyperspectral data
hypercube object

Input hyperspectral data, specified as a hypercube object. The DataCube property of the
hypercube object stores the hyperspectral data cube. To calculate the column mean of oxygen and
carbon-dioxide absorption feature derivatives, the hypercube object must have the full width half
maximum (FWHM) values in the Metadata property.

Note

• To compute the column mean of oxygen absorption feature derivatives, the input hyperspectral
data must contain data in the visible and near-infrared (VNIR) wavelength range 760 - 785 nm.

• To compute the column mean of carbon-dioxide absorption feature derivatives, the input
hyperspectral data must contain data in the short-wave-infrared (SWIR) wavelength range 2010 -
2025 nm.

1 Functions

1-3364

Output Arguments
oxyderiv — Column mean derivatives for oxygen absorption features
N-element row vector

Column mean derivatives for the oxygen absorption features, returned as a N-element row vector. N
is the number of columns in the input hyperspectral data cube. If the input hyperspectral data cube is
of type double, then the output vector is of data type double. Otherwise, the data type of the output
vector is single.

carbonderiv — Column mean derivative for carbon-dioxide absorption features
N-element row vector

Column mean derivatives for the carbon-dioxide absorption features, returned as a N-element row
vector. N is the number of columns in the input hyperspectral data cube. If the input hyperspectral
data cube is of type double, then the output vector is of data type double. Otherwise, the data type
of the output vector is single.

oxystd — Standard deviation of column mean derivatives for oxygen absorption features
scalar

Standard deviation of the column mean derivatives for oxygen absorption features, returned as a
scalar. You can use this scalar to detect the presence of the spectral smile effect in hyperspectral
data. If the value of oxystd is low, then the chances of the data having a smile effect is less in the
VNIR range.

carbonstd — Standard deviation of column mean derivatives for carbon-dioxide absorption
features
scalar

Standard deviation of the column mean derivatives for carbon-dioxide absorption features, returned
as a scalar. You can use this scalar to detect the presence of the spectral smile effect in hyperspectral
data. If the value of carbonstd is low, then the chances of the data having a smile effect is less in the
SWIR range.

More About
Smile Indicators

The smile effect occurs when hyperspectral data contains significant cross-track curvature with
nonlinear disturbances along the spectral dimension. These nonlinear disturbances occur only in data
captured using push-broom hyperspectral sensors, such as the Hyperion EO-1 and SEBASS. Based on
[1], you can detect cross-track variation in the oxygen and carbon-dioxide absorption features, due to
a possible smile effect, by calculating the first derivatives of the oxygen and carbon-dioxide band
images. The first derivative of the adjacent bands B′ is calculated using the absorption band image B1
and the image of the subsequent band B2, using the equation:

where, FWHM is the average FWHM of the two bands B1 and B2. This derivative calculation is
applicable to both the oxygen and carbon-dioxide absorption band images. The column mean values
of the oxygen and carbon-dioxide derivatives can indicate cross-track nonlinearity caused by the
spectral smile effect.

 smileMetric

1-3365

• The nonlinear, cross-track column mean of oxygen absorption feature derivative values indicates a
spectral smile effect in the VNIR spectrum.

• The nonlinear, cross-track column mean of carbon-dioxide absorption feature derivative values
indicates a spectral smile effect in the SWIR spectrum.

References
[1] Dadon, Alon, Eyal Ben-Dor, and Arnon Karnieli. “Use of Derivative Calculations and Minimum

Noise Fraction Transform for Detecting and Correcting the Spectral Curvature Effect (Smile)
in Hyperion Images.” IEEE Transactions on Geoscience and Remote Sensing 48, no. 6 (June
2010): 2603–12. https://doi.org/10.1109/TGRS.2010.2040391.

See Also
reduceSmile | hypercube

Introduced in R2021a

1 Functions

1-3366

subtractDarkPixel
Subtract dark pixel value from hyperspectral data cube

Syntax
correctedData = subtractDarkPixel(inputData)
correctedData = subtractDarkPixel(inputData,darkPixels)
correctedData = subtractDarkPixel(___ ,'BlockSize',blocksize)

Description
correctedData = subtractDarkPixel(inputData) subtracts the minimum pixel value of each
band from all pixels in that band of the hyperspectral data, inputData. The pixels with minimum
intensity values are the dark pixels of the hyperspectral data.

correctedData = subtractDarkPixel(inputData,darkPixels) subtracts the specified value,
darkPixels, from all pixels in each hyperspectral band. You can specify a single value to subtract
across all bands of the data cube or a separate value for each band. After subtraction, the function
sets all negative pixel values to 0.

correctedData = subtractDarkPixel(___ ,'BlockSize',blocksize) specifies the block
size for block processing of the hyperspectral data cube by using the name-value pair argument
'BlockSize'. You can specify the 'BlockSize' name-value pair argument in addition to the input
arguments in the previous syntaxes.

The function divides the input image into distinct blocks, processes each block, and then
concatenates the processed output of each block to form the output matrix. Hyperspectral images are
multi-dimensional data sets that can be too large to fit in system memory in their entirety. This can
cause the system to run out of memory while running the subtractDarkPixel function. If you
encounter such an issue, perform block processing by using this syntax.

For example, subtractDarkPixel(inputData,darkPixels,'BlockSize',[50 50]) divides
the input image into non-overlapping blocks of size 50-by-50 and then performs dark pixel subtraction
on each block.

Note To perform block processing by specifying the 'BlockSize' name-value pair argument, you
must have MATLAB R2021a or a later release.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

Subtract Band Minimum Pixel Values from Hyperspectral Data

Read hyperspectral data into the workspace.

 subtractDarkPixel

1-3367

hcube = hypercube('paviaU');

Subtract the minimum pixel value of each band from all pixels in that band.

hcubeCorrected = subtractDarkPixel(hcube);

Input Arguments
inputData — Input hyperspectral data
hypercube object | M-by-N-by-C numeric array

Input hyperspectral data, specified as one of the following.

• hypercube object. The DataCube property of the hypercube object stores the hyperspectral
data cube.

• M-by-N-by-C numeric array — M and N are the number of rows and columns in each band of
hyperspectral data. C is the number of spectral bands in the hyperspectral dataset.

darkPixels — Value to subtract from pixels of each band
numeric scalar | C-element numeric vector

Value to subtract from the pixels of each band, specified as a numeric scalar or a C-element numeric
vector. C is the number of bands in the hyperspectral dataset. If you specify a scalar, the function
subtracts that value from the pixels of all bands in the dataset.

blocksize — Size of data blocks
2-element vector of positive integers

Size of the data blocks, specified as a 2-element vector of positive integers. The elements of the
vector correspond to the number of rows and columns in each block, respectively. The size of the data
blocks must be less than the size of the input image. Dividing the hyperspectral images into smaller
blocks enables you process large data sets without running out of memory.

• If the blocksize value is too small, the memory usage of the function reduces at the cost of
increased execution time.

• If the blocksize value is large or equal to the input image size, the execution time reduces at the
cost of increased memory usage.

Example: 'BlockSize',[20 20] specifies the size of each data block as 20-by-20.

Output Arguments
correctedData — Corrected hyperspectral data
hypercube object | M-by-N-by-C numeric array

Corrected hyperspectral data, returned as a hypercube object or M-by-N-by-C numeric array with
data cube dimensions equal to those of the input data inputData.

1 Functions

1-3368

References
[1] Souri, A. H. and M. A. Sharifi. "Evaluation of Scene-Based Empirical Approaches for Atmospheric

Correction of Hyperspectral Imagery." Paper presented at the 33rd Asian Conference on
Remote Sensing, Pattaya, Thailand, November 2012.

See Also
hypercube | iarr | flatField | logResiduals | empiricalLine | reduceSmile | sharc

Introduced in R2020b

 subtractDarkPixel

1-3369

spectralIndices
Compute hyperspectral indices

Syntax
indices = spectralIndices(hcube)
indices = spectralIndices(hcube,indexNames)
indices = spectralIndices(hcube,'all')
indices = spectralIndices(___ ,'BlockSize',blocksize)

Description
indices = spectralIndices(hcube) computes the greenness indices: enhanced vegetation
index (EVI), modified chlorophyll absorption ratio index (MCARI), and simple ratio (SR) index of a
hyperspectral data. The function reads the data cube and the wavelength values stored in the
hypercube object hcube to compute the greenness indices.

indices = spectralIndices(hcube,indexNames) computes one or more spectral indices
specified by indexNames.

indices = spectralIndices(hcube,'all') computes all the supported spectral indices.

indices = spectralIndices(___ ,'BlockSize',blocksize) specifies the block size for
block processing of the hyperspectral data cube by using the name-value pair argument
'BlockSize'. You can specify the 'BlockSize' name-value pair argument in addition to the input
arguments in the previous syntaxes.

The function divides the input image into distinct blocks, processes each block, and then
concatenates the processed output of each block to form the output matrix. Hyperspectral images are
multi-dimensional data sets that can be too large to fit in system memory in their entirety. This can
cause the system to run out of memory while running the spectralIndices function. If you
encounter such an issue, perform block processing by using this syntax.

For example, spectralIndices(hcube,'BlockSize',[50 50]) divides the input image into
non-overlapping blocks of size 50-by-50 and then computes the spectral indices for pixels in each
block.

Note To perform block processing by specifying the 'BlockSize' name-value pair argument, you
must have MATLAB R2021a or a later release.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

1 Functions

1-3370

Compute Spectral Indices for Hyperspectral Data

Read hyperspectral data into the workspace.

hcube = hypercube('indian_pines.dat');

Compute the spectral indices value for each pixel in the data cube. By default, the
spectralIndices function returns the simple ratio (SR) index, enhanced vegetation index (EVI),
and modified chlorophyll absorption ratio index (MCARI).

indices = spectralIndices(hcube);

Inspect the index names in the output struct indices. Read the corresponding index images
returned at the output.

indices.IndexName

ans =
"Simple Ratio (SR)"

ans =
"Enhanced Vegetation Index (EVI)"

ans =
"Modified Chlorophyll Absorption Ratio Index (MCARI)"

srImg = indices(1).IndexImage;
eviImg = indices(2).IndexImage;
mcariImg = indices(3).IndexImage;

Estimate a contrast-stretched RGB image from the original data cube by using the colorize
function.

rgbImg = colorize(hcube,'Method','RGB','ContrastStretching',true);

Display the original and the computed index images. The SR index value greater than 3 signifies
vegetation. The EVI index identifies dense vegetation and the typical EVI index value for healthy
vegetation lie between 0.2 and 0.8. MCARI index signifies abundance of chlorophyll in a region.

fig = figure('Position',[0 0 800 700]);

axes1 = axes('Parent',fig,'Position',[0 0.54 0.42 0.42]);
imagesc(rgbImg,'Parent',axes1);
axis off
title('RGB Image of Data Cube')

axes2 = axes('Parent',fig,'Position',[0.5 0.54 0.45 0.42]);
imagesc(srImg,'Parent',axes2);
axis off
title('SR Image')
colorbar

axes3 = axes('Parent',fig,'Position',[0 0.035 0.45 0.42]);
imagesc(eviImg,'Parent',axes3);
axis off
title('EVI Image')
colorbar

axes4 = axes('Parent',fig,'Position',[0.5 0.035 0.45 0.42]);

 spectralIndices

1-3371

imagesc(mcariImg,'Parent',axes4);
axis off
title('MCARI Image')
colorbar

Detect Water Regions Using MNDWI

Read hyperspectral data into the workspace.

hcube = hypercube('jasperRidge2_R198.img');

Compute the MNDWI value for each pixel in the data cube and read the water index image.

1 Functions

1-3372

indices = spectralIndices(hcube,'MNDWI');
mndwiImg = indices.IndexImage;

Estimate a contrast-stretched RGB image from the original data cube by using the colorize
function.

rgbImg = colorize(hcube,'Method','RGB','ContrastStretching',true);

Display the original and the MNDWI image.

fig = figure('Position',[0 0 700 400]);
axes1 = axes('Parent',fig,'Position',[0 0.1 0.4 0.8]);
imshow(rgbImg,'Parent',axes1)
title('RGB Image of Data Cube')
axes2 = axes('Parent',fig,'Position',[0.45 0.15 0.47 0.7]);
imagesc(mndwiImg,'Parent',axes2)
colorbar
axis off
title('MNDWI Image')

Water regions typically have MNDWI values greater than 0.09. Perform thresholding of MNDWI
image to segment the water regions. Specify the threshold value.

threshold = 0.09;

Generate a binary image with a intensity value 1 for pixels with a score greater than or equal to the
specified threshold. All other pixels have a value 0. The regions in the binary image with a value of 1
correspond to the water regions in the data cube with MNDWI values greater than the threshold.

bw = mndwiImg > threshold;

 spectralIndices

1-3373

Overlay the binary image on to the RGB image and display the overlaid image.

overlayImg = imoverlay(rgbImg,bw,[0 0 1]);
figure
imagesc(overlayImg)
axis off
title('Water Region Overlaid on RGB Image')

Input Arguments
hcube — Input hyperspectral data
hypercube object

Input hyperspectral data, specified as a hypercube object. The DataCube property of the
hypercube object contains the hyperspectral data cube.

indexNames — Name of spectral index
character vector | string scalar | cell array of character vectors | cell array of string scalars

Name of spectral index to compute, specified as a character vector or string scalar. You can also
specify the names of multiple spectral indices as a cell array of either character vectors or string
scalars. The value of the indexNames must be one of the names listed in this table.

Supported spectral indices

1 Functions

1-3374

indexNames Description
'CAI' Cellulose absorption index
'CMR' Clay minerals ratio
'EVI' Enhanced vegetation index
'GVI' Green vegetation index
'MCARI' Modified chlorophyll absorption ratio index
'MIVI' Modified triangular vegetation index
'MNDWI' Modified normalized difference water index
'MSI' Moisture stress index
'NBR' Normalized burn ratio
'NDBI' Normalized difference built-up index
'NDMI' Normalized difference mud index
'NDNI' Normalized difference nitrogen index
'NDVI' Normalized difference vegetation index
'OSAVI' Optimized soil adjusted vegetation index
'PRI' Photochemical reflectance index
'SR' Simple ratio

Example: indexNames = 'PRI'indexNames = "PRI"indexNames =
{'NDVI,'OSAVI'}indexNames = {"GVI","NDMI"}

Data Types: char | string

blocksize — Size of data blocks
2-element vector of positive integers

Size of the data blocks, specified as a 2-element vector of positive integers. The elements of the
vector correspond to the number of rows and columns in each block, respectively. The size of the data
blocks must be less than the size of the input image. Dividing the hyperspectral images into smaller
blocks enables you process large data sets without running out of memory.

• If the blocksize value is too small, the memory usage of the function reduces at the cost of
increased execution time.

• If the blocksize value is large or equal to the input image size, the execution time reduces at the
cost of increased memory usage.

Example: 'BlockSize',[20 20] specifies the size of each data block as 20-by-20.

Output Arguments
indices — Spectral index values
struct

Spectral index values of the hyperspectral data, returned as a structure with two fields: IndexName
and IndexImage.

 spectralIndices

1-3375

Fields Description
IndexName Names of the spectral indices computed for the

hyperspectral data, returned as a string.
IndexImage Index image returned as a matrix. Each pixel

value is the spectral index value computed across
all the spectral bands. If the size of the
hyperspectral data cube specified at the input is
M-by-N-by-C, the size of the index image is M-by-
N.

The size of the output structure depends on the number of spectral indices computed for the
hyperspectral data.

• If the second input argument indexNames is not specified, the output is a structure array of size
1-by-3. The structure array contains the index images corresponding to EVI, MCARI, and SR
index.

• If the second input argument indexNames is specified and is of length 1-by-k, the output is a
structure array of size 1-by-k. You can use dot notation to read the outputs obtained for each
spectral index specified at the input.

• If the second input argument is 'all', the output is a structure array of size 1-by-16. The
structure array contains the index images corresponding to all the supported spectral indices.

Data Types: struct

See Also
hypercube | ndvi

Introduced in R2020b

1 Functions

1-3376

spectralMatch
Identify unknown regions or materials using spectral library

Syntax
score = spectralMatch(libData,hcube)
score = spectralMatch(libData,reflectance,wavelength)
score = spectralMatch(___ ,Name,Value)

Description
score = spectralMatch(libData,hcube) identifies regions in a hyperspectral data cube by
matching spectra signature of each pixel to the spectral data read from the ECOSTRESS spectral
library libData.

score = spectralMatch(libData,reflectance,wavelength) identifies a region or material
by matching its spectral reflectance values, specified as reflectance and wavelength, with the
values available in the ECOSTRESS spectral library libData.

score = spectralMatch(___ ,Name,Value) specifies options using one or more name-value
pair arguments in addition to any combination of input arguments in previous syntaxes.

Note This function requires the Image Processing Toolbox Hyperspectral Imaging Library. You can
install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more
information about installing add-ons, see Get and Manage Add-Ons.

Examples

Segment Vegetation Regions in Hyperspectral Data Using Spectral Matching

The spectral matching method compares the spectral signature of each pixel in the hyperspectral
data cube with a reference spectral signature for vegetation from an ECOSTRESS spectrum file.

Read the spectral signature of vegetation from the ECOSTRESS spectral library.

fileroot = matlabshared.supportpkg.getSupportPackageRoot();
filename = fullfile(fileroot,'toolbox','images','supportpackages','hyperspectral','hyperdata',...
 'ECOSTRESSSpectraFiles','vegetation.tree.tsuga.canadensis.vswir.tsca-1-47.ucsb.asd.spectrum.txt');
libData = readEcostressSig(filename);

Read the hyperspectral data into the workspace.

hcube = hypercube('paviaU.hdr');

Compute the distance scores of the spectrum of the hyperspectral data pixels with respect to the
reference spectrum.

score = spectralMatch(libData,hcube);

 spectralMatch

1-3377

Display the distance scores. The pixels with low distance scores are stronger matches to the
reference spectrum and are more likely to belong to the vegetation region.

figure
imagesc(score)
colorbar

Define a threshold for detecting distance scores that correspond to the vegetation region.

threshold = 0.3;

Generate a binary image by assigning a intensity value 1 for pixels with score less than a specified
threshold. Other regions are assigned the intensity value 0. The maximum intensity regions in the
binary image correspond to the vegetation regions in the hyperspectral data cube.

bw = score < threshold;

Segment the vegetation regions of the hyperspectral data cube by using the indices of the maximum
intensity regions in the binary image.

T = reshape(hcube.DataCube,[size(hcube.DataCube,1)*size(hcube.DataCube,2) size(hcube.DataCube,3)]);
Ts = zeros(size(T));

1 Functions

1-3378

Ts(bw == 1,:) = T(bw==1 ,:);
Ts = reshape(Ts,[size(hcube.DataCube,1) size(hcube.DataCube,2) size(hcube.DataCube,3)]);

. Create a new hypercube object that contains only the segmented vegetation regions.

segmentedDataCube = hypercube(Ts,hcube.Wavelength);

Estimate the RGB colour image of the original data cube and the segmented data cube by using the
colorize function.

rgbImg = colorize(hcube,'Method','rgb','ContrastStretching',true);
segmentedImg = colorize(segmentedDataCube,'Method','rgb','ContrastStretching',true);

Overlay the binary image on the RGB version of the original data cube by using the imoverlay
function.

B = imoverlay(rgbImg,bw,'Yellow');

Display the RGB colour images of the original data cube and the segmented data cube along with the
overlaid image. The segmented image contains only the vegetation regions that are segmented from
the original data cube.

figure
montage({rgbImg segmentedImg B},'Size',[1 3])
title(['Original Image | ' 'Segmented Image | ' 'Overlayed Image'])

 spectralMatch

1-3379

Identify Unknown Spectral Signature Using Spectral Matching

Read reference spectral signatures from the ECOSTRESS spectral library. The library consists of 15
spectral signatures belonging to manmade materials, soil, water, and vegetation. The output is a
structure array that stores the spectral data read from ECOSTRESS library files.

fileroot = matlabshared.supportpkg.getSupportPackageRoot();
dirname = fullfile(fileroot,'toolbox','images','supportpackages','hyperspectral','hyperdata','ECOSTRESSSpectraFiles');
libData = readEcostressSig(dirname);

Load a .mat file that contains the reflectance and the wavelength values of an unknown material into
the workspace. The reflectance and the wavelength values together comprise the test spectrum.

load spectralData 'reflectance' 'wavelength'

Compute the spectral match between the reference spectrum and test spectrum using spectral
information divergence (SID) method. The function computes the distance score for only those
reference spectra that have bandwidth overlap with the test spectrum. The function displays a
warning message for all other spectra.

score = spectralMatch(libData,reflectance,wavelength,'Method','SID');

Warning: Unable to find overlapping wavelengths between test spectra and library signature number 8

Warning: Unable to find overlapping wavelengths between test spectra and library signature number 9

Warning: Unable to find overlapping wavelengths between test spectra and library signature number 11

Display the distance scores of the test spectrum. The pixels with lower distance scores are stronger
matches to the reference spectrum. A distance score value of NaN indicates that the corresponding
reference spectrum and the test spectrum do not meet the overlap bandwidth threshold.

score

score = 1×15

 297.8016 122.5567 203.5864 103.3351 288.7747 275.5321 294.2341 NaN NaN 290.4887 NaN 299.5762 171.6919 46.2072 176.6637

Find the minimum distance score and the corresponding index. The returned index value indicates
the row of the structure array libData that contains the reference spectrum that most closely
matches a test spectrum.

[value,ind] = min(score);

Find the matching reference spectrum by using the index of the minimum distance score, and display
the details of the matching spectral data in the ECOSTRESS library. The result shows that the test
spectrum match most closely with the spectral signature of sea water.

matchingSpectra = libData(ind)

matchingSpectra = struct with fields:
 Name: "Sea Foam"
 Type: "Water"
 Class: "Sea Water"
 SubClass: "none"
 ParticleSize: "Liquid"
 Genus: [0×0 string]

1 Functions

1-3380

 Species: [0×0 string]
 SampleNo: "seafoam"
 Owner: "Dept. of Earth and Planetary Science, John Hopkins University"
 WavelengthRange: "TIR"
 Origin: "JHU IR Spectroscopy Lab."
 CollectionDate: "N/A"
 Description: "Sea foam water. Original filename FOAM Original ASTER Spectral Library name was jhu.becknic.water.sea.none.liquid.seafoam.spectrum.txt"
 Measurement: "Directional (10 Degree) Hemispherical Reflectance"
 FirstColumn: "X"
 SecondColumn: "Y"
 WavelengthUnit: "micrometer"
 DataUnit: "Reflectance (percent)"
 FirstXValue: "14.0112"
 LastXValue: "2.0795"
 NumberOfXValues: "2110"
 AdditionalInformation: "none"
 Wavelength: [2110×1 double]
 Reflectance: [2110×1 double]

Plot the reflectance values of the test spectrum and the corresponding reference spectrum. For the
purpose of plotting and visualizing the shape of the reflectance curves, rescale the reflectance values
to the range [0, 1] and interpolate test reflectance values to match the reference reflectance values in
number.

figure
testReflectance = rescale(reflectance,0,1);
refReflectance = rescale(matchingSpectra.Reflectance,0,1);
testLength = length(testReflectance);
newLength = length(testReflectance)/length(refReflectance);
testReflectance = interp1(1:testLength,testReflectance,1:newLength:testLength);

plot(refReflectance)
hold on
plot(testReflectance,'r')
hold off
legend('Matching reference reflectance','Test reflectance')
xlabel('Number of samples')
ylabel('Reflectance value')

 spectralMatch

1-3381

Input Arguments
libData — ECOSTRESS Spectral data
structure

Spectral data from ECOSTRESS files, returned as a 1-by-K structure array. K is the number of
spectrum files read by the function. Each element of the structure array has 24 fields that contain the
header information of the spectrum files.

Field Names Description
Name Name of the measured sample or material
Type Type of sample, such as "mineral", "rock",

"tree", or "manmade"

1 Functions

1-3382

Class Class of the sample type

For example, if the sample type is "mineral"
then the class can be: "native
elements","silicates", "oxides",
"sulfides", "sulfates", "halides",
"carbonates", "phosphates", or
"mineraloids".

SubClass Subclass of the sample type

This field contains an empty array or "none",
unless the Type value is "mineral", "rock",
"manmade", "soil", "lunar", or
"meteorite".

ParticleSize Particle size of the sample type

This field contains an empty array unless the
Type value is "mineral", "rock", "manmade",
"soil", "lunar", or "meteorite".

Genus Genus of the sample

This field contains an empty array unless the
Type value is "vegetation" or
"nonphotosynthetic".

Species Species of the sample

This field contains an empty array unless the
Type value is "vegetation" or
"nonphotosynthetic".

SampleNo Sample number

This value is an identifier for the associated
sample.

Owner Owner of the sample
WavelengthRange Wavelength range of the measured sample

The value must be "All", "TIR", or "VSWIR".
Origin Location from which the data was obtained
CollectionDate Date on which the sample was collected

This value is in mm/dd/yy format.
Description Description of the measured sample

This field provides additional information about
the characteristics of the sample.

Measurement Spectral measurement mode used to measure the
sample

FirstColumn First column of data values in the spectrum file

 spectralMatch

1-3383

SecondColumn Second column of data values in the spectrum file
WavelengthUnit Measuring unit for the spectral wavelengths of

the samples

The value for every sample type is
"micrometer". This field corresponds to the X
Units field of the header data in the
ECOSTRESS spectrum file.

DataUnit Unit of the spectral measurement mode

Spectral measurement mode includes reflectance,
transmittance, and transmission. The unit is
percentage. This field corresponds to the Y
Units field of the header data in the
ECOSTRESS spectrum file.

FirstXValue First value in the first column of data values in
the spectrum file

LastXValue Last value in the first column of data values in the
spectrum file

NumberofXValues Total number of data values in the first column of
the spectrum file

AdditionalInformation Additional information about the sample

This field includes information that is not part of
the spectral data.

Wavelength Wavelength values at which the reflectances were
measured

Reflectance Reflectance values measured at each
wavelengths

hcube — Input hyperspectral data
hypercube object

Input hyperspectral data, specified as a hypercube object. The DataCube property of the
hypercube object contains the hyperspectral datacube.

reflectance — Reflectance values
C-element vector

Reflectance values, specified as a C-element vector. C is the number of wavelengths for which the
reflectance values have been measured.

wavelength — Wavelength values
C-element vector

Wavelength values, specified as a C-element vector. C is the number of wavelengths for which the
reflectance values have been measured.

1 Functions

1-3384

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: spectralMatch(libData,hcube,'MinBandWidth',0.5)

Method — Spectral matching method
'sam' (default) | 'sid' | 'sidsam' | 'jmsam' | 'ns3'

Spectral matching method, specified as the comma-separated pair consisting of 'Method' and one of
these values:

• 'sam' — Spectral angle mapper (SAM) method, which measures the similarity between two
spectra by computing the angular distance between them.

• 'sid' — Spectral information divergence (SID) method, which measures the similarity between
two spectra by computing the difference between their probability distribution values.

• 'sidsam' — Mixed spectral similarity method, which measures the similarity between two
spectra by combining the SID and SAM distance measures.

• 'jmsam' — Jeffries Matusita-Spectral Angle Mapper (JMSAM), which measures the similarity
between two spectra by combining the Jeffries Matusita (JM) and SAM distance measures.

• 'ns3' — Normalized spectral similarity score (NS3) method, which measures the similarity
between two spectra by combining the Euclidean and SAM distance measures.

For details about these spectral matching methods, see “More About” on page 1-3386.
Data Types: char | string

MinBandWidth — Minimum overlap bandwidth
300 (default) | positive scalar

Minimum overlap bandwidth, specified as the comma-separated pair consisting of 'MinBandWidth'
and a positive scalar in nanometers. The overlap bandwidth between the reference spectrum and the
test spectra is defined as:

BWoverlap = Wmax − Wmin

Wmin is the maximum of minimum wavelengths in the reference and test spectra.

Wmax is the maximum of maximum wavelengths in the reference and test spectra.

The 'MinBandWidth' argument defines the minimum expected value for the overlap bandwidth
between the spectral values of the test material and the ECOSTRESS spectral data.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
score — Distance scores
3-D numeric array | matrix | K-element column vector | scalar

Distance scores, returned as a 3-D numeric array, matrix, K-element column vector, or scalar. The
dimensions of the output score depend on the dimensions of the libData and whether the test data
is a hypercube object or a wavelength and reflectance pair.

 spectralMatch

1-3385

If the test spectral signatures are specified as a hypercube object, hcube and the data cube
is of size M-by-N-by-C:

Dimension of input argument, libData Dimension of output, score
1-by-K, containing K reference signatures read
from K number of spectrum files

3-D numeric array of size M-by-N-by-K containing
the distance score for each pixel with respect to
K reference signatures

The values in each channel of K are the distance
scores of the spectra of each pixel with respect to
the spectral data in the corresponding row of
libData. Similarly, the values in the second
channel relate to the spectral data in the second
row of libData.

1-by-1, containing reference signature read from
one spectrum file (K = 1)

matrix of size M-by-N, The matrix contains the
distance score for each pixel's spectra with
respect to a reference signature.

If the test spectral signature is specified as reflectance and wavelength values:

Dimension of input argument, libData Dimension of output, score
1-by-K, containing K reference signatures read
from K number of spectrum files

K-element vector containing the distance score of
the test spectra with respect to K reference
signatures. Each element of the vector is the
distance score of the test reflectance values with
respect to the spectral data in the corresponding
row of libData.

1-by-1, containing reference signature read from
one spectrum file (K = 1)

scalar

Data Types: double

More About
Spectral Angle Mapper (SAM)

Given the test spectra t and a reference spectra r of length C, the SAM score α is calculated as

Spectral Information Divergence (SID)

The spectral information divergence (SID) method computes spectral similarity based on the
divergence between the probability distributions of the two spectra. Let r and t be the reference and
test spectra respectively. Calculate the distribution values for the reference spectra as:

.

Calculate the distribution values for the test spectra as:

.

1 Functions

1-3386

Then, compute the SID value by using the probability distributions of the reference and the test
spectra:

SID-SAM

The SID-SAM method computes spectral similarity as:

Jeffries Matusita-Spectral Angle Mapper (JMSAM)

The JMSAM method computes spectral similarity based on the Jeffries Matusita (JM) and SAM
distances between two spectra. Let r and t be the reference and test spectra respectively.

First, compute the JM distance,

where B is the Bhattacharyya distance,

B = 1
8 μt− μr

T σt + σr
2

−1
μt− μr + 1

2ln
σt + σr

2
σt σr

μr and μt are the mean values of the reference and test spectra respectively. σr and σt are the
covariance values of the reference and test spectra respectively.

Then, compute the SAM value α by using the test spectra t and the reference spectra r of length C,

Finally, compute the JMSAM score as:

JMSAM = JMdistance × tan α

Normalized Spectral Similarity Score (NS3)

The NS3 method computes spectral similarity based on the Euclidean and SAM distances between
two spectra. Let r and t be the reference and test spectra respectively. Compute the Euclidean
distance between two spectra as:

Then, compute the SAM value α

Finally, compute the NS3 score as:

See Also
sam | sid | hypercube | readEcostressSig | ns3 | sidsam | jmsam

Introduced in R2020a

 spectralMatch

1-3387

	Functions
	Color Thresholder
	DICOM Browser
	Image Batch Processor
	Image Browser
	Image Segmenter
	Image Region Analyzer
	Image Viewer
	Registration Estimator
	Video Viewer
	Volume Segmenter
	Volume Viewer
	activecontour
	adapthisteq
	adaptthresh
	addPix2PixHDLocalEnhancer
	affine2d
	affine3d
	affineOutputView
	analyze75info
	analyze75read
	applycform
	applylut
	axes2pix
	bestblk
	bfscore
	bigimage
	apply
	isequal
	getBlock
	getFullLevel
	getRegion
	setBlock
	write
	bigimageDatastore
	countEachLabel
	partition
	read
	readRelative
	bigimageshow
	hidemask
	showmask
	hidelabels
	showlabels
	blendexposure
	BINBlocks
	GenericImage
	GenericImageBlocks
	H5
	H5Blocks
	InMemory
	JPEGBlocks
	MATBlocks
	PNGBlocks
	TIFF
	blockedImage
	apply
	blocksub2sub
	crop
	gather
	getBlock
	getRegion
	setBlock
	sub2blocksub
	sub2world
	world2sub
	write
	blockedImageDatastore
	countEachLabel
	hasdata
	partition
	read
	readall
	blockedNetwork
	blockLocationSet
	blockproc
	boundarymask
	brisque
	brisqueModel
	burstinterpolant
	bwarea
	bwareafilt
	bwareaopen
	bwboundaries
	bwconncomp
	bwconvhull
	bwdist
	bwdistgeodesic
	bweuler
	bwferet
	bwhitmiss
	bwlabel
	bwlabeln
	bwlookup
	bwmorph
	bwmorph3
	bwpack
	bwperim
	bwpropfilt
	bwselect
	bwselect3
	bwskel
	bwtraceboundary
	bwulterode
	bwunpack
	camresponse
	centerCropWindow2d
	centerCropWindow3d
	checkerboard
	chromadapt
	col2im
	colfilt
	colorangle
	colorChecker
	colorcloud
	conndef
	contains
	convmtx2
	corner
	cornermetric
	corr2
	cp2tform
	cpcorr
	cpselect
	cpstruct2pairs
	cycleGANGenerator
	dct2
	dctmtx
	decompose
	deconvblind
	deconvlucy
	deconvreg
	deconvwnr
	decorrstretch
	deltaE
	demosaic
	depthToSpace
	denoiseImage
	denoisingImageDatastore
	partitionByIndex
	read
	readByIndex
	denoisingImageSource
	denoisingNetwork
	dice
	dicomanon
	dicomCollection
	dicomContours
	addContour
	convertToInfo
	createMask
	deleteContour
	plotContour
	dicomdict
	dicomdisp
	dicomfind
	dicominfo
	dicomlookup
	dicomread
	dicomreadVolume
	dicomuid
	dicomupdate
	dicomwrite
	displayChart
	displayColorPatch
	dlresize
	dnCNNLayers
	dpxinfo
	dpxread
	drawassisted
	drawcircle
	drawcrosshair
	drawcuboid
	drawellipse
	drawfreehand
	drawline
	drawpoint
	drawpolygon
	drawpolyline
	drawrectangle
	edge
	edge3
	edgetaper
	encoderDecoderNetwork
	entropy
	entropyfilt
	esfrChart
	fan2para
	fanbeam
	fibermetric
	findbounds
	fitbrisque
	fitgeotrans
	fitniqe
	fliptform
	freqz2
	fsamp2
	fspecial
	fspecial3
	ftrans2
	fwind1
	fwind2
	gabor
	geometricTransform2d
	geometricTransform3d
	LocalWeightedMeanTransformation2D
	PiecewiseLinearTransformation2D
	PolynomialTransformation2D
	getheight
	getimage
	getimagemodel
	getline
	getneighbors
	getnhood
	getpts
	getrect
	getsequence
	grabcut
	gradientweight
	gray2ind
	graycomatrix
	grayconnected
	graycoprops
	graydiffweight
	graydist
	grayslice
	graythresh
	hdrread
	hdrwrite
	histeq
	hough
	houghlines
	houghpeaks
	iccfind
	iccread
	iccroot
	iccwrite
	idct2
	ifanbeam
	illumgray
	illumpca
	illumwhite
	im2bw
	im2col
	im2int16
	im2java2d
	im2single
	im2uint16
	im2uint8
	imabsdiff
	imadd
	imadjust
	imadjustn
	ImageAdapter
	ImageAdapter.close
	ImageAdapter.readRegion
	ImageAdapter.writeRegion
	imageinfo
	imagemodel
	getClassType
	getDefaultPixelInfoString
	getDefaultPixelRegionString
	getDisplayRange
	getImageHeight
	getImageType
	getImageWidth
	getMaxIntensity
	getMinIntensity
	getNumberFormatFcn
	getPixelInfoString
	getPixelRegionFormatFcn
	getPixelValue
	getScreenPixelRGBValue
	images.blocked.Adapter
	alreadyWritten
	close
	getInfo
	getIOBlock
	openInParallelToAppend
	openToRead
	openToWrite
	setIOBlock
	images.dicom.decodeUID
	images.dicom.parseDICOMDIR
	images.roi.CircleMovingEventData
	images.roi.CuboidMovingEventData
	images.roi.EllipseMovingEventData
	images.roi.RectangleMovingEventData
	images.roi.ROIClickedEventData
	images.roi.ROIMovingEventData
	images.stack.browser.CrosshairMovingEventData
	images.stack.browser.SliderMovingEventData
	imapplymatrix
	imattributes
	imbilatfilt
	imbinarize
	imbothat
	imboxfilt
	imboxfilt3
	imclearborder
	imclose
	imcolordiff
	imcolormaptool
	imcomplement
	imcontour
	imcontrast
	imcrop
	imcrop3
	imdiffuseest
	imdiffusefilt
	imdilate
	imdisplayrange
	imdivide
	imerase
	imerode
	imextendedmax
	imextendedmin
	imfill
	imfilter
	imfindcircles
	imflatfield
	imfuse
	imgaborfilt
	imgaussfilt
	imgaussfilt3
	imgca
	imgcf
	imgetfile
	imgradient
	imgradient3
	imgradientxy
	imgradientxyz
	imguidedfilter
	imhandles
	imhist
	imhistmatch
	imhistmatchn
	imhmax
	imhmin
	imimposemin
	imlincomb
	imlocalbrighten
	immagbox
	immovie
	immse
	immultiply
	imnlmfilt
	imnoise
	imopen
	imoverlay
	imoverview
	imoverviewpanel
	impixel
	impixelinfo
	impixelinfoval
	impixelregion
	impixelregionpanel
	improfile
	imputfile
	impyramid
	imquantize
	imreconstruct
	imreducehaze
	imref2d
	imref3d
	imregionalmax
	imregionalmin
	imregconfig
	imregcorr
	imregdemons
	imregister
	imregmtb
	imregtform
	imresize3
	imroi
	imdistline
	imellipse
	imfreehand
	imline
	impoint
	impoly
	imrect
	addNewPositionCallback
	createMask
	getAngleFromHorizontal
	getColor
	getDistance
	getLabelHandle
	getLabelTextFormatter
	getLabelVisible
	getPosition
	getPositionConstraintFcn
	getVertices
	removeNewPositionCallback
	resume
	setClosed
	setColor
	setConstrainedPosition
	setFixedAspectRatioMode
	setLabelTextFormatter
	setLabelVisible
	setPosition
	setPositionConstraintFcn
	setResizable
	setString
	setVerticesDraggable
	wait
	imrotate
	imrotate3
	imsave
	imscrollpanel
	imsegfmm
	imseggeodesic
	imsegkmeans
	imsegkmeans3
	imsharpen
	imshow
	imshowpair
	imsplit
	imsubtract
	imtophat
	imtransform
	imtranslate
	imwarp
	ind2gray
	inpaintCoherent
	inpaintExemplar
	integralBoxFilter
	integralBoxFilter3
	integralImage
	integralImage3
	interfileinfo
	interfileread
	intlut
	intrinsicToWorld
	invert
	iptaddcallback
	iptcheckconn
	iptcheckhandle
	iptcheckinput
	iptcheckmap
	iptchecknargin
	iptcheckstrs
	iptdemos
	iptgetapi
	iptGetPointerBehavior
	iptgetpref
	ipticondir
	iptnum2ordinal
	iptPointerManager
	iptprefs
	iptremovecallback
	iptSetPointerBehavior
	iptsetpref
	iptwindowalign
	iradon
	isflat
	isicc
	isnitf
	isRigid
	isrset
	isSimilarity
	isTranslation
	jaccard
	jitterColorHSV
	lab2double
	lab2rgb
	lab2uint16
	lab2uint8
	lab2xyz
	label2idx
	label2rgb
	labelmatrix
	labeloverlay
	labelvolshow
	setVolume
	depthToSpace2dLayer
	resize2dLayer
	resize3dLayer
	spaceToDepthLayer
	lazysnapping
	lin2rgb
	localcontrast
	locallapfilt
	localtonemap
	makecform
	makeConstrainToRectFcn
	makehdr
	makelut
	makeresampler
	maketform
	mat2gray
	maxhessiannorm
	mean2
	measureChromaticAberration
	measureColor
	measureIlluminant
	measureNoise
	measureSharpness
	medfilt2
	medfilt3
	modefilt
	montage
	multissim
	multissim3
	multithresh
	niftiinfo
	niftiread
	niftiwrite
	niqe
	niqeModel
	nitfinfo
	nitfread
	nlfilter
	normxcorr2
	ntsc2rgb
	obliqueslice
	offsetstrel
	openrset
	ordfilt2
	orthosliceViewer
	getAxesHandles
	otf2psf
	otsuthresh
	outputLimits
	padarray
	para2fan
	patchGANDiscriminator
	phantom
	piqe
	pix2pixHDGlobalGenerator
	planar2raw
	plotChromaticity
	plotSFR
	poly2label
	poly2mask
	polyToBlockedImage
	pretrainedEncoderNetwork
	projective2d
	psf2otf
	psnr
	qtdecomp
	qtgetblk
	qtsetblk
	radon
	randomAffine2d
	randomAffine3d
	randomCropWindow2d
	randomCropWindow3d
	randomPatchExtractionDatastore
	partitionByIndex
	read
	readByIndex
	shuffle
	randomWindow2d
	rangefilt
	rawinfo
	rawread
	raw2planar
	raw2rgb
	reducepoly
	reflect
	regionfill
	regionprops
	regionprops3
	MattesMutualInformation
	MeanSquares
	OnePlusOneEvolutionary
	RegularStepGradientDescent
	rgb2lab
	rgb2lightness
	rgb2lin
	rgb2ntsc
	rgb2xyz
	rgbwide2xyz
	rgb2ycbcr
	rgbwide2ycbcr
	rigid2d
	rigid3d
	AssistedFreehand
	Circle
	Crosshair
	Cuboid
	Ellipse
	Freehand
	Line
	Point
	Polygon
	Polyline
	Rectangle
	beginDrawingFromPoint
	bringToFront
	createMask
	draw
	inROI
	reduce
	wait
	roicolor
	roifill
	roifilt2
	roipoly
	rsetwrite
	sizesMatch
	sliceViewer
	getAxesHandle
	selectBlockLocations
	spaceToDepth
	Cuboid
	Rectangle
	ssim
	std2
	stdfilt
	strel
	stretchlim
	subimage
	superpixels
	superpixels3
	tformarray
	tformfwd
	tforminv
	tiffreadVolume
	tonemap
	tonemapfarbman
	transformPointsForward
	transformPointsInverse
	translate
	truesize
	unitGenerator
	unitPredict
	visboundaries
	viscircles
	volshow
	setVolume
	warp
	Warper
	warp
	watershed
	whitepoint
	wiener2
	worldToIntrinsic
	worldToSubscript
	xyz2double
	xyz2rgb
	xyz2rgbwide
	xyz2lab
	xyz2uint16
	ycbcr2rgb
	ycbcr2rgbwide
	Hyperspectral Viewer
	anomalyRX
	assignData
	countEndmembersHFC
	colorize
	correctOOB
	cropData
	denoiseNGMeet
	dn2radiance
	dn2reflectance
	empiricalLine
	enviinfo
	enviwrite
	estimateAbundanceLS
	fastInScene
	fippi
	flatField
	hypercube
	hypermnf
	hyperpca
	iarr
	inverseProjection
	jmsam
	logResiduals
	nfindr
	ndvi
	ns3
	ppi
	radiance2Reflectance
	readEcostressSig
	reduceSmile
	removeBands
	rrs
	sam
	selectBands
	sharc
	sharpencnmf
	sid
	sidsam
	smileMetric
	subtractDarkPixel
	spectralIndices
	spectralMatch

